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Chapter 1

Hilbert space operators

1.1 Douglas’ factorization theorem

Let A : H1 −→ H and B : H2 −→ H be bounded operators between Hilbert
spaces. In certain applications, we need to know when there is a contraction
C : H1 −→ H2 such that A = BC holds.

Figure 1.1: The factorization A = BC

If such a contraction exists, then

BB∗ −AA∗ = BB∗ −BCC∗B∗ = B (I − CC∗)B∗ ≥ 0.

Douglas showed that the condition AA∗ ≤ BB∗ is also sufficient for the existence
of C.

Theorem 1.1 (Douglas). Let H,H1 and H2 be Hilbert spaces and let A : H1 −→
H and B : H2 −→ H be bounded operators. Then there is a contraction C :
H1 −→ H2 such that A = BC if and only if AA∗ ≤ BB∗.

Proof. The necessity was shown above. The other direction is a bit more deli-
cate. Suppose that AA∗ ≤ BB∗. Hence

‖A∗x‖H1
≤ ‖B∗x‖H2

, (x ∈ H). (1.1)

This inequality enables us to define an operator from the range of B∗ to the
range of A∗. Let

D : R(B∗) −→ R(A∗)
B∗x 7−→ A∗x.

If an element in R(B∗) has two representations, i.e. z = B∗x = B∗y, then
B∗(x−y) = 0. Hence, by (1.1), A∗(x−y) = 0. In other words, Dz = A∗x = A∗y
is well defined. Moreover,

‖D(B∗x)‖H1
≤ ‖B∗x‖H2

, (x ∈ H).
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Therefore, by continuity, D extends to a contraction from the closure of R(B∗)
in H2 into H1. In the last step of extension, we extend D to a contraction from
H2 to H1 by defining

D(z) = 0, (z ∈ R(B∗)⊥).

According to our primary definition, the contraction D satisfies DB∗ = A∗.
Hence A = BD∗. Take C = D∗.

Exercises
Exercise 1.1.1. Let H1, H2 and H3 be Hilbert spaces, let C : H1 −→ H2 be
a contraction, and let A : H2 −→ H3 be a bounded operator. Show that

A (I − CC∗)A∗ ≥ 0,

where I : H2 −→ H2 is the identity operator.

1.2 The square root of a positive operator

If B ∈ L(H) and we define A = BB∗, then certainly A is a positive operator.
Our goal is to show that every positive operator is obtained that way. First we
need two preliminary lemmas.

Lemma 1.2. Let A,B ∈ L(H) be positive and AB = BA. Then AB is positive.

Proof. If TS = ST , T and S positive, it is clear that TS2 is positive. Without
loss of generality assume that ‖B‖ ≤ 1. Let B0 = B, and let

Bn+1 = Bn −B2
n, (n ≥ 0).

Then the relations

Bn+1 = B2
n(I −Bn) +Bn(I −Bn)2

and

I −Bn+1 = (I −Bn) +B2
n

imply that

0 ≤ Bn ≤ I, (n ≥ 0).

Thus,
n∑
k=0

B2
k = B −Bn+1 ≤ B, (n ≥ 0). (1.2)



Therefore, for each x ∈ H and n ≥ 0,

n∑
k=0

‖Bkx‖2 =

n∑
k=0

〈Bkx,Bkx〉 =

n∑
k=0

〈B2
kx, x〉

= 〈
n∑
k=0

B2
kx, x〉 ≤ 〈Bx, x〉.

Thus
∑∞
k=0 ‖Bkx‖2 <∞. In particular, limn→∞Bnx = 0 and, by (1.2),

lim
n→∞

( n∑
k=0

B2
k

)
x = Bx.

Since A
∑n
k=0B

2
k is positive, we conclude that AB is also positive.

Lemma 1.3. Let A1, A2, · · · , B ∈ L(H) be self adjoint. Suppose that

AnAm = AmAn, AnB = BAn, (m,n ≥ 1),

and that
An ≤ An+1 ≤ B, (n ≥ 1).

Then there is A ∈ L(H), A self adjoint, such that

Ax = lim
n→∞

Anx, (x ∈ H).

Proof. Let Cn = B −An, n ≥ 1. Hence

0 ≤ Cn+1 ≤ Cn, (n ≥ 1). (1.3)

Then, by Lemma 1.2,

0 ≤ C2
n ≤ CnCm ≤ C2

m, (m ≤ n).

In the first place, for each x ∈ H,

‖Cnx‖ ≤ ‖Cmx‖, (m ≤ n). (1.4)

Since (‖Cnx‖)n≥1 is a decreasing sequence of positive numbers, we conclude
that

lim
n→∞

‖Cnx‖

exists. Secondly,

‖Cmx− Cnx‖2 ≤ ‖Cmx‖2 − ‖Cnx‖2, (m ≤ n),

and thus (Cnx)n≥1 is a Cauchy sequence. Let

Cx = lim
n→∞

Cnx, (x ∈ H).



Clearly C is linear. Moreover, by (1.4), we have

‖Cx‖ = lim
n→+∞

‖Cnx‖ ≤ ‖C1x‖, x ∈ H, .

which proves that C ∈ L(H) and ‖C‖ ≤ ‖C1‖. Since Cn is self adjoint, C is
also self adjoint. Put A = B − C.

Theorem 1.4. Let A ∈ L(H) be positive. Then there is a unique positive
operator B ∈ L(H) such that A = B2.

Proof. Without loss of generality assume that ‖A‖ ≤ 1. Put B0 = A and

Bn+1 = Bn +
A−B2

n

2
, (n ≥ 0).

Clearly 0 ≤ B0 ≤ I. Moreover, by Lemma 1.2, the relations

I −Bn+1 =
(I −Bn)2 + (I −A)

2

and

Bn+1 −Bn = (Bn −Bn−1)
(I −Bn) + (I −Bn−1)

2
imply that

0 ≤ Bn ≤ Bn+1 ≤ I, (n ≥ 0).

Hence, by Lemma 1.3, there is B ∈ L(H), B positive, with

Bx = lim
n→∞

Bnx, (x ∈ H).

But

Bn+1x = Bnx+
B2
nx−Ax

2
, (n ≥ 0),

which immediately gives B2x = Ax.
It remains to show that B is unique. Suppose that there is C ∈ L(H),

C positive, such that C2 = A. Then AC = C2C = CC2 = CA. Therefore,
p(A)C = Cp(A), where p is any polynomial. In particular, BnC = CBn, n ≥ 0,
and thus BC = CB. Fix x ∈ H, and let y = (B − C)x. Then

〈(B + C)y, y〉 = 〈(B2 − C2)x, y〉 = 0.

Since B and C are positive operators, we thus have

〈By, y〉 = 〈Cy, y〉 = 0.

But these assumptions imply By = Cy = 0. For example, to verify that By = 0,
based on the first paragraph, we know that B1/2 exists. Hence

‖B1/2y‖2 = 〈B1/2y,B1/2y〉 = 〈By, y〉 = 0.

Thus B1/2y = 0 which implies By = 0. Finally,

‖(B − C)x‖2 = 〈(B − C)x, (B − C)x〉 = 〈(B − C)2x, x〉 = 〈(B − C)y, x〉 = 0.

Therefore, B = C.



The operator B whose unique existence was guaranteed by the preceding the-
orem is called the square root of A and is denoted by A1/2. The following two
results were also implicitly obtained in the proof of Theorem 1.4.

Corollary 1.5. Let A ∈ L(H) be positive. Then there is a there is a sequence
of real polynomial (pn)n≥1 with pn(0) = 0 such that

A1/2x = lim
n→∞

pn(A)x, (x ∈ H).

Corollary 1.6. Let A ∈ L(H) be positive, and let x ∈ H. Suppose that

〈Ax, x〉 = 0.

Then Ax = 0.

Exercises
Exercise 1.2.1. In Lemma 1.3, can we conclude that

lim
n→∞

‖An −A‖ = 0?

Hint: Let (xn)n≥1 be an orthonormal basis for an infinite dimensional separable
Hilbert space H. Let An be the orthogonal projection onto the closed space
generated by {x1, x2, · · · , xn}. Then Anx→ x, but ‖An − I‖ = 1.

Exercise 1.2.2. Let H be a real Hilbert space, and let A ∈ L(H) be positive.
Suppose that 〈Ax, x〉 = 0 for all x ∈ H. Show that A = 0.
Hint: Corollaries 1.5 and 1.6 are also valid for real Hilbert spaces.

1.3 Partial isometries and the polar decomposi-
tion

An operator A ∈ L(H1, H2) is called a partial isometry if ‖Ax‖H2 = ‖x‖H1 for
all x ∈ (ker A)⊥. In other words, if

‖Ax‖H2
= ‖P(kerA)⊥x‖H1

, (x ∈ H1). (1.5)

A partial isometry is clearly a contraction. The subspace (ker A)⊥ is called the
initial space of A. Note that the range R(A) of A is a closed subspace of H2

and it is called the final space of the partial isometry A.
If ker A = {0}, then we have

‖Ax‖H2
= ‖x‖H1

, (x ∈ H1),



and in this case A is called an isometry. If H is finite dimensional and A ∈ L(H)
is an isometry, then A is necessarily a unitary operator. This is no longer true
for infinite dimensional Hilbert spaces. For example, by (??), the forward shift
operator S ∈ L(`2) is an isometry which is not surjective, and thus it is not a
unitary operator.

Theorem 1.7. Let A : H1 −→ H2 be an operator between Hilbert spaces H1

and H2. Then the following are equivalent.

(i) A is a partial isometry;

(ii) A∗ is a partial isometry;

(iii) AA∗ is an orthogonal projection;

(iv) A∗A is an orthogonal projection.

Proof. (i) =⇒ (iv) : Since A is a contraction, for all x ∈ H1,

〈(I −A∗A)x, x〉H1
= 〈x, x〉H1

− 〈A∗Ax, x〉H1

= 〈x, x〉H1
− 〈Ax,Ax〉H2

= ‖x‖2H1
− ‖Ax‖2H2

≥ 0.

Hence, I −A∗A is a positive self adjoint operator on H1. Moreover,

〈(I −A∗A)x, x〉H1
= 0, (x ∈ (ker A)⊥). (1.6)

Then, by Corollary 1.6, (1.6) implies

(I −A∗A)x = 0, (x ∈ (ker A)⊥).

Since

A∗Ax = x, (x ∈ (ker A)⊥),

and

A∗Ax = 0, (x ∈ ker A),

then A∗A is the orthogonal projection on (ker A)⊥.
(iv) =⇒ (i) : Let us remind that ker A∗A = ker A. Since A∗A is an orthog-

onal projection, A∗Ax = x for all x ∈ (ker A)⊥. Hence 〈A∗Ax, x〉H1
= 〈x, x〉H1

which is equivalent to

‖Ax‖H2
= ‖x‖H1

, (x ∈ (ker A)⊥).

Hence A is a partial isometry.
Reversing the roles of A and A∗, we see that (ii)⇐⇒ (iii).
(iv) =⇒ (iii) : If A∗A is an orthogonal projection, then

A∗A = P(kerA∗A)⊥ = P(kerA)⊥ .



Thus
(AA∗)2 = A(A∗A)A∗ = AP(kerA)⊥A

∗ = AA∗.

Therefore, AA∗ is also an orthogonal projection. The proof of (iii) =⇒ (iv) is
similar.

For each T ∈ L(H), clearly T ∗T ≥ 0, and thus by Theorem 1.4, (T ∗T )1/2 is
a well defined self adjoint positive operator which is the unique positive square
root of T ∗T . We denote this operator by

|T | = (T ∗T )1/2.

For each x ∈ H, we have

‖ |T |x ‖2 = 〈(T ∗T )1/2x, (T ∗T )1/2x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2.

Therefore
‖ |T |x ‖ = ‖Tx‖, (x ∈ H). (1.7)

In particular, this identity implies ker |T | = ker T and ‖ |T | ‖ = ‖T‖.
If z is a complex number and we put r = (z̄ z)1/2, then r ≥ 0 and there is a

complex number of modulus one ζ such that we have the polar decomposition
z = ζr. We show that a similar decomposition exists for each T ∈ L(H).
However, since L(H) is not commutative, certain technical difficulties will arise.

Theorem 1.8 (Polar Decomposition Theorem). Let T ∈ L(H). Then there is
a partial isometry U ∈ L(H) such that

T = U |T |.

Proof. The proof has the same flavor as the proof of Douglas’ factorization
theorem (Theorem 1.1). According to the identity (1.7), the mapping

V : R(|T |) −→ R(T )
|T |x 7−→ Tx

is well defined. Since, if y = |T |x = |T |x′, then |T |(x − x′) = 0, and thus, by
(1.7), T (x− x′) = 0, which implies V y = Tx = Tx′. Moreover,

‖V y‖ = ‖V (|T |x)‖ = ‖Tx‖ = ‖ |T |x ‖ = ‖y‖, (y ∈ R(|T |)).

Hence V is actually an isometry on R(|T |) onto R(T ). By continuity, we extend
V to the unitary operator V : R(|T |) −→ R(T ). Let

U = VPR(|T |).

Hence R(U) = R(V) = R(T ) and

U∗U = P ∗R(|T |) V
∗VPR(|T |) = PR(|T |) IR(|T |) PR(|T |) = PR(|T |).



Theorem 1.7 ensures that U is a partial isometry. Moreover, for each x ∈ H,

U |T |x = VP
R(|T |) |T |x = V|T |x = V |T |x = Tx.

Exercises
Exercise 1.3.1. Let M and N be respectively closed subspaces of the Hilbert
spaces H1 and H2. Suppose that dimM = dimN . Show that there is a partial
isometry A ∈ L(H1, H2) with the initial space M and range N .
Hint: Let (xι)ι∈I and (yι)ι∈I be respectively orthonormal bases for M and N .
Each x ∈ H1 has the unique representation x = x′ +

∑
ι αι xι, where x′ ⊥ M .

Define Ax =
∑
ι αι yι.

Exercise 1.3.2. Show that if B is a partial isometry, then the range of B is
a closed subspace.

Exercise 1.3.3. Let B be a partial isometry. Show that the orthogonal com-
plement of ker B is exactly the range of B∗.

Exercise 1.3.4. Let T ∈ L(H). Show that there is a partial isometry V ∈
L(H) such that

(i) T = |T ∗|V ;

(ii) V ∗V = P(ker T )⊥ ;

(iii) V V ∗ = P
R(T )

.

Hint: Apply the polar decomposition theorem to T ∗ gives the following result.

Exercise 1.3.5. Let T ∈ L(H). Show that there is a sequence of real poly-
nomial (pn)n≥1 with pn(0) = 0 such that

pn( |T |2 )
s−→ |T |.

Hint: Use Corollary 1.5.

Exercise 1.3.6. Let T ∈ L(H), and let T = U |T | be its polar decomposition.
Show that U∗U = PR(|T |) and UU∗ = PR(T )

.



Exercise 1.3.7. Let T ∈ L(H), and let T = U |T | be its polar decomposition.
Show that

ker U = ker |T | = ker T

and
‖Ux‖ = ‖x‖, (x ∈ (ker T )⊥).

Hint: Use (1.7) and Exercise 1.3.6.

Exercise 1.3.8. Let A ∈ L(H1, H) and B ∈ L(H2, H). Show that the follow-
ing are equivalent:

(i) there is a partial isometry C ∈ L(H1, H2), with ker(A)⊥ as initial space
and R(B∗) as final space, such that A = BC.

(ii) AA∗ = BB∗.

1.4 Reproducing kernel Hilbert spaces

We say that a Hilbert space H of functions on some set Ω is a reproducing
kernel Hilbert space on Ω if it satisfies the following properties:

(i) for each z ∈ Ω, the mapping

Λz : H −→ C
f 7−→ f(z)

is a continuous linear functional on H.

(ii) for each z ∈ Ω, there is fz ∈ H such that fz(z) 6= 0.

According to the Riesz representation theorem (Theorem ??) and the first
assumption, for each z ∈ Ω, there is a unique kz ∈ H, called the reproducing
kernel of H, such that

f(z) = 〈f, kz〉, (f ∈ H). (1.8)

This relation yields several elementary properties of kz. First of all, with f = kz,
we obtain

‖kz‖2 = kz(z), (z ∈ Ω). (1.9)

This identity implies that kz(z) 6= 0 which is equivalent to

kz 6= 0, (in H). (1.10)

Since otherwise we will have f(z) = 0 for all f ∈ H and this is not true by
assumption (ii). By Riesz theorem, the norm of the evaluation functional (1.8)
is equal to ‖kz‖. Then, for each z, w ∈ Ω, by (1.8), we have

kw(z) = 〈kw, kz〉 and kz(w) = 〈kz, kw〉.



Hence
kz(w) = kw(z), (z, w ∈ Ω). (1.11)

Here is another consequence of (1.8).

Lemma 1.9. Let H be a reproducing kernel Hilbert space on Ω. Then

{ kz : z ∈ Ω }⊥ = {0}.

In other words, the linear manifold of all finite linear combinations of kz, z ∈ Ω,
is dense in H.

Proof. If f ∈ { kz : z ∈ Ω }⊥, then, by (1.8), we immediately have f(z) = 0 for
all z ∈ Ω.

A function ϕ on Ω is called a multiplier for H if ϕf ∈ H for all f ∈ H. The
space of all multipliers of H is denoted by M(H).

Let ϕ ∈M(H) and define

Mϕ : H −→ H
f 7−→ ϕf.

This mapping is well defined and linear. Moreover, by the closed graph theorem,
it is continuous. As a matter of fact, let fn −→ f and Mϕfn −→ g. Since the
evaluation functional are continuous, for each z ∈ Ω, we have fn(z) −→ f(z)
and ϕ(z)fn(z) −→ g(z). Hence g(z) = ϕ(z)f(z), z ∈ Ω, which means Mϕf = g.
Therefore, in short, the mapping

M(H) −→ L(H)
ϕ 7−→ Mϕ

is well defined.
The next result says that the reproducing kernel kz is the eigenvector of the

conjugate of each multiplication operator. Despite its simple proof, this result
has many applications.

Theorem 1.10. Let H be a reproducing kernel Hilbert space on Ω, and let
ϕ ∈M(H). Then

M∗ϕ kz = ϕ(z) kz, (z ∈ Ω).

Proof. Let f ∈ H. By definition

〈f,M∗ϕ kz〉 = 〈Mϕf, kz〉 = 〈ϕf, kz〉.

Moreover, by (1.8),

ϕ(z)f(z) = 〈ϕf, kz〉 and f(z) = 〈f, kz〉.

Hence, for each f ∈ H,

〈f,M∗ϕ kz〉 = ϕ(z)f(z) = ϕ(z)〈f, kz〉 = 〈f, ϕ(z)kz〉.

Therefore, M∗ϕ kz = ϕ(z) kz.



Corollary 1.11. Let H be a reproducing kernel Hilbert space on Ω, and let
ϕ ∈M(H). Then ϕ is bounded on Ω and

sup
z∈Ω
|ϕ(z)| ≤ ‖Mϕ‖L(H).

Proof. Fix z ∈ Ω. By Theorem 1.10,

|ϕ(z)| ‖kz‖H = ‖ϕ(z) kz‖H = ‖M∗ϕ kz‖H ≤ ‖M∗ϕ‖L(H) ‖kz‖H .

By (1.10), ‖kz‖H 6= 0, and thus we can divide both sides by ‖kz‖H . Moreover,
by Theorem ??(v), ‖M∗ϕ‖L(H) = ‖Mϕ‖L(H).

By Theorem 1.10, each kz, z ∈ Ω, is an eigenvector of the conjugate of every
multiplication operator. It is rather amazing that no other operator in L(H)
has this property.

Theorem 1.12. Let H be a reproducing kernel Hilbert space on Ω, and let
A ∈ L(H). Suppose that, for each z ∈ Ω, kz is an eigenvector of A∗. Then
there is ϕ ∈M(H) such that

A = Mϕ.

Proof. Let the function ϕ on Ω be defined by

A∗kz = ϕ(z) kz, (z ∈ Ω).

For each f ∈ H, we have

(Af)(z) = 〈Af, kz〉 = 〈f,A∗kz〉 = 〈f, ϕ(z) kz〉 = ϕ(z) 〈f, kz〉 = ϕ(z) f(z)

for all z ∈ Ω. Therefore

ϕf = Af, (f ∈ H),

which ensures that ϕ ∈M(H) and that A = Mϕ.

We get immediately from Theorem 1.10 and Theorem 1.12 the following
caracterization of multipliers.

Corollary 1.13. Let H be a reproducing kernel Hilbert space on Ω and let ϕ
be a function on Ω. Then ϕ ∈M(H) if and only if the map

kw 7−→ ϕ(w)kw

extends to a continuous linear map on H.

Frequently, the set Ω will be a domain, i.e. an open and connected set, in
the complex plane and the functions in H will be holomorphic; in this case,
we shall speak of a holomorphic reproducing kernel Hilbert space. We note by
H(Ω) the family of all analytic functions on Ω, and let H∞(Ω) be the subclass
consisting of all bounded functions in H(Ω).



Corollary 1.14. Let H be a holomorphic reproducing kernel Hilbert space on a
domain Ω. Assume that there is a function f0 ∈ H such that f0(z) 6= 0, ∀z ∈ Ω.
Then

M(H) ⊂ H∞(Ω).

Proof. Let ϕ ∈M(H). First note that

ϕ(z) =
(Mϕf0)(z)

f0(z)
(z ∈ Ω),

and since H ⊂ H(Ω), the function ϕ is analytic on Ω. So it remains to apply
Corollary 1.11 to get that ϕ ∈ H∞(Ω).

Exercises
Exercise 1.4.1. Let H be a reproducing kernel Hilbert space on Ω and let
(ei)i∈I be any orthonormal basis for H. Show that

kw(z) =
∑
i∈I

ei(w)ei(z), z, w ∈ Ω.

Exercise 1.4.2. Let H ⊂ H(Ω) be a reproducing kernel Hilbert space. Sup-
pose that M(H) = H∞(Ω). Show that

σ(Mϕ) = R(ϕ), (ϕ ∈M(H)),

where R(ϕ) is the range of ϕ, i.e.

R(ϕ) = {ϕ(z) : z ∈ Ω }

and R(ϕ) represents the closure of R(ϕ).

Hint: By Theorem 1.10, ϕ(z) ∈ σ(M∗ϕ), which, by Theorem ??(x), gives ϕ(z) ∈
σ(Mϕ). If λ 6∈ R(ϕ), consider ψ = 1/(ϕ− λ) ∈ H∞(Ω).

Exercise 1.4.3. Let H be a reproducing kernel Hilbert space on Ω. If ϕ ∈
M(H), we denote by

‖ϕ‖M(H) := ‖Mϕ‖L(H).

a) Show that (M(H), ‖ · ‖M(H)) is a Banach algebra.

b) Let Ω be a set and let k : Ω× Ω −→ C be a function. We say that k is a
kernel if the following hold:



(bi) k(z, w) = k(w, z), z, w ∈ Ω.

(bii) k is positive semi-definite, i.e.

N∑
i,j=1

aiajk(λi, λj) ≥ 0,

for any finite set {λ1, . . . , λN} of distincts points in Ω and any com-
plex numbers a1, a2, . . . , aN .

(biii) k(z, z) 6= 0, z ∈ Ω.

A weak kernel on Ω is a function k : Ω×Ω −→ C which satisfies (bi) and
(bii).

Show that if kz is the reproducing kernel of H, then k(z, w) := kw(z)
(z, w ∈ Ω) is a kernel on Ω.

c) Let H be a reproducing kernel Hilbert space on Ω and let ρ > 0. Show
that the following are equivalent:

(i) ϕ ∈M(H) with ‖ϕ‖M(H) ≤ ρ.

(ii) The function

K(z, w) := (ρ2 − ϕ(z)ϕ(w))k(z, w) (z, w ∈ Ω),

is a weak kernel on Ω.

1.5 Fredholm theory

Let X and Y be Banach spaces. An operator T ∈ L(X,Y ) is called Fredholm if
R(T ) is a closed subspace of Y , and dim kerT < +∞, dim kerT ∗ < +∞. The
difference

ind T = dim kerT − dim kerT ∗

is called the index of T .
We will use in this text the following property of Fredholm operators.

Lemma 1.15. Let T ∈ L(X) and assume that T = V + K where V is an
invertible operator and K is a compact operator. Then T is Fredholm and
ind T = 0.

Proof. Recall that Fredholm alternative asserts that if S is a compact operator
then Id+ S has closed range and

dim ker(Id+ S) = dim ker(Id+ S)∗ < +∞

(see [] for a proof of this result). Therefore, Id+S is a Fredholm operator with
ind (Id+ S) = 0. Now V −1T = Id+ V −1K and V −1K is a compact operator;
thus we get that V −1T is a Fredholm operator and ind (V −1T ) = 0. Then we
easily obtain that T = V V −1T is also a Fredholm operator with ind T = 0.



Let H1, H2 be Hilbert spaces and x ∈ H1, y ∈ H2. We denote by x⊗ y the
rank one operator in L(H1, H2) defined by

(x⊗ y)(h) = 〈h, y〉H2x, h ∈ H2.

Lemma 1.16. Let T ∈ L(H1, H2) and x ∈ H1, y ∈ H2. We have

T (x⊗ y) = Tx⊗ y, and (x⊗ y)T = x⊗ T ∗y.

