M402, Analyse: Feuille No. 1

Rappels-Espaces de fonctions continues-Séparabilité.

Exercice 0 Donner un exemple d'un espace métrique où l'adhérence d'une certaine boule ouverte B(x,r) n'est pas la boule fermée de centre x et de ravon r.

Exercice 1 Soit (E, d) un espace métrique et $(x_n)_n$ une suite dans E.

- (1) Montrer que si $(x_n)_n$ est de Cauchy alors il existe une sous-suite $(y_k)_k = (x_{n_k})_k$ telle que $\sum_k d(y_{k+1}, y_k) < \infty$.
- (2) Montrer que si $(x_n)_n$ est de Cauchy alors elle converge si et seulement si elle admet une sous-suite convergente.
- (3) En déduire que (E,d) est complet si et seulement si toute suite $(x_n)_n$ de E telle que $\sum_{n} d(x_{n+1}, x_n) < \infty$, converge.
- (4) Montrer que si (E,d) un espace métrique compact alors il est complet.

Exercice 2 Soit $(E, \|\cdot\|)$ un espace normé.

(1) Montrer que si $x \in E$, alors

$$||x|| = \inf\{t > 0; \ x \in tB(0,1)\}.$$

- (2) Notons B=B(0,1). Montrer que B possède les propriétés suivantes:
 - (i) Si $x, y \in B$ et $|\lambda| + |\mu| \le 1$ alors $\lambda x + \mu y \in B$;
 - (ii) si $x \in B$ alors $\exists \epsilon > 0$ tel que $x + \epsilon B \subset B$;
 - (iii) pour $x \in E$, $x \neq 0$ $\exists \lambda, \mu \neq 0$ tel que $\lambda x \in B$ et $\mu x \notin B$.

Exercice 3 Montrer que pour tout entier $n \geq 1$, il existe $\alpha_n > 0$ tel que pour tout $t \in [0,1]$ et pour tout polynôme P de degré plus petit ou égal à n, on a

$$|P(t)| \le \alpha_n \int_0^1 |P(x)| dx.$$

Exercice 4 (1) Montrer qu'un espace normé est complet si et seulement si toute série absolument convergente est convergente.

(2) Soit E = C([-1, 1]), l'espace des fonctions continues sur [-1, 1], muni de la norme $\|.\|_1$ (i.e $||f||_1 = \int_{-1}^1 |f(t)| dt$, $f \in E$). Soit

$$f_n(t) = \begin{cases} 0 & \text{si } t \in [-1, 0] \\ nt & \text{si } t \in [0, \frac{1}{n}] \\ 1 & \text{si } t \in [\frac{1}{n}, 1] \end{cases}$$

- (i) Montrer que $(f_n)_{n\in\mathbb{N}^*}$ est de Cauchy dans E. Est-elle convergente dans E?

(ii) On considère la série de terme général $g_n = f_{n+1} - f_n$. Montrer que $\sum_{n=1}^{+\infty} \|g_n\|_1 < \infty$, mais que la série $\sum_{n=1}^{+\infty} g_n$ ne converge pas dans E.

Exercice 5 Soit E un espace vectoriel normé et M un sous-espace de E. Notons par E/Ml'espace quotient et pour $\overline{x} \in E/M$, on définit $N(\overline{x}) = d(x, M) := \inf\{\|x - y\|; y \in M\}$.

- (1) (a) Montrer que $N(\overline{x}) = \inf\{||z||; z \in \overline{x}\}.$
 - (b) Montrer que N(.) est une semi-norme sur E/M et calculer son noyau.
 - (c) Montrer que N(.) est une norme sur E/M si et seulement si M est fermé.
- (2) On suppose que M est fermé. Montrer que si E est complet alors E/M est complet.
- (3) Montrer que si M et E/M sont complets alors E est complet.

Exercice 6 Soit $\alpha = (\alpha_n)_n$ une suite de nombres strictement positifs et $1 \le p < \infty$. On note

$$\ell_{\alpha}^{p} = \left\{ x = (x_{n})_{n}; \ x_{n} \in \mathbb{C} \ \text{ et telle que } \sum_{n=1}^{\infty} \alpha_{n} |x_{n}|^{p} < \infty \right\},$$

$$\ell_{\alpha}^{\infty} = \left\{ x = (x_n)_n; \ x_n \in \mathbb{C} \ \text{ et telle que } \sup_{n \ge 1} (\alpha_n |x_n|) < \infty \right\}.$$

