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Optical Metrology of Diffuse Surfaces

K. Creath, J. Schmit, and J. C. Wyant

This chapter discusses moiré, fringe projection, structured illumination, holographic

interferometry, digital holography, and speckle interferometry techniques for testing

diffuse surfaces. Diffuse surfaces may be ground optical surfaces; or more often than

not, they are other types of engineering surfaces or human figures. The main

applications of these techniques are to determine surface form and shape or to

measure displacement due to stress and object motion. When measuring surface

form, these techniques provide a coarser and more flexible means of testing a wider

variety of surfaces than do conventional interferometers. For displacement measure-

ment due to applied stress, static as well as time-average and dynamic displacements

can be determined quantitatively. These techniques are used a lot in machine vision

applications, for process control, and for specialized measurement tasks on engineer-

ing components. Applications range from measuring the shape of an airplane

window to determining whether components will stay on a circuit board, to studying

vibration modes of turbine blades, to monitoring the alignment of segments in a large

segmented telescope, to making replicas of historic sculptures, producing a well-

fitting pair of jeans, and creating animated movies or video games with realistic

motion of live figures. The newest techniques pushing the limits of this technology

currently focus on rapid prototyping and real-time shape observation for multimedia

and security.

16.1. MOIRÉ AND FRINGE PROJECTION TECHNIQUES

16.1.1. Introduction

The term moiré is not the name of a person; in fact, it is a French word referring to

‘‘an irregular wavy finish usually produced on a fabric by pressing between engraved

rollers’’ (Webster’s, 1981). In optics, it refers to a beat pattern produced between two
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gratings of approximately equal spacing. It can be seen in everyday things, such as

the overlapping of twowindow screens, the rescreening of a half-tone picture, or with

a striped shirt seen on television. The use of moiré for reduced sensitivity testing was

introduced by Lord Rayleigh in 1874. Lord Rayleigh looked at the moiré between

two identical gratings to determine their quality even though each individual grating

could not be resolved under a microscope.

Fringe projection entails projecting a fringe pattern or grating on an object and

viewing it from a different direction. The first use of fringe projection for determining

surface topography was presented by Rowe and Welford in 1967. It is a convenient

technique for contouring objects which are too coarse to be measured with standard

interferometry. Fringe projection is related to optical triangulation using a single

point of light and light sectioning where a single line is projected onto an object and

viewed in a different direction to determine the surface contour (Case et al., 1987).

These techniques are usually used with diffuse objects; however, alternative methods

have been developed to measure specular surfaces by looking at the fringe reflection

(Ritter and Hahn, 1983; Hang et al., 2000).

Moiré and fringe projection interferometry complement conventional holographic

interferometry, especially for testing optics to be used at long wavelengths. Although

two-wavelength holography (TWH) can be used to contour surfaces at any longer-

than-visible wavelength, visible interferometric environmental conditions are

required. Moiré and fringe projection interferometry can contour surfaces at any

wavelength longer than 10–100 mmwith reduced environmental requirements and no

intermediate photographic recording setup. Moiré is also a useful technique for

aiding in the understanding of interferometry.

This chapter explains what moiré is and how it relates to interferometry. Con-

touring techniques utilizing fringe projection, projection and shadowmoiré, and two-

angle holography are all described and compared. All of these techniques provide the

same result and can be described by a single theory. The relationship between these

techniques and the holographic and conventional interferometry will be shown.

Errors caused by divergent geometries are described, and applications of these

techniques combined with phase-measurement techniques are presented. Further

information on these techniques can be found in the following books and book

chapters: Varner (1974), Vest (1979), Hariharan (1984), Gasvik (2002), Chiang

(1983) Patorski and Kujawinska (1993), Post et al. (1997), Amridror (2000), and

Walker (2004).

16.1.2. What is Moiré?

Moiré patterns are extremely useful to help understand basic interferometry and

interferometric test results. Figure 16.1 shows the moiré pattern (or beat pattern)

produced by two identical straight line gratings rotated by a small angle relative

to each other. A dark fringe is produced where the dark lines are out of step

one-half period, and a bright fringe is produced where the dark lines for one grating

fall on top of the corresponding dark lines for the second grating. If the angle

between the two gratings is increased, the separation between the bright and dark

16.1. MOIRÉ AND FRINGE PROJECTION TECHNIQUES 757



fringes decreases. (A simple explanation of moiré is given by Oster and Nishijima

(1963).)