Proof. Let h ∈ H2. Then

T (x⊗ y)(h) = T (〈h, y〉H2x) = 〈h, y〉H2Tx = (Tx⊗ y)(h),

which proves the first relation. For the second, let w ∈ H1. Then

((x⊗ y)T )(w) = 〈Tw, y〉H2
x = 〈w, T ∗y〉H1

x = (x⊗ T ∗y)(w),

which proves the second relation.

1.6 The operator of multiplication by the inde-
pendant variable on L2(µ).

Let µ be a finite and positive Borel measure on T and let Zµ be the operator of
multiplication by the independant variable on L2(µ),

(Zµf)(eiθ) = eiθf(eiθ), f ∈ L2(µ).

We recall that the support of the measure µ, denoted by supp µ, is the
largest closed set C ⊂ T (with respect to the inclusion) such that

U open subset of T, U ∩ C 6= ∅ =⇒ µ(U ∩ C) > 0,

i.e. every open subset of T that has a non-trivial intersection with the support
has a positive measure. It is easy to prove that

supp µ = {ζ ∈ T : ζ ∈ Vζ open subset of T =⇒ µ(Vζ) > 0} .

Moreover, if A ∈ Bor (T) such that A ⊂ T \ supp µ, then µ(A) = 0.

Lemma 1.17. We have

σ(Zµ) = σa(Zµ) = supp µ.

Proof. First note that since Zµ is a unitary operator, then σ(Zµ) ⊂ T. Now
take λ ∈ T \ supp µ and let us show that λ 6∈ σ(Zµ). On one hand, if f ∈
ker(Zµ − λId), then (z − λ)f(z) = 0, a.e. z ∈ T. That is f(z) = 0, a.e.
z ∈ T \ {λ}. But since µ({λ}) = 0, that implies that f = 0, a.e. with respect



to µ. In others words, ker(Zµ − λId) = {0}. On the other hand, let g ∈ L2(µ)
and define

f(z) :=
g(z)

z − λ
, a.e. z ∈ T.

Then f is well defined a.e. with respect to µ (again because µ({λ}) = 0). Let
us check that f ∈ L2(µ). Since λ ∈ T \ supp µ, we have

d := dist(λ, supp µ) > 0.

Hence ∫
T
|f(z)|2 dµ(z) =

∫
supp µ

|g(z)|2

|z − λ|2
dµ(z)

≤ 1

d2

∫
supp µ

|g(z)|2 dµ(z)

=
‖g‖2L2(µ)

d2
< +∞.

Thus f ∈ L2(µ) and

((Zµ − λId)f)(z) = (z − λ)f(z) = g(z),

for a.e. z ∈ T, which proves that

(Zµ − λId)f = g.

Therefore Zµ − λId is onto and then invertible. That proves that T \ supp µ is
contained in the complement of σ(Zµ) or

σ(Zµ) ⊂ supp µ.

Now we will prove that supp µ ⊂ σa(Zµ). Take λ ∈ supp µ and define for
n ≥ 1

fn(z) =

{
1
n if z ∈ B(λ, 1/n) ∩ T
0 otherwise

.

Then we have∫
T
|fn(z)|2 dµ(z) =

∫
B(λ,1/n)∩T

1

n2
dµ(z) =

1

n2
µ (B(λ, 1/n) ∩ T) , (1.12)

which proves that fn ∈ L2(µ) and since µ (B(λ, 1/n) ∩ T) > 0, fn 6≡ 0 in L2(µ).
So let us define

gn :=
fn

‖fn‖L2(µ)
.



Then gn ∈ L2(µ), ‖gn‖L2(µ) = 1 and

‖(Zµ − λId)gn‖2L2(µ) =

∫
T
|z − λ|2|gn(z)|2 dµ(z)

=
1

‖fn‖2L2(µ)

∫
T
|z − λ|2|fn(z)|2 dµ(z)

=
1

n2‖fn‖2L2(µ)

∫
B(λ,1/n)∩T

|z − λ|2 dµ(z)

≤ 1

n4‖fn‖2L2(µ)

µ (B(λ, 1/n) ∩ T) ,

and by (1.12), we get

‖(Zµ − λId)gn‖2L2(µ) ≤
1

n2
.

That implies
lim

n→+∞
‖(Zµ − λId)gn‖L2(µ) = 0.

In others words, we have λ ∈ σa(Zµ). Therefore, we have proved that

σ(Zµ) ⊂ supp µ ⊂ σa(Zµ), (1.13)

and since we always have σa(T ) ⊂ σ(T ), we get the conclusion that the three
sets in (1.13) coincide.



Chapter 2

Analytic functions on the
open unit disc

2.1 The Poisson integral

Let µ be a complex Borel measure on T and let µ = µa + µs, where µa is
absolutely continuous with respect to the Lebesgue measure m and µs is singular
with respect to m. The Poisson integral of the measure µ is defined on D by

P [dµ](z) =

∫
T

1− |z|2

|z − ζ|2
dµ(ζ), (z ∈ D).

In this section, we briefly recall the principal and well-known properties of this
function (we refer the reader to [] for the proof of the results).

First we have

lim
r→1

∫
T

1− r2

|reiθ − ζ|2
dµ(ζ) =

dµa
dm

(eiθ), (2.1)

for almost all eiθ on T, with respect to the Lebesgue measure m. If the measure
µ is assumed to be positive, then we also have

lim
r→1

∫
T

1− r2

|reiθ − ζ|2
dµ(ζ) = +∞, (2.2)

for almost all eiθ on T, with respect to the measure µs.
It is clear that if µ is a complex Borel measure on T, then its Poisson integral

h = P [dµ] is an harmonic function on D. Moreover using Fubini’s theorem and
the following trivial equality

1

2π

∫ 2π

0

1− |z|2

|z − eiθ|2
dθ = 1, (2.3)

we have

1

2π

∫ π

−π
|h(reiθ)| dθ ≤

∫
T

(
1

2π

∫ π

−π

1− r2

|reiθ − ζ|2
dθ

)
d|µ|(ζ) = ‖µ‖,
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where ‖µ‖ is the total variation of the measure µ on T. In particular, we get

sup
0≤r<1

∫
T
|h(reiθ)| dθ < +∞. (2.4)

Now if µ is assumed to be positive, then h is positive and |h| = h. Thus by the
mean value property for harmonic functions. we have∫ π

−π
|h(reiθ)| dθ =

∫ π

−π
h(reiθ) dθ = 2πh(0), 0 ≤ r < 1.

So the condition (2.4) is automatically satisfied by any positive harmonic func-
tion. In fact, Herglotz proved a converse to the preceeding observation.

Theorem 2.1 (Herglotz). Let h be a function defined on D.

a) The following assertions are equivalent:

(i) h is an harmonic function on D which satisfies the condition (2.4);

(ii) there exists a unique complex Borel measure µ on T such that h =
P [dµ].

b) The following assertions are equivalent:

(i) h is a positive harmonic function on D.

(ii) there exists a positive Borel measure µ on T such that h = P [dµ].

Proof. we refer the reader to [] for a proof of this classical result.

2.2 Classical Hardy spaces Hp

Let f be an analytic function on the open unit disc D. Let

‖ f ‖p = sup
0≤r<1

‖fr‖p = sup
0≤r<1

(
1

2π

∫ 2π

0

|f(r eiθ)|p dθ
) 1

p

,

if p ∈ (0,∞), and
‖ f ‖∞ = sup

z∈D
| f(z) |.

Then the Hardy space Hp(D) is the family of all analytic functions f where
‖f‖p <∞. We are mainly concerned with H1, H2 and H∞. A simple applica-
tion of Hölder’s inequality shows that

H∞(D) ⊂ Hq(D) ⊂ Hp(D)

if 0 < p < q <∞. In particular, we have H∞ ⊂ H2 ⊂ H1.
According to a celebrated theorem of Fatou, for each f ∈ Hp(D), 0 < p ≤ ∞,

f(ζ) = lim
z−→ζ
^

f(z)



exists for almost all ζ ∈ T. Moreover, f |T ∈ Lp(T) and ‖f‖Lp(T) = ‖f‖Hp(T),
0 < p ≤ ∞, and

lim
r→1
‖fr − f‖p = 0, (0 < p <∞). (2.5)

This result establishes a norm preserving correspondence between Hp(D) and a
closed subspaces of Lp(T) which we denote by Hp(T). In particular, if 1 ≤ p ≤
∞, we also have the equivalent characterization

Hp(T) = {f ∈ Lp(T) : f̂(n) = 0, n ≤ −1}

where

f̂(n) =
1

2π

∫ 2π

0

f(eit) e−int dt, (n ∈ Z),

is nth Fourier coefficient of f . A special role is played by L2(T) and its close
subspace H2(T) which are Hilbert spaces endowed with the inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(eit) g(eit) dt =

∞∑
n=−∞

f̂(n) ĝ(n).

Let f ∈ Hp(D), 1 ≤ p ≤ ∞. Let z ∈ D, and let |z| < R < 1. Then, by
Cauchy’s integral formula,

f(z) =
1

2πi

∫
CR

f(w)

w − z
dw =

R

2π

∫ 2π

0

f(Reit)

R− e−itz
dt.

Let R→ 1. Then, by (2.5), we obtain

f(z) =
1

2π

∫ 2π

0

f(eit)

1− e−itz
dt, (z ∈ D). (2.6)

Using similar argument, we also have

f(z) =
1

2π

∫ 2π

0

1− |z|2

|z − eit|2
f(eit) dt, (z ∈ D). (2.7)

Now if f ∈ H2(D), the relation (2.6) can be rewritten as

f(z) = 〈f, kz〉, (z ∈ D), (2.8)

where

kz(w) =
1

1− z̄ w
, (z, w ∈ D). (2.9)

In particular the Hardy space H2(D) is an example of analytic reproducing
kernel Hilbert space and the function kz defined by (2.9) is the reproducing
kernel of H2.



Lemma 2.2. Let p ≥ 1 and let f ∈ Hp. Assume that f|T ⊂ R. Then f is
constant.

Here in this lemma, the assumption f|T ⊂ R means that f(ζ) is real for
almost all ζ on T.

Proof. According to (2.7), we get from hypothesis that f(D) ⊂ R. But now it is
well-known that the only real-valued function which are analytic on a domain are
the constants (it is for instance an easy consequence of the Riemann equations).

If f ∈ Hp(D), p > 0, and if (λn)n≥1 is the zero sequence of f in D (each zero
is repeated according to its multiplicity), then we know that∑

n≥1

(1− |λn|) < +∞. (2.10)

This condition (2.10) is called the Blaschke condition. Then we can consider
the infinite product defined by

B(z) =
∏
n≥1

|λn|
λn

λn − z
1− λnz

, z ∈ D.

This product converges uniformly on compact subsets of D. Moreover |B| ≤ 1
in D and |B| = 1 a.e. on T. Now if we consider g := f/B, then g ∈ Hp(D) and
‖g‖p = ‖f‖p.

Lemma 2.3. Let f ∈ H1, f 6≡ 0. The following hold:

(a) log|f | is integrable on T.

(b) f 6= 0 almost everywhere on T.

Proof. (a): if B is the Blaschke product formed on the zeros of f and if g = f/B,
then we have g ∈ H1 and |g| = |f | a.e. on T. Hence it is sufficient to prove
the result assuming that f has no zeros in D and f(0) = 1. Let us define now
log+(x) = max(0, log(x)) and log−(x) = log+(x) − log(x), x > 0. Since log |f |
is harmonic on D, with log |f(0)| = 0, the mean value property of harmonic
functions implies that∫

T
log+ |f(reiθ)| dθ

2π
=

∫
T

log− |f(reiθ)| dθ
2π
,

for 0 < r < 1. But log+(x) ≤ x, whence∫
T

log+ |f(reiθ)| dθ
2π
≤
∫
T
|f(reiθ)| dθ

2π
≤ ‖f‖1.

Then we get from Fatou’s lemma that log+ |f | and log− |f | belongs to L1. Hence
log |f | is also in L1.

(b): it is an immediate consequence of (a).



Lemma 2.4. Let p, q, r ≥ 1 and let f ∈ Hp, g ∈ Hq. Assume that f is outer
and g/f ∈ Lr(T). Then we have g/f ∈ Hr.

Proof. Let g = λ1BS[g] be the canonical factorization of g. Then we get that

g

f
=
λ1BS[g]

λ[f ]
=
λ1

λ
BS

[
g

f

]
.

Now since g/f ∈ Lr and log |g/f | ∈ L1, we know that [g/f ] ∈ Hr and thus
g/f ∈ Hr.

Lemma 2.5. Let f1, f2 ∈ Hp. Then the product f1f2 is an outer function if
and only if each function f1, f2 is an outer function.

Proof. Assume that f1f2 is an outer function and let f1 = λ1B1S1[f1] and f2 =
λ2B2S2[f2] be the canonical factorization of f1, f2. Then f1f2 = λ1λ2B1B2S1S2[f1f2].
According to the uniqueness of the Riesz–Smirnov factorization, we getB1B2S1S2 ≡
1 and thusB1 ≡ B2 ≡ S1 ≡ S2 ≡ 1. Finally we have f1 = λ1[f1] and f2 = λ2[f2],
which exactely means that f1 and f2 are outer functions.

The reverse implication is obvious because [f1][f2] = [f1f2].

Lemma 2.6. Let f be an analytic function in D and assume that <f(z) > 0,
for all z ∈ D. Then f ∈ Hp, 0 < p < 1, and f is an outer function.

Proof. Let 0 < p < 1 and let log z be the determination of the logarithmic
defined by log z = log |z|+ i arg]−π,π](z), which is holomorphic on C\R−. Then
z 7−→ f(z)p = exp(p log f(z)) is analytic on D. Since 0 < p < 1 and since
<f(z) > 0, for all z ∈ D, then there is a constant cp > 0 such that

|f(z)|p ≤ cp<e (f(z)p) .

Then if we apply the mean value theorem to the harmonic function <(f(z)p),
we get ∫ 2π

0

|f(reiθ)|p dθ
2π
≤ cp

∫ 2π

0

<e
(
f(reiθ)p

) dθ
2π

= cp<e(f(0)p),

for 0 ≤ r < 1, which proves that f ∈ Hp. Moreover since 1/f is also an analytic
function on D and

<e

(
1

f(z)

)
=
<ef(z)

|f(z)|2
> 0, z ∈ D,

we also have 1/f ∈ Hp, for 0 < p < 1. It remains now to apply Lemma 2.5 to
conclude that f is outer.



2.3 The shift operator on H2

The mapping
U `2 −→ H2(D)

(a0, a1, · · · ) 7−→
∑∞
n=0 an z

n

is a unitary operator between `2 and H2. As a consequence, the shift operator
that was defined in section ?? on `2 corresponds to an operator on H2 which
we also denote by S. It is not difficult to see that S is indeed given by

S : H2 −→ H2

f 7−→ χf,

where χ(z) = χ1(z) = z, z ∈ D. For obvious reason, S is called the forward
shift operator on H2. The adjoint of S can be obtained using the adjoint of its
cousin on `2 and the preceding unitary operator. However, we adopt a direct
method. First note that

〈χ, 1〉H2 = 0.

Hence, for each f, g ∈ H2, we have

〈Sf, g〉H2 = 〈χf, g〉H2

= 〈χf, (g − g(0))〉H2

= 〈f, (g − g(0))χ̄〉L2 .

However, (g− g(0))χ̄ is an element of H2. That is indeed why we replaced g by
g − g(0). Otherwise the identity

〈Sf, g〉H2 = 〈f, χ̄g〉L2

is also perfectly fine. Hence we can write

〈Sf, g〉H2 = 〈f, (g − g(0))χ̄〉H2 , (f, g ∈ H2).

Therefore,
S∗g = (g − g(0))χ̄.

If g(z) =
∑∞
n=0 an z

n, then a more explicit formula for S∗ is

(S∗g)(z) =
g(z)− g(0)

z
=

∞∑
n=0

an+1 z
n, (z ∈ D). (2.11)

Lemma 2.7. We have

σp(S) = ∅ and σp(S
∗) = D.

Moreover,
σ(S) = σ(S∗) = D.



Proof. To avoid confusion, in the proof of this lemma, we will denote by S`2 the
shift operator on `2 and by SH2 the shift operator on H2. Then using the unitary
operator U , defined in the beginning of this section, we have SH2 = US`2U

−1

and S∗H2 = US∗`2U
−1. Thus it immediately follows that σp(SH2) = σp(S`2),

σp(S
∗
H2) = σp(S

∗
`2) and σ(SH2) = σ(S`2), σ(S∗H2) = σ(S∗`2). Therefore the

conclusion is a consequence of Theorem ??.

If w ∈ D, then 1− wS∗ is invertible in L(H2). Hence we have

Qw = (1− wS∗)−1 S∗ ∈ L(H2).

This family of operators will enter our discussion many times. Here we study
some of their elementary properties.

Theorem 2.8. Fix w ∈ D, and let Qw = (1 − wS∗)−1 S∗. Then, for each
f ∈ H2,

(Qwf) (z) =
f(z)− f(w)

z − w
, (z ∈ D).

Proof. Let

f(z) =

∞∑
m=0

am z
m, (z ∈ D).

Then, for each n ≥ 1,

S∗nf(z) =

∞∑
m=0

am+n z
m, (z ∈ D).

Since

Qw =

∞∑
n=1

wn−1 S∗n,

we obtain

Qwf(z) =

∞∑
n=1

wn−1 S∗nf(z)

=

∞∑
n=1

wn−1

( ∞∑
m=0

am+n z
m

)

=

∞∑
k=1

ak

( ∑
m+n=k

zm wn−1

)

=

∞∑
k=1

ak
zk − wk

z − w

=

∑∞
k=1 akz

k −
∑∞
k=1 akw

k

z − w

=
f(z)− f(w)

z − w
.



Corollary 2.9. Let f, g ∈ H2. Then

Qw(fg) = f Qwg + g(w)Qwf.

In particular,

S∗(fg) = f S∗g + g(0)S∗f.

Proof. By Theorem 2.8, for each z ∈ D,

Qw(fg)(z) =
f(z)g(z)− f(w)g(w)

z − w
.

Hence

Qw(fg)(z) = f(z)
g(z)− g(w)

z − w
+ g(w)

f(z)− f(w)

z − w
.

Again by Theorem 2.8, this is exactly the first identity. Since Q0 = S∗, the
second identity is a special case of the first one.

2.4 The F. M. Riesz Theorem

Theorem 2.10 (F.&M. Riesz). Let ν be a complex Borel measure on T. Assume
that ∫

T
einθ dν(eiθ) = 0, n ≥ 1. (2.12)

Then ν is absolutely continuous with respect to the Lebesgue measure.

Proof. For z ∈ D, define

f(z) =

∫
T

dν(ζ)

1− zζ̄
.

It is clear that f is analytic on D. Let us prove that f ∈ H1. If z = reiθ, we
have

1

1− ze−it
=

+∞∑
n=0

rnein(θ−t),

and since

1− r2

|eit − reiθ|2
= <e

(
eit + reiθ

eit − reiθ

)
=

+∞∑
n=−∞

r|n|ein(θ−t),

it follows from (2.12) that

f(reiθ) =

∫
T

1− r2

|eit − reiθ|2
dν(eit).



Hence by Fubini’s theorem, we get∫ 2π

0

|f(reiθ)| dθ
2π
≤
∫
T

(∫ 2π

0

1− r2

|eit − reiθ|2
dθ

2π

)
d|ν|(eit) = ‖ν‖,

which proves that f ∈ H1. But by (2.7), we have

f(reiθ) =
1

2π

∫ 2π

0

1− |r|2

|eit − reiθ|2
f(eit) dt, (reiθ ∈ D),

which gives ∫
T

1− |z|2

|ζ − z|2
f(ζ) dm(ζ) =

∫
T

1− |z|2

|ζ − z|2
dν(ζ) (z ∈ D).

In other words, we have P [f dm] = P [dν]. Now using the unicity of the Herglotz-
representation (Theorem 2.1), we get that dν(ζ) = f(ζ) dm(ζ), which gives the
conclusion.

Corollary 2.11. Let λ and µ be complex Borel measures on T such that∫
T

e−iθ + z

e−iθ − z
dλ(eiθ) =

∫
T

e−iθ + z

e−iθ − z
dµ(eiθ), (2.13)

for all z ∈ D. Then λ− µ is absolutely continuous with respect to the Lebesgue
measure.

Proof. For z ∈ D and ζ ∈ T, we have

ζ̄ + z

ζ̄ − z
=1 +

2z

ζ̄ − z
= 1 +

2zζ

1− 2zζ

=1 + 2

+∞∑
n=1

znζn,

and the serie is uniformly convergent with respect to ζ ∈ T. Therefore using
(2.13), we get

λ(T) + 2

+∞∑
n=1

zn
∫
T
einθ dλ(eiθ) = µ(T) + 2

+∞∑
n=1

zn
∫
T
einθ dµ(eiθ),

for every z ∈ D. But both functions of z in the preceeding equality are analytic
in the unit disc. Thus the Taylor coefficient must be the same and we get that∫

T
einθ dλ(eiθ) =

∫
T
einθ dµ(eiθ), n ≥ 1.

The conclusion now follows from Theorem 2.10.



2.5 Generalized Hardy spaces H2(ν)

The Hardy space H2(T) is the closure of analytic polynomials in L2(m). This in-
terpretation gives us the motivation to define H2(ν), where ν is a Borel measure
on T. Since each ν ∈M(T) has a finite total variation, analytic polynomials are
in L2(ν). Then H2(ν) is defined to be the the closure of analytic polynomials
in L2(ν).

Each kernel function kz is bounded. Thus at least kz ∈ L2(ν). We naturally
expect to have kz ∈ H2(ν). As a matter of fact we can say more. To treat this
case, we consider a slightly more generalized concept. Each analytic polynomial
is in C(T), and we remind that C(T) is endowed with the uniform norm. The
closure of analytic polynomials in C(T) is called the disc algebra and is denoted
by A.

Lemma 2.12. Let

kz(w) =
1

1− z̄ w
, (z ∈ D).

Then, the following hold:

(a) for each z ∈ D, kz ∈ A.

(b) The linear manifold of finite linear combinations of kz, z ∈ D, is uniformly
dense in A.

Proof. (a): fix z ∈ D. Then we have∣∣∣∣ kz(w)−
N∑
n=0

z̄n wn
∣∣∣∣ ≤ |z|N+1

1− |z|

for all w ∈ T. In other words, kz is the uniform limit of analytic polynomials.
Thus kz ∈ A.

(b): to show that the linear manifold of finite linear combinations of repro-
ducing kernel functions is uniformly dense in A, it is enough to verify that each
monomial χ

n
(w) = wn, n ≥ 0, can be uniformly approximated by a sequence

in the manifold. For n = 0, just note that k0 = 1. For n ≥ 1, let ζ = ei2π/n.
Then we have

1 + ζ` + ζ2` + · · ·+ ζ(n−1)`

n
=

 0 if n - `,

1 if n|`.

Therefore, for each 0 < r < 1,

kr(w) + krζ(w) + · · ·+ krζn−1(w)

n
=

∞∑
k=0

rkn wkn.



From this formula we obtain∣∣∣∣ kr(w) + krζ(w) + · · ·+ krζn−1(w)− nk0(w)

nrn
− χ

n
(w)

∣∣∣∣ ≤ rn

1− r

for all w ∈ T. Hence

kr + krζ + · · ·+ krζn−1 − nk0

nrn
−→ χ

n

uniformly on T, as r → 0.

The following result immediately follows from Lemma 2.12 and the fact that
each element of M(T) has a finite total variation. In the proof of Lemma 2.12,
we hesitated to use the notation ‖ · ‖∞, and instead we wrote for all w ∈ T
wherever it was necessary. This was to emphasize that those relations are valid
at all points of T with no exception. This fact is implicitly used in the following
Theorem.

Theorem 2.13. Let ν ∈M(T). Then, for each z ∈ D, kz ∈ H2(ν). Moreover,
the linear manifold of finite linear combinations of kz, z ∈ D, is dense in H2(ν).

Knowing that the family of reproducing kernel functions also generates the
Hardy space H2(ν) in L2(ν), we can give another characterization for the or-
thogonal complement of H2(ν). Of course, the original definition says that(

H2(ν)

)⊥
= { f ∈ L2(ν) : 〈f, χ

n
〉ν = 0, n ≥ 0 }.

Corollary 2.14. Let ν ∈M(T). Then(
H2(ν)

)⊥
= { f ∈ L2(ν) : 〈f, kz〉ν = 0, z ∈ D }.

2.6 The Cauchy integral

Let ν ∈M(T). For each f ∈ L1(ν), the formula

(Kνf)(z) =

∫
T

f(ζ)

1− z ζ̄
dν(ζ) (2.14)

gives a well defined analytic function at least over C \ T.

Lemma 2.15. The linear map Kν : L1(ν) −→ Hol(C \ T) is continuous.

Proof. Let f ∈ L1(ν) and let K be a compact subset of C \ T. For z ∈ K, we
have

|(Kνf)(z)| =
∣∣∣∣∫

T

f(ζ)

1− z ζ̄
dν(ζ)

∣∣∣∣ ≤ ‖f‖L1(ν)

|1− |z||
.



Since K ⊂ C \ T, δ := infz∈K |1− |z|| > 0 and we get that

sup
z∈K
|(Kνf)(z)| ≤

‖f‖L1(ν)

δ
. (2.15)

Now let (fn)n≥1 be a sequence in L1(ν) which converges to f . It follows from
(2.15) that (Kνfn)n≥1 converges uniformly to Kνf on compact subset K, which
exactely means that Kν is continuous from L1(ν) into the topological space
Hol(C \ T).