 ℓ^p_{α} et ℓ^∞_{α} sont munis des normes respectives, $\|x\|_{p,\alpha} = (\sum_{n=1}^{\infty} \alpha_n |x_n|^p)^{\frac{1}{p}}$ et $\|x\|_{\infty,\alpha} = \sum_{n=1}^{\infty} \alpha_n |x_n|^p$ $\sup_{n\geq 1}(\alpha_n|x_n|).$

- (1) Montrer que ℓ_{α}^{p} et ℓ_{α}^{∞} sont des espaces de Banach. (2) On choisit $\alpha_{n} = 1, \forall n \geq 1$. Montrer que si $1 \leq p < q \leq \infty$ alors $\ell_{1}^{p} \subset \ell_{1}^{q}$, avec inclusion stricte et $||x||_{q,1} \le ||x||_{p,1}, \forall x \in \ell_1^p$.
- (3) Soit $c_{0,\alpha} = \{x = (x_n)_n; x_n \in \mathbb{C} \text{ et telle que } \lim_{n \to \infty} \alpha_n x_n = 0\}$. Montrer que $c_{0,\alpha}$ muni de la norme $||x||_{\infty,\alpha}$ est un espace de Banach.

Exercice 7 (1) Soit $\varphi:[0,1]\to\mathbb{R}$ une fonction continue strictment monotone. Montrer que l'ensemble $\mathcal{A} = \{P(\varphi); P \text{ polynôme}\}\$ est dense dans C([0,1]).

(on pourra utiliser le Théorème de Stone-Weierstrass).

- (2) En déduire que l'ensemble $\mathcal{B} = \{f : [0,1] \to \mathbb{R}; \ f(x) = \sum_{k=0}^n a_k \sin^k(x), \ a_k \in \mathbb{R}\}$ est dense dans C([0,1]).
- (3) Soit \mathcal{C} la sous-algèbre engendrée par $\{f_0, f_2\}$ où $f_0(x) = 1$ et $f_2(x) = x^2$.
 - (a) Montrer que \mathcal{C} est dense dans C([0,1]).
 - (b) Montrer que \mathcal{C} n'est pas dense dans C([-1,1]).

Exercice 8 Soit $f, g \in C([0,1])$.

(1) Montrer que

$$\forall n \in \mathbb{N}, \ \int_0^1 x^n f(x) dx = \int_0^1 x^n g(x) dx \iff f = g.$$

- (2) Soit $f:[0,+\infty[$ une fonction continue bornée.
 - (a) Montrer qu'il existe une fonction $g \in C([0,1])$ telle que

$$\int_{0}^{+\infty} f(x) \exp(-nx) dx = \int_{0}^{1} t^{n-2} g(t) dt, \quad \forall n \ge 2.$$

(b) En déduire que si $\forall n \geq 2$, $\int_0^{+\infty} f(x) \exp(-nx) dx = 0$ alors f = 0.

Exercice 9 Soit f une fonction continue sur un intervale I non borné de \mathbb{R} . Montrer que f est limite uniforme d'une suite de polynômes sur I si et seulement si f est un polynôme.

Exercice 10 Soit $f:]0,1[\to \mathbb{R}$ une fonction continue. Montrer que f est une limite uniforme de polynôme sur]0,1[si et seulement si f admet une extension continue sur [0,1].

Exercice 11 (Polynômes de Bernstein)

Pour $n \in \mathbb{N}$ et $k \in \{0, 1, \dots, n\}$, on pose

$$B_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k},$$

où $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ est le coefficient binomial.

(a) Calculer

$$\sum_{k=0}^{n} B_{n,k}(x), \quad \sum_{k=0}^{n} k B_{n,k}(x) \quad \text{et} \quad \sum_{k=0}^{n} k^{2} B_{n,k}(x).$$

(b) En déduire que

$$\sum_{k=0}^{n} (k - nx)^{2} B_{n,k}(x) = nx(1 - x).$$

(c) Soit $\alpha > 0$ et $x \in [0,1]$. On pose

$$A = \{k \in \llbracket 0, n \rrbracket : \left| \frac{k}{n} - x \right| \ge \alpha\}.$$

Montrer que

$$\sum_{k \in A} B_{n,k}(x) \le \frac{1}{4n\alpha^2}.$$

(d) Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue. On pose

$$P_n f(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{n,k}(x).$$

Montrer que $(f_n)_n$ converge uniformément vers f sur [0,1].

(e) Retrouver le théorème de Weierstrass : si $-\infty < a < b < +\infty$ et si $f \in C([a, b)]$, il existe une suite de polynômes $(P_n)_n$ qui converge uniformément vers f sur [a, b].

Exercice 12 Soit (K, d) un espace métrique compact et A l'ensemble des fonctions lipschitziennes de X à valeurs dans \mathbb{R} .