If the gratings are not identical to the straight line gratings, the moiré pattern

(bright and dark fringes) will not be straight equi-spaced fringes. The following

analysis shows how to calculate the moiré pattern for arbitrary gratings. Let the

intensity transmission function for two gratings f1ðx; yÞ and f2ðx; yÞ be given by

f1ðx; yÞ ¼ a1 þ
X1

n¼1

b1n cos½nf1ðx; yÞ�

f2ðx; yÞ ¼ a2 þ
X1

m¼1

b2m cos½mf2ðx; yÞ�
ð16:1Þ

where f(x,y) is the function describing the basic shape of the grating lines. For

the fundamental frequency, f(x,y) is equal to an integer times 2p at the center of

each bright line and is equal to an integer plus one-half times 2p at the center of each

dark line. The b coefficients determine the profile of the grating lines (i.e., square

wave, triangular, sinusoidal, etc). For a sinusoidal line profile, bi1 is the only nonzero

term.

When these two gratings are superimposed, the resulting intensity transmission

function is given by the product

f1ðx; yÞf2ðx; yÞ ¼ a1a2 þ a1
X1

m¼1

b2m cos½mf2ðx; yÞ� þ a2
X1

n¼1

b1n cos½nf1ðx; yÞ�

þ
X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ� cos½mf2ðx; yÞ�: ð16:2Þ

2 a 
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FIGURE 16.1. (a) Straight line grating. (b) Moiré between two straight line gratings of the same pitch at

an angle 2a with respect to one another.
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The first three terms of Eq. (16.2) provide information which can be determined by

looking at the two patterns separately. The last term is the interesting one, and can be

rewritten as

Term 4 ¼ 1

2
b11b21 cos½f1ðx; yÞ � f2ðx; yÞ�

þ 1

2

X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ � mf2ðx; yÞ�; n and m both 6¼ 1

þ 1

2

X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ þ mf2ðx; yÞ� ð16:3Þ

This expression shows that by superimposing the two gratings, the sum and differ-

ence between the two gratings is obtained. The first term of Eq. (16.3) represents the

difference between the fundamental pattern making up the two gratings. It can be

used to predict the moiré pattern shown in Figure 16.1. Assuming that two gratings

are oriented with an angle 2a between them with the y axis of the coordinate system

bisecting this angle, the two grating functions f1ðx; yÞ and f2ðx; yÞ can be written as

f1ðx; yÞ ¼
2p

l1
ðx cos aþ y sin aÞ

and

f2ðx; yÞ ¼
2p

l2
ðx cos a� y sin aÞ ð16:4Þ

where l1 and l2 are the line spacings of the two gratings. Equation (16.4) can be

rewritten as

f1ðx; yÞ � f2ðx; yÞ ¼
2p

lbeat
x cos aþ 4p

l
y sin a ð16:5Þ

where l ¼ ðl1 þ l2Þ=2 is the average line spacing, and lbeat is the beat wavelength

between the two gratings given by

lbeat ¼
l1l2

l2 � l1
ð16:6Þ

Note that this beat wavelength is the same that was obtained for two-wavelength

interferometry as described in Chapter 15, and is also referred to as the synthetic or

equivalent wavelength. Using Eq. (16.3), the moiré or beat will be lines whose

centers satisfy the equation

f1ðx; yÞ � f2ðx; yÞ ¼ M2p ð16:7Þ

Three separate cases for moiré fringes can be considered.
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For the first case l1 ¼ l2 ¼ l. The first term of Eq. (16.5) is zero, and the fringe

centers are given by

Ml ¼ 2y sin a ð16:8Þ

where M is an integer corresponding to the fringe order (see Fig. 16.2(a)). As was

expected, Eq. (16.8) is the equation of equi-spaced horizontal lines as seen in

Fig. 16.1.

For the second simple case l1 6¼ l2 and the gratings are parallel to each other with

a ¼ 0. This makes the second term of Eq. (16.5) vanish. The moiré will then be lines

which satisfy

Mlbeat ¼ x ð16:9Þ

These fringes are equally-spaced lines parallel to the grating lines (see Fig. 16.2(b)).

For the third and more general case where the two gratings have different line

spacings l1 6¼ l2 and the angle between the gratings is nonzero a 6¼ 0, the equation

for the moiré fringes will now be

Ml ¼ l

lbeat
x cos aþ 2y sin a ð16:10Þ

This is the equation of straight lines whose spacing and orientation is dependent upon

the relative difference between the two grating spacings and the angle between the

gratings (see Fig. 16.2(c)).