If f ∈ L2(ν), over the open unit disc, we can write

(Kνf)(z) = 〈f, kz〉ν , (z ∈ D), (2.16)

where kz is the reproducing kernel for the Hardy space H2. The range of Kν

when f ranges over L2(ν) is denoted by K2(ν). Hence, for the time being, K2(ν)
is simply an aggregate of analytic functions on C \ T. In short, we defined the
map

Kν : L2(ν) −→ K2(ν)
f 7−→ Kνf.

Theorem 2.16. Let ν ∈M(T), and let f ∈ L2(ν). Then

Kνf |D ≡ 0⇐⇒ f ∈
(
H2(ν)

)⊥
.

Proof. This follows directly from (2.16) and Corollary 2.14.

We denote the function Kν1 ∈ K2(ν) by Kν. Hence Kν has the represen-
tation

Kν(z) =

∫
T

dν(ζ)

1− z ζ̄
, (z ∈ C \ T). (2.17)

This is called the Cauchy integral of ν.

Theorem 2.17. Let ν ∈M(T). Then

Kν(z) =

∞∑
n=0

ν̂(n) zn, (z ∈ D),

and

Kν(z) = −
∞∑
n=1

ν̂(−n)

zn
, (z ∈ C \ D),

where

ν̂(n) =
1

2π

∫ 2π

0

e−inθ dν(eiθ), n ∈ Z.



Proof. If z ∈ D, then

1

1− z ζ̄
=

∞∑
n=0

ζ̄n zn,

and if z ∈ C \ D, then

1

1− z ζ̄
= −

∞∑
n=1

ζn

zn
.

Moreover, for a fixed z, both series are uniformly convergent on T. Hence we
can change the order of summation and integration and the result follows.

Lemma 2.18. Let ν be a complex Borel measure on T. Then∫
T

ζ̄

1− ζ̄z
dν(ζ) =

Kν(z)−Kν(0)

z
, z ∈ C \ T, z 6= 0.

Proof. For z ∈ C \ T, z 6= 0, we have

ζ̄

1− ζ̄z
=

1

z

ζ̄z

1− ζ̄z
=

1

z

(
1

1− ζ̄z
− 1

)
.

Hence it follows from (2.17) that∫
T

ζ̄

1− ζ̄z
dν(ζ) =

1

z

(∫
T

dν(ζ)

1− ζ̄z
−
∫
T
dν(ζ)

)
=

1

z
(Kν(z)−Kν(0)) .

Let ν be a Borel measure on T and let Zν denote the operator on H2(ν) of
multiplication by the independant variable,

(Zνf)(eiθ) = eiθf(eiθ), f ∈ H2(ν).

We have the following connection between Kν and Zν .

Lemma 2.19. Let ν be a complex Borel measure on T and let g ∈ H2(ν). Then

(KνZ
∗
νg)(z) =

(Kνg)(z)− (Kνg)(0)

z
, z ∈ D, z 6= 0.

Proof. Let g ∈ H2(ν), z ∈ D, z 6= 0. Then according to (2.16), we have

(KνZ
∗
νg)(z) = 〈Z∗νg, kz〉ν = 〈g, Zνkz〉ν =

∫
T

g(eiθ)e−iθ

1− ze−iθ
dν(eiθ).

Applying Lemma 2.18 to g(eiθ) dν(eiθ), we get the result, because Kνg = K(νg).





Chapter 3

Toeplitz operators

3.1 The multiplication operator Mϕ

Let ϕ ∈ L∞(T), and let

Mϕ : L2(T) −→ L2(T)
f 7−→ ϕf.

Since ‖ϕf‖2 ≤ ‖ϕ‖∞‖f‖2, Mϕ is a bounded operator and we have ‖Mϕ‖ ≤
‖ϕ‖∞. As a matter of fact, we show that ‖Mϕ‖ = ‖ϕ‖∞.

Theorem 3.1. Let ϕ ∈ L∞(T). Then

‖Mϕ‖L(L2(T)) = ‖ϕ‖L∞(T).

Proof. Fix ε > 0, and let

E = { eit : |ϕ(eit)| ≥ ‖ϕ‖∞ − ε }.

Consider f = χE , the characteristic function of E. The set E has a positive
Lebesgue measure, and thus f ∈ L2(T) with ‖f‖2 6= 0. We use the inequality

‖Mϕf‖2 ≤ ‖Mϕ‖ ‖f‖2

to obtain a lower bound for ‖Mϕ‖. First note that

‖Mϕf‖22 =
1

2π

∫
T
|(Mϕf)(eit)|2 dt

=
1

2π

∫
T
|ϕ(eit)|2 |f(eit)|2 dt

=
1

2π

∫
E

|ϕ(eit)|2 dt

≥ (‖ϕ‖∞ − ε)2

2π

∫
E

dt

= (‖ϕ‖∞ − ε)2 ‖f‖22.
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Since ‖f‖2 6= 0, we get ‖Mϕ‖ ≥ ‖ϕ‖∞ − ε. Let ε→ 0 to obtain ‖Mϕ‖ ≥ ‖ϕ‖∞.

It is easy to determine the adjoint of Mϕ. Indeed, for any f, g ∈ L2(T), we
have

〈Mϕf, g〉2 =
1

2π

∫ 2π

0

(Mϕf)(eit) g(eit) dt

=
1

2π

∫ 2π

0

ϕ(eit) f(eit) g(eit) dt

=
1

2π

∫ 2π

0

f(eit)ϕ(eit) g(eit) dt

=
1

2π

∫ 2π

0

f(eit) (Mϕ̄g)(eit) dt

= 〈f,Mϕ̄g〉2.

Therefore, for each ϕ ∈ L∞(T),

M∗ϕ = Mϕ̄. (3.1)

3.2 The norm of Tϕ

Let ϕ ∈ L∞(T). Then the Toeplitz operator associate with ϕ is defined by

Tϕ : H2(T) −→ H2(T)
f 7−→ P+(ϕf).

In other words,
Tϕ = P+ ◦Mϕ ◦ i,

where P+ is the Riesz projection, Mϕ : L2(T) −→ L2(T) denotes the multiplica-
tion operator introduced in Section 3.1 and i : H2(T) ↪→ L2(T ) is the inclusion
map. We mention here an easy property of P+ we will use several times in this
course.

Lemma 3.2. P+ is a bounded operator on L2(T) and for every f, g ∈ L2, we
have

〈P+f, P+g〉2 = 〈P+f, g〉2.

Proof. It is an easy exercice!

Hence, Tϕ is a bounded operator and, by Theorem 3.1,

‖Tϕ‖ ≤ ‖P+‖ ‖Mϕ‖ ‖i‖ = ‖ϕ‖∞.

However, we indeed will see that ‖Tϕ‖ = ‖ϕ‖∞. Throughout this chapter we
use the notation

χm(eit) = eimt, (m ∈ Z).



Lemma 3.3. Let ϕ ∈ L∞(T), and let f ∈ L2(T). Then

lim
m→+∞

∥∥χ−m
Tϕ(P+(χ

m
f) )− ϕf

∥∥
2

= 0.

Proof. Let

fm(eit) =
(
χ−m

P+(χ
m
f)
)
(eit) =

∞∑
n=−m

f̂(n) eint, (m ∈ Z).

By Parseval’s identity,

‖fm − f‖22 =

−m−1∑
n=−∞

|f̂(n)|2.

Therefore, for each f ∈ L2(T),

lim
m→+∞

‖fm − f‖2 = 0.

Since

χ−mTϕ(P+(χmf) ) = χ−mTϕ(χmfm)

= χ−mP+(ϕχmfm )

= χ−mP+

(
ϕχm(fm − f)

)
+ χ−mP+(χmϕf )

= χ−m
P+

(
ϕχ

m
(fm − f)

)
+ (ϕf)m,

and
‖χ−m

P+

(
ϕχ

m
(fm − f)

)
‖2 ≤ ‖ϕ‖∞ ‖fm − f‖2,

and ‖(ϕf)m − ϕf‖2 −→ 0, the result follows.

We are now ready to show that ‖Tϕ‖ = ‖ϕ‖∞.

Theorem 3.4. Let ϕ ∈ L∞(T). Then

‖Tϕ‖L(H2(T)) = ‖ϕ‖L∞(T).

Proof. We already saw that ‖Tϕ‖ ≤ ‖ϕ‖∞. Lemma 3.3 and the inequality

‖Tϕg‖2 ≤ ‖Tϕ‖ ‖g‖2, (g ∈ H2(T)),

to obtain a lower bound for ‖Tϕ‖. Let f ∈ L2(T) and put g = P+(χmf ),
m ∈ Z. Since χm is unimodular, the last inequality implies∥∥χ−mTϕ(P+(χmf ) )

∥∥
2
≤ ‖Tϕ‖ ‖f‖2, (f ∈ L2(T)).

By Lemma 3.3, we let m→ +∞ to obtain

‖ϕf‖2 ≤ ‖Tϕ‖ ‖f‖2, (f ∈ L2(T)).

In other words,

‖Mϕf‖2 ≤ ‖Tϕ‖ ‖f‖2, (f ∈ L2(T)),

where Mϕ is the multiplication operator introduced in Section 3.1. The last
inequality is equivalent to ‖ϕ‖ ≤ ‖Tϕ‖. But, by Theorem 3.1, we know that
‖Mϕ‖ = ‖ϕ‖∞. Hence we also have ‖Mϕ‖∞ ≤ ‖Tϕ‖.



3.3 The adjoint of Tϕ

It is not difficult to find the adjoint of Tϕ. As a matter of fact, by Lemma 3.2,
for each f, g ∈ H2(T), we have

〈Tϕf, g〉H2(T) = 〈P+(ϕf), g〉H2(T)

= 〈ϕf, g〉L2(T)

= 〈f, ϕ̄g〉L2(T)

= 〈f, P+(ϕ̄g)〉H2(T)

= 〈f, Tϕ̄g〉H2(T).

Therefore, for each ϕ ∈ L∞(T),

T ∗ϕ = Tϕ̄. (3.2)

In the following result, ϕ being real means that ϕ(eit) ∈ R for almost all
eit ∈ T. Other statements should be interpreted similarly.

Theorem 3.5. Let ϕ ∈ L∞(T). Then the following hold.

(i) Tϕ is self adjoint if and only if ϕ is a real function.

(ii) Tϕ is positive if and only if ϕ is a positive function.

(iii) Tϕ is an orthogonal projection if and only if either ϕ ≡ 1 or ϕ ≡ 0. In
this case, Tϕ is the identity operator I or the zero operator 0.

Proof. (i) This is an immediate consequence of (3.2).
(ii) By Lemma 3.2, for each f ∈ H2(T),

〈Tϕf, f〉H2(T) = 〈ϕf, f〉L2(T) =
1

2π

∫ 2π

0

ϕ(eit) |f(eit)|2 dt.

If ϕ is positive, the last identity shows that Tϕ is a positive operator.
Now suppose that Tϕ is positive. This means that

1

2π

∫ 2π

0

ϕ(eit) |f(eit)|2 dt ≥ 0, (f ∈ H2(T)).

But we show that this inequality in fact holds for any f ∈ L2(T). Fix f ∈ L2(T),
and let m ≥ 1. Then P+(χm f) ∈ H2(T) and thus

1

2π

∫ 2π

0

ϕ(eit) |P+(χm f)(eit)|2 dt ≥ 0.

Since |χ−m | = 1, we have

1

2π

∫ 2π

0

ϕ(eit) |χ−m(eit)P+(χm f)(eit)|2 dt ≥ 0.



But, by Lemma 3.3, χ−mP+(χm f) −→ f in L2(T) norm. Hence, for each
f ∈ L2(T),

1

2π

∫ 2π

0

ϕ(eit) |f(eit)|2 dt ≥ 0.

Therefore, by taking f to be the characteristic function of an arbitrary measur-
able set, we deduce that ϕ ≥ 0.

(iii) It is trivial that T1 = I and T0 = 0 are orthogonal projections. Now
suppose that Tϕ is an orthogonal projection. By (ii) and Theorem 3.4, we
necessarily have 0 ≤ ϕ ≤ 1. In the light of Lemma 3.2, the property

〈Tϕf, Tϕf〉H2(T) = 〈Tϕf, f〉H2(T), (f ∈ H2(T)),

is written as

〈ϕf, Tϕf〉L2(T) = 〈ϕf, f〉L2(T), (f ∈ H2(T)).

Hence, for all f ∈ H2(T),

1

2π

∫ 2π

0

ϕ(eit) f(eit)P+(ϕf)(eit) dt =
1

2π

∫ 2π

0

ϕ(eit) |f(eit)|2 dt.

In particular, for f = χ
m

, m ≥ 1,

1

2π

∫ 2π

0

ϕ(eit)χ−m
(eit)P+(ϕχ

m
)(eit) dt =

1

2π

∫ 2π

0

ϕ(eit) dt.

But, by Lemma 3.3, χ−m
P+(χm ϕ) −→ ϕ in L2(T) norm. Thus

1

2π

∫ 2π

0

ϕ2(eit) dt =
1

2π

∫ 2π

0

ϕ(eit) dt.

Since 0 ≤ ϕ ≤ 1, the identity

1

2π

∫ 2π

0

ϕ(eit)
(

1− ϕ(eit)
)
dt = 0

holds if and only if either ϕ = 1 or ϕ = 0, or equivalently, when ϕ is the
characteristic function of a measurable set. Therefore, for each f ∈ H2(T) , we
have

〈Tϕf, f〉H2(T) =
1

2π

∫ 2π

0

ϕ(eit) |f(eit)|2 dt =
1

2π

∫ 2π

0

|ϕ(eit)f(eit)|2 dt

and this quantity is equal to

〈Tϕf, Tϕf〉H2(T) =
1

2π

∫ 2π

0

|P+(ϕf)(eit)|2 dt.

In short
‖ϕf‖L2 = ‖P+(ϕf)‖L2 , (f ∈ H2(T)).

But this happens if and only if ϕf ∈ H2(T), for all f ∈ H2(T). In particular,
we must have ϕ ∈ H2(T). The only real functions in H2(T) are real constant
functions. Hence either ϕ ≡ 1 or ϕ ≡ 0.



3.4 Toeplitz operators with (anti-)analytic sym-
bols

If ϕ ∈ H∞(T), then

Tϕf = ϕf

for each f ∈ H2(T). In other words, ϕ is a multipliers of the reproducing kernel
Hilbert space H2(T) and Tϕ is indeed the multiplier operator Mϕ introduced in
Section 1.4. However, it should not be mixed up with the multiplier operator
of Section 3.1 on L2(T). Therefore, as a special case of Theorem 1.10 and by
(3.2), we have

Tϕ̄kz = ϕ(z) kz, (z ∈ D), (3.3)

where kz is the kernel of H2.

Theorem 3.6. Let ϕ ∈ H∞(T), ϕ 6≡ 0. Then the following are equivalent.

(i) ϕ is inner.

(ii) Tϕ is an isometry.

(iii) Tϕ is a partial isometry.

Proof. (i) =⇒ (ii) If ϕ is inner, then Tϕ(f) = ϕf , f ∈ H2, and since ϕ is
unimodular on T,

‖Tϕ(f)‖H2 = ‖f‖H2 .

(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) If Tϕ is a partial isometry, then, by Theorem 1.7, T|ϕ|2 = T ∗ϕTϕ

is an orthogonal projection. By Theorem 3.5, we must have either |ϕ| ≡ 1 or
|ϕ| ≡ 0. The second possibility is rolled out by assumption. The first one means
that ϕ is inner.

Generally speaking, a Toeplitz operator is far away from being one to one.
The following result provides a sufficient condition for injectivity.

Theorem 3.7. Let ϕ be a function in H∞, ϕ 6≡ 0. Then the following hold:

(a) Tϕ is injective.

(b) If ϕ is assumed to be outer, then Tϕ̄ is also injective.

Proof. (a) follows immediately from Lemma 2.3. To prove (b), let f be in the
kernel of Tϕ̄. That means that

P+(ϕ̄f) = 0.

Hence we ϕ̄f ∈ H2
0 , or equivalently, ϕf̄ ∈ H2

0 . Using Lemma 2.4, we deduce

that f̄ ∈ H2
0 . Therefore f ∈ H2 ∩H2

0 = {0} and that concludes the proof.



3.5 Composition of Toeplitz operators

We saw that the multiplication operators on L2(T) commute, i.e., for each ϕ,ψ ∈
L∞(T), MϕMψ = MψMϕ = Mϕψ. However, the class of Toeplitz operators is
not commutative. The following theorem reveals a special result of this type.

Theorem 3.8. Let ϕ,ψ ∈ L∞(T). Suppose that at least one of them is in
H∞(T). Then

Tψ̄Tϕ = Tψ̄ϕ.

Proof. If ϕ ∈ H∞(T), then, for each f ∈ H2(T),

Tψ̄Tϕf = Tψ̄P+(ϕf) = Tψ̄(ϕf) = P+(ψ̄ϕf) = Tψ̄ϕf.

Hence Tψ̄Tϕ = Tψ̄ϕ. If ψ ∈ H∞(T), then, by what we just proved,

Tϕ̄Tψ = Tϕ̄ψ.

Therefore, by (3.2),

Tψ̄Tϕ = T ∗ψT
∗
ϕ̄ =

(
Tϕ̄Tψ

)∗
= T ∗ϕ̄ψ = Tϕψ̄.

In the preceding theorem, it is important to note that Tψ̄Tϕ 6= TϕTψ̄. Ne-
glecting this fact is a common source of mistake. However, if ϕ,ψ ∈ H∞(T), we
do have

TϕTψ = TψTϕ = Tϕψ and Tϕ̄Tψ̄ = Tψ̄Tϕ̄ = Tϕ̄ψ̄. (3.4)

The first relation is trivial. The second is obtained by taking the conjugate of
all sides of the first one.

Theorem 3.9. Let ϕ ∈ H∞(T). Then

TϕTϕ̄ ≤ Tϕ̄Tϕ.

Proof. For each f ∈ H2(T), by (??), we have

〈TϕTϕ̄f, f〉H2 = 〈Tϕ̄f, Tϕ̄f〉H2 = ‖P+(ϕ̄f)‖2H2 ≤ ‖ϕ̄f‖2L2 .

But, ‖ϕ̄f‖L2 = ‖ϕf‖L2 = ‖ϕf‖H2 and

‖ϕf‖2H2 = ‖Tϕf‖2H2 = 〈Tϕf, Tϕf〉H2 = 〈Tϕ̄Tϕf, f〉H2 .

Thus

〈TϕTϕ̄f, f〉H2 ≤ 〈Tϕ̄Tϕf, f〉H2 , (f ∈ H2(T)),

which means TϕTϕ̄ ≤ Tϕ̄Tϕ.



3.6 The compactness

It is clear that T0 = 0 is compact. In this section we show that this is the only
compact Toeplitz operator.

The Fourier coefficients of an function ψ ∈ L1(T) was defined by

ψ̂(n) =
1

2π

∫ 2π

0

ψ(eit) e−int dt, (n ∈ Z).

By the Riemann–Lebesgue lemma,

lim
n→±∞

ψ̂(n) = 0.

In particular, if f, g ∈ L2(T), then fḡ ∈ L1(T), and the Riemann–Lebesgue
lemma says

lim
n→±∞

1

2π

∫ 2π

0

f(eit) g(eit) e−int dt = 0.

Using the inner product of L2(T), this fact is rewritten as

lim
n→±∞

〈χnf, g〉 = 0. (3.5)

In technical language, this means that, for each fixed f ∈ L2(T), the sequence
(χnf)n∈Z weakly converges to zero.

Theorem 3.10. Let ϕ ∈ L∞(T). Then the Toeplitz operator Tϕ is compact if
and only if ϕ ≡ 0.

Proof. Clearly T0 = 0 is compact. Now suppose that K is any compact operator
on H2(T). By the triangle inequality,

‖Mϕf‖2 ≤ ‖ϕf − χ−m
Tϕ(P+(χ

m
f) )‖2

+ ‖Tϕ(P+(χ
m
f) )−K(P+(χ

m
f) )‖2

+ ‖K(P+(χ
m
f) )‖2

for each f ∈ L2(T) and m ∈ Z. By Lemma 3.3,

lim
m→+∞

‖χ−mTϕ(P+(χmf) )− ϕf‖2 = 0.

For the second term, we have

‖Tϕ(P+(χ
m
f) )−K(P+(χ

m
f) )‖2 ≤ ‖Tϕ −K‖ ‖P+(χ

m
f)‖ ≤ ‖Tϕ −K‖ ‖f‖.

Since, by (3.5), χmf weakly converges to 0 and K is compact, then

lim
m→+∞

‖K(P+(χ
m
f) )‖2 = 0.

Therefore, we obtain the estimation

‖Mϕf‖2 ≤ ‖Tϕ −K‖ ‖f‖, (f ∈ L2(T)).



By Theorem 3.1, we conclude that

‖ϕ‖∞ ≤ ‖Tϕ −K‖

for any compact operator K on H2(T). Hence if Tϕ is compact we must have
ϕ ≡ 0.

Corollary 3.11. Let ϕ ∈ L∞(T), and suppose that ϕ 6≡ 0. Then the linear
manifold R(Tϕ) of H2(T) is infinite dimensional.

3.7 The operator Kϕ

The notion of Kν , ν ∈M(T), as a mapping on L1(ν), was introduced in Section
2.6. In this section, we will be interested by absolutely continuous measures
(with respect to the Lebesgue measure), dν(ζ) = ϕ(ζ) dm(ζ), ϕ ∈ L1(T). In
this case, we also write Kφ for Kν , Kφ for Kν and L1(φ) for L1(ν). So for
ϕ ∈ L1(T) and f ∈ L1(φ), we have

(Kϕf)(z) =

∫
T

f(ζ)ϕ(ζ)

1− zζ̄
dm(ζ),

and Kϕ is a continuous operator from L1(ϕ) into Hol(C \ T).
In this section, we see that under the slightly stronger condition ϕ ∈ L∞(T),

Kϕ is in fact a bounded operator from L2(ϕ) into H2. We also find its adjoint
and explore the connection between Kϕ and Toeplitz operator Tϕ.

If ϕ ∈ L2(T), the first formula in Theorem 2.17 is written as

Kϕ(z) =

∞∑
n=0

ϕ̂(n) zn, (z ∈ D), (3.6)

and thus, by Parseval’s identity,

1

2π

∫ 2π

0

|Kϕ(reit)|2 dt =

∞∑
n=0

|ϕ̂(n)|2 r2n, (0 < r < 1).

Hence
Kϕ ∈ H2(D) (3.7)

and
‖Kϕ‖2 ≤ ‖ϕ‖2. (3.8)

As usual we also use Kϕ to denote the corresponding boundary value function
on T which is an element of H2(T). With this convention, (3.6) shows that we
have

Kϕ = P+ϕ, (3.9)

where P+ is the Riesz projection.



If ϕ ∈ L∞(T) and ψ ∈ L2(ϕ), then ϕψ ∈ L2(T) and also

Kϕψ = K(ϕψ) = P+(ϕψ). (3.10)

Hence, by (3.7) and (3.9), Kϕψ ∈ H2. Moreover, by (3.8),

‖Kϕψ‖2 = ‖K(ϕψ)‖2 ≤ ‖ϕψ‖2 ≤ ‖ϕ‖1/2∞ ‖ψ‖L2(ϕ).

Therefore,
Kϕ : L2(ϕ) −→ H2

ψ 7−→ K(ϕψ)
(3.11)

is a well defined operator whose norm is at most ‖ϕ‖1/2∞ . We clearly have

H2(T) ⊂ L2(T) ⊂ L2(ϕ).

Thus the injection mapping i : H2 ↪→ L2(ϕ) is well defined. For further refer-
ence, we denote this operator by Jϕ, i.e.

Jϕ : H2 −→ L2(ϕ)
f 7−→ f.

(3.12)

Theorem 3.12. Let ϕ ∈ L∞(T). Then

K∗ϕ = Jϕ.

Proof. For each ψ ∈ L2(ϕ) and f ∈ H2, by (3.9) and (3.10),

〈Kϕψ, f〉H2 = 〈Kϕψ, f〉H2 = 〈P+(ϕψ), f〉H2 .

Hence, by Lemma 3.2,
〈Kϕψ, f〉H2 = 〈ϕψ, f〉L2 .

But, directly from the definition,

〈ϕψ, f〉L2 = 〈ϕ, f〉L2(ϕ).

Hence, we can write
〈Kϕψ, f〉H2 = 〈ϕ, Jϕf〉L2(ϕ).

This identity shows that K∗ϕ = Jϕ.

Corollary 3.13. Let ϕ ∈ L∞(T). Then

KϕJϕ = Tϕ.

Proof. Let f, g ∈ H2. Then, by Theorem 3.12,

〈KϕJϕf, g〉H2 = 〈Jϕf, Jϕg〉L2(ϕ).

But, right from the definition,

〈Jϕf, Jϕg〉L2(ϕ) = 〈ϕf, g〉L2 .



By Lemma 3.2, we have

〈ϕf, g〉L2 = 〈P+(ϕf), g〉H2 .

Therefore, for each f, g ∈ H2,

〈KϕJϕf, g〉H2 = 〈Tϕf, g〉H2 .

Hence KϕJϕ = Tϕ.