- (a) Montrer en utilisant le théorème de Stone–Weierstrass que A est dense dans $C(K,\mathbb{R}).$
 - (b) Pour $f \in C(K, \mathbb{R})$ et $\lambda > 0$, notons

$$f_{\lambda}(x) = \inf_{y \in K} \left\{ f(y) + \lambda d(x, y) \right\}.$$

Montrer que f_{λ} est λ -lipschitzienne sur K.

(c) Montrer que

$$\lim_{\lambda \to +\infty} ||f_{\lambda} - f||_{\infty} = 0,$$

et retrouver le résultat du (a).

Exercice 13 On note \mathbb{T} le cercle unit du plan complexe.

- (a) Montrer que \mathcal{L} in $(z^n : n \in \mathbb{Z})$ est dense dans $C(\mathbb{T}, \mathbb{C})$.
- (b) Montrer que si $f: \mathbb{R} \longrightarrow \mathbb{C}$ est continue et 2π -périodique, alors f est limite uniforme de polynômes trigonométriques.

Exercice 14 Montrer que tout espace vectoriel normé de dimension finie est séparable.

Exercice 15 Soit E un \mathbb{K} espace vectoriel normé ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit $(x_n)_n$ un suite de vecteurs de E et notons F le sous-espace vectoriel engendré par $(x_n)_n$. Supposons que F est dense dans E. Montrons alors que E est séparable.

Exercice 16 Montrer que si (E,d) est un espace métrique séparable et si $F \subset E$, alors (F,d) est aussi séparable.

Exercice 17 (Fonctions Höldériennes)

Pour $\alpha>0,$ notons par E_α l'ensemble des fonctions Höldériennes.

$$E_{\alpha} = \Big\{ f: [0,1] \to \mathbb{C}; \text{ telles que il existe} \quad C \geq 0; \ |f(x) - f(y)| \leq C|x - y|^{\alpha} \quad \forall x,y \in [0,1] \Big\}.$$

la constante C dépend de f.

- (1) Pour $f \in E_{\alpha}$ notons par $C_{\alpha}(f)$ la borne inférieure de l'ensemble des nombres C.
 - (a) Montrer que

$$\forall x, y \in [0, 1] \quad |f(x) - f(y)| \le C_{\alpha}(f)|x - y|^{\alpha}.$$

- (b) Montrer que l'application $f \mapsto C_{\alpha}(f)$ est une semi-norme sur E_{α} . Calculer son noyau.
 - (c) Montrer que E_{α} est un sous-espace vectoriel de C[0,1].
- (2) Décrire E_{α} pour $\alpha > 1$.

Dans la suite on suppose que $\alpha \in]0,1]$.

(3) Soit $0 < \beta < \alpha \le 1$. Montrer que $C^1([0,1]) \subset E_{\alpha} \subset E_{\beta} \subset C([0,1])$.

Montrer que ce sont des inclusions strictes.

(4) Pour $f \in E_{\alpha}$, posons $N_{\alpha}(f) = |f(0)| + C_{\alpha}(f)$.

Montrer que $N_{\alpha}(.)$ est une norme sur E_{α} , vérifiant $||f||_{\infty} \leq N_{\alpha}(f)$ pour tout $f \in E_{\alpha}$.

Montrer que E_{α} est complet pour cette norme.

(5) Montrer que la boule unité de E_{α} est relativement compacte dans C[0,1].

(On pourra utiliser le Théorème d'Ascoli).

Exercice 18 Soit $f \in C([0, +\infty[)])$ et $f_n(x) = f(x^n)$, $n \ge 1$ et $x \in [0, +\infty[])$. Montrer que l'ensemble $H = \{f_1, f_2...\}$ est équicontinu en x = 1 si et seulement si f est constante.

M402, Analyse: Feuille No. 2.

Théorème de Baire et continuité d'applications linéaires.

Exercice 1 Montrer que \mathbb{Q} ne peut pas s'écrire comme une intersection dénombrable d'ouverts de \mathbb{R} .

(Indication: on pourra raisonner par l'absurde et considérer $\omega_n = \mathbb{R} \setminus \{q_n\}$ si $\mathbb{Q} = \{q_1, \ldots, q_n, \ldots\}$).

Exercice 2 a) Soit E est un espace normé et F un sous-espace vectoriel de E. Montrer que si l'intérieur de F est non-vide alors F = E.

- b) Montrer qu'un espace de Banach de dimension infinie ne possède pas de base algébrique dénombrable. En déduire que l'espace des polynômes K[X] n'est complet pour aucune norme.
- c) Soit $T: E \mapsto E$ une application linéaire et continue sur l'espace de Banach E. On suppose que pour tout $x \in E$ il existe $n = n(x) \ge 1$ tel que $T^n x = 0$. Montrer l'existence d'un nombre entier positif k tel que $T^k = 0$.