The orientation and spacing of the moiré fringes for the general case can be

determined from the geometry shown in Figure. 16.3 (Chiang, 1983). The distance

AB can be written in terms of the two grating spacings,

AB ¼ l1

sinðy� aÞ ¼
l2

sinðyþ aÞ ð16:11Þ

FIGURE 16.2. Moiré patterns caused by two straight line gratings with (a) the same pitch tilted with

respect to one another, (b) different frequencies and no tilt, and (c) different frequencies tiltedwith respect to

one another.
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where y is the angle the moiré fringes make with the y axis. After rearranging, the

fringe orientation angle y is given by

tan y ¼ tan a
l1 þ l2

l2 � l1

� �

ð16:12Þ

When a ¼ 0 and l1 6¼ l2, y ¼ 0�, and when l1 ¼ l2 with a 6¼ 0, y ¼ 90� as

expected. The fringe spacing perpendicular to the fringe lines can be found by

equating quantities for the distance DE,

DE ¼ l1

sin 2a
¼ C

sinðyþ aÞ ð16:13Þ

where C is the fringe spacing or contour interval. This can be rearranged to yield

C ¼ l1
sinðyþ aÞ
sin 2a

	 


ð16:14Þ

By substituting for the fringe orientation y, the fringe spacing can be found in terms

of the grating spacings and angle between the gratings;

C ¼ l1l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l22 sin
2 2aþ ðl2 cos 2a� l1Þ2

q ð16:15Þ

In the limit that a ¼ 0 and l1 6¼ l2, the fringe spacing equals lbeat, and in the limit

that l1 ¼ l2 ¼ l and a 6¼ 0, the fringe spacing equals l=ð2 sin aÞ. It is possible to

determine l2 and a from the measured fringe spacing and orientation as long as l1 is

known (Chiang, 1983).

x

y
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E

FIGURE 16.3. Geometry used to determine spacing and angle of moiré fringes between two gratings of

different frequencies tilted with respect to one another.
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16.1.3. Moiré and Interferograms

Now that we have covered the basic mathematics of moiré patterns, let us see how

moiré patterns are related to interferometry. The single grating shown in Figure 16.1

can be thought of as a ‘‘snapshot’’ of plane waves (like in a collimated beam)

traveling to the right where the distance between the grating lines is equal to the

wavelength of light. Superimposing the two sets of grating lines in Fig. 16.1b can be

thought of as superimposing two plane waves with an angle of 2a between their

directions of propagation. When the two waves are in phase, bright fringes result

(constructive interference) and when they are out of phase, dark fringes result

(destructive interference). For a collimated plane wave, the ‘‘grating’’ lines are really

planes (sheets) perpendicular to the plane of the figure and the dark and bright fringes

are also planes perpendicular to the plane of the figure. If the plane waves are

traveling to the right, these fringes would be observed by placing a screen perpendi-

cular to the plane of the figure and to the right of the grating lines as shown in

Figure 16.1. The spacing of the interference fringes on the screen is given by

Eq. (16.8), where l is now the wavelength of light. Thus, the moiré of two

straight-line gratings correctly predicts the centers of the interference fringes pro-

duced by interfering two plane waves. Since the gratings used to produce the moiré

pattern are binary gratings, the moiré does not correctly predict the sinusoidal

intensity profile of the interference fringes. (If both gratings had sinusoidal intensity

profiles, the resulting moiré would still not have a sinusoidal intensity profile because

of higher-order terms.)

More complicated gratings, such as circular gratings, can also be investigated.

Figure 16.4(b) shows the superposition of two identical circular grating patterns

shown in Figure 16.4(a). This composite pattern indicates the fringe positions

obtained by interfering two spherical wavefronts. The centers of the two circular

gratings can be considered the source locations for two spherical waves. Just as for

two plane waves, the spacing between the grating lines is equal to the wavelength of

light. When the two patterns are in phase, bright fringes are produced, and when the

patterns are completely out of phase, dark fringes result. For a point on a given

fringe, the difference in the distances from the two source points and the fringe point

is a constant. Hence, the fringes are hyperboloids. Due to symmetry, the fringes seen

on observation plane A of Figure 16.4(b) must be circular. (Plane A is along the top

of Fig. 16.4(b) and perpendicular to the line connecting the two sources as well as

perpendicular to the page.) Figure 16.4(c) shows a representation of these inter-

ference fringes and represents the interference pattern obtained by interfering a non-

tilted plane wave and a spherical wave. (A plane wave can be thought of as a

spherical wave with an infinite radius of curvature.) Figure 16.4(d) shows that the

interference fringes in plane B are essentially straight equi-spaced fringes going into

the page. (These fringes are strictly speaking still hyperbolas, but in the limit of large

distances, they are essentially straight lines. Plane B is along the side of Fig. 16.4(b)

and parallel to the line connecting the two sources as well as perpendicular to

the page.)
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FIGURE 16.4. Interference of two spherical waves. (a) Circular line grating representing a spherical

wavefront. (b) Moiré pattern obtained by superimposing two circular line patterns. (c) Fringes observed in

plane A. (d) Fringes observed in plane B.
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The lines of constant phase in plane B, if there were only a single spherical wave

(single point source), are shown in Figure 16.5(a). (To first-order, the lines of constant

phase in plane B are the same shape as the interference fringes in plane A.)