3.8 Toeplitz operators on generalized Hardy spaces
H2(ν)

Recall that for φ ∈ L∞, the Toeplitz operator Tφ, with symbol φ, is defined
on H2 by the formula Tφf = P+(φf), where P+ is the Riesz projection. We
could try to generalize Toeplitz operators to generalized Hardy spaces H2(ν),
ν ∈ M(T), by using the same formula as in the classical case. In general,
however, P+ is not bounded from L2(ν) onto H2(ν) so this is not possible.
More precisely, the Helson–Szegö Theorem gives the following criterion:

Theorem 3.14 (Helson–Szegö, see []). Let ν ∈M(T). The following assertions
are equivalent:

(i) The Riesz projection P+ is bounded on L2(ν).

(ii) ν is absolutely continuous with respect to the Lebesgue measure and dν =
|h|2 dm, where h ∈ H2 is an outer function such that dist(h/h̄,H∞) < 1.

(iii) ν is absolutely continuous with respect to the Lebesgue measure and dν =
ω dm, where ω = eu+ṽ, and u, v are real bounded functions, ‖v‖∞ < π/2
and ṽ is the Hilbert transform of v.

(iv) The family (zn)n∈Z is a basis of L2(ν).

A different possibily to generalize Toeplitz operators to H2(ν) stems from
the observation that when m is in H∞, then Tm̄ maps analytic polynomials
to analytic polynomials. Hence we regard Tm̄ as a densily defined operator on
H2(ν) and ask the question: when is Tm̄ bounded on H2(ν)?

Lemma 3.15. Let ϕ ∈ H∞ and ω ∈ D. Then

ϕ(ω)kω =
∑
n≥0

ω̄nTϕ̄χn,

where the series converges in H2(ν) and χn(z) = zn, n ≥ 0 and z ∈ D.

Proof. It is easy to see that

(Tϕ̄χn)(z) =

n∑
j=0

ϕ̂(n− j)zj



and we get

|ω̄nTϕ̄χn(z)| ≤
n∑
j=0

|ϕ̂(n− j)||z|j |ω|n ≤ n‖ϕ‖∞rn,

for all z ∈ T and |ω| ≤ r < 1. Since r < 1, the series
∑
n nr

n is convergent qnd
we obtain that the series ∑

n≥0

ω̄nTϕ̄χn(z)

is absolutely and uniformly convergent for z ∈ T and |ω| ≤ r < 1. Now using
Fubini’s Theorem, we can write

∑
n≥0

w̄nTϕ̄χn(z) =
∑
n≥0

n∑
j=0

ϕ̂(n− j)ω̄nzj

=
∑
j≥0

∑
n≥j

ϕ̂(n− j)ω̄n
 zj

=
∑
j≥0

ω̄jzj

∑
n≥j

ϕ̂(n− j)ω̄n−j


=
∑
j≥0

ω̄jzj

∑
n≥0

ϕ̂(n)ω̄n


=
∑
j≥0

ω̄jzjϕ(ω)

=
ϕ(ω)

1− ω̄z
=ϕ(ω)kω(z).

So we get that the series ∑
n≥0

ω̄nTϕ̄χn(z)

converges to ϕ(ω)kω(z) uniformly for z ∈ T and |ω| ≤ r < 1. Therefore the
convergence is also in H2(ν) for each fixed ω ∈ D.

Theorem 3.16. Suppose that m belongs to H∞. The operator Tm̄ is bounded
on H2(ν) if and only if the map

kw 7−→ m(w)kw

extends to a continuous linear operator on H2(ν).



Note that this theorem is not a tautology because we define a priori the
Toeplitz operator Tm̄ on the set of analytic polynomials and not on the dense
set of kw, w ∈ D.

Proof. Suppose first that Tm̄ is bounded on H2(ν) and fix w ∈ D. Since

kw(z) =
1

1− w̄z
=

+∞∑
n=0

w̄nzn

converges uniformly on T, the series converges also in H2(ν). Hence

Tm̄kw =

+∞∑
n=0

w̄nTm̄z
n

with the series converging in H2(ν). By Lemma 3.15, we know that this series
converges to m(w)kw in H2(ν), for each fixed w ∈ D. Hence Tm̄kw = m(w)kw
and using Theorem 2.13, we conclude that Tm̄ is itself the continuous linear
extension to H2(ν) of the map kw 7−→ m(w)kw.

Now suppose conversely that the map kw 7−→ m(w)kw extends to a con-

tinuous linear operator T on H2(ν). Since kw(z) =

+∞∑
n=0

w̄nzn in H2(ν), we

have

Tkw =

+∞∑
n=0

w̄nTχn.

But Tkw = m(w)kw and by Lemma 3.15, we also have

m(w)kw =

+∞∑
n=0

w̄nTm̄χn.

Therefore we get
+∞∑
n=0

w̄nTm̄χn =

+∞∑
n=0

w̄nTχn.

Remark now that these two power series in w̄ represent two conjugate analytic
functions in D and thus their coefficients must be the same. So

Tχn = Tm̄χn, n ≥ 0,

which proves that T is the continuous linear extension to H2(ν) of Tm̄.





Chapter 4

The spaces M(A) and H(A)

4.1 The space M(A)

Suppose that H1 is a Hilbert space, H2 a set and A : H1 −→ H2 a set bijection
between H1 and H2. Then the map A can be used to transfer the Hilbert space
structure of H1 to H2. It is enough to define

〈Ax,Ay〉H2
= 〈x, y〉H1

(4.1)

for each x, y ∈ H1. The algebraic operations on H2 are defined similarly. If
H2 is a linear space and A is an algebraic isomorphism between H1 and H2 the
latter requirement is already fulfilled.

The notation R(A) was used to denote the range of an operator. This
notation remains valid whenever we look at R(A) as a set. In the following we
are going to define a Hilbert structure onR(A) which is imposed by A. Hence we
will useM(A) to denote the range of A endowed with that structure. Therefore,
the equalityR(A) = R(B) means that the ranges of A and B as linear manifolds
are equal, while M(A) = M(B) says that not only R(A) = R(B) holds, but
also they have the same Hilbert space structure, i.e.

‖w‖M(A) = ‖w‖M(B)

for all possible w.
Suppose that H1 and H2 are Hilbert spaces and that A ∈ L(H1, H2). By the

first homomorphism theorem, the operator A induces an isomorphism between
the quotient space H1/ker A and M(A). Hence, by (4.1), the identity

〈Ax,Ay〉M(A) = 〈x+ ker A, y + ker A〉H1/ker A, (x, y ∈ H1), (4.2)

defines a Hilbert space structure on R(A). The norm of x+ ker A in H1/ker A
is originally defined by

‖x+ ker A‖H1/ker A = inf
z∈ker A

‖x+ z‖H1
.
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But, we easily see that

‖x+ ker A‖H1/ker A = ‖P(kerA)⊥x‖H1
, (x ∈ H1).

Hence, by the polarization identity, we have

〈x+ ker A, y + ker A〉H1/ker A = 〈P(kerA)⊥x, P(kerA)⊥y〉H1
, (x, y ∈ H1).

Moreover, it is also easy to verify that

〈P(kerA)⊥x, P(kerA)⊥y〉H1
= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
.

Therefore, the definition (4.2) reduces to

〈Ax,Ay〉M(A) = 〈P(kerA)⊥x, P(kerA)⊥y〉H1

= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
(4.3)

for each x, y ∈ H1. In particular, for each x ∈ H1,

‖Ax‖M(A) = ‖P(kerA)⊥x‖H1
. (4.4)

Moreover, if at least one of x or y is orthogonal to ker A, then, by (4.3),

〈Ax,Ay〉M(A) = 〈x, y〉H1
. (4.5)

The rather trivial inequality

‖Ax‖M(A) ≤ ‖x‖H1
, (x ∈ H1), (4.6)

will also be frequently used.
OnM(A) we now have two structures. The old structure inherited from H2

and the new one imposed by A. In the following, we always assume thatM(A)
is endowed with the latter structure. If this is not the case, we will explicitly
mention that. To explore the relation between these two structure, note that A
is a bounded operator, and thus

‖Ax‖H2
= ‖AP(kerA)⊥x‖H2

≤ ‖A‖ ‖P(kerA)⊥x‖H1
, (x ∈ H1).

Therefore, by (4.4),

‖Ax‖H2
≤ ‖A‖ ‖Ax‖M(A), (x ∈ H1). (4.7)

This inequality means that the inclusion map

i : M(A) ↪→ H2

w 7−→ w

is continuous. That is why we say that M(A) is boundedly contained in H2.
If A is a contraction, i.e. ‖A‖ ≤ 1, then we say that M(A) is contractively
contained in H2. If

‖w‖M(A) = ‖w‖H2
, (w ∈M(A)),



we naturally say that M(A) is isometrically contained in H2.
LetM be a linear manifold in a Hilbert spaceH. We do not assume thatM is

closed in H. Suppose that M equipped with an inner product, not necessarily
the same inner product as in H, is a Hilbert space. Then we say that M is
boundedly contained in H if the inclusion map

i : M ↪→ H
w 7−→ w

is continuous. If i is a contraction, we say that M is contractively contained in
H, and finally if i is an isometry we say that M is isometrically contained in
H. Note that M =M(i) and the definitions given in this paragraph for M are
consistent with those in the preceding one for M(i).

Our first result shows that if A ∈ L(H) is an orthogonal projection, then in
fact we do not obtain a new structure on M(A). The Hilbert space structure
of M(A) is exactly the one it has in the first place a closed subspace of H.

Lemma 4.1. Let M be a closed subspace of H, and let PM denote the orthogonal
projection on M . Then M(PM ) = M and

‖w‖M(PM ) = ‖w‖H , (w ∈M).

Proof. The set identity M(PM ) = M is an immediate consequence of the def-
inition of an orthogonal projection. Since M is closed, (M⊥)⊥ = M . Also
remember that ker PM = M⊥. Hence, by (4.4),

‖PMx‖M(PM ) = ‖P(kerPM )⊥x‖H = ‖PMx‖H , (x ∈ H1).

Exercises
Exercise 4.1.1. Let H be a set endowed with two inner products whose
corresponding norms are complete and equivalent, i.e.

c‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1, (x ∈ H),

where c, C are positive constants. Show that (H, 〈 ·, · 〉1) is boundedly contained
in (H, 〈 ·, · 〉2), and vice versa.

Exercise 4.1.2. Let (X,A) be a measurable space, and let µ and ν be two
positive measures on the σ-algebra A. Suppose that

µ(E) ≤ ν(E) (4.8)



for all E ∈ A. Show that L2(ν) is contractively contained in L2(µ).
Hint: The assumption (4.8) can be rewritten as∫

X

χE dµ ≤
∫
X

χE dν,

where χE is the characteristic function of E. Take positive linear combinations,
and then apply the monotone convergence theorem to obtain∫

X

ϕdµ ≤
∫
X

ϕdν

for all positive measurable functions ϕ. Hence ‖f‖L2(µ) ≤ ‖f‖L2(ν).

Exercise 4.1.3. Let ϕ ∈ L∞(T), and consider the multiplication operator

Mϕ : L2(T) −→ L2(T)
f 7−→ ϕf

which was studied in Section 3.1. Show that

‖ϕf‖M(Mϕ) =

(
1

2π

∫
T\E
|f(eit)|2 dt

) 1
2

, (f ∈ L2(T)),

and that

〈ϕf, ϕg〉M(Mϕ) =
1

2π

∫
T\E

f(eit) g(eit) dt, (f, g ∈ L2(T)),

where E = {ζ ∈ T : ϕ(ζ) = 0}.
The first identity implies that M(Mϕ) = ϕL2(T) is contractively contained

in L2(T). Under what condition M(Mϕ) is isometrically contained in L2(T)?

Exercise 4.1.4. Let Θ be an inner function for the open unit disc, and let

MΘ : H2(D) −→ H2(D)
F 7−→ ΘF.

Show that

‖ΘF‖M(MΘ) = ‖F‖H2(D) = ‖ΘF‖H2(D), (F ∈ H2(D)).

Thus M(MΘ) = ΘH2 is isometrically contained in H2(D).
Hint: MΘ is injective and |Θ| = 1 almost everywhere on T.
Remark: The subspaces ΘH2(D) are called Beurling subspaces of H2(D). Ac-
cording to his celebrated theorem, these are the only closed subspaces of H2(D)
which are invariant under the forward shift operator S = Mz, i.e.

S : H2(D) −→ H2(D)
F 7−→ zF.



4.2 Contractive inclusion of M(A) in M(B)

Let A ∈ L(H1, H) and B ∈ L(H2, H). Suppose that there is a contraction
C ∈ L(H1, H2) such that A = BC. In the first place, since for each x ∈ H1,
Ax = B(Cx), we have the set inclusion

R(A) ⊂ R(B).

Secondly, by (4.6) and that ‖C‖ ≤ 1,

‖Ax‖M(B) = ‖BCx‖M(B) ≤ ‖Cx‖H2
≤ ‖x‖H1

.

By (4.4), replacing x by P(kerA)⊥x gives us

‖Ax‖M(B) ≤ ‖Ax‖M(A), (x ∈ H1).

Hence, M(A) is in fact contractively contained in M(B). We use Douglas’
factorization theorem (Theorem 1.1) to show that the existence of C is also
necessary for the contractive inclusion of M(A) in M(B).

Theorem 4.2. Let A ∈ L(H1, H) and B ∈ L(H2, H). Then R(A) ⊂ R(B) and
the inclusion

i : M(A) ↪→ M(B)
w 7−→ w

is a contraction if and only if AA∗ ≤ BB∗.
Proof. If AA∗ ≤ BB∗, then, by Theorem 1.1, there is a contraction C ∈
L(H1, H2) such that A = BC. Hence, as we discussed above, M(A) is con-
tractively contained in M(B).

To prove the other direction, suppose that the set inclusion R(A) ⊂ R(B)
holds and moreover ‖w‖M(B) ≤ ‖w‖M(A) for all w ∈ M(A). An element
w ∈ M(A) is of the form w = Ax with some x ∈ H1. Hence for each x ∈ H1

there is y ∈ H2 such that
Ax = By. (4.9)

The element y is not necessarily unique. However, if By = By′, with y, y′ ∈ H2,
then B(y − y′) = 0 and thus y − y′ ∈ ker B. In other words, P(kerB)⊥y =
P(kerB)⊥y

′. Therefore, the map

C : H1 −→ H2

x 7−→ P(kerB)⊥y,

where y ∈ H2 is given by (4.9), is well defined and

BCx = BP(kerB)⊥y = By = Ax, (x ∈ H1).

In short, A = BC. Moreover, by (4.4) and (4.6),

‖Cx‖H2 = ‖P(kerB)⊥y‖H2

= ‖By‖M(B)

= ‖Ax‖M(B)

≤ ‖Ax‖M(A)

≤ ‖x‖H1 .



Hence C is a contraction. Thus, by Theorem 1.1, AA∗ ≤ BB∗.

We mention two corollaries. The first one follows immediately from the
Theorem 4.2. We remind that M(A) =M(B) means R(A) = R(B) and they
have the same Hilbert space structure.

Corollary 4.3. Let A ∈ L(H1, H) and B ∈ L(H2, H). Then

(i) M(A) =M(B) if and only if AA∗ = BB∗.

(ii) M(A) =M(|A|), where |A| = (AA∗)1/2.

Corollary 4.4. Let A ∈ L(H1, H). Then M(A) is a closed subspace of H and
‖w‖M(A) = ‖w‖H for each w ∈M(A) if and only if A is a partial isometry. In
this case, we have the set identity

M(A) = R(AA∗).

Proof. If A is a partial isometry then, by Theorem 1.7, P = AA∗ is an orthog-
onal projection and thus |A| = P . Hence, by Corollary 4.3(ii), M(A) =M(P )
and ‖w‖M(A) = ‖w‖M(P ) for each w ∈ M(A). But, by Lemma 4.1, M(P ) is a
closed subspace of H and ‖w‖M(P ) = ‖w‖H for each w ∈M(P ).

Now suppose that M = M(A) is a closed subspace of H. Let PM ∈ L(H)
denote the orthogonal projection on M . The set identity M(A) = M(PM ) is
trivial. Then, by Lemma 4.1 and our assumptions, we have ‖w‖M(A) = ‖w‖H =
‖w‖M(PM ) for each w ∈M(A). Hence, by Corollary 4.3(i),

AA∗ = PMP
∗
M = PM .

Therefore, again by Theorem 1.7, A is a partial isometry.

Exercises
Exercise 4.2.1. Let A ∈ L(H1, H) and B ∈ L(H2, H). Show that M(|A|) =
M(|B|) if and only if |A| = |B|.
Hint: Use Corollary 4.3(i) and Theorem 1.4.

Exercise 4.2.2.
Hint:

Exercise 4.2.3.
Hint:



4.3 Linear functionals on M(A)

Let A ∈ L(H1, H2). Suppose that

Λ : H2 −→ C

is a bounded linear functional on H2. Then, by Riesz’ theorem, there is a unique
w ∈ H2 such that

Λz = 〈z, w〉H2
, (z ∈ H2).

According to (4.7), the inclusion map

i :M(A) ↪→ H2

is continuous. Hence
Λ ◦ i :M(A) −→ C

is a bounded linear functional on M(A). Thus, again by Riesz’ theorem, there
is a unique w′ ∈M(A) such that

(Λ ◦ i)(z) = 〈z, w′〉M(A), (z ∈M(A)).

We want to find the relation between w and w′. Note that Λ◦ i is the restriction
of Λ to M(A) and thus, abusing the notation, we may also use Λ instead of
Λ ◦ i.

Theorem 4.5. Let A ∈ L(H1, H2). Let w ∈ H2, and let

Λz = 〈z, w〉H2
, (z ∈ H2),

be the corresponding bounded linear functional on H2. Then its restriction

Λ :M(A) −→ C

is a bounded linear functional on M(A) and

Λ(Ax) = 〈Ax,AA∗w〉M(A), (x ∈ H1).

Moreover,
‖Λ‖M(A)∗ = ‖A∗w‖H1 .

Remark: By Riesz’ theorem

‖Λ‖H∗2 = ‖w‖H2
.

Proof. By the definition of adjoint operator,

Λ(Ax) = 〈Ax,w〉H2 = 〈x,A∗w〉H1 , (x ∈ H1).

But, by Theorem ??(vii),

A∗w ∈ R(A∗) ⊂ (ker A)⊥.



Hence, by (4.5),

〈x,A∗w〉H1
= 〈Ax,AA∗w〉M(A), (x ∈ H1).

Therefore, Λ(Ax) = 〈Ax,AA∗w〉M(A). This representation shows that

‖Λ‖M(A)∗ = ‖AA∗w‖M(A).

However, by (4.4), we have

‖AA∗w‖M(A) = ‖A∗w‖H1
.

Exercises
Exercise 4.3.1.

Hint:

Exercise 4.3.2.
Hint:

Exercise 4.3.3.
Hint:

4.4 The complementary space H(A)

If A is a Hilbert space contraction, then

H(A) =M( (I −AA∗)1/2 )

is called the complementary space of M(A). The intersection M(A) ∩H(A) is
called the overlapping space. In the rest of this chapter we study H(A) and its
relation to M(A).

Lemma 4.6. Let A ∈ L(H1, H) be a contraction. Then H(A) is a closed
subspace of H and ‖w‖H(A) = ‖w‖H for each w ∈ H(A) if and only if A is a
partial isometry. In this case,

H(A) = R(I −AA∗).

Proof. By Corollary 4.4, H(A) is a closed subspace of H and ‖w‖M(A) = ‖w‖H
for each w ∈ H(A) if and only if (I−AA∗)1/2 is a partial isometry. By Theorem
1.7, this happens if and only if I−AA∗ is an orthogonal projection. Clearly I−
AA∗ is an orthogonal projection if and only of AA∗ is an orthogonal projection.
Finally, again by Theorem 1.7, AA∗ is an orthogonal projection if and only if A
is a partial isometry.



Lemma 4.7. Let A ∈ L(H1, H2). Then, with respect to the Hilbert space struc-
ture of M(A), the linear manifold M(AA∗) is dense in M(A).

Proof. In the first place, note that

M(AA∗) ⊂M(A) ⊂ H2

and thus M(AA∗) is indeed a linear manifold of M(A).

To show that M(AA∗) is dense M(A) we use the standard Hilbert space
technic. If 0 is the only vector in M(A) which is orthogonal to M(AA∗), then
this linear manifold is dense in M(A). Thus let w ∈M(A) be such that

〈w, z〉M(A) = 0

for all z ∈ M(AA∗). We need to show that w = 0. By definition, w = Ax,
for some x ∈ H1, and z = AA∗y, where y runs through H2. Without loss of
generality, assume that x ⊥ ker A. Hence, by (4.5),

0 = 〈w, z〉M(A)

= 〈Ax,AA∗y〉M(A)

= 〈x,A∗y〉H1

= 〈Ax, y〉H2

= 〈w, y〉H2

for all y ∈ H2. Therefore, w = 0.

Corollary 4.8. Let A ∈ L(H1, H2) be a Hilbert space contraction. Then, with
respect to the Hilbert space structure of H(A), the linear manifold M(I −AA∗)
is dense in H(A). Moreover, for each z ∈ H2 and w ∈ H(A),

‖(I −AA∗)z‖2H(A) = ‖(I −AA∗)1/2z‖2H2
= ‖z‖2H2

− ‖A∗z‖2H1

and

〈w, (I −AA∗)z〉H(A) = 〈w, z〉H2
.

Proof. It is enough to consider the self adjoint operator (I − AA∗)1/2 ∈ L(H2)
and apply Lemma 4.7 to see that M(I −AA∗) is dense in H(A).

To prove the first relation, note that (I − AA∗)1/2z ⊥ ker (I − AA∗)1/2.
Thus

‖(I −AA∗)z‖2H(A) = ‖(I −AA∗)1/2z‖2H2

= 〈(I −AA∗)1/2z, (I −AA∗)1/2z〉H2

= 〈(I −AA∗)z, z〉H2

= ‖z‖2H2
− ‖A∗z‖2H1

.



For the second, we write w = (I −AA∗)1/2w′, where w′ ⊥ ker (I −AA∗)1/2.
Hence, by (4.5),

〈w, (I −AA∗)z〉H(A) = 〈(I −AA∗)1/2w′, (I −AA∗)z〉H(A)

= 〈w′, (I −AA∗)1/2z〉H2

= 〈(I −AA∗)1/2w′, z〉H2

= 〈w, z〉H2

Exercises
Exercise 4.4.1. Let A ∈ L(H1, H2). Show that

‖w‖M(A) ≤ ‖A‖L(H1,H2) ‖w‖M(AA∗), (w ∈M(AA∗)).

Exercise 4.4.2. Let A ∈ L(H1, H2) be a Hilbert space contraction. Show
that

‖w‖H(A) ≤ ‖w‖M(I−AA∗), (w ∈M(I −AA∗)).

Hint: Apply Exercise 4.4.1.

4.5 The Halmos intertwining theorem

To further study these spaces the following intertwining relation is needed.

Theorem 4.9 (Halmos). Let A ∈ L(H1, H2) be a Hilbert space contraction.
Then

A(I −A∗A)1/2 = (I −AA∗)1/2A.

Proof. We obviously have A(I − A∗A) = (I − AA∗)A. Hence, by induction,
A(I − A∗A)n = (I − AA∗)nA holds for any integer n ≥ 0. Therefore, for any
polynomial p,

Ap(I −A∗A) = p(I −AA∗)A.

By Corollary 1.5, there is a sequence of polynomials (pn)n≥1 such that

pn(I −A∗A)x −→ (I −A∗A)1/2x and pn(I −AA∗)x −→ (I −AA∗)1/2x,

for each x ∈ H. Thus the required identity follows immediately.

Replacing A by A∗ in Halmos’ theorem we obtain the equivalent identity

A∗(I −AA∗)1/2 = (I −A∗A)1/2A∗. (4.10)



4.6 The Lotto–Sarason theorem

In this section we explore the relation betweenH(A) versesH(A∗). In particular,
we obtain a frequently used identity which exhibits the bridge between the inner
product in H(A) and H(A∗).

Theorem 4.10 (Lotto–Sarason). Let A ∈ L(H1, H2) be a contraction, and
let w ∈ H2. Then w ∈ H(A) if and only if A∗w ∈ H(A∗). Moreover, if
w1, w2 ∈ H(A), then

〈w1, w2〉H(A) = 〈A∗w1, A
∗w2〉H(A∗) + 〈w1, w2〉H2

.

Proof. Replacing A by A∗ in the intertwining relation (Theorem 4.9) gives

A∗(I −AA∗)1/2 = (I −A∗A)1/2A∗.

Hence the set inclusion A∗H(A) ⊂ H(A∗) follows which is equivalent to say that

w ∈ H(A) =⇒ A∗w ∈ H(A∗).

Now, let w ∈ H2 be such that A∗w ∈ H(A∗). Thus, by definition, there is
x ∈ H1 such that

A∗w = (I −A∗A)1/2x.