Exercice 3 Soit $f \in C^{\infty}(\mathbb{R})$ vérifiant

$$\forall x \in \mathbb{R}, \ \exists n \in \mathbb{N} \quad \text{tel que} \quad f^{(n)}(x) = 0.$$

On pose, pour $n \in \mathbb{N}$

$$E_n = \{x \in \mathbb{R}; \text{ tel que } f^{(n)}(x) = 0\}; \ \Omega = \bigcup_{n \ge 0} \mathring{E}_n \text{ et } F = \mathbb{R} \setminus \Omega.$$

- 1) Montrer que sur toute composante connexe de Ωf est un polynôme.
- 2) Montrer que f n'a aucun point isolé.
- 3) Montrer que $F = \emptyset$.
- (Supposer que $F \neq \emptyset$, appliquer le Théorème de Baire et obtenir une contradiction).
- 4) En déduire que f est un polynôme.

Exercice 4 Le but de cet exercice est de montrer que l'ensemble des fonctions continues sur [0,1], qui ne sont dérivables nulle part, est dense dans $(C([0,1]), \|\cdot\|_{\infty})$. En particulier, il existe des fonctions continues sur [0,1] nulle part dérivables.

(a) Pour $n \in \mathbb{N}$, posons

$$\mathcal{U}_n = \left\{ f \in C([0,1]) : \forall x \in [0,1], \sup_{y \neq x} \left| \frac{f(y) - f(x)}{y - x} \right| > n \right\},\,$$

et $\mathcal{F}_n = C([0,1]) \setminus \mathcal{U}_n$. Montrer que \mathcal{F}_n est fermé dans C([0,1]).

- (b) Le but de cette question est de montrer que chaque \mathcal{U}_n est dense dans C([0,1]).
 - (i) Justifier que l'ensemble des fonctions lipschitziennes est dense dans C([0,1]).
 - (ii) Fixons maintenant $\varepsilon > 0$, g une fonction lipschtizienne sur [0,1] et notons

$$C = \sup_{x \neq y} \left| \frac{g(y) - g(x)}{y - x} \right|.$$

Soit Θ une fonction continue affine par morceaux, de pente partout supérieure à M et vérifiant $\|\Theta\|_{\infty} \leq \varepsilon$, où M > n + C. Posons enfin $f = g + \Theta$. Montrer que pour tout $x \in [0,1]$, il existe $y \in [0,1]$, $y \neq x$ tel que

$$\left| \frac{f(y) - f(x)}{y - x} \right| > n.$$

- (iii) En déduire que \mathcal{U}_n est dense dans C([0,1]).
- (c) Montrer que si $f \in \bigcap_{n>1} \mathcal{U}_n$, alors f n'est dérivable en aucun point de [0,1].
- (d) En déduire que l'ensemble des fonctions continues nulle part dérivables est dense dans C([0,1]).

Remarque : ce résultat est un peu mystérieux car il affirme qu'il existe "beaucoup" de fonctions continues nulle part dérivables mais n'en exhibe aucune. Voici un exemple explicite : la fonction $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ dfinie par

$$\varphi(x) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \sin(4^n x)$$

est continue sur [0,1] (par convergence normale de la série). Elle est également nulle part dérivable mais cela n'a rien d'évident! En admettant le fait que φ est nulle part dérivable et en utilisant le théorème de Weierstrass, retrouver le résultat de l'exercice.

Exercice 5 Soit E, F, G des espaces normés. Soit $U: E \times F \to G$ une application bilinéaire.

(1) On suppose que U est séparément continue i.e.

 $\forall x \in E$, l'application linéaire $y \mapsto U(x,y)$ est continue de F dans G; et

 $\forall y \in F$, l'application linéaire $x \mapsto U(x, y)$ est continue de E dans G.

Montrer que si E ou F est complet alors U est continue.

(2) Soit $E = F = \ell^1(\mathbb{N})$ muni de la norme $\|.\|_{\infty}$ et $G = \mathbb{C}$.

Soit $U: \ell^1(\mathbb{N}) \times \ell^1(\mathbb{N}) \to \mathbb{C}$ définie par

$$U(x,y) = \sum_{n\geq 0} x_n y_n;$$
 où $x = (x_n)_n, \ y = (y_n)_n \in \ell^1(\mathbb{N}).$

- (a) Montrer que l'application bilinéaire U est bien définie et séparément continue.
- (b) Montrer que U n'est pas continue. Expliquer.