The pattern shown in Figure 16.5(a) is commonly called a zone plate.

Figure 16.5(b) shows the superposition of two linearly displaced zone plates. The

resulting moiré pattern of straight equi-spaced fringes illustrates the interference

fringes in plane B shown in Figure 16.4(b).

Superimposing two interferograms and looking at the moiré or beat produced can

be extremely useful. The moiré formed by superimposing two different interfero-

grams shows the difference in the aberrations of the two interferograms. For

example, Figure 16.6 shows the moiré produced by superimposing two computer-

generated interferograms. One interferogram has 20 waves of tilt across the radius

(Fig. 16.6(a)), while the second interferogram has 20 waves of tilt plus 4 waves of

defocus (Fig. 16.6(b)). If the interferograms are aligned such that the tilt direction is

the same for both interferograms, the tilt will cancel and only the 4 waves of defocus

remain (Fig. 16.6(c)). In Figure 16.6(d), the two interferograms are rotated slightly

FIGURE 16.5. Moiré pattern produced by two zone plates. (a) Zone plate. (b) Straight line fringes

resulting from superposition of two zone plates.
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with respect to each other so that the tilt will not quite cancel. These results can be

described mathematically by looking at the two grating functions:

f1ðx; yÞ ¼ 2pð20r cosjþ 4r2Þ

and

f2ðx; yÞ ¼ 2p½20r cosðjþ aÞ� ð16:16Þ

A bright fringe is obtained when

f1 � f2

2p
¼ 20r½cosj� cosðjþ aÞ� þ 4r2 ¼ M ð16:17Þ

If a ¼ 0, the tilt cancels completely and 4 waves of defocus remain; otherwise, some

tilt remains in the moiré pattern.

Figure 16.7 shows similar results for interferograms containing third-order aber-

rations. A computer-generated interferogram having 22 waves of tilt across the

radius, 4 waves of spherical and �2 waves of defocus is shown in Figure 16.7(a).

Net spherical aberration with defocus and tilt is shown in Figure 16.7(d). This is the

result of moiré between the interferogram in Figure 16.7(a) with an interferogram

FIGURE 16.6. Moiré between two interferograms. (a) Interferogram having 20 waves tilt. (b) Interfer-

ogramhaving20waves tilt plus 4wavesof defocus. (c) Superpositionof 16.6a and16.6bwith no tilt between

patterns. (d) Slight tilt between patterns.
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having 20 waves of tilt (Fig. 16.6(a)). Figure 16.7(e) shows the moiré between an

interferogram having 20 waves of tilt (Fig. 16.6(a)) with an interferogram having 20

waves of tilt and 5 waves of coma (Fig. 16.7(b)) netting 5 waves of coma in the moiré.

The moiré between an interferogram having 20 waves of tilt (Fig. 16.6(a)) and one

having 20 waves of tilt, 7 waves third-order astigmatism, and �3.5 waves defocus

(Fig. 16.7(c)) is shown in Figure 16.7(f). Thus, it is possible to produce simple fringe

patterns using moiré. These patterns can be printed or photocopied onto transpar-

encies and used as a learning aid to understand interferograms obtained from

FIGURE 16.7. Moiré patterns showing third-order aberrations. Interferograms containing (a) 22 waves

tilt, 4 waves of third-order spherical aberration, and �2 waves of defocus, (b) 20 waves tilt and 5 waves

coma, and (c) 20 waves tilt, 7 waves astigmatism, and �3.5 waves of defocus. (d) Moiré pattern between

Figure 16.6a and 16.7a. (e) Moiré pattern between Figures 16.6(a) and 16.7(b). (f) Moiré pattern between

Figures 16.6(a) and 16.7(c).
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third-order aberrations. Electronic copies are available at JC Wyant’s website

(Wyant, 2006) as well as on the accompanying CD to this book.