By the intertwining relation, the trivial identity

w = (I −AA∗)w +AA∗w = (I −AA∗)w +A(I −A∗A)1/2x

is rewritten as

w = (I −AA∗)1/2
(

(I −AA∗)1/2w +Ax
)
. (4.11)

Hence w ∈ H(A).
To prove the identity for the inner products, let w1, w2 ∈ H(A). Hence,

A∗w1 and A∗w2 ∈ H(A), i.e. there are x1, x2 ∈ H1 such that

A∗wk = (I −A∗A)1/2xk, (k = 1, 2). (4.12)

Without loss of generality we assume that xk ⊥ ker (I−A∗A)1/2, and remember
that ker (I −A∗A)1/2 = ker (I −A∗A). Therefore, by (4.5),

〈A∗w1, A
∗w2〉H(A∗) = 〈x1, x2〉H1

. (4.13)

Moreover, by (4.11), we have wk = (I −AA∗)1/2zk, where zk ∈ H2 is given by

zk = (I −AA∗)1/2wk +Axk, (k = 1, 2). (4.14)

At this point it is important to observe that

zk ⊥ ker (I −AA∗), (k = 1, 2).



As a matter of fact, for each w ∈ ker (I −AA∗), we have

(I −A∗A)(A∗w) = A∗(I −AA∗)w = 0

which means A∗w ∈ ker (I −A∗A). Then

〈w, zk〉H2 = 〈w, (I −AA∗)1/2wk +Axk〉H2

= 〈(I −AA∗)1/2w,wk〉H2 + 〈A∗w, xk〉H1 = 0.

Again we used the fact that ker (I −AA∗) = ker (I −AA∗)1/2.
Therefore, by (4.5),

〈w1, w2〉H(A) = 〈z1, z2〉H2
. (4.15)

To obtain the required result, we expand 〈z1, z2〉H2 . Hence, by (4.14),

〈w1, w2〉H(A) = 〈(I −AA∗)1/2w1 +Ax1, (I −AA∗)1/2w2 +Ax2〉H2

= 〈(I −AA∗)1/2w1, (I −AA∗)1/2w2〉H2

+ 〈Ax1, (I −AA∗)1/2w2〉H2

+ 〈(I −AA∗)1/2w1, Ax2〉H2

+ 〈Ax1, Ax2〉H2
.

Let us simplify the right side. Thus

〈(I −AA∗)1/2w1, (I −AA∗)1/2w2〉H2 = 〈(I −AA∗)w1, w2〉H2

= 〈w1, w2〉H2 − 〈A∗w1, A
∗w2〉H1 ,

and, by intertwining relation and (4.12),

〈Ax1, (I −AA∗)1/2w2〉H2 = 〈(I −AA∗)1/2Ax1, w2〉H2

= 〈A(I −A∗A)1/2x1, w2〉H2

= 〈A∗w1, A
∗w2〉H1 .

Similarly,
〈(I −AA∗)1/2w1, Ax2〉H2

= 〈A∗w1, A
∗w2〉H1

.

Finally, by (4.12),

〈A∗w1, A
∗w2〉H1

= 〈(I −A∗A)1/2x1, (I −A∗A)1/2x2〉H1

= 〈(I −A∗A)x1, x2〉H1

= 〈x1, x2〉H1
− 〈Ax1, Ax2〉H2

.

Therefore, the preceding identities imply

〈w1, w2〉H(A) = 〈w1, w2〉H2
+ 〈x1, x2〉H1

.

By (4.13), this is the required identity.



Corollary 4.11. Let A ∈ L(H1, H2) be a contraction. Then a vector x ∈ H1

belongs to H(A∗) if and only if Ax ∈ H(A). Moreover, if x1, x2 ∈ H(A∗), then

〈x1, x2〉H(A∗) = 〈Ax1, Ax2〉H(A) + 〈x1, x2〉H1
.

Exercises
Exercise 4.6.1. Let A ∈ L(H1, H2) be a contraction, and let w ∈ H(A).
Show that

‖w‖2H(A) = ‖A∗w‖2H(A∗) + ‖w‖2H2
.

Hint: This immediately follows from Theorem 4.10.

4.7 The overlapping space

Let A ∈ L(H1, H2) be a Hilbert space contraction. In Section 4.4, the intersec-
tionM(A)∩H(A) was called the overlapping space. We first we find a formula
for the overlapping space.

Lemma 4.12. Let A ∈ L(H1, H2) be a contraction. Then

M(A) ∩H(A) = AH(A∗).

Proof. By Corollary 4.11, AH(A∗) ⊂ H(A). Moreover, by definition, AH(A∗) ⊂
M(A). Hence AH(A∗) ⊂M(A) ∩H(A).

To prove the other inclusion, let w ∈M(A)∩H(A). Therefore, w = Ax, for
some x ∈ H1, and Ax ∈ H(A). Thus, again by Corollary 4.11, we necessarily
have x ∈ H(A∗), and this means w = Ax ∈ AH(A∗).

We naturally wonder when the overlapping space is trivial. We are now able
to fully characterize this case.

Theorem 4.13. Let A ∈ L(H1, H2) be contraction. Then the following are
equivalent.

(i) A is a partial isometry;

(ii) M(A) is a closed subspace of H and inherits its Hilbert space structure;

(iii) H(A) is a closed subspace of H and inherits its Hilbert space structure;

(iv) M(A) and H(A) are orthogonal complements of each other;

(v) M(A) ∩H(A) = {0};

(vi) H(A∗) ⊂ ker A.



Moreover, under the preceding equivalent conditions, we have the orthogonal
decomposition

H =M(A) +H(A).

Proof. (i)⇐⇒ (ii) Proved in Corollary 4.4.
(i)⇐⇒ (iii) Proved in Lemma 4.6.
(i) =⇒ (iv) If A is a partial isometry, then M(A) and H(A) are the range

of complementary orthogonal projections AA∗ and I −AA∗. Hence M(A) and
H(A) are orthogonal complements of each other.

(iv) =⇒ (v) Trivial.
(v)⇐⇒ (vi) This is an immediate consequence of Lemma 4.12.
(vi) =⇒ (i) By assumption A (I−A∗A)1/2 = 0. If so, then also A (I−A∗A) =

0. Hence A = AA∗A which implies (AA∗)2 = AA∗. In other words, AA∗ is an
orthogonal projection. Therefore, by Theorem 1.7, A is a partial isometry.

4.8 Decomposition of H(A)

If an operator decomposes as A = A2A1 we naturally ask about the relation
between H(A) on one hand, and H(A1) and H(A2) on the other hand. In this
section we address this question.

Theorem 4.14. Let A1 ∈ L(H3, H1) and A2 ∈ L(H1, H2) be contractions, and
let A = A2A1. Then the following hold.

(i) H(A) decomposes as

H(A) = A2H(A1) +H(A2).

(ii) If w ∈ H(A) has the representation

w = A2w1 + w2,

where wi ∈ H(Ai), then

‖w‖2H(A) ≤ ‖w1‖2H(A1) + ‖w2‖2H(A2).

(iii) For each w ∈ H(A) there is a unique pair of w1 ∈ H(A1) and w2 ∈ H(A2)
such that w = A2w1 + w2 and

‖w‖2H(A) = ‖w1‖2H(A1) + ‖w2‖2H(A2).

(iv) H(A2) is contractively contained in H(A).

(v) The operator A2 acts as a contraction from H(A1) into H(A).

Proof. (i) Let B1 = A2(I − A1A
∗
1)1/2 ∈ L(H1, H2) and B2 = (I − A2A

∗
2)1/2 ∈

L(H2).



Figure 3.1: The factorization A = A2A1

Then

I −AA∗ = I − (A2A1)(A2A1)∗

= A2(I −A1A
∗
1)A∗2 + (I −A2A

∗
2)

= B1B
∗
1 +B2B

∗
2

= BB∗,

where B = [B1B2] ∈ L(H1 ⊕H2, H2). Therefore, by Corollary 4.3(ii),

H(A) = M( (I −AA∗)1/2 )

= M(B)

= M(B1) +M(B2)

= A2M( (I −A1A
∗
1)1/2 ) +M( (I −A2A

∗
2)1/2 )

= A2H(A1) +H(A2).

Note that H(A) and M(B) have the same Hilbert structure.
(ii) If w = A2w1 + w2 with wi ∈ H(Ai), then we can write wi = (I −

AiA
∗
i )

1/2xi with xi ⊥ ker(I −AiA∗i ). Then have

w = A2w1 + w2

= A2(I −A1A
∗
1)1/2x1 + (I −A2A

∗
2)1/2x2

= B1x1 +B2x2

= B(x1 ⊕ x2).

Therefore, by Corollary 4.3(ii) and (4.4),

‖w‖2H(A) = ‖w‖2M(B)

= ‖B(x1 ⊕ x2)‖2M(B)

≤ ‖x1 ⊕ x2‖2H1⊕H2

= ‖x1‖2H1
+ ‖x2‖2H2

= ‖w1‖2H(A1) + ‖w2‖2H(A2).

(iii) Among all possible representations

w = A2w1 + w2 = B(x1 ⊕ x2),

if we choose x1 and x2 such that x1 ⊕ x2 ⊥ ker B, then, in the light of (??), we
certainly have xi ⊥ ker(I −AiA∗i ). Hence in the last paragraph of (ii) equality
holds everywhere. Thus this choice of x1 and x2 gives at least a suitable pair
w1 and w2 for which ‖w‖2H(A) = ‖w1‖2H(A1) + ‖w2‖2H(A2) holds. But, to have
this equality, we certainly need x1 ⊕ x2 ⊥ ker B and this choice of x1 ⊕ x2 is
unique. Hence, in return, w1 and w2 are unique.



(iv) By (i), H(A2) ⊂ H(A). For each w2 ∈ H(A2), consider w = A20 + w2.
Hence, by (ii),

‖w2‖H(A) ≤ ‖w2‖H(A2).

This means that H(A2) is contractively contained in H(A).
(v) By (i), A2H(A1) ⊂ H(A). For each w1 ∈ H(A1), consider w = A2w1 +0.

Hence, by (ii),
‖A2w1‖H(A) ≤ ‖w1‖H(A1).

This means that A2 acts as a contraction from H(A1) into H(A).

In part (iii) of the preceding theorem the existence of a unique pair of w1

and w2 was established. However we did not present a procedure or formula to
find them. Indeed we are able to do this just in a special case. In Corollary 4.8,
we saw thatM(I −AA∗) is dense in H(A). Let w ∈M(I −AA∗). Hence there
is y ∈ H2 such that

w = (I −AA∗)y. (4.16)

Let
x1 = B∗1y and x2 = B∗2y.

Then, by Theorem ??(xi),

x1 ⊕ x2 = B∗1y ⊕B∗2y = B∗y ∈ R(B∗) ⊂ (ker B)⊥.

Moreover,

B(x1 ⊕ x2) = B1x1 +B2x2 = (B1B
∗
1 +B2B

∗
2)y = BB∗y = (I −AA∗)y = w.

Therefore, the unique pair is obtained by

w1 = (I −A1A
∗
1)1/2x1 = (I −A1A

∗
1)A∗2y (4.17)

and
w2 = (I −A2A

∗
2)1/2x2 = (I −A2A

∗
2)y. (4.18)

The relation

H(A) =M(B) =M(B1) +M(B2) = A2H(A1) +H(A2)

shows that the decomposition

H(A) = A2H(A1) +H(A2)

is an algebraic direct sum of A2H(A1) and H(A2) if and only if

ker B = ker B1 ⊕ ker B2.

Assuming the decomposition is an algebraic direct sum, if

w = A2w1 + w2 = A2w
′
1 + w′2

then we necessarily have A2w1 = A2w
′
1 and w2 = w′2. Hence the choice of w2

in the representation w = A2w1 + w2 is unique. However, still there is some
liberty for w1.



Corollary 4.15. Let A1 ∈ L(H3, H1) and A2 ∈ L(H1, H2) be contractions, and
let A = A2A1. Suppose that the decomposition

H(A) = A2H(A1) +H(A2)

is an algebraic direct sum. Then the following hold.

(i) H(A2) is contained isometrically in H(A).

(ii) Relative to the Hilbert space structure of H(A), A2H(A1) and H(A2) are
complementary orthogonal subspaces of H(A). In other words, the decom-
position H(A) = A2H(A1) +H(A2) is fact an orthogonal direct sum.

(iii) The operator A2 acts as a partial isometry from H(A1) into H(A).

Proof. We use the notations appeared in Theorem 4.14. The main ingredient
of the proof is the relation (??).

(i) Let w2 ∈ H(A2). Hence w2 = B2x2 = (I − A2A
∗
2)1/2x2 with x2 ∈ H2.

Therefore, by (??),

‖w2‖H(A) = ‖w2‖M(B)

= ‖B2x2‖M(B)

= ‖B(0⊕ x2)‖M(B)

= ‖P(kerB)⊥(0⊕ x2)‖H1⊕H2

= ‖0⊕ P(kerB2)⊥x2‖H1⊕H2

= ‖P(kerB2)⊥x2‖H2

= ‖B2x2‖M(B2)

= ‖w2‖H(A2).

Hence H(A2) is contained isometrically in H(A).
(ii) By part (i), with respect to the structure of H(A), H(A2) is a closed

subspace of H(A). By Theorem 4.14(ii), ‖A2w1‖H(A) ≤ ‖w1‖H(A1). In the
light of part (iii) of that theorem and our assumption that the decomposition
is an algebraic direct sum, it is possible to choose w1 such that ‖A2w1‖H(A) =
‖w1‖H(A1). This observation shows that A2H(A1) is also a closed subspace of
H(A).

Let wi ∈ H(Ai), i = 1, 2. Hence wi = (I − AA∗)1/2xi with xi ∈ Hi.
Therefore, by (??),

〈A2w1, w2〉H(A) = 〈A2w1, w2〉M(B)

= 〈B1x1, B2x2〉M(B)

= 〈B(x1 ⊕ 0), B(0⊕ x2)〉M(B)

= 〈P(kerB)⊥(x1 ⊕ 0), P(kerB)⊥(0⊕ x2)〉H1⊕H2

= 〈P(kerB1)⊥x1 ⊕ 0, 0⊕ P(kerB2)⊥x2〉H1⊕H2

= 〈P(kerB1)⊥x1, 0〉H1 + 〈0, P(kerB2)⊥x2〉H2 = 0.



Hence A2H(A1) and H(A2) are complementary orthogonal subspaces of H(A).
(iii) Let us use temporarily the notation A2 : H(A1) −→ H(A) for the restric-

tion of A2 : H1 −→ H2 to H(A1). Hence kerA2 = (ker A2) ∩ H(A1). To show
that A2 is a partial isometry, we need to verify that if w1 is orthogonal to kerA2

with respect to the inner product of H(A1), then ‖w1‖H(A1) = ‖A2w1‖H(A).

Fix w1 ⊥ kerA2, and let x ∈ ker B1. Then (1−A1A
∗
1)1/2x ∈ kerA2. Hence

〈w1, (1−A1A
∗
1)1/2x〉H(A1) = 0. (4.19)

Write w1 = (I − A1A
∗
1)1/2x1 with x1 ∈ H1 and, without loss of generality, let

x1 be orthogonal to the ker (I−A1A
∗
1) with respect to the inner product of H1.

Therefore, by (4.5) and (4.19), we have 〈x1, x〉H1 = 0. By Theorem 4.14(iii), we
thus obtain ‖A2w1‖H(A) = ‖w1‖H(A1).

4.9 Decomposition of H

Let H be a Hilbert space and let M be a closed subspace of H. By Corollary
??, we have H = M ⊕ M⊥. On the other hand, by Lemma 4.1, we have
M(PM ) = M andH(PM ) = M⊥, and thus we can write H =M(PM )⊕H(PM ).
In this section, we generalize this result.

Theorem 4.16. Let A ∈ L(H1, H) be a Hilbert space contraction. Then

H =M(A) +H(A).

For each decomposition w = w1 +w2, with w ∈ H, w1 ∈M(A) and w2 ∈ H(A),
we have

‖w‖2H ≤ ‖w1‖2M(A) + ‖w2‖2H(A).

Moreover,

‖w‖2H = ‖w1‖2M(A) + ‖w2‖2H(A)

if and only if

w1 = AA∗w and w2 = (I −AA∗)w.

Proof. In this proof we write T instead of A. This is because we want to apply
Theorem 4.14 and use the notations there, but the operator A which appears
in that Theorem is not the same as one introduced here.

Figure 3.2: The factorization 0 = A0

Consider the decomposition

0 = T0,



where on the left side we have 0 ∈ L(H1, H) and on the right side 0 ∈ L(H1).
Hence we have A = A2A1 with A = 0 ∈ L(H1, H), A2 = T and A1 = 0 ∈ L(H1).
Also note that

H(A) = H and H(A1) = H1.

The diagram in Figure 3.1 simplifies as follows. Thus the decompositionH(A) =
A2H(A1) +H(A2) obtained in Theorem 4.14(i) is written as

H = TH1 +H(T ) =M(T ) +H(T )

and if z = Tz1 + z2 with z1 ∈ H1 and z2 ∈ H(T ), then, by Theorem 4.14(ii),

‖z‖2H ≤ ‖z1‖2H1
+ ‖z2‖2H(T ).

In particular, if we take z1 ⊥ ker T , we obtain

‖z‖2H ≤ ‖Tz1‖2M(T ) + ‖z2‖2H(T ).

Finally, by (4.16), (4.17) and (4.18), the unique pair z1 and z2 for which

‖z‖2H = ‖z1‖2H1
+ ‖z2‖2H(T )

holds are given by
z1 = (I −A1A

∗
1)A∗2z = T ∗z

and
z2 = (I −A2A

∗
2)z = (I − TT ∗)z.

But
z1 ∈ R(T ∗) ⊂ (ker T )⊥

implies ‖z1‖H1 = ‖Tz1‖M(T ). To be consistent with the notation of theorem,
just take w = z, w1 = Tz1 and w2 = z2.

We are now able to add one more item to the equivalent conditions mentioned
in Theorem 4.13.

Corollary 4.17. Let A ∈ L(H1, H) be a contraction. Then the decomposition

H =M(A) +H(A)

is an algebraic direct sum if and only if A is a partial isometry.

Proof. It suffices to apply Theorem 4.13!





Chapter 5

Hilbert spaces in H2

In this chapter, our ambient Hilbert space is H2, the Hardy space of analytic
functions on the open unit disc D, or equivalently their boundary values on the
unit circle T. Using contractive Toeplitz operators on H2, we apply the theory
developed in Chapter 4 to obtain some Hilbert spaces of analytic functions which
live in H2. Understanding the structure of these spaces is the principal goal of
this text.

5.1 The space H(b)

Let ϕ ∈ L∞(T) with ‖ϕ‖∞ ≤ 1. Then, by Theorem 3.4, the corresponding
Toeplitz operator Tϕ is a contraction on the Hilbert space H2. Hence the
Hilbert spaces M(Tϕ) and H(Tϕ) are well defined. For simplicity, we denote
the complementary space H(Tϕ) by H(ϕ). By the same token, the norm and
inner product in H(ϕ) will be denoted by ‖ · ‖ϕ and 〈·, ·〉ϕ.

Our main concern is when ϕ is a nonconstant analytic function in the unit
ball of H∞. In this case, by tradition, we use b instead of ϕ. Therefore, from
now on, we assume that

(i) b ∈ H∞,

(ii) b is nonconstant,

(iii) and ‖b‖∞ ≤ 1,

and the corresponding Hilbert spaces created by Tb are denoted by M(b) and
H(b), i.e.

M(b) =M(Tb)

and
H(b) =M( (I − TbTb̄)1/2 ).

To better understand the structure of H(b) we will also naturally face with

H(b̄) =M( (I − Tb̄Tb)1/2 ).
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The structure ofM(b) is simple. Indeed, directly from the definition, we obtain
the set identity

M(b) = bH2.

Moreover, since Tb is injective, for each f ∈ H2, we have

‖bf‖M(b) = ‖f‖H2 . (5.1)

Lemma 4.12 also implies

M(b) ∩H(b) = TbH(b̄). (5.2)

Theorem 5.1. The space H(b̄) is contractively contained in H(b). Moreover,
f ∈ H(b) if and only if Tb̄f ∈ H(b̄) and

〈f, g〉b = 〈f, g〉+ 〈Tb̄f, Tb̄g〉b̄, (f, g ∈ H(b)).

Proof. By Theorem 3.9,

I − Tb̄Tb ≤ I − TbTb̄.

Hence, by Theorem 4.2,M( (I −Tb̄Tb)1/2 ) = H(b̄) is contractively contained in
M( (I − TbTb̄)1/2 ) = H(b).

The relation between the inner products of H(b) and H(b̄) is a special case
of Lotto–Sarason theorem (Theorem 4.10).

5.2 Model subspaces KΘ

For each b in the unit ball of H∞, we have

H(b̄) =M( (I − Tb̄Tb)1/2 ) =M(T
1/2
1−|b|2 ).

Hence, if b is inner, then H(b̄) = {0}. But, in this case, M(b) and H(b) have

rich structures. If b is not inner, in the light of M(T1−|b|2 ) ⊂M(T
1/2
1−|b|2 ), the

Corollary 3.11 ensures that H(b̄) is infinite dimensional.

Theorem 5.2. The complementary space H(b) is a closed subspace of H2 and
inherits its Hilbert space structure if and only if b in inner. Moreover, in this
case,

M(b) = bH2 and H(b) = ( bH2 )⊥.

Proof. By Lemma 4.6, H(b) is a closed subspace of H2 and inherits its Hilbert
space structure if and only if Tb is a partial isometry. But, by Theorem 3.6, this
happens if and only if b is inner.

The relation M(b) = bH2 is indeed valid for any b. But, for an inner b,
Tb is a partial isometry and thus, by Theorem 4.13(iv), M(b) and H(b) are
orthogonal complement of each other.



Again by tradition, we write Θ instead of b when it is an inner function. The
space M(Θ) is the subset ΘH2 of the Hardy space H2. Moreover, since Θ is
unimodular, by (5.1), we have

‖Θf‖M(Θ) = ‖f‖H2 = ‖Θf‖H2 , (f ∈ H2).

We can equivalently say

‖g‖M(Θ) = ‖g‖H2 , (g ∈M(Θ)).

That is why it is legitimate to say that M(Θ) is the closed subspace ΘH2 of
H2.

Indeed, they are also called Beurling subspaces of H2. A. Beurling showed
ΘH2, Θ inner, are the only closed invariant subspaces of H2 under the forward
shift operator. Hence, their orthogonal complements, i.e. H(Θ), are the only
closed subspaces of H2 which are invariant under the backward shift operator.
We emphasize that we only considered closed subspaces of H2. Theorem 5.7
below shows that H2 has other invariant linear manifolds too. These subspaces
are usually denoted by KΘ and called the model subspaces of H2.

Here we give another useful description of space KΘ.

Lemma 5.3. Let Θ be an inner function. Then

KΘ = H2 ∩ΘH2
−.

Proof. Let f be a function in H2. Then by definition, f belongs to KΘ if and
only if 〈f,Θh〉 = 0, for every h ∈ H2. Using the fact that |Θ| = 1 almost
everywhere on T. this is equivalent to 〈Θ̄, h〉 = 0, for every h ∈ H2. That
means that Θ̄f ∈ H2

−. In other words, f ∈ ΘH2
− and we get the conclusion.

We know give the relation between model spaces and Toeplitz operators.

Corollary 5.4. Let ϕ be a function in H∞ and let ϕi be the inner part of ϕ.
Then kerTϕ̄ = Kϕi

.

Proof. Let ϕe be the outer part of ϕ. Then according to Theorem 3.8 and
Theorem 3.7, we have

kerTϕ̄ ={f ∈ H2 : Tϕ̄f = 0}
={f ∈ H2 : Tϕ̄e

Tϕ̄i
f = 0}

={f ∈ H2 : Tϕ̄if = 0}
={f ∈ H2 : ϕ̄if ∈ H2

−}
=H2 ∩ ϕiH2

−

It remains to apply Lemma 5.3.

Theorem 5.5. The complementary space H(Θb) is the orthogonal direct sum
of KΘ and ΘH(b). The model space KΘ is contained isometrically in H(Θb).
The operator TΘ act as an isometry from H(b) into H(Θb).

Proof.



5.3 The reproducing kernel of H(b)

The reproducing kernel for the Hardy space H2 is

kz(w) =
1

1− z̄ w
, (z, w ∈ D).

In other words, for each f ∈ H2,

f(z) = 〈f, kz〉H2 =
1

2π

∫ 2π

0

f(eit)

1− e−itz
dt, (z ∈ D). (5.3)

Theorem 4.5 enables us to find the reproducing kernel of H(b).

Theorem 5.6. The reproducing kernel of H(b) is

kbz = (1− b(z) b) kz, (z ∈ D),

or equivalently

kbz(w) =
1− b(z) b(w)

1− z̄ w
, (z, w ∈ D).

Moreover, the norm of the evaluation functional

f(z) = 〈f, kbz〉b, (f ∈ H(b), z ∈ D),

is equal to

‖kbz‖b = ( kbz(z) )1/2 =

(
1− |b(z)|2

1− |z|2

)1/2

.

Proof. Since H(b) =M( (I − TbTb̄)1/2 ), by Theorem 4.5 and (5.3), we have

kbz = (I − TbTb̄) kz.

But, by (3.3),

Tb̄ kz = b(z) kz.

Clearly Tbkz = bkz. Hence

kbz = ( 1− b(z) b ) kz.

The last two identities of theorem were proved in the general context of repro-
ducing kernel Hilbert spaces in Section 1.4.

Exercises



Exercise 5.3.1. Show that the reproducing kernel of M(b) is

kz(w) =
b(z) b(w)

1− z̄ w
, (z, w ∈ D).

Moreover, the norm of the evaluation functional

f(z) = 〈f, kz〉M(b), (f ∈M(b), z ∈ D),

is given by

‖kz‖M(b) = ( kz(z) )1/2 =

(
|b(z)|2

1− |z|2

)1/2

.