Exercice 6 (Opérateur de Volterra.) Soit $1 \le p \le \infty$ et q son exposant conjugué. Pour $f \in L^p([0,1]) = L^p([0,1],dt)$, on pose

$$V_p f(x) = \int_0^x f(t) dt.$$

- (a) Montrer que $V_p\in\mathcal{L}(L^q([0,1]),L^p([0,1]))$ et $\|V_p\|\leq 2^{-1/p}.$ Indication : considérer le noyau $K(x,y)=1_{[0,x]}(y).$
- (b) Montrer que si $f \in L^q([0,1])$, alors $V_p f \in C([0,1])$.

Exercice 7 (Matrice de Hilbert.) Pour $x \in \ell^2(\mathbb{N}^*)$, on pose

$$(Tx)_i = \sum_{j=1}^{\infty} \frac{1}{i+j} x_j.$$

Montrer que $T \in \mathcal{L}(\ell^2(\mathbb{N}^*))$ et $||T|| \leq \pi$.

Indication : on pourra utiliser le test de Schur avec la fonction $\omega_i = \frac{1}{\sqrt{i}}, \ i \ge 1$ et le noyau $K(i,j) = \frac{1}{i+j}$.

M402, Analyse: Feuille No. 3

Banach-Steinhauss, graphe fermé et application ouverte.

Exercice 1 Soit $x = (x_n)_n$ une suite de complexes telle que la série $\sum x_n y_n$ converge pour tout $y = (y_n)_n \in \ell^p$, $(1 \le p \le \infty)$. Il s'agit d'en déduire que $x \in \ell^q$ où q est l'exposant conjugué de p.

1. Pour tout entier N on définit une forme linéaire U_N sur ℓ^p par

$$U_N(y) = \sum_{n=0}^{N} x_n y_n.$$

Calculer la norme de U_N .

Indication: on pourra d'abord établir l'estimation

$$||U_N|| \le \left(\sum_{n=0}^N |x_n|^q\right)^{\frac{1}{q}}$$

puis montrer que l'on a en fait égalité dans cette inegalité en considérant la suite

$$y = (\overline{x}_0|x_0|^{q-2}, ..., \overline{x}_N|x_N|^{q-2}, 0, 0, ...).$$

2. Conclure en déduisant du théorème de Banach-Steinhaus que $x \in \ell^q$.

Exercice 2 Le but de cet exercice est d'établir l'existence de fonctions continues qui ne coïncident pas avec leur série de Fourier en un point donné.

Dans la suite on considère f une fonction continue 2π -périodique, on note $\hat{f}(n)$ son n-ième coefficient de Fourier, $n \in \mathbb{Z}$, et $S_N f(x) = \sum_{k=-N}^N \hat{f}(n) e^{inx}$ la N-ième série partielle de Fourier.

1. Rappeler que $S_N f = f * D_N$ où D_N est le noyau de Dirichlet et que

$$D_N(y) = \sum_{k=-N}^{N} e^{iny} = \frac{\sin(N + \frac{1}{2})y}{\sin\frac{y}{2}}.$$

2. On considère la forme linéaire $L_N(f) = S_N f(0)$ sur l'espace des fonctions continues muni de la norme $\|.\|_{\infty}$. Montrer que

$$||L_N|| \le ||D_N||_1 := \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(y)| \, dy$$

puis que cette estimation est optimale en remarquant que D_N est de signe constant par morceaux.

- 3. Montrer que $||D_N||_1 \ge \frac{2}{\pi} \int_0^{(N+\frac{1}{2})\pi} \frac{|\sin u|}{u} du$.
- 4. En déduire qu'il existe f continue 2π -périodique telle que

$$\sup_{N\geq 1}|S_Nf(0)|=\infty.$$

Exercice 3 On considère $E = L^1(\mathbb{T})$ l'espace des fonctions 2π -périodiques et intégrables sur $[-\pi, \pi]$. On note $\hat{f}(n)$ le n-ième coefficient de Fourier de $f \in E$ $(n \in \mathbb{Z})$.

1. Montrer que l'application linéaire

$$T: E \ni f \mapsto (\hat{f}(n))_n \in c_0(\mathbb{Z})$$

est continue et calculer ||T||;

- 2. Montrer que T est injective ;
- 3. Montrer que T n'est pas surjective. (**Indication :** Supposer le contraire, appliquer une variante du théorème de l'application ouverte, penser au noyau de Dirichlet)

Exercice 4 Soient E et F deux espaces de Banach, et $G = \ell_{\infty}(F)$ l'espace vectoriel des suites bornées

$$x = (x_n)_{n \in \mathbb{N}}, \quad x_n \in F,$$

muni de la norme sup $||x||_{\infty}$.