Figure 16.8(a) shows two identical interferograms superimposed with a small

rotation between them. As we might by now expect, the moiré pattern consists of

nearly straight equi-spaced lines. However, when one of the two interferograms is

flipped over, the aberrations will add rather than subtract, and the resultant moiré is

shown in Figure 16.8(b). When one interferogram is flipped, the fringe deviation

from straightness in one interferogram is to the right and, in the other, to the left.

Thus, the signs of the defocus and spherical aberration for the two interferograms are

opposite and the resulting moiré pattern has twice the defocus and spherical of each

of the individual interferograms.

When two identical interferograms given by Figure 16.7(a) are superimposed with

a displacement from one another, a shearing interferogram is obtained. Figure 16.9

shows vertical and horizontal displacements with and without a rotation between the

two interferograms. The rotations indicate the addition of tilt to the interferograms.

These types of moiré patterns are very useful for understanding lateral shearing

interferograms.

Moiré patterns are produced by multiplying two intensity distribution functions.

Adding two intensity functions does not give the difference term obtained in

Eq. (16.3). A moiré pattern is not obtained if two intensity functions are added.

The only way to get a moiré pattern by adding two intensity functions is to use a

nonlinear detector. For the detection of an intensity distribution given by I1 þ I2, a

nonlinear response can be written as

Response ¼ aðI1 þ I2Þ þ bðI1 þ I2Þ2 þ � � � ð16:18Þ

This produces terms proportional to the product of the two intensity distributions in

the output signal. Hence, a moiré pattern is obtained if the two individual intensity

patterns are simultaneously observed by a nonlinear detector (even if they are not

multiplied before detection). If the detector produces an output linearly proportional

to the incoming intensity distribution, the two intensity patterns must be multiplied to

produce the moiré pattern. Since the eye is a nonlinear detector, moiré can be seen

FIGURE 16.8. Moiré pattern by superimposing two identical interferograms (Figure 16.7(a)). (a) Both

patterns having the same orientation. (b) One pattern is flipped.
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whether the patterns are added or multiplied. A good TV camera, on the other hand,

will not see moiré unless the patterns are multiplied.

16.1.4. Historical Review

Since Lord Rayleigh first noticed the phenomena of moiré fringes, moiré techniques

have been used for a number of testing applications. Righi (1887) first noticed that

the relative displacement of two gratings could be determined by observing the

movement of the moiré fringes. The next significant advance in the use of moiré was

presented by Weller and Shepherd (1948). They used moiré to measure the deforma-

tion of an object under applied stress by looking at the differences in a grating pattern

before and after the applied stress. They were the first to use shadow moiré, where a

grating is placed in front of a nonflat surface, to determine the shape of the object

behind it by using the shape of the moiré fringes. A rigorous theory of moiré fringes

did not exist until the mid-fifties when Ligtenberg (1955) and Guild (1956, 1960)

explained moiré for stress analysis by mapping slope contours and displacement

measurement, respectively. Excellent historical reviews of the early work in moiré

have been presented by Theocaris (1962, 1966). Books on this subject have been

written by Guild (1956, 1960), Theocaris (1969), and Durelli and Parks (1970).

Projection moiré techniques were introduced by Brooks and Helfinger (1969) for

FIGURE 16.9. Moiré patterns formed using two identical interferograms (Figure 16.7(a)) where the two

are sheared with respect to one another. (a) Vertical displacement. (b) Vertical displacement with rotation

showing tilt. (c) Horizontal displacement. (d) Horizontal displacement with rotation showing tilt.
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optical gauging and deformation measurement. Until 1970, advances in moiré

techniques occurred mostly in stress analysis. Some of the first uses of moiré to

measure surface topography were reported by Meadows et al., (1970), Takasaki

(1970), and Wasowski (1970). Moiré has also been used to compare an object to a

master and for vibration analysis (Der Hovanesian and Yung, 1971; Gasvik, 2002). A

theoretical review and experimental comparison of moiré and projection techniques

for contouring is given by Benoit et al. (1975). Automatic computer fringe analysis of

moiré patterns by finding fringe centers was reported by Yatagai et al. (1982).

Heterodyne interferometry was first used with moiré fringes by Moore and Truax

(1979), and phase measurement techniques were further developed by Perrin and

Thomas (1979), Shagam (1980), and Reid (1984b). Review papers on moiré tech-

niques include Post (1982), Reid (1984a), and Halioua and Liu (1989) and recent

books include Patorski and Kujawinska (1993), Post et al. (1997), Amridror (2000),

and Walker (2004).