5.4 H(b) and H(b̄) as invariant subspaces

In Section 5.2, we saw that KΘ = H(Θ) is a closed subspace of H2 which is
invariant under the backward shift operator S∗ = Tz̄. In this section we further
explore this property and show that each H(b) is invariant under a large family
of operators.

Theorem 5.7. Let ϕ ∈ H∞. Then H(b) and H(b̄) are both invariant under
Tϕ̄. Moreover the norm of Tϕ̄, as an operator on L(H(b)), or on L(H(b̄)), does
not exceed ‖ϕ‖∞.

Proof. Without loss of generality assume that ‖ϕ‖∞ = 1. To show that

Tϕ̄ H(b̄) ⊂ H(b̄)

note that the linear manifold on the left side is M(Tϕ̄ (I − Tb̄Tb)1/2 ), and the
one of the right side isM( (I − Tb̄Tb)1/2 ). By Theorem 4.2, the inclusion holds
and Tϕ̄ acts a contraction on H(b̄) if and only if

Tϕ̄ (I − Tb̄Tb)Tϕ ≤ I − Tb̄Tb.

But, by Theorem 3.8, this inequality is equivalent to

T(1−|b|2)(1−|ϕ|2) ≥ 0

which is indeed true by Theorem 3.5(ii).
To prove the statement for H(b), we apply the Lotto–Sarason theorem (The-

orem 4.10) several times to go back and forth between H(b) and H(b̄). Let
f ∈ H(b). Hence Tb̄f ∈ H(b̄). According to the preceding paragraph, we thus
have Tϕ̄Tb̄f ∈ H(b̄). But, by (3.4), Tϕ̄Tb̄ = Tb̄Tϕ̄. Hence Tb̄Tϕ̄f ∈ H(b̄). Another
application of Lotto–Sarason’s theorem implies that Tϕ̄f ∈ H(b̄). Moreover,

‖Tϕ̄f‖2b = ‖Tϕ̄f‖22 + ‖Tb̄Tϕ̄f‖2b̄
= ‖Tϕ̄f‖22 + ‖Tϕ̄Tb̄f‖2b̄
≤ ‖Tϕ̄f‖22 + ‖Tb̄f‖2b̄
= ‖f‖2b .



By Theorem 5.6, the only explicit elements in H(b) that we know up to now
are functions kbz, z ∈ D, where

kbz(w) =
1− b(z) b(w)

1− z̄ w
, (w ∈ D).

However, Theorem 5.7 enables us to distinguish more inhabitants of H(b). We
remind that Qw = (1− wS∗)−1 S∗ ∈ L(H2), w ∈ D.

Corollary 5.8. Let w ∈ D. Then H(b) and H(b̄) are both invariant under Qw.
Moreover the norm of Qw, as an operator on L(H(b)), or on L(H(b̄)), does not
exceed 1/(1− |w|).

Proof. Since S∗ = Tz̄, and

Qw =

∞∑
n=1

wn−1 S∗n

the result immediately follows from Theorem 5.7. Moreover, this theorem also
says,

‖S∗‖ ≤ ‖z‖∞ = 1,

where we considered S∗ as an operator on L(H(b)), or on L(H(b̄)). Hence

‖Qw‖ ≤
∞∑
n=1

|w|n−1 ‖S∗‖n ≤
∞∑
n=1

|w|n−1 =
1

1− |w|
.

Let f = (I − Tb̄Tb) 1. Clearly f ∈ H(b̄). Hence, by Theorem 5.7,

−S∗f ∈ H(b̄).

A simple calculation shows

−S∗f = S∗Tb̄b = Tb̄S
∗b.

Since Tb̄S
∗b ∈ H(b̄), the Lotto–Sarason theorem (Theorem 4.10) ensures that

S∗b ∈ H(b). (5.4)

If we knew that b ∈ H(b), then (5.4) was an immediate consequence of Theorem
5.7. But b ∈ H(b) is not always true. We will explore the possibility of b ∈ H(b)
in Section ??. Since

(S∗b)(z) =
b(z)− b(0)

z
, (z ∈ D),

in the light of (5.4), we may wonder if the function

b(z)− b(w)

z − w
, (z ∈ D),



where w ∈ D is fixed, also lives H(b). By Theorem 2.8,

(Qwb)(z) =
b(z)− b(w)

z − w
, (z ∈ D),

and

Qwb =

∞∑
n=0

wn S∗n(S∗b).

Therefore, by (5.4) and Theorem 5.7,

Qwb ∈ H(b), (w ∈ D). (5.5)

This gives an affirmative answer to our question.

5.5 The operator Xb

As a special case of Theorem 5.7, the spaceH(b) is invariant under the backward
shift operator S∗ = Tz̄, and the restriction of S∗ is a contraction. Since we have
restricted the domain of S∗ and moreover the Hilbert space structure of H(b) is
not necessarily inherited from H2, the adjoint of S∗ is not S. To avoid confusion,
we use the notation

Xb = S∗|H(b)

and emphasize that
Xb ∈ L(H(b)).

If furthermore during a discussion b is fixed, we exploit X instead of Xb.

Theorem 5.9. The adjoint of Xb is given by

X∗b f = Sf − 〈f, S∗b〉b b.

Proof. By the definition of reproducing kernel,

(X∗b f)(z) = 〈X∗b f, kbz〉b, (z ∈ D),

and, by the defining property of the adjoint,

〈X∗b f, kbz〉b = 〈f,Xbk
b
z〉b.

According to Theorem 5.6, kbz = (1 − b(z)b) kz. Hence, by Corollary 2.9, and
that kz(0) = 1,

Xb k
b
z = S∗

(
(1− b(z)b) kz

)
= (1− b(z)b)S∗kz + S∗(1− b(z)b)
= (1− b(z)b) z̄ kz − b(z)S∗b
= z̄ kbz − b(z)S∗b.



Hence

(X∗b f)(z) = 〈f, z̄ kbz − b(z)S∗b〉b
= z 〈f, kbz〉b − b(z) 〈f, S∗b〉b
= zf(z)− 〈f, S∗b〉b b(z)
= (Sf)(z)− 〈f, S∗b〉b b(z).

5.6 Integral representation of H(b̄)

We denote by ρ the L∞ function defined on T by

ρ(ζ) := 1− |b(ζ)|2, ζ ∈ T.

Since ρ ∈ L∞, we know from Section 3.7 that

Kρ : L2(ρ) −→ H2

g 7−→ K(ρg)

is a bounded operator whose norm is at most ‖ρ‖1/2∞ and Kρ(g) = P+(ρg).
Moreover, Theorem 3.12 implies that

K∗ρ = Jρ, (5.6)

where Jρ : H2 −→ L2(ρ) is the canonical injection and it follows from Corol-
lary 3.13 that

KρJρ = Tρ. (5.7)

The following result gives an integral representation for functions of H(b̄).

Theorem 5.10. The operator Kρ is an isometry from H2(ρ) onto H(b̄).

Proof. Using (5.6), (5.7) and Theorem 3.8, we have

Id− Tb̄Tb = T1−|b|2 = Tρ = KρK
∗
ρ . (5.8)

Moreover, Theorem 2.16 implies thatKρ|H2(ρ) is injective. Hence by Lemma ??
and (5.8), Kρ is an isometry from H2(ρ) onto M((Id− Tb̄Tb)1/2) = H(b̄).

It follows from the definition of Kρ and Theorem 5.10 that for f ∈ H(b̄)
there is a unique g ∈ H2(ρ) such that

f(z) = Kρ(g)(z) =

∫
T

ρ(ζ)g(ζ)

1− zζ̄
dm(ζ), z ∈ D. (5.9)



Moreover, we have ‖f‖b̄ = ‖g‖L2(ρ). Using (5.9), we can write for f ∈ H(b̄) and
z ∈ D

f(z) = 〈g, kz〉H2(ρ) = 〈Kρg,Kρkz〉b̄ = 〈f,Kρkz〉b̄.

Thus the reproducing kernel of H(b̄) satisfies

kb̄z = Kρkz. (5.10)

Note that relation (5.10) follows also from Theorem 4.5.

Lemma 5.11. We have

kbw = (Id− w̄X∗b )−1kb0,

for every w ∈ D.

5.7 Integral representation of H(b)

let b be a function in the unit ball of H∞. Since the function

<
(

1 + b(z)

1− b(z)

)
=

1− |b(z)|2

|1− b(z)|2
, (z ∈ D)

is a positive and harmonic function on D, we know from Herglotz theorem that
there is a unique positive Borel measure µ on T such that

1− |b(z)|2

|1− b(z)|2
=

∫
T

1− |z|2

|eiθ − z|2
dµ(eiθ). (5.11)

In other words, we have

1 + b(z)

1− b(z)
=

∫
T

eiθ + z

eiθ − z
dµ(eiθ) + i=1 + b(0)

1− b(0)
. (5.12)

Moreover, according to (2.1), for almost all eiθ on T (with respect to the
Lebesgue measure m), we have

lim
r→1

1− |b(reiθ)|2

|1− b(reiθ)|2
=

1− |b(eiθ)|2

|1− b(eiθ)|2
=
dµa
dm

(eiθ), (5.13)

where µa is the continous part of the measure µ. In particular, if the function
b is an inner function (that is |b(eiθ)| = 1 a.e. on T), then the measure µ is
singular with respect to the Lebesgue measure.

Note that if we start with a positive Borel measure µ on T, we can define b
by the formula (5.12) (by setting for instance b(0) = 0) and b will be in the unit
ball of H∞.

In this section, we will use this measure µ to give an integral representation
for functions in H(b). We first begin by an easy computation.



Lemma 5.12. Let z, w ∈ D. Then

1

(1− eiθw̄)(1− e−iθz)
=

1

2(1− w̄z)

(
e−iθ + w̄

e−iθ − w̄
+
eiθ + z

eiθ − z

)
Proof. An elementary decomposition of rational functions gives us that

1

(1− eiθw̄)(1− e−iθz)
=

eiθ

(1− eiθw̄)(eiθ − z)
=

1

1− zw̄

(
1

1− eiθw̄
+

z

eiθ − z

)
.

(5.14)
Then notice that

1

1− eiθw̄
+

z

eiθ − z
=

e−iθ

e−iθ − w̄
+

z

eiθ − z

=
e−iθ

e−iθ − w̄
− 1 +

z

eiθ − z
+ 1

=
w̄

e−iθ − w̄
+

eiθ

eiθ − z
.

Therefore

1

1− eiθw̄
+

z

eiθ − z
=

1

2

(
e−iθ

e−iθ − w̄
+

w̄

e−iθ − w̄
+

z

eiθ − z
+

eiθ

eiθ − z

)
=

1

2

(
e−iθ + w̄

e−iθ − w̄
+
eiθ + z

eiθ − z

)
,

and we get the result by (5.14).

The key point of the integral representation for functions in H(b) is the
following result:

Lemma 5.13. Let z, w ∈ D. Then

〈kw, kz〉µ = (1− b(w))−1(1− b(z))−1kbw(z).

Proof. Using Lemma 5.12, we have

〈kw, kz〉µ =

∫
T

1

(1− eiθw̄)(1− e−iθz)
dµ(eiθ)

=
1

2(1− w̄z)

(∫
T

e−iθ + w̄

e−iθ − w̄
dµ(eiθ) +

∫
T

eiθ + z

eiθ − z
dµ(eiθ)

)
=

1

2(1− w̄z)

(∫
T

eiθ + w

eiθ − w
dµ(eiθ) +

∫
T

eiθ + z

eiθ − z
dµ(eiθ)

)
.

Hence we get from (5.12) that

〈kw, kz〉µ =
1

2(1− w̄z)

(
1 + b(w)

1− b(w)
+

1 + b(z)

1− b(z)

)
.



But applying once more Lemma 5.12 with θ = 0, b(w) and b(z), we can write

1 + b(w)

1− b(w)
+

1 + b(z)

1− b(z)
=

2(1− b(w)b(z))

(1− b(w))(1− b(z))
.

Thus, using Theorem 5.6, we obtain

〈kw, kz〉µ =
1− b(w)b(z)

1− w̄z
1

(1− b(w))(1− b(z))
=(1− b(w))−1(1− b(z))−1kbw(z).

Let q ∈ L2(µ) and define

Vbq(z) = (1− b(z))Kµq(z), z ∈ D. (5.15)

Then it follows from Lemma 2.15 that Vb is continuous as operator from L2(µ)
into Hol(D). In fact, we have a stronger result.

Theorem 5.14. The map Vb is a partial isometry of L2(µ) onto H(b) and
kerVb = (H2(µ))⊥.

Proof. Let z, w ∈ D. Using the definition of Kµ and Lemma 5.13, we have

(Vbkw)(z) =(1− b(z))(Kµkw)(z) = (1− b(z))
∫
T

1

(1− w̄eiθ)(1− e−iθz)
dµ(eiθ)

=(1− b(z))〈kw, kz〉µ
=(1− b(w))−1kbw(z),

which means that
Vbkw = (1− b(w))−1kbw. (5.16)

Hence it follows that

Vb (Lin(kw : w ∈ D)) = Lin(kbw : w ∈ D). (5.17)

Moreover, using once more Lemma 5.13, we have

〈kw, kz〉µ = 〈(1− b(w))−1kbw, (1− b(w))−1kbw〉b = 〈Vbkw, Vbkz〉b,

which implies that
‖Vbg‖b = ‖g‖L2(µ), (5.18)

for all g ∈ Lin(kw : w ∈ D).
Now let g ∈ H2(µ). Then, by Theorem 2.13, there exists a sequence (gn)n≥1,

gn ∈ Lin(kw : w ∈ D), n ≥ 1, which converges to g in H2(µ). Thus we get from
(5.18) that (Vbgn)n≥1 is a Cauchy sequence in H(b) and then converges to a
function f ∈ H(b). On the other hand, we have already noticed that according



to Lemma 2.15, Vb is continuous as operator from L2(µ) into Hol(D). Therefore,
(Vbgn)n≥1 converges to Vbg in the topological space Hol(D). In particular,

lim
n→+∞

(Vbgn)(z) = (Vbg)(z),

for every z ∈ D and since by Theorem 5.6, we also have

lim
n→+∞

(Vbgn)(z) = f(z),

we obtain Vbg = f . Moreover, using once more (5.18), we have

‖Vbg‖b = ‖f‖b = lim
n→+∞

‖Vbgn‖b = lim
n→+∞

‖gn‖L2(µ) = ‖g‖L2(µ).

Finally we have proved that Vb is an isometry from H2(µ) into H(b). But it
follows from (5.17) that Lin(kw : w ∈ D) ⊂ VbH

2(µ) and VbH
2(µ) is closed

in the norm of H(b). Hence Lemma 1.9 implies that H(b) ⊂ VbH
2(µ) and we

obtain that VbH
2(µ) = H(b). Thus it remains to prove that kerVb = (H2(µ))⊥.

But this equation follows immediately from Theorem 2.16.

It follows from the definition of Kµ and Theorem 5.14 that given f ∈ H(b),
there is a unique g ∈ H2(µ) such that

f(z) = (Vbg)(z) = (1− b(z))
∫
T

g(eiθ)

1− ze−iθ
dµ(eiθ).

Moreover, we have ‖f‖b = ‖g‖L2(µ).

5.8 Multipliers of H(b)

Reproducing kernel Hilbert spaces and the space of their multipliers were studied
in Section 1.4. The multipliers for a reproducing kernel Hilbert space H ⊂
H2 can be interpreted slightly differently. An analytic function ϕ ∈ H∞ is a
multiplier of H, i.e. ϕ ∈M(H), if and only if H is invariant under the Toeplitz
operator Tϕ. If ϕ is a multiplier, the multiplication operator Mϕ which was
introduced in Section 1.4 is exactly the restriction of Tϕ to H.

The reproducing kernel Hilbert spaces which are in the center of our discus-
sion are H(b) and H(b̄). According to Theorem 1.10, if ϕ ∈M(H(b)), then

M∗ϕ k
b
z = ϕ(z) kbz, (z ∈ D).

Moreover, by Theorem 1.12, these are the only operators with such a property.

Theorem 5.15. If A ∈ L(H(b)) is such that each kernel function kbz, z ∈ D, is
an eigenvector of A∗, then there is a ϕ ∈M(H(b)) such that A = Mϕ.

The next result shows that M(H(b̄)) contains M(H(b)).



Theorem 5.16. Every multiplier of H(b) is also a multiplier of H(b̄).

Proof. Let ϕ ∈M(H(b)). Hence

TϕH(b) ⊂ H(b).

The set inclusion
TϕM(b) ⊂M(b).

is trivial. Hence
Tϕ
(
H(b) ∩M(b)

)
⊂
(
H(b) ∩M(b)

)
.

But, by (5.2),
H(b) ∩M(b) = TbH(b̄).

Thus we have
TϕTbH(b̄) ⊂ TbH(b̄),

which is equivalent to
TϕH(b̄) ⊂ H(b̄).

Theorem 5.17. Let ϕ ∈M(H(b)). Then, for each w ∈ D,

Qwϕ ∈M(H(b)).

Proof. By Corollary 2.9, for each f, g ∈ H(b),

(Qwϕ) f = Qw(ϕf)− ϕ(w)Qwf.

By assumption, ϕf ∈ H(b). By Corollary 5.8, Qw(ϕf) and Qwf stay in H(b).
Hence (Qwϕ) f ∈ H(b). This means that Qwϕ is a multiplier of H(b).

In Section 3.8, we introduced the notion of Toeplitz operators on generalized
Hardy spaces H2(ν), ν ∈ M(T). We use this notion to give a criterion for a
function m in H∞ to be a multiplier of H(b).

Theorem 5.18. Let m ∈ H∞. Then m is a multiplier of H(b) if and only if
Tm̄ is bounded on H2(µ).

Here µ is the measure associated to b by (5.12).

Proof. According to Corollary 1.13, we have that m is a multiplier of H(b) if
and only if the map

kbw 7−→ ϕ(ω)kbw

extends to a continuous linear operator on H(b). Since by Theorem 5.14, the
map Vb is a unitary operator from H2(µ) ontoH(b) which takes kw to a constant
multiple of kbw in H(b), we get that m is a multiplier of H(b) if and only if the
map

kw 7−→ m(w)kw

extends to a continuous linear operator on H2(µ). Now it remains to apply
Theorem 3.16 to conclude the proof.



Corollary 5.19. Let χ(z) = z. Then χ is a multiplier of H(b) if and only if∫
T

log(1− |b|2) dm > −∞.

Proof. According to Theorem 5.18, the function χ is a multiplier of H(b) if and
only if Tχ̄ is bounded on H2(µ). But if p is an analytic polynomial, we have

Tχ̄p(z) =
p(z)− p(0)

z
= z̄(p(z)− p(0)), z ∈ T.

Since multiplication by z̄ is a unitary operator on L2(µ), it follows that Tχ̄ is
bounded on H2(µ) if and only if the functional p 7−→ p(0) of evaluation at 0
is bounded on H2(µ). By Riesz Theorem, this is equivalent to the existence of
g ∈ H2(µ) such that {

〈χn, g〉H2(µ) = 0, if n ≥ 1

〈χ0, g〉H2(µ) = 1,

that is χ0 6∈ span(χn : n ≥ 1) = H2
0 (µ). According to Theorem 8.4, this is

equivalent to b be a non extreme point of the unit ball of H∞.

Corollary 5.20. Let µ be a positive Borel measure on T and let m be an analytic
polynomial. Assume that H2(µ) = L2(µ). If Tm̄ is bounded on H2(µ), then m
is constant.

Proof. Let b be the function associated to µ by (5.12) (defining for instance
b(0) = 0). Then according to Theorem 5.18, we see that m is a multiplier of
H(b). We argue by absurd assuming that m is not constant and let d ≥ 1 be
the degree of m. By Theorem 5.17, we deduce that S∗d−1m = Qd−1

0 m is also a
multiplier of H(b). But S∗d−1m is a polynomial of degre 1 and since M(H(b))
is an algebra with contains χ0 = 1, we get that χ1 is a multiplier of H(b).
Therefore it follows Corollary 5.19 that b is not an extreme point of the unit
ball of H∞. Then Theorem 8.4 implies that H2(µ) 6= L2(µ), which is absurd.
Thus m is constant.



Chapter 6

Applications of H(b) spaces

6.1 Comparison of measures

Theorem 6.1. Let b be a point in the unit ball of H∞, let u be a non-constant
inner function, and let µ (respectively ν) be the positive finite Borel measure
on T associated to b (respectively to u) by (5.12). The following assertions are
equivalent:

(i) ν is absolutely continuous with respect to µ and dν
dµ is in L2(µ).

(ii) The function
1− b
1− u

ku0 is in H(b).

Proof. (i) −→ (ii): by Theorem 5.14, we know that Vb

(
dν

dµ

)
∈ H(b). But for

z ∈ D, we have

Vb

(
dν

dµ

)
∈ H(b) =(1− b(z))Kµ

(
dν

dµ

)
(z)

=(1− b(z))
∫
T

1

1− e−iθz
dν(eiθ)

=
1− b(z)
1− u(z)

(1− u(z))(Kν1)(z)

=
1− b(z)
1− u(z)

(Vu1)(z).

By (5.16), we have

(Vu1)(z) = Vuk0 = (1− u(0))−1ku0 ,

which implies that

Vb

(
dν

dµ

)
=

1− b
1− u

(1− u(0))−1ku0 ,
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and we get that
1− b
1− u

ku0 ∈ H(b).

(ii) −→ (i): using once more Theorem 5.14, we know that there is q ∈ L2(µ)
such that

1− b
1− u

ku0 = Vbq,

which gives that
1− u(0)u

1− u
= Kµq.

Therefore for z ∈ D, we can write

1− u(0)u(z)

1− u(z)
=

∫
T

q(eiθ)

1− e−iθz
dµ(eiθ) (6.1)

=

∫
T

eiθ

eiθ − z
q(eiθ) dµ(eiθ)

=
1

2

∫
T

(
eiθ + z

eiθ − z
+ 1

)
q(eiθ) dµ(eiθ)

=
1

2

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ) +

1

2

∫
T
q(eiθ) dµ(eiθ).

Now if we take z = 0 in (6.1), we get

1− |u(0)|2

1− u(0)
=

∫
T
q(eiθ) dµ(eiθ),

and that implies

1− u(0)u(z)

1− u(z)
=

1

2

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ) +

1

2

1− |u(0)|2

1− u(0)
.

Since
1− u(0)u(z)

1− u(z)
= u(0) +

1− u(0)

1− u(z)
,

we get

1− u(0)

1− u(z)
=

1

2

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ) +

1

2

1− |u(0)|2

1− u(0)
− u(0),

whence

1

1− u(z)
=

1

2
(1− u(0))−1

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ) +

1

2

1− |u(0)|2

|1− u(0)|2
− u(0)

1− u(0)
.

(6.2)
Using straightforward computations, it is easy to check that

1

2

1− |u(0)|2

|1− u(0)|2
− u(0)

1− u(0)
=

1

2

(
1 + i=m

(
1 + u(0)

1− u(0)

))
.



Therefore we deduce from (6.2) that

1 + u(z)

1− u(z)
=

2

1− u(z)
−1 = (1−u(0))−1

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ)+i=m

(
1 + u(0)

1− u(0)

)
.

By definition of ν, we have

1 + u(z)

1− u(z)
=

∫
T

eiθ + z

eiθ − z
dν(eiθ) + i=m

(
1 + u(0)

1− u(0)

)
.

and thus we obtain

(1− u(0))−1

∫
T

eiθ + z

eiθ − z
q(eiθ) dµ(eiθ) =

∫
T

eiθ + z

eiθ − z
dν(eiθ).

Taking the conjugate, we rewrite this equality as

(1− u(0))−1

∫
T

e−iθ + z

e−iθ − z
q(eiθ) dµ(eiθ) =

∫
T

e−iθ + z

e−iθ − z
dν(eiθ).

It thus follows from Corollary 2.11 that the measure (1 − u(0))−1q̄ dµ − dν is
absolutely continuous with respect to m. That means that there is h ∈ L1 such
that

(1− u(0))−1q̄ dµ− dν = h dm.

Since ν is singular with respect to m, we get (1− u(0))−1q̄ dµs = dν, where µs
is the singular part of the measure µ with respect to m. In other words, ν is
absolutely continuous with respect to µs and

dν

dµs
= (1− u(0))−1q̄ ∈ L2(µ).

Now it is easy to see that implies that ν is absolutely continuous with respect
to µ and dν

dµ ∈ L
2(µ).

Corollary 6.2. Let b be a point in the unit ball of H∞ and let z0 ∈ T. The
following assertions are equivalent:

(i) µ({z0}) > 0.

(ii)
b(z)− 1

z − z0
∈ H(b).

Proof. First let us prove that µ({z0}) > 0 if and only if δz0 << µ and
δz0
dµ
∈

L2(µ), where δz0 is the Dirac measure associated to z0.
Assume that µ({z0}) > 0 and let E be a measurable subset of T such that

µ(T) = 0. It follows that z0 6∈ E and thus δz0(E) = 0, which proves that



δz0 << µ. Let h :=
δz0
dµ
∈ L1(µ). We have to check that indeed h ∈ L2(µ).

Since h ∈ L1(µ), we necessarely have h(z0) < +∞ and thus∫
T
|h|2 dµ =

∫
T
h δz0 = h(z0) < +∞,

which implies that h ∈ L2(µ). Reciprocally assume that δz0 << µ and h :=
δz0
dµ
∈ L2(µ). Assume that µ({z0}) = 0. Then since δz0 is absolutely continuous

with respect to µ, we necessarely have δz0({z0}) = 0, which is absurd. Therefore
µ({z0}) > 0 and we get the desired equivalence.