- (1) Montrer que G est un espace de Banach.
- (2) Soit (T_n) une suite d'applications linéaires continues de E dans F, telles que

$$\sup_{n}(\|T_nx\|_F)<\infty$$

pour tout $x \in E$. On note $U : E \mapsto G$, définie par $U(x) = (T_n x)_{n \in \mathbb{N}}$. Montrer que le graphe de U est fermé.

(3) En déduire que le théorème de Banach-Steinhaus, dans le cas où les deux espaces E et F sont des espaces de Banach, peut être établi comme une conséquence du théorème du graphe fermé.

Exercice 5 (a) Soit X un espace de Banach. On suppose qu'il y a deux sous-espaces linéaires fermés Y et Z dans X tels que tout $x \in X$ possède une unique représentation x = y + z, avec $y \in Y$ et $z \in Z$. Montrer qu'il existe une constante C > 0 telle que si $x = y + z \in X$, avec $y \in Y$ et $z \in Z$, alors $||y|| \le C||x||$ et $||z|| \le C||x||$.

(b) Soit X un espace de Banach et $P:X\to X$ une application linéaire telle que $P^2=P$. On suppose que l'image de P et le noyau de P sont des sous-espaces fermés. Montrer que P est continue.

Exercice 6 Soit E = C([0,1]), et ||.|| une norme sur E pour laquelle E est un Banach. Supposons que, pour $f_n, f \in E$, $||f_n - f|| \to 0$ implique $f_n(t) \to f(t)$ pour tout $t \in [0,1]$. Montrer que les normes ||.|| et $||.||_{\infty}$ sont équivalentes.

Exercice 7 (Universalité de $\ell^1(\mathbb{N})$.) Soit X un espace de Banach séparable. Montrer qu'il existe une surjection linéaire continue de $\ell^1(\mathbb{N})$ sur X.

Indication : remarquer que B_X , la boule unité fermée de X, est séparable et considérer une suite $(x_n)_{n>0}$ dense dans B_X . Pour $\alpha = (\alpha_n)_{n>0} \in \ell^1(\mathbb{N})$, on définit alors

$$T(\alpha) = \sum_{n=0}^{\infty} \alpha_n x_n.$$

Vérifier que $T:\ell^1(\mathbb{N})\longrightarrow X$ est linéaire et continue; montrer que $B_X\subset \overline{T(B_{\ell^1(\mathbb{N})})}$ et conclure.

Exercice 8 (Théorème d'extension de Tietze.) Si F est un espace métrique, on notera $C_b(F)$ l'espace vectoriel des fonctions continues et bornées sur F, muni de la norme $\|\cdot\|_{\infty}$. On rappelle que c'est un espace de Banach. Soit (E,d) un espace métrique et C un fermé de E. Le but de l'exercice est de montrer le résultat suivant, connu sous le nom de théorème d'extension de Tietze :

pour toute fonction $f:C\longrightarrow \mathbb{R}$ continue et bornée, il existe une fonction $\widetilde{f}:E\longrightarrow \mathbb{R}$ continue et bornée telle que $\widetilde{f}_{|C}=f$

Considérons pour cela $T: C_b(E) \longrightarrow C_b(C)$ l'opérateur de restriction défini par $T(\varphi) = \varphi|_{C}$.

- (a) Vérifier que T est linéaire, continue et $||T|| \le 1$.
- (b) Soit $f: C \longrightarrow [-1, 1]$ continue.
 - (i) Construire une fonction continue $f^+: E \longrightarrow [0,1]$ telle que

$$f^{+}(x) = \begin{cases} 0 & \text{si } x \in C \text{ et } f(x) \le 1/3\\ 1 & \text{si } x \in C \text{ et } f(x) \ge 2/3. \end{cases}$$

Indication: on pourra considérer $C_0 = \{x \in C : f(x) \le 1/3\}$ et $C_1 = \{x \in C : f(x) \ge 2/3\}$, puis poser

$$f^{+}(x) = \frac{d(x, C_0)}{d(x, C_0) + d(x, C_1)}.$$

(ii) De même, construire une fonction continue $f^-: E \longrightarrow [0,1]$ telle que

$$f^{-}(x) = \begin{cases} 0 & \text{si } x \in C \text{ et } f(x) \ge -1/3 \\ 1 & \text{si } x \in C \text{ et } f(x) \le -2/3. \end{cases}$$

(iii) En posant $g=f^+-f^-,$ vérifier que $g:E\longrightarrow [-1,1]$ est continue et vérifie

$$|g(x) - f(x)| \le 2/3, \quad \forall x \in C.$$

(c) Conclure que T est surjectif, en utilisant le critère de surjectivité des applications linéaires continues vu en cours.