The projection of interference fringes for contouring objects was first proposed by

Rowe and Welford (1967). Their later work included a number of applications for

projected fringes (Welford, 1969) and the use of projected fringes with holography

(Rowe, 1971). In-depth mathematical treatments have been provided by Benoit et al.

(1975) and Gasvik (2002). The relationship between projected fringe contouring and

triangulation is given in a book chapter by Case et al. (1987). Heterodyne phase

measurement was first introduced with projected fringes by Indebetouw (1978),

and phase measurement techniques were further developed by Takeda, Ina, and

Kabayashi (1982), Takeda and Mutoh (1983), and Srinivasan, Liu, and Halioua

(1984, 1985). Today phase measurement techniques are the norm as described in

the list of recent books listed above.

Haines and Hildebrand first proposed contouring objects in holography using two

sources (Haines and Hildebrand, 1965; Hildebrand and Haines, 1966, 1967). These

two sources were produced by changing either the angle of the illumination beam on

the object or the angle of the reference beam. A small angle difference between the

beams used to produce a double-exposure hologram creates a moiré in the final

hologram which corresponded to topographic contours of the test object. Further

insight into two-angle holography has been provided by Menzel (1974), Abramson

(1976a,b), and DeMattia and Fossati-Bellani (1978). The technique has also been

used in speckle interferometry (Winther, 1983). These holographic and speckle

techniques are described more in the second half of this chapter.

Since all of these techniques are so similar, it is sometimes hard to differentiate

developments in one technique versus another. MacGovern (1972) provided a theory

that linked all of these techniques together. The next part of this chapter will explain

each of these techniques and then show the similarities among all of these techniques

and provide a comparison to conventional interferometry.

16.1.5. Fringe Projection

A simple approach for contouring is to project interference fringes or a grating

onto an object and then view from another direction. Figure 16.10 shows the optical
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setup for this measurement. Assuming a collimated illumination beam and viewing

the fringes with a telecentric optical system, straight equally-spaced fringes are

incident on the object producing equally-spaced contour intervals. The departure

of a viewed fringe from a straight line shows the departure of the surface from a

plane reference surface. An object with fringes of spacing p projected onto it can be

seen in Figure 16.11. When the fringes are viewed at an angle a relative to the

projection direction, the spacing of the lines perpendicular to the viewing direction

will be

d ¼ p

cos a
ð16:19Þ

The contour interval C (the height between adjacent contour lines in the viewing

direction) is determined by the line or fringe spacing projected onto the surface and

the angle between the projection and viewing directions;

C ¼ p

sin a
¼ d

tan a
ð16:20Þ

These contour lines are planes of equal height and the sensitivity of the measurement

is determined by a. The larger the angle a, the smaller the contour interval. If

a ¼ 90�, then the contour interval is equal to p, and the sensitivity is a maximum.

The reference plane will be parallel to the direction of the fringes and perpendicular

to the viewing direction as shown in Figure 16.12. Even though the maximum

sensitivity can be obtained, a 90� angle between the projection and viewing direc-

tions will produce a lot of unacceptable shadows on the object. These shadows

will lead to areas with missing data where the object cannot be contoured. When

a ¼ 0, the contour interval is infinite, and the measurement sensitivity is zero. To

provide the best results, an angle no larger than the largest slope on the surface should

be chosen.

C

p

a

Project fringes

or grating

View

d

FIGURE16.10. Projection of fringes or grating onto object and viewed at an angle a. p is the grating pitch

or fringe spacing and C is the contour interval.
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When interference fringes are projected onto a surface rather than using a grating,

the fringe spacing p is determined by the geometry shown in Figure 16.13 and is

given by

p ¼ l

2 sin�y
ð16:21Þ

FIGURE 16.11. Mask with fringes projected onto it. (a) Coarse fringe spacing. (b) Fine fringe spacing.

(c) Fine fringe spacing with an increase in the angle between illumination and viewing.
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where l is the wavelength of illumination and 2�y is the angle between the two

interfering beams. Substituting the expression for p into Eq. (16.20), the contour

interval becomes

C ¼ l

2ðsin�yÞ sin a ð16:22Þ

If a simple interferometer such as a Twyman–Green is used to generate projected

interference fringes, tilting one beam with respect to the other will change the

contour interval. The larger the angle between the two beams, the smaller the contour

interval will be. Figures 16.11(a and b) show a change in the fringe spacing for

interference fringes projected onto an object. The direction of illumination has been

moved away from the viewing direction between Figures 16.11(b and c). This

increases the angle a and the test sensitivity while reducing the contour interval.

Projected fringe contouring has been covered in detail by Gasvik (2002).