Now let u be the inner function defined by u(z) = z
z0

, z ∈ D. Then for
z ∈ D, we have

1 + u(z)

1− u(z)
=

1 + z
z0

1− z
z0

=
z0 + z

z0 − z
=

∫
T

eiθ + z

eiθ − z
dδz0(eiθ).

In other words, u is the inner function associated to δz0 by (5.12). We can apply
Theorem 6.1 and we get that (i) is equivalent to the fact that

1− b
1− u

ku0 ∈ H(b).

But
1− b(z)
1− u(z)

ku0 (z) =
1− b(z)
1− z

z0

= z0
b(z)− b(z0)

z − z0
,

and the desired equivalence is proved.

6.2 Angular derivatives

Let ζ0 be a point on the unit circle T. A region of the form

SC(ζ0) = { z ∈ D : |z − ζ0| ≤ C (1− |z|) }

is called a Stoltz’s domain anchored at the point ζ0. Since |z − ζ0| ≥ (1 − |z|),
we need to assume that C > 1. Near the point ζ0, the boundaries of SC(ζ0) are
tangent to a triangular shaped region with angle

2α = 2 arccos(1/C).

Let f be a function on the open unit disc D. We say that f has the nontan-
gential limit L at ζ0 provided that

lim
z−→ζ0
z∈SC(ζ0)

f(z) = L



for every fixed value of the parameter C. If so, we define f(z0) = L and write

lim
z−→ζ0

^

f(z) = f(z0).

We will use the following simple geometrical property of the Stoltz domains.
Let z ∈ SC(ζ0) and consider the circle

Γz = {w : |w − z| = 1− |z|
2
}.

Then, for any w ∈ Γz, we have

1− |z| ≤ 2(1− |w|),

and thus

|w − ζ0| ≤ |w − z|+ |z − ζ0|

≤ 1− |z|
2

+ C (1− |z|) (6.3)

≤ (2C + 1) (1− |w|).

In other words,

Γz ⊂ S2C+1(ζ0). (6.4)

Theorem 6.3. Let f be analytic on the open unit disc D, and let ζ0 ∈ T. Then
the following are equivalent.

(i) The function f has a nontangential limit at ζ0, and so does the quotient
(f(z)− f(ζ0))/(z − ζ0).

(ii) There is a complex number λ such that the quotient (f(z) − λ)/(z − ζ0)
has a nontangential limit at ζ0.

(iii) The function f ′ has a nontangential limit at ζ0.

Moreover, under the preceding conditions,

lim
z−→ζ0

^

f(z)− f(ζ0)

z − ζ0
= lim

z−→ζ0
^

f ′(z).

Proof. (i) =⇒ (ii) Trivial.
(ii) =⇒ (iii) Let

lim
z−→ζ0

^

f(z)− λ
z − ζ0

= L

and define

g(z) =
f(z)− λ
z − ζ0

− L, (z ∈ D).



Fix a Stoltz’s domain SC(ζ0). Then, given ε > 0, there is δ = δ(ε, C) such that

|g(z)| < ε (6.5)

provided that z ∈ S2C+1 and |z − ζ0| < δ.
Let z ∈ SC(ζ0), and let Γz denote the circle of radius (1− |z|)/2 and center

z. Hence, by Cauchy’s integral formula,

f ′(z) =
1

2πi

∫
Γz

f(w)

(w − z)2
dw

= L+
1

2πi

∫
Γz

g(w) (w − ζ0)

(w − z)2
dw.

If we further assume that

1− |z| < δ′ =
2δ

1 + 2C

then, by (6.3),
|w − ζ0| < δ

and thus, by (6.4) and (6.5), we have∣∣∣∣ g(w) (w − ζ0)

(w − z)2

∣∣∣∣ ≤ ε (1 + 2C)

2(1− |z|)

for each w ∈ Γz. Since the length of Γz is π(1− |z|), we obtain the estimate

|f ′(z)− L| ≤ ε (1 + 2C)

4

for each z ∈ SC(ζ0) with 1− |z| < 2δ/(1 + 2C). This means that

lim
z−→ζ0

^

f ′(z) = L

(iii) =⇒ (i) The assumption enables us to define

λ = f(0) +

∫
[0,ζ0]

f ′(w) dw.

The integral is well defined and, by Cauchy’s theorem,

λ = f(z) +

∫
[z,ζ0]

f ′(w) dw

for any z ∈ D. On the Stoltz domain SC(ζ0),∣∣∣∣ ∫
[z,ζ0]

f ′(w) dw

∣∣∣∣ ≤ ( sup
w∈SC(ζ0)

|f ′(w)|
)
|z − ζ0|,



and thus
lim
z−→ζ0

^

f(z) = λ.

As usual, write λ = f(ζ0). Hence

f(z)− f(ζ0)

z − ζ0
= − 1

z − ζ0

∫
[z,ζ0]

f ′(w) dw

= f ′(ζ0) +
1

z − ζ0

∫
[z,ζ0]

(f ′(ζ0)− f ′(w)) dw.

In each Stoltz’s domain, the last integral tends to zero az z −→ ζ0. Hence

lim
z−→ζ0

^

f(z)− f(ζ0)

z − ζ0
= f ′(ζ0).

6.3 Carathéodory’s theorem

In Section 6.2, we studied the angular derivative of analytic functions on the
open unit disc D. In this section we consider the smaller class of analytic
functions f : D −→ D, i.e. the elements of the unit sphere of H∞(D). We say
that such a function has an angular derivative in the sense of Carathéodory at
ζ0 ∈ T if it has an angular derivative at ζ0 and moreover |f(ζ0)| = 1. By the
maximum principle, f(z) ∈ T, for some z ∈ D, happens only if f is a constant
function of modulus one. Hence form now on, we consider function with values
inside D.

Theorem 6.4. Let b : D −→ D be analytic, and let ζ ∈ T. Then the following
are equivalent.

(i)

c = lim inf
z−→ζ

1− |b(z)|
1− |z|

<∞.

(ii) There is λ ∈ T such that

b(z)− λ
z − ζ

∈ H(b).

(iii) For each function f ∈ H(b),

lim
z−→ζ
^

f(z)

exists.



(iv) b has angular derivative in the sense of Carathéodory at ζ.

Moreover, under the preceding conditions,

(a)

c = lim
z−→ζ
^

1− |b(z)|
1− |z|

> 0,

(b) |b(ζ)| = 1 and

b′(ζ) =
c b(ζ)

ζ
,

(c) for each f ∈ H(b),

f(ζ) = 〈f, kbζ〉b,

where

kbζ(z) =
1− b(ζ) b(z)

1− ζ̄ z
∈ H(b),

(d)

lim
z−→ζ
^

‖kbz − kbζ‖b = 0,

(e) and finally

|b′(ζ)| = kbζ(ζ) = ‖kbζ‖2b = c.

Proof. (i) =⇒ (ii) If c < ∞, then there is a sequence (zn)n≥1 ⊂ D with
limn→∞ zn = ζ such that

c = lim
n−→∞

1− |b(zn)|
1− |zn|

<∞.

Hence we necessarily have limn→∞ |b(zn)| = 1. Therefore, we can write

c = lim
n−→∞

1− |b(zn)|2

1− |zn|2
.

In the light of Theorem 5.6, this means that

c = lim
n−→∞

‖kbzn‖
2
b .

By Lemma ??, (kbzn)n≥1 has a weakly convergent subsequence. Since (b(zn))n≥1

is bounded, it also has a convergent subsequence in the complex plane. Hence,
replacing (zn)n≥1 by a subsequence if needed, we assume that b(zn) −→ λ ∈ D



and that kbzn
w−→ k ∈ H(b). Therefore, for each z ∈ D,

k(z) = 〈k, kbz〉b
= lim

n−→∞
〈kbzn , k

b
z〉b

= lim
n−→∞

kbzn(z)

= lim
n−→∞

1− b(zn) b(z)

1− z̄n z

=
1− λ̄ b(z)

1− ζ̄ z
.

Since k ∈ H2(D) and 1/(1− ζ̄ z) 6∈ H2(D), we thus have |λ| = 1 and

λζ̄ k(z) =
b(z)− λ
z − ζ

∈ H(b).

Clearly k 6≡ 0, and, by (??), the condition kbzn
w−→ k implies

0 < ‖k‖2b ≤ lim inf
n−→∞

‖kbzn‖
2
b = c. (6.6)

(ii) =⇒ (iii) By assumption k ∈ H(b). Hence

b(z) = λ+ λ ζ̄ (z − ζ)k(z),

which, by (??), implies
lim
z−→ζ
^

b(z) = λ.

Let us write b(ζ) for λ and kbζ for k, i.e,

kbζ(z) =
1− b(ζ) b(z)

1− ζ̄ z
.

Since kbζ ∈ H(b), for each z ∈ D, we have

kbζ(z) = 〈kbζ , kbz〉b.

Thus, by Cauchy-Schwarz inequality,

|kbζ(z)| ≤ ‖kbζ‖b ‖kbz‖b.

Since

|kbζ(z)| =
|1− b(ζ) b(z)|
|1− ζ̄ z|

≥ 1− |b(z)|
|z − ζ|

=
(1− |z|2) ‖kbz‖2b

(1 + |b(z)|)|z − ζ|
,

the preceding inequality implies

‖kbz‖b ≤ ‖kbζ‖b
1 + |b(z)|

1 + |z|
|z − ζ|
1− |z|

.



Hence, for each Stoltz’s domain SC(ζ),

‖kbz‖b ≤ 2C ‖kbζ‖b, (z ∈ SC(ζ)). (6.7)

Thin inequality means that ‖kbz‖b stays bounded as z tends nontangentially to
ζ. For each fixed w ∈ D,

lim
z−→ζ
^

kbz(w) = lim
z−→ζ
^

1− b(z) b(w)

1− z̄ w
=

1− b(ζ) b(w)

1− ζ̄ w
= kbζ(w).

We rewrite this as
lim
z−→ζ
^

〈kbz, kbw〉b = 〈kbζ , kbw〉b.

Therefore,
lim
z−→ζ
^

〈f, kbz〉b = 〈f, kbζ〉b, (6.8)

where f ∈ H(b) is any element of the form f = α1k
b
w1

+ · · ·+ αnk
b
wn

. But such
elements are dense in H(b), and thus, by (6.7), the last identity holds for all
f ∈ H(b). At the same time, (6.8) shows

f(ζ) = lim
z−→ζ
^

f(z) = 〈f, kbζ〉b, (f ∈ H(b)).

In particular, with f = kbζ , we obtain kbζ(ζ) = ‖kbζ‖2b . The relation (6.8) also

implies that kbz
w−→ kbζ as z tends nontangentially to ζ.

(iii) =⇒ (i) Fix any Stoltz’s domain SC(ζ). Consider kbz as an element of
the dual space. Then the relation f(z) = 〈f, kbz〉b along with our assumption
imply that

sup
z∈SC(ζ)

|〈f, kbz〉b| = C(f) <∞.

Thus, by the uniform boundedness principle,

C ′ = sup
z∈SC(ζ)

‖kbz‖b <∞.

Take zn = (1− 1/n)ζ, n ≥ 1. Then we necessarily have limn→∞ |b(zn)| = 1 and

c ≤ lim inf
n−→∞

1− |b(zn)|2

1− |zn|2
= lim inf

n−→∞
‖kbzn‖

2
b ≤ C ′.

(i), (ii), (iii) =⇒ (iv) Since kbζ ∈ H(b) we have

b(z)− b(ζ)

z − ζ
= kbζ(z) b(ζ)/ζ = 〈kbζ , kbz〉b b(ζ)/ζ, (z ∈ D).

On the other hand, kbz
w−→ kbζ as z tends nontangentially to ζ. Hence

lim
z−→ζ
^

b(z)− b(ζ)

z − ζ
= ‖kbζ‖2b b(ζ)/ζ,



which, by Theorem 6.3, means

b′(ζ) = ‖kbζ‖2b b(ζ)/ζ (6.9)

By (6.6), c ≥ ‖kbζ‖2b . To show the reverse inequality, we prove that ‖kbz‖b −→
‖kbζ‖b as z tends nontangentially to ζ. This result has three consequences.

Firstly, c ≤ ‖kbζ‖2b , and thus equality indeed holds. Secondly, since kbz
w−→ kbζ as

z tends nontangentially to ζ, we have ‖kbz − kbζ‖b −→ 0. Thirdly,

lim
z−→ζ
^

1− |b(z)|
1− |z|

= lim
z−→ζ
^

1− |b(z)|2

1− |z|2
= lim

z−→ζ
^

‖kbz‖2b = ‖kbζ‖2b = c.

To prove that ‖kbz‖b −→ ‖kbζ‖b as z tends nontangentially to ζ, let

g(z) =
b(z)− b(ζ)

z − ζ
− b′(ζ), (z ∈ D).

Thus
b(z) = b(ζ) + b′(ζ)(z − ζ) + (z − ζ)g(z), (z ∈ D),

and, by (6.9),

|b(z)|2 = 1− 2‖kbζ‖2b <(1− ζ̄z) + h(z), (z ∈ D),

where

h(z) =
(
|b′(ζ)|2 + |g(z)|2

)
|z − ζ|2 + 2<

(
g(z)(z − ζ)

(
b(ζ) + b′(ζ)(z − ζ)

))
.

The only important fact about h is that

lim
z−→ζ
^

h(z)

1− |z|
= 0.

It is also elementary to verify that

lim
z−→ζ
^

<(1− ζ̄z)
1− |z|2

=
1

2
.

Therefore,

lim
z−→ζ
^

‖kbz‖2b = lim
z−→ζ
^

1− |b(z)|2

1− |z|2
= ‖kbζ‖2b .

(iv) =⇒ (i) If b has angular derivative in the sense of Carathéodory at ζ,
then the inequality

1− |b(rζ)|
1− r

≤
∣∣∣∣ b(rζ)− b(ζ)

rζ − ζ

∣∣∣∣
implies that

lim inf
z−→ζ

1− |b(z)|
1− |z|

≤ lim
r−→1

∣∣∣∣ b(rζ)− b(ζ)

rζ − ζ

∣∣∣∣ = |b′(ζ)| <∞.



Corollary 6.5 (Julia). Let b : D −→ D be analytic, and let ζ ∈ T. Suppose
that b has angular derivative in the sense of Carathéodory at ζ. Then

|b(z)− b(ζ)|2

1− |b(z)|2
≤ |b′(ζ)| |z − ζ|

2

1− |z|2
.

Moreover, the equality holds if and only if b is a Möbius transformation.

Proof. By Cauchy–Schwarz inequality,

|〈kbζ , kbz〉b|2 ≤ ‖kbζ‖2b ‖kbz‖2b .

But, by Theorem 6.4, this is exactly the required inequality. The inequality can
be rewritten as

<
(
z + ζ

z − ζ
− c b(z) + b(ζ)

b(z)− b(ζ)

)
≥ 0,

where c = |b′(ζ)|. A positive harmonic function either identically vanishes or it
has no zeros. Hence, if equality holds even at one point inside D, then

<
(
z + ζ

z − ζ
− c b(z) + b(ζ)

b(z)− b(ζ)

)
= 0, (z ∈ D).

Therefore, we have

z + ζ

z − ζ
− c b(z) + b(ζ)

b(z)− b(ζ)
= iγ, (z ∈ D),

where γ ∈ R. This identity shows that b is a Möbius transformation.
That equality holds for a Möbius transformation is easy to verify directly.

Julia’s inequality has a geometrical interpretation. The set

{z ∈ C :
|z − ζ|2

1− |z|2
≤ r }

is a disc of radius r/(1 + r) in D whose center is on the ray [0, ζ] and is tangent
to the unit circle T at the point ζ. Julia’s inequality say that this disc is mapped
into a similar disc of radius rc/(1 + rc) which is tangent to T at the point b(ζ).



Chapter 7

The nonextreme case of
H(b) spaces

In this chapter, we will study the specific properties of the space H(b) when b
is not an extreme point of the unit ball of H∞. Recall that b is not an extreme
point of the unit ball of H∞ if and only if log(1−|b|2) is integrable. In this case,
we let a denote (throughout this chapter) the outer function that has modulus
(1− |b|2)1/2 on T and that is positive at the origin. More precisely, we have

a(z) = exp

(
1

2

∫
T

ζ + z

ζ − z
log(1− |b(ζ)|2) dm(ζ)

)
, |z| < 1, (7.1)

and a ∈ H∞, ‖a‖∞ ≤ 1.

7.1 First properties of H(b)

Theorem 7.1. Let b be a non extreme point of the unit ball of H∞. Then we
have

M(a) ↪→M(ā) = H(b̄) ↪→ H(b),

where both inclusions are contractive.

Proof. For the first inclusion, note that for all f ∈ H2, we have

‖Tāf‖22 = ‖P+(āf)‖2 ≤ ‖āf‖22 = ‖af‖22 = ‖Taf‖22,

which implies, using (3.2) and (??), that

TaT
∗
a = T ∗āTā ≤ T ∗aTa = TāT

∗
ā .

By Theorem 4.2, we get that M(Ta) ↪→ M(Tā), which exactely means that
M(a) is contractively included in M(ā).
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Using Theorem 3.8, we see that

TāTa = T|a|2 = T1−|b|2 = I − Tb̄Tb.

Hence Corollary 4.3 implies thatM(ā) =M(Tā) =M((Id− Tb̄Tb)1/2) = H(b̄).
The third inclusion is already proved.

Let h ∈ H(b). Then, using ?? and Theorem 7.1, we know that Tb̄h ∈ H(b̄) =
M(ā). Therefore Lemma ?? implies that there is a unique h+ ∈ H2 such that

Tb̄h = Tāh
+. (7.2)

Lemma 7.2. Let h1, h2 ∈ H(b) and let h+
1 , h

+
2 be the functions of H2 associated

to h1, h2 by (7.2). Then we have

〈h1, h2〉b = 〈h1, h2〉2 + 〈h+
1 , h

+
2 〉2

Proof. Using (??), we can write

〈h1, h2〉b = 〈h1, h2〉2 + 〈Tb̄h1, Tb̄h2〉b̄ = 〈h1, h2〉2 + 〈Tāh+
1 , Tāh

+
2 〉b̄.

Since H(b̄) =M(ā) (as Hilbert spaces), we have

〈Tāh+
1 , Tāh

+
2 〉b̄ = 〈Tāh+

1 , Tāh
+
2 〉M(ā).

Now, according to Lemma ??, it follows that

〈Tāh+
1 , Tāh

+
2 〉M(ā) = 〈h+

1 , h
+
2 〉2,

which implies that

〈h1, h2〉b = 〈h1, h2〉2 + 〈h+
1 , h

+
2 〉2.

The above lemma is very useful to compute the norm of elements in H(b).

Corollary 7.3. Let b be a non extreme point of the unit ball of H∞. Then
b ∈ H(b) and we have

‖S∗b‖2b = 1− |b(0)|2 − |a(0)|2 and ‖b‖2b = |a(0)|−2 − 1.

Proof. We know from ?? that S∗b ∈ H(b). We will compute (S∗b)+. Using
Theorem 3.8, we have

Tb̄S
∗b = Tb̄Tz̄b = Tz̄Tb̄b = S∗P+|b|2.

Since |a| = (1− |b|2)1/2, we get

Tb̄S
∗b = S∗P+(1− |a|2) = −S∗P+(|a|2) = −S∗Tāa,



and using once more Theorem 3.8, it follows that

Tb̄S
∗b = −TāS∗a.

Therefore (S∗b)+ = −S∗a and according to Lemma 7.2, we have

‖S∗b‖2b = ‖S∗b‖22 + ‖S∗a‖22.

Now remark that for g ∈ H2, we have g = S∗g + g(0), with S∗g ⊥ g(0). Thus

‖g‖22 = ‖S∗g‖22 + |g(0)|2,

and we get

‖S∗b‖2b = ‖b‖22 + ‖a‖22 − |b(0)|2 − |a(0)|2.

But

‖a‖22 =
1

2π

∫ π

−π
|a(eiθ)|2 dθ =

1

2π

∫ π

−π
(1−|b(eiθ)|2) dθ = 1− 1

2π

∫ π

−π
|b(eiθ)|2 dθ = 1−‖b‖22,

and it follows that

‖S∗b‖2b = 1− |b(0)|2 − |a(0)|2.

It remains to prove that b ∈ H(b) and to compute ‖b‖b. Recall that according
to ??? and Theorem 7.1, we have b ∈ H(b) if and only if Tb̄b ∈ H(b̄) = M(ā).
But

Tb̄b = P+|b|2 = P+(1− |a|2) = 1− Tāa,

and we can write 1 = P+(ā/a(0)) = Tā(1/a(0)). Therefore we get

Tb̄b = Tā(
1

a(0)
− a) ∈M(ā),

which proves that b ∈ H(b). Moreover the last equation says also that b+ =
1/a(0)− a. Lemma 7.2implies that

‖b‖2b =‖b‖22 + ‖b+‖22
=‖b‖22 + ‖a‖22 + |a(0)|−2 − 2<〈a, a(0)

−1
〉2.

Using the fact that ‖a‖22 + ‖b‖22 = 1 and that 〈a, 1〉2 = a(0), we conclude that

‖b‖2b = |a(0)|−2 − 1.

Lemma 7.4. Let b be a non extreme point of the unit ball of H∞, let h ∈ H(b)
and let ϕ ∈ H∞. Then

(Tϕ̄h)+ = Tϕ̄h
+.



Proof. We know from ?? that H(b) is invariant under Tϕ̄. Consequently, we
have Tϕ̄h ∈ H(b). Now according to Theorem 3.8, we have

Tb̄Tϕ̄h = Tϕ̄Tb̄h = Tϕ̄Tāh
+ = TāTϕ̄h

+,

which proves by definition of (Tϕ̄h)+ that (Tϕ̄h)+ = Tϕ̄h
+.

Lemma 7.5. Let b be a non extreme point of the unit ball of H∞. Then the
space M(ā) is dense in H(b).

Proof. Recall that since b is not an extreme point in the unit ball of H∞, then we
haveM(ā) = H(b̄) ↪→ H(b). Now let h ∈ H(b) and assume that h is orthogonal
toM(ā) (of course relatively to the scalar product of H(b)). Then in particular,
we have

〈h, TāS∗nh〉b = 0, (7.3)

for all n ≥ 0. Using Theorem 3.8, we can write

TāS
∗nh = TāTz̄nh = Tāz̄nh,

and since azn ∈ H∞, we get from Lemma 7.4

(TāS
∗nh)

+
= Tāz̄nh

+.

Therefore, according to Lemma 7.2 and the fact that h, h+ ∈ H2, we have

〈h, TāS∗nh〉b =〈h, TāS∗nh〉2 + 〈h+, Tāz̄nh
+〉2

=〈h, P+(āz̄nh)〉2 + 〈h+, P+(āz̄nh+)〉2
=〈h, āz̄nh〉2 + 〈h+, āz̄nh+〉2

=
1

2π

∫ π

−π
a(eiθ)(|h(eiθ)|2 + |h+(eiθ)|2)einθ dθ

=ϕ̂(−n),

where ϕ denotes the fonction in L1(T) defined by ϕ := a(|h|2 +|h+|2) (ϕ belongs
to L1(T) because it is the product of the H∞ function a and the L1(T) function
(|h|2 + |h+|2)). Then equation (7.3) and the previous computation imply that
ϕ̂(n) = 0, n ≤ 0. Hence we get that ϕ ∈ H1

0 . Since a is an outer function and
|h|2 + |h+|2 ∈ L1(T), we deduce from Lemma 2.4 that in fact |h|2 + |h+|2 ∈ H1

0 .
Since this function is real-valued, we get from Lemma 2.2 that |h|2 + |h+|2 ≡ 0,
which implies that h ≡ 0. Therefore we can conclude that M(ā) is dense in
H(b).

7.2 The polynomials are dense in H(b)

Theorem 7.6. Let b be a non extreme point of the unit ball of H∞ and let P
denote the space of (analytic) polynomials. Then we have



(a) P ⊂M(ā) ⊂ H(b);

(b) P is dense in M(ā);

(c) P is dense in H(b).

Proof. (a) For n ≥ 0, denote by Pn the space of polynomials of degree less or
equal to n and let p ∈ Pn. In particular, p is orthogonal (in H2) to the (closed)
subspace zn+1H2. Then for all j ≥ n+ 1, we have

〈Tāp, zj〉2 = 〈āp, zj〉2 = 〈p, azj〉2.

Since azj ∈ zjH2 ⊂ zn+1H2, we get that

〈Tāp, zj〉2 = 0,

for all j ≥ n+ 1. That means that the H2 function Tāp is in fact a polynomial
of degree less or equal to n. Therefore we have proved that TāPn ⊂ Pn. Since
by Lemma ?? Tā is injective, it follows that TāPn = Pn. In particular, we have
Pn ⊂M(ā), for all n ≥ 0, which proves that the set of polynomials is contained
in M(ā). The inclusion M(ā) ⊂ H(b) is already proved in Theorem7.1.