M402, Analyse: Feuille No. 4

Théorème de Hahn-Banach et applications. Dualité

Exercice 1 (a) Soit E un espace de Banach et M un sous-espace fermé. Montrer que E/M est un espace de Banach.

(b) Soit M un sous-espace fermé de l'espace normé E. On suppose que M et E/M sont complets. Montrer que E est complet.

Exercice 2 (Base de Hamel et forme linéaire discontinue).

Un sous-ensemble \mathcal{B} d'un espace vectoriel E est appelé base algébrique (ou base de Hamel) si tout vecteur $x \in E$ peut être exprimé de façon unique comme une combinaison linéaire finie de certains éléments de \mathcal{B} :

$$x = \sum_{k=1}^{n} a_k x_k$$

pour certains scalaires non nuls $a_k \in \mathbb{K}$ et vecteurs $x_k \in \mathcal{B}$. On dit qu'un sous-ensemble \mathcal{B} de E est linéairement indépendant si tout sous-ensemble fini de \mathcal{B} est linéairement indépendant dans le sens habituel. Enfin \mathcal{B} engendre E si $\text{Vect}(\mathcal{B}) = E$, où

$$\operatorname{Vect}(\mathcal{B}) = \left\{ x = \sum_{k=1}^{n} a_k x_k : a_k \in \mathbb{K}, x_k \in \mathcal{B}, n \in \mathbb{N} \right\}.$$

- (a) Montrer que \mathcal{B} est une base de Hamel si et seulement si \mathcal{B} est un sous-ensemble linéairement indépendant maximal (au sens de l'inclusion).
- (b) Montrer que \mathcal{B} est une base de Hamel si et seulement si \mathcal{B} est un un sous-ensemble linéairement indépendant qui engendre E.
- (c) Montrer que si \mathcal{B}' est un système linéairement indépendant, alors il existe une base de Hamel \mathcal{B} telle que $\mathcal{B}' \subset \mathcal{B}$.

Indication: utiliser le lemme de Zorn.

- (d) En déduire que tout espace vectoriel E admet une base de Hamel.
- (e) Montrer que toute base de Hamel d'un espace de Banach de dimension infinie est nécessairement non dénombrable.

Indication : utiliser le théorème de Baire.

- (f) Montrer que sur tout espace vectoriel E de dimension infinie, il existe une forme linéaire discontinue.
- (g) Montrer que tout sous-espace vectoriel F d'un espace vectoriel E admet un supplémentaire algébrique G, c'est-à-dire un sous-espace vectoriel G tel que

$$F \cap G = \{0\}$$
 et $F + G = E$.

Exercice 3 Soit E un espace vectoriel, $n \in \mathbb{N}$, $f: E \mapsto \mathbb{C}$ une fonctionnelle linéaire, et $p_1, \dots, p_n: E \mapsto \mathbb{R}_+$ des seminormes telles que $|f(x)| \leq \sum_{k=1}^n p_k(x)$ pour chaque $x \in E$. Démontrer qu'il existent $f_1, \dots, f_n: E \mapsto \mathbb{C}$ linéaires telles que $f = \sum_{k=1}^n f_k$ et $|f_k(x)| \leq p_k(x)$ pour tous k et x.

Exercice 4 (Système biorthogonal) Soit $\{x_1, \dots, x_n\} \subset E$ un ensemble linéairement indépendant dans un espace vectoriel normé E. Alors il existe $f_1, \dots, f_n \in E^*$ telles que $f_i(x_j) = \delta_{ij}$. Montrer que chaque $x \in \lim \{x_i : 1 \le i \le n\}$ s'écrit $x = \sum_{i=1}^n f_i(x)x_i$.

Exercice 5 Soit $T: E \mapsto F$ linéaire, où E et F sont des Banach. Montrer que T est continue si et seulement si pour tout $y^* \in F^*$ on ait $y^* \circ T \in E^*$.

Exercice 6 (Limite de Banach). Soit S l'opérateur de translation sur l'espace $E = \ell^{\infty}(\mathbf{N}, \mathbb{R})$, défini par Sx(n) = x(n+1) si $x = (x(1), x(2), ...) \in E$. On considère

$$M = \left\{ x \in E : \lim_{n} \frac{x(1) + \dots + x(n)}{n} \text{ existe } \right\}$$

et on note $L_0(x)$ cette limite si $x \in M$.