If the source and the viewer are not at infinity, the fringes or grating projected onto

the object will not be composed of straight, equally-spaced lines. The height between

contour planes will be a function of the distance from the source and viewer to the

object. There will be a distortion due to the viewing of the fringes as well as due to

the illumination. This means that the reference surface will not be a plane. As long as

the object does not have large height changes compared to the illumination and

viewing distances, a plane reference surface placed in the plane of the object can be

Reference

plane

a = 90°

View

FIGURE 16.12. Maximum sensitivity for fringe projection with a 90� angle between projection and

viewing.

FIGURE 16.13. Fringes produced by two interfering beams.
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measured first and then subtracted from subsequent measurements of the object. This

enables the mapping of a plane in object space to a surface which will serve as a

reference surface. If the object has large height variations, the plane reference surface

may have to be measured in a number of planes to map the measured object contours

to real heights. Finite illumination and viewing distances will be considered in more

detail with shadow moiré in Section 16.1.6.

Fringe Projection using Microdisplays. For many years fringe projectionmethods

relied on Ronchi gratings, which were often made as imprinted chrome lines on a

glass substrate, but present-day systems employ a number of different types of

microdisplays (digital light projectors); three commonly-used types of microdisplays

(Armitage et al., 2002), namely micro-electro-mechanical-systems (MEMS), liquid-

crystal and electroluminescent technologies, allow for active addressing of indivi-

dual pixels high resolution matrix display area. The first type, which includes digital

micromirror displays (DMD – Texas Instrument trademark), uses an array of

individual, approximately 13 mm square mirrors that are switched on and off at

different frequencies so as to obtain different levels of projected light. The second

type of microdisplays are liquid crystal displays (LCD), where standard LCDs are

build of twisted nematic liquid crystal layers and work in transmission. The newer

type of LCDs is based on ferroelectric crystal placed on silicon (LCoS) and works in

reflection. LCD displays act as spatial light modulators (SLM) and require incident

polarized light. The third type is microdisplay made of an array of organic (polymer)

light emitting diodes (OLEDS or PLEDS). This type is best suited for small systems

because pixels made of organic polymers are Lambertian emitters itself and do not

require additional illuminator. The advantage of any fringe projection system using

microdisplays controlled by computer is that they do not require a mechanical phase

shifting grating and the type of projected fringes can be changed with a mouse click.

Fringes are changed by addressing pixels of microdisplay. Additional advantage of

microdisplays is that the period and brightness (Kowarschik et al., 2000; Proll et al.,

2003) of light patterns can be adapted to the type of object and also patterns can be

displayed in different colors allowing for simultaneous collection of three patterns

with color CCD camera. Many authors have analyzed performance of microdisplays

in fringe projection for shape measurement (Frankowski et al., 2000; Proll et al.,

2003; Notni, Riehemann et al., 2004).

16.1.6. Shadow Moiré

A simple method of moiré interferometry for contouring objects uses a single grating

placed in front of the object as shown in Figure 16.14. The grating in front of the

object produces a shadow on the object which is viewed from a different direction

through the grating. A low frequency beat or moiré pattern is seen. This pattern is due

to the interference between the grating shadows on the object and the grating as

viewed. Assuming that the illumination is collimated and that the object is viewed at

infinity or through a telecentric optical system, the height z between the grating and
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the object point can be determined from the geometry shown in Figure 16.14

(Meadows et al., 1970; Takasaki, 1973; Chiang, 1983). This height is given by

z ¼ Np

tan aþ tan b
ð16:23Þ

where a is the illumination angle, b is the viewing angle, p is the spacing of the

grating lines, and N is the number of grating lines between the points A and B (see

Fig. 16.14). The contour interval in a direction perpendicular to the grating will

simply be given by

C ¼ p

tan aþ tan b
ð16:24Þ

Again, the distance between the moiré fringes in the beat pattern depends upon the

angle between the illumination and viewing directions. The larger the angle, the

smaller the contour interval. If the high frequencies due to the original grating are

filtered out, then only the moiré interference term is seen. The reference plane will

be parallel to the grating. Note that this reference plane is tilted with respect to

the reference plane obtained when fringes are projected onto the object. Essentially,

the shadow moiré technique provides a way of removing the ‘‘tilt’’ term and

repositioning the reference plane. The contour interval for shadow moiré is the

same as that calculated for projected fringe contouring [Eq. (16.20)] when one of

the angles is zero with d ¼ p. Figure 16.15 shows an object which has a grating

sitting in front of it. An illumination beam is projected from one direction and viewed

z

b

a

B

A

p
Illuminate

View

Grating &

reference plane

FIGURE 16.14. Geometry for shadow moiré with illumination and viewing at infinity, that is, parallel

illumination and viewing.
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from another direction. Between Figures 16.15a and b, the angles a and b have

been increased. This has the effect of decreasing the contour interval, increasing the

number of fringes, and rotating the reference plane slightly away from the viewer.