(b) Let f ∈M(ā) and let ε > 0. By definition, there exists g ∈ H2 such that
f = Tāg. Since P is dense in H2, there exists p ∈ P such that ‖g − p‖2 ≤ ε.
Therefore we have

‖f − Tāp‖M(ā) = ‖Tā(g − p)‖M(ā) = ‖g − p‖2 ≤ ε,

and since Tāp ∈ P, we get the result.
(c) Let f ∈ H(b) and let ε > 0. According to Lemma 7.5, there exists

g ∈ M(ā) such that ‖f − g‖b ≤ ε
2 and thanks to (b), there also exists p ∈ P

such that ‖g − p‖M(ā) ≤ ε
2 . Now it follows from Theorem 7.1 that ‖g − p‖b ≤

‖g − p‖M(ā) ≤ ε
2 and triangle inequality implies that ‖f − p‖b ≤ ε.

7.3 The shift on H(b)

Theorem 7.7. Let b be a non extreme point of the unit ball of H∞. Then the
space H(b) is invariant under the unilateral shift S. Moreover, we have

σ(S|H(b)) = D̄.

Proof. Recall that H(b) is invariant under S∗ and denote by X the operator on
H(b) defined by X := S∗|H(b). Then we know from ???? that X is a contraction
and

X∗ = S − b⊗ S∗b.

Therefore for all f ∈ H(b), we have

Sf = X∗f + 〈f, S∗b〉bb. (7.4)



It follows from (7.4) and Corollary 7.3 that Sf ∈ H(b). That means that H(b)
is invariant under S. We denote by Y := S|H(b).

Now let λ ∈ σ(Y ). We argue by contradiction assuming that |λ| > 1. Since
X∗ is a contraction, we have σ(X∗) ⊂ D and thus X∗ − λI is invertible (as
operator on H(b)). Since

Y − λI = (X∗ − λI) + b⊗ S∗b,

the Lemma 1.15 implies that Y −λI is a Fredholm operator with ind (Y −λI) =
0. In others words, Y − λI has a closed range and

dim ker(Y − λI) = dim ker(Y ∗ − λ̄I).

But we know from Lemma 2.7 that ker(Y − λI) = {0}, which implies that
ker(Y ∗ − λ̄I) = {0} and it follows from Theorem ?? that the range of Y − λI
is dense in H(b). But it is already closed, thus we have (Y − λI)H(b) = H(b).
Finally we get that (Y − λI) is invertible, which is absurd. Therefore, we have
proved the first inclusion, that is σ(Y ) ⊂ D.

To prove the converse, let λ ∈ D. It is easy to see that⋂
n≥0

(Y − λI)nH(b) = {0}. (7.5)

Indeed let h be in the left set. That means that for each n ≥ 0 there exists
hn ∈ H(b) such that h = (z − λ)nhn. In particular, it implies that h(n)(λ) = 0,
(n ≥ 0). Since h is analytic on D, it is only possible if h ≡ 0.

Assume that (Y −λI) is invertible. Then of course (Y −λI)n is also invertible
for each n ≥ 0. In particular, we get (Y −λI)nH(b) = H(b), which is absurd by
(7.5). Thus (Y − λI) is not invertible and λ ∈ σ(Y ). We have proved that

D ⊂ σ(Y ) ⊂ D,

which implies the result since σ(Y ) is a closed set.

7.4 The multipliers of H(b)

Theorem 7.8. Let b be a non extreme point of the unit ball of H∞ and let f be
an holomorphic function on an open set Ω containing D. Then the function f
is a multiplier of H(b) and of M(ā). In particular, we have f ∈M(ā) ⊂ H(b).

Proof. As in the previous section, we will denote by Y the operator on H(b)
defined by Y := S|H(b). Since Ω is an open set containing the compact set
D, there exists r > 1 such that D ⊂ D(0, r) ⊂ D(0, r) ⊂ Ω. We know from
Theorem 7.7 that σ(Y ) = D ⊂ D(0, r). By the Riesz-Dunford calculus, we can
write

f(Y ) =
1

2iπ

∫
|λ|=r

f(λ)(Y − λI)−1 dλ,



and f(Y ) defines a bounded operator on H(b). In particular, for every h ∈ H(b),
we have f(Y )h ∈ H(b). We will show that f(Y )h = fh. Indeed since f is
analytic on Ω, we can write

f(z) =

+∞∑
n=0

anz
n,

with the radius of convergence of the series R > r. In particular, the series is
normalement convergent on ∂D(0, r). Thus

f(Y )h =
1

2iπ

∫
|λ|=r

+∞∑
n=0

anλ
n(S − λI)−1h dλ

=

+∞∑
n=0

an
1

2iπ

∫
|λ|=r

λn(S − λI)−1h dλ.

Now if we denote by p(z) := zn (z ∈ C), we have p(Y ) = Y n and

1

2iπ

∫
|z|=r

λn(Y − λI)−1h dλ = p(Y )h = Snh = znh,

which implies that

f(Y )h =

+∞∑
n=0

anz
nh = fh.

We have proved that for every h ∈ H(b), we have fh = f(Y )h ∈ H(b). That
exactely means that f is a multiplier of H(b). Using ??? and Theorem 7.1,we
get that f is also a multiplier of H(b̄) =M(ā). It remains to note that thanks
to Theorem 7.6, the function identically equals to 1 belongs to M(ā) and thus
we have f = f1 ∈ H(b) (since f is a multiplier of H(b)).

7.5 A result of completeness

For b in the unit ball of H∞ and λ ∈ D, we denote by k̂bλ the function defined
by

k̂bλ(z) :=
b(z)− b(λ)

z − λ
, (z ∈ D).

We are interested in the following question: does the family (k̂bλ)λ∈D be complete
in H(b)?

This familly is called the “difference quotients” or the ”cokernels“.
It is easy to see that we can reformulate this question in terms of the com-

pleteness of another family.

Lemma 7.9. Let b ∈ H∞. Then the following two conditions are equivalent:



1. span{k̂bλ : λ ∈ D} = H(b).

2. span{S∗n+1b : n ≥ 0} = H(b).

Proof. It is easily seen that, for λ ∈ D and f ∈ H2, we have

f(z)− f(λ)

z − λ
= (Id− λS∗)−1S∗f.

In particular, applying this formula to f = b, we obtain

b(z)− b(λ)

z − λ
= (Id− λS∗)−1S∗b =

∞∑
n=0

λnS∗n+1b. (7.6)

Now according to (7.6), we have f ∈ H(b)	 span{k̂bλ : λ ∈ D} if and only

∞∑
n=0

λn〈S∗n+1b, f〉b = 0, (λ ∈ D, ),

and, since the function λ 7−→
∞∑
n=0

λn〈S∗n+1b, f〉b is analytic in a neighbourhood

of 0, this is equivalent to

〈S∗n+1be, f〉b = 0, (n ≥ 0),

which gives the result.

To give the criterion in the nonextreme case, we have to recall that a function
f in the Nevanlinna class of the unit disc D is said to be pseudocontinuable
(across T) if there exist g, h ∈

⋃
p>0H

p such that

f = h/g

a.e. on T. The function f̃ := h/g is the (nontangential) boundary function of

the meromorphic function f̃(z) := h( 1
z )/g( 1

z ) defined for |z| > 1, which is called
a pseudocontinuation of f . R. Douglas, H. Shapiro and A. Shields have obtained
[12] the following characterization: a function f ∈ H2 is pseudocontinuable if
and only if it is not S∗-cyclic, that is span(S∗nf : n ≥ 0) 6= H2.

Theorem 7.10. Suppose b is not an extreme point in the unit ball of H∞.
Then

span{k̂bλ : λ ∈ D} = H(b)⇐⇒ b is not pseudocontinuable.

Proof. Assume that span{k̂bλ : λ ∈ D} = H(b) but b is pseudocontinuable. Then
there exists a nonconstant inner function u such that b ∈ H(u). Since H(u) is
S∗-invariant, S∗n+1b ∈ H(u) for all n ≥ 0. As H(b) is contained continuously
in H2, we deduce that

spanH(b)

(
S∗n+1b : n ≥ 0

)
⊂ closH(b)H(u) ⊂ H(u),



and it follows from Lemma 7.9 that H(b) ⊂ H(u). Now since b is not an
extreme point in the unit ball of H∞, we know that the polynomials belong to
H(b) and consequently to H(u). Hence H2 ⊂ H(u), which is absurd. Thus, if
the difference quotients are complete in H(b), then b is not pseudocontinuable.

Conversely, assume b is not pseudocontinuable. Note that spanH(b)

(
S∗n+1b : n ≥ 0

)
is a closed S∗-invariant subspace of H(b). But we know from [27] the description
of these subspaces when b is not an extreme point: they are just the intersection
of H(b) with the invariant subspaces of S∗. Hence there is an inner function u
such that

spanH(b)

(
S∗n+1b : n ≥ 0

)
= H(b) ∩H(u).

But S∗b ∈ H(u) implies that b ∈ H(uz), which is absurd unless u ≡ 0 (because
b is not pseudocontinuable). Hence

spanH(b)

(
S∗n+1b : n ≥ 0

)
= H(b),

and applying once more Lemma 7.9, we obtain that the difference quotients are
complete in H(b).

Example: As a consequence of Theorem 7.10, it is simple to give two
examples of de Branges-Rovnyak spaces (both corresponding to nonextreme
functions b), with the completeness of the difference quotients false for the first
and true for the second. Note first that, if supz∈T |b(z)| < 1, then log(1 −
|b|) is integrable, and thus b is not extreme. This condition is satisfied by
both functions b1(z) := 1/(z − 3) and b2(z) := exp((z − 2)−1). The first is
pseudocontinuable, and thus the difference quotients are not complete in H(b1),
while the second is not, whence the difference quotients are complete in H(b2).





Chapter 8

Appendix

8.1 Extreme points of a convex set in a Banach
space

Let E be a K-linear space (K = R or C), let Ω be a convex subset of E and let
p ∈ Ω. We say that p is an extreme point of Ω if

p ∈ [a, b], a, b ∈ Ω =⇒ p = a or p = b.

In the following, if X is a normed linear space, then we denote by B1
X the

closed unit ball of X and by Ext(X) the set of extreme points of B1
X . We recall

some easy properties concerning extreme points of the closed unit ball.

Lemma 8.1. Let X be a normed linear space and let x ∈ B1
X . The following

hold:

a) x ∈ Ext(X) if and only if

x =
1

2
(y + z), y, z ∈ B1

X =⇒ x = y = z. (8.1)

b) Ext(X) ⊂ {x ∈ X : ‖x‖ = 1}.

c) x ∈ Ext(X) if and only if

‖y − x‖ ≤ 1, ‖y + x‖ ≤ 1, y ∈ X =⇒ y = 0. (8.2)

Proof. a) : first let x ∈ Ext(X) and assume that there is two points y, z ∈ B1
X

such that x = 1
2 (y + z). Then in particular x ∈ [y, z] and thus by definition of

the extreme points, either x = y or x = z. If x = y, then 1
2 (y + z) = y, which

implies y = z = x. If x = z, then 1
2 (y + z) = z, which also implies y = z = x.

Therefore, we have proved that x satisfy the property (8.1).
Now on the contrary, let x /∈ Ext(X). That means that there is two points

a, b ∈ B1
X such that x ∈ [a, b] and x 6= a, x 6= b. Of course a 6= b (otherwise
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x = a = b). Then there is λ ∈]0, 1[ such that x = λa + (1 − λ)b. We will
construct y, z ∈ B1

X such that x = 1
2 (y + z) and y 6= z. For this purpose choose

a real r satisfying

0 < r < min ((1− λ)‖a− b‖, λ‖a− b‖)

and define
t1 = λ+

r

‖a− b‖
, t2 = λ− r

‖a− b‖
and

y = t1a+ (1− t1)b, z = t2a+ (1− t2)b.

Then it is easy to check that t1, t2 ∈]0, 1[; thus y, z ∈ [a, b]. In particular
y, z ∈ B1

X (because B1
X is convex). Moreover

y + z =(t1 + t2)a+ (1− t1 + 1− t2)b = 2λa+ (2− 2λ)b

=2(λa+ (1− λ)b) = 2x.

It remains to note that y 6= z otherwise t1 = t2 which is impossible. Thus we
have proved that x does not satisfy the property (8.1), which ends the proof of
the point a).

b) : let x ∈ X, ‖x‖ < 1. Then there is r > 0 such that

{z ∈ X : ‖z − x‖ ≤ r} ⊂ B1
X , (8.3)

and choose z ∈ X such that ‖z − x‖ = r. Now put y := 2x − z. Of course we
have ‖y − x‖ = ‖x− z‖ = r, whence by (8.3), we get that y, z ∈ B1

X . Moreover
x = 1

2 (y + z). Finally y 6= z because otherwise x = z and then r = 0 which is
absurd. Therefore we conclude that x is not an extreme point of B1

X . Hence

Ext(X) ⊂ B1
X \ {x ∈ X : ‖x‖ < 1} = {x ∈ X : ‖x‖ = 1}.

c) : first assume that x ∈ Ext(X) and let y ∈ X such that ‖y − x‖ ≤ 1,
‖y + x‖ ≤ 1. Note that x = 1

2 (x+ y + x− y) and x+ y, x− y ∈ B1
X . Then we

get by a) that x = x− y = x+ y, in other words y = 0.
Reciprocally assume that x satisfies the property (8.2) and assume that

there is two points a, b ∈ B1
X such that x = 1

2 (a + b). Put y = x − a. Then
y − x = −a ∈ B1

X , y + x = 2x − a = b ∈ B1
X . Therefore by (8.2), we get that

y = 0, whence x = a and then x = b also. Once again by a), we conclude that
x ∈ Ext(X).

Exercises
Exercise 8.1.1. Let X be an Hilbert space. Show that

Ext(X) = {x ∈ X : ‖x‖ = 1}.



Exercise 8.1.2. Let 1 < p < +∞. Show that

Ext(Lp) = {f ∈ Lp : ‖f‖p = 1}.

Hint: use Lemma 8.1 and the fact that if f, g ∈ Lp, then

‖f + g‖p = ‖f‖p + ‖g‖p =⇒ ∃λ ∈ R+ : f ≡ λg a.e.

Exercise 8.1.3. Show that

Ext(L1) = ∅.

Hint: argue by absurd assuming that there is f ∈ Ext(L1); then by Lemma 8.1
‖f‖1 = 1 and consider

ϕ : [0, 2π] −→ R+

x 7−→ ϕ(x) = 1
2π

∫ x
0
|f(eiθ)| dθ.

Using Vittali’s Lemma and mean value theorem, show that there is x0 ∈]0, 2π[
such that ϕ(x0) = 1

2 . Now find a contradiction by considering

g(eiθ) =

{
2f(eiθ), 0 ≤ θ ≤ x0

0, x0 < θ < 2π

and

h(eiθ) =

{
0, 0 ≤ θ ≤ x0

2f(eiθ), x0 < θ < 2π
.

Exercise 8.1.4. Show that

Ext(L∞) = {f ∈ L∞ : |f | = 1 a.e. }.

Hint: first let f ∈ Ext(L∞) and put E = {ζ ∈ T : |f(ζ)| < 1}. Assume that
m(E) > 0 and show a contradiction by considering

g :=

{
f + 1−|f |

2 , on E

f, on T \ E

and

h :=

{
f − 1−|f |

2 , on E

f, on T \ E
.

Conclude that |f | = 1 a.e.
Reciprocally let f ∈ L∞, |f | = 1 a.e. and let g, h ∈ B1

L∞ , f = 1
2 (g + h).

Show that |h + g| = |h| + |g| a.e. Then consider E = {ζ ∈ T : |g(ζ)| < 1} and
F = {ζ ∈ T : |h(ζ)| < 1}. Show that m(E) = m(F ) = 0. Conclude that g = h
a.e. and therefore f ∈ Ext(L∞).



8.2 Extreme points of the unit ball of H∞ and
H1

In Exercice ??, we describe the extreme point of the unit ball of Hp for 1 < p <
+∞. The situation was pretty easy because it was more or less the same than
in Lp. What can we say about the case p = 1 and p = +∞?

We have ever seen that Ext(L1) = ∅ (see Exercice 8.1.3). But H1 is very
different from L1 in the sense that H1 is the conjugate of a Banach space. More
precisely, we have

H1 ' (C(T)/A0)
∗
,

where A0 is the closed linear subspace in C(T) generated by χn, n ≥ 1. Now
according to Krein–Milman’s Theorem, if a Banach space X is (isometrically
isomorphe) to the conjugate of a Banach space Y , then the unit ball of X not
only has extreme points, but it has a lot to span this unit ball (in the sense that
the closed convex hull of its extreme points coincide with the unit ball; here
the closure is relatively to the weak star topology). Therefore we see that the
situation for H1 is dramastically different from the situation for L1. The closed
unit ball of L1 has no extreme points; the closed unit ball of H1 has a lot of
extreme points and the closed convex hull of its extreme points coincide with
the unit ball.

Independently of the result of Krein–Milman, we will describe in this section
exactely the extreme points of H1 and H∞.

First note that if b is a point in the unit ball of H∞ such that |b| = 1 a.e.
on T (that is b is an inner function), then we know from Exercice 8.1.4 that b is
an extreme point of the unit ball of L∞ and then an extreme point of the unit
ball of H∞. But we will see in the next result that the unit ball of H∞ has a
lot of other extreme points.

Theorem 8.2. Let b ∈ H∞ with ‖b‖∞ ≤ 1. Then b is an extreme point of the
unit ball of H∞ if and only if∫ 2π

0

log(1− |b(eit)|) dt = −∞. (8.4)

Proof. First assume that (8.4) is satisfied and let a ∈ H∞ such that ‖b+a‖∞ ≤ 1
and ‖b − a‖∞ ≤ 1. We will show that a ≡ 0. Using identity parallelogram, we
have, for every z ∈ D,

|b(z)|2 + |a(z)|2 =
1

2

(
|b(z) + a(z)|2 + |b(z)− a(z)|2

)
≤ 1,

which implies that for almost all eiθ on T, we have

|a(eiθ)|2 ≤ 1− |b(eiθ)|2.

Hence
|a(eiθ)|2 ≤ (1− |b(eiθ)|)(1 + |b(eiθ)|) ≤ 2(1− |b(eiθ)|),



which gives

2

∫ π

−π
log |a(eiθ)| dθ ≤ 2π log 2 +

∫ π

−π
log(1− |b(eiθ)|) dθ.

Thus we get from (8.4) that∫ π

−π
log |a(eiθ)| dθ = −∞,

and Lemma 2.3 implies that a ≡ 0. According to Lemma 8.1, we obtain that b
is an extreme point of the unit ball of H∞.

For the converse implication, assume that∫ 2π

0

log(1− |b(eit)|) dt 6= −∞. (8.5)

Since log(1 − |b(eiθ)|) ≤ 0 a.e. on T, the condition (8.5) means that log(1 −
|b(eiθ)|) ∈ L1. But 1− |b(eiθ)| ∈ L∞ and thus the function a, defined by

a(z) = [1− |b|](z) = exp

(∫
T

ζ + z

ζ − z
log(1− |b(ζ)|) dm(ζ)

)
, z ∈ D,

is an outer function which is in H∞. Moreover, we have |a| = 1− |b| a.e. on T.
Then a+ b ∈ H∞, a− b ∈ H∞ and

‖a+ b‖∞ = sup
θ∈[0,2π[

∣∣a(eiθ) + b(eiθ)
∣∣ ≤ sup

θ∈[0,2π[

(
|a(eiθ)|+ |b(eiθ)|

)
= 1.

Similarly we also have ‖a − b‖∞ ≤ 1. Since a 6≡ 0, it follows from Lemma 8.1
that b is not an extreme point of the unit ball of H∞.

Contrary to the case of L1, the following result shows that the unit ball of
H1 has a lot of extreme points.

Theorem 8.3. Let f ∈ H1. The following are equivalent:

(i) f is an extreme point of the unit ball of H1.

(ii) f is an outer function and ‖f‖1 = 1.

Proof. (ii) =⇒ (i) : let f be an outer function in H1 of unit norm and assume
that there exists g ∈ H1, ‖f ± g‖1 ≤ 1. We will show that g ≡ 0. It follows
from Lemma 2.3 that f 6= 0 a.e. on T. Moreover using the fact that f =
1
2 ((f + g) + (f − g)), it is easy to see that ‖f ± g‖1 = 1. Define now φ the
holomorphic function on D by

φ(z) =
g(z)

f(z)
, (z ∈ D),



and let φ(eiθ) denote the boundary value of φ, which exists a.e. on T because
f, g ∈ H1 and f 6= 0 a.e. on T. Since ‖f ± g‖1 = ‖f‖1 = 1, we have∫ π

−π

(
|1 + φ(eiθ)|+ |1− φ(eiθ)| − 2

)
|f(eiθ)| dθ = 0. (8.6)

But note that

|1 + φ(eiθ)|+ |1− φ(eiθ)| ≥ |1 + φ(eiθ) + 1− φ(eiθ)| = 2.

Therefore since f(eiθ) 6= 0 a.e. on T, the equation 8.6 implies that

|1 + φ(eiθ)|+ |1− φ(eiθ)| = 2,

for almost all eiθ on T. Now it is easy to check that this relation gives 1−<eφ =
|1 − φ| a.e. on T and since |1 − φ|2 = (1 − <eφ)2 + (=mφ)2, we get that φ is
real a.e. on T. Moreover we have 1 − φ = 1 − <eφ = |1 − φ| ≥ 0. Changing φ
by −φ, we get from similar arguments that 1 + φ = |1 + φ| ≥ 0. Thus φ is real
a.e. on T and −1 ≤ φ ≤ 1. Since f is outer and φ = g/f ∈ L∞, it follows from
Lemma 2.4 that φ ∈ H∞. But we have seen that φ is real-valued on T and then
we get from Lemma 2.2 that φ is constant. Hence

(1− φ)‖f‖1 =‖(1− φ)f‖1 =

∥∥∥∥(1− g

f

)
f

∥∥∥∥
1

=‖f − g‖1 = 1,

whence 1 − φ = 1 because ‖f‖1 = 1. In other words, φ = 0 and then g = 0.
Now it remains to apply Lemma 8.1 to deduce that f is an extreme point of the
unit ball of H1.

(i) =⇒ (ii) : let f ∈ H1 and assume that f is an extreme point of the unit
ball of H1. We already know from Lemma 8.1 that ‖f‖1 = 1. So it remains
to show that f is an outer function. We argue by absurd. Then according to
Theorem ??, we have f = IF , where F is the outer part of f , F ∈ H1 and I
is the inner part of f and I is not constant (because f is assumed to be not
outer). Consider

ϕ(α) =

∫ π

−π
|f(eiθ)|<e

(
eiαI(eiθ)

)
dθ, α ∈ (0, π).

Since f is in L1, it is easy to see that ϕ is continuous on (0, π). Moreover, we
have

ϕ(0) =

∫ π

−π
|f(eiθ)|<e

(
I(eiθ)

)
dθ,

and

ϕ(π) =

∫ π

−π
|f(eiθ)|<e

(
−I(eiθ)

)
dθ = −ϕ(0).

Hence by the mean value theorem, there is α ∈ [0, π] such that ϕ(α) = 0. Put

u := eiαI and g :=
1

2
e−iαF (1 + u2).



Of course u ∈ H∞, g ∈ H1 and g 6≡ 0 (because u is not constant). Moreover,
we have |u(eiθ)| = 1 for almost all eiθ on T. Hence

2<e
(
u(eiθ)

)
=u(eiθ) + u(eiθ)

=
1 + u2(eiθ)

u(eiθ)
.

Therefore we obtain

g(eiθ) =
1

2
e−iαF (eiθ)(1 + u2(eiθ))

=e−iαu(eiθ)F (eiθ)<e
(
u(eiθ)

)
=I(eiθ)F (eiθ)<e

(
u(eiθ)

)
=f(eiθ)<e

(
u(eiθ)

)
.

Then we can write

|f(eiθ)± g(eiθ)| = |f(eiθ)|
(
1±<e

(
u(eiθ)

))
= |f(eiθ)| ± |f(eiθ)|<e

(
u(eiθ)

)
.

But since∫ π

−π
|f(eiθ)|<e

(
u(eiθ)

)
dθ =

∫ π

−π
|f(eiθ)|<e

(
eiαI(eiθ)

)
dθ = ϕ(α) = 0,

we get that
‖f ± g‖1 = ‖f‖1 = 1.

Since g 6≡ 0, we obtain a contradiction by Lemma 8.1.

8.3 A theorem of Helson–Szegö

We will use the following deep result. For the proof, we refer to [22, Chap. 1].

Theorem 8.4. Let ν be a finite and positive Borel measure on T and let b be
the function in the unit ball of H∞ associated to ν by (5.12). The following
assertions are equivalent:

(i) H2(ν) = L2(ν).

(ii) χ1 ∈ H2(ν).

(iii) χ0 ∈ H2
0 (ν).

(iv) b is an extreme point in the unit ball of H∞.
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Birkhäuser, Basel, 1990, pp. 333–347.

[32] Sarason, D. Sub-Hardy Hilbert spaces in the unit disk. University of
Arkansas Lecture Notes in the Mathematical Sciences, 10. John Wiley &
Sons Inc., New York, 1994. A Wiley-Interscience Publication.

[33] Shapiro, J. E. Relative angular derivatives. J. Operator Theory 46, 2
(2001), 265–280.

[34] Shapiro, J. E. More relative angular derivatives. J. Operator Theory 49,
1 (2003), 85–97.

[35] Singh, D., and Thukral, V. Multiplication by finite Blaschke factors
on de Branges spaces. J. Operator Theory 37, 2 (1997), 223–245.
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