Most of the time, it is difficult to illuminate an entire object with a collimated

beam. Therefore, it is important to consider the case of finite illumination and

viewing distances. It is possible to derive this for a very general case (Meadows,

Johnson, and Allen, 1970; Takasaki, 1970; Bell, 1985); however, for simplicity, only

the case where the illumination and viewing positions are the same distance from the

grating will be considered. Figure 16.16 shows a geometry where the distance

between the illumination source and the viewing camera is given by w, and the

distance between these and the grating is l. The grating is assumed to be close enough

to the object surface so that diffraction effects are negligible. In this case, the height

between the object and the grating is given by

z ¼ Np

tan a0 þ tan b0
ð16:25Þ

where a0 and b0 are the illumination and viewing angles at the object surface. These

angles change for every point on the surface and are different from a and b in

Figure 16.16 which are the illumination and viewing angles at the grating (reference)

surface. The surface height can also be written as (Meadows et al., 1970; Takasaki,

1973; Chiang, 1983)

z ¼ NCðzÞ ¼ Npðlþ zÞ
w

¼ Npl

w� Np
ð16:26Þ

FIGURE 16.15. Mask with grating in front of it. (a) One viewing angle. (b ) Larger viewing angle.
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This equation indicates that the height is a complex function depending upon the

position of each object point. Thus, the distance between contour intervals is

dependent upon the height on the surface and the number of fringes between the

grating and the object. Individual contour lines will no longer be planes of equal

height. There are now surfaces of equal height. The expression for height can be

simplified by considering the case where the distance to the source and viewer is

large compared to the surface height variations, l � z. Then the surface height can be

expressed as

z ¼ Npl

w
¼ Np

tan aþ tan b
ð16:27Þ

Even though the angles a and b vary from point-to-point on the surface, the sum of

their tangents remains equal to w/l for all object points as long as l � z. The contour

interval will be constant in this regime and will be the same as that given by

Eq. (16.24).

Because of the finite distances, there is also distortion due to the viewing

perspective. A point on the surface Q will appear to be at the location Q0 when
viewed through the grating. By similar triangles, the distances x and x0 from a

line perpendicular to the grating intersecting the camera location can be related

using

x

zþ l
¼ x0

l
ð16:28Þ

where x and x0 are defined in Figure 16.16. Equation (16.28) can be rearranged to

yield the actual coordinate x in terms of the measured coordinate x0 and the

z

b ′

a ′

Q ′

Q

b

a

w

x
x ′

l

p

Source

Camera

FIGURE 16.16. Geometry for shadow moiré with illumination and viewing at finite distances.
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measurement geometry,

x ¼ x0 1þ z

l

� �

ð16:29Þ

Likewise, the y coordinate can be corrected using

y ¼ y0 1þ z

l

� �

ð16:30Þ

This enables the measured surface to be mapped to the actual surface to correct for

the viewing perspective. These same correction factors can be applied to fringe

projection.

16.1.7. Projection Moiré

Moiré interferometry can also be implemented by projecting interference fringes or a

grating onto an object and then viewing through a second grating in front of the

viewer (see Fig. 16.17) (Brooks and Helfinger, 1969). Instead of using a second

grating to observemoiré fringes, the spacing of pixels on a digital camera can be used

if the pitch is close to the observed fringe spacing (Bell 1985).

The difference between projection and shadow moiré is that in projection moiré

two different gratings are used in projection moiré. The orientation of the reference

plane can be arbitrarily changed by using different grating pitches to view the object.

The contour interval is again given by Eq. (16.24), by substituting a period of

d ¼ p= cos a for p where a is the angle of illumination direction. Fringes of spacing

p or a grating of pitch p perpendicular to the direction of illumination will have a

period of d ¼ p= cos a in the y plane (see Fig. 16.16). As long as the grating pitches

are matched for both illumination and viewing to have the same value of d in the y

plane then the contour interval can be found using Eq. (16.24) with d substituted for

p. This implementation makes projection moiré the same as shadow moiré, although

Project fringes

or grating

View through

grating

FIGURE 16.17. Projection moiré where fringes or a grating are projected onto a surface and viewed

through a second grating.
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