- a) Montrer que L_0 se prolonge en une forme linéaire L sur E telle que ||L|| = 1.
- b) Montrer que L(Sx) = L(x) pour tout $x \in E$ (commencer par remarquer que $y = x Sx \in M$).
 - c) Montrer que si $x \in E$ vérifie $x_n \ge 0$ pour tout n, alors $L(x) \ge 0$.
- d) Montrer alors que $\liminf_{n\to\infty} x(n) \le L(x) \le \limsup_{n\to\infty} x(n)$. En déduire que L est une extension de la limite classique d'une suite convergente.
- e) Calculer L(a) pour la suite $a=(0,1,0,1,\cdots)$. Calculer L(b) si b est une suite périodique.
- (f) Montrer qu'il n'existe pas une application $f: E \mapsto \mathbb{R}$ qui est additive, multiplicative, invariante par translation et qui est une extension de la limite classique d'une suite convergente.

Exercice 7 Montrer que $c_0^* \simeq \ell_1$, $\ell_1^* \simeq \ell_\infty$ et $\ell_p^* \simeq \ell_q$ pour $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$.

Exercice 8 Soit $E = \ell^{\infty}$ et c le sous-espace constitué des suites complexes convergentes, munis de la norme $||.||_{\infty}$.

- a) Montrer que f définie sur c par $f(x) = \lim x_n$ est une forme linéaire continue sur c et calculer sa norme.
- b) En utilisant le théorème de Hahn-Banach, montrer alors que ℓ_1 n'est pas réflexif, c'est-à-dire, $(\ell^{\infty})^* \not\simeq \ell^1$.

Exercice 9 (a) Montrer que chaque forme linéaire et continue sur c_0 admet une extension unique à ℓ_{∞} .

- (b) Soit $G \subset \ell_1$, $G = \{x \in \ell_1 : x_1 = x_3 = x_5 = \dots = 0\}$. Montrer que chaque forme linéaire et continue non nulle sur g a une infinité d'extensions Hahn-Banach.
- (c) Soit E un espace vectoriel normé et soit M un sous-espace vectoriel de E. On suppose que $f:M\to\mathbb{C}$ admet deux extensions Hahn-Banach distinctes $g,h:E\to\mathbb{C}$. Montrer que f admet une infinité d'extensions Hahn-Banach. (Indication: Montrer que l'ensemble d'extensions Hahn-Banach de f est convexe dans X^* .)

Exercice 10 Soit f, f_1, \dots, f_n des formes linéaires sur un espace vectoriel $E, f \not\equiv 0$.

- (a) Montrer que les conditions suivantes sont équivalentes :
- 1. il existe $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n \setminus \{0\}$ tel que $f = \sum_{k=1}^n \alpha_k f_k$;
- 2. il existe une constante C > 0 telle que $|f(x)| \le C \max_k |f_k(x)|$ pour tout $x \in E$;
- 3. $\cap_{k=1}^n \ker(f_k) \subset \ker(f)$.
- (b) On pose $\phi(x) = (f_1(x), \dots, f_n(x))$. On suppose (3). Montrer que l'on peut définir une forme linéaire sur $F = \phi(E)$ par $g(\phi(x)) = f(x)$. Retrouver l'implication (3) implique (1) en utilisant un prolongement de g.
- (c) Soit $g_1, \dots g_m$ fonctionnelles linéaires sur un evn X tel que $\bigcap_{k=1}^m \ker(g_k) = \{0\}$. Montrer que $X^* = \lim\{g_1, \dots, g_m\}$ (sans utiliser (a)).
- (d) Avec les notations précédentes, soit $M = \bigcap_{k=1}^n \ker(f_k)$. On suppose de nouveau que $M \subset \ker(f)$. Montrer que les fonctionnelles linéaires h et h_j , $1 \le j \le n$, h([x]) = f(x) et $h_j([x]) = f_j(x)$, $[x] \in E/M$, sont bien définies sur E/M. Retrouver l'implication (3) implique (1).

Exercice 11 Soit 1 .

- (a) Soit $F = \{x = (x_n) \in \ell_p : \sum_{n=0}^{\infty} x_n = 0\}$. Montrer que F est un sous-espace dense dans ℓ_p .
- (b) (Question bonus) Soit (a_n) une suite de scalaires telle que $\sum_{n=0}^{\infty} |a_n| \neq 0$. Trouver une condition nécessaire et suffisante pour que le sous-espace $G = \{x = (x_n) \in \ell_p : \sum_{n=0}^{\infty} a_n x_n = 0\}$ soit dense dans ℓ_p .

Exercice 12 $(L^1(\mathbb{R}^+)$ n'est pas le dual de $L^{\infty}(\mathbb{R}^+)$).

(a) Vérifier que si $g \in L^1(\mathbb{R}^+)$ et si

$$\Phi_g(f) = \int_0^{+\infty} f(t)g(t) dt, \qquad f \in L^{\infty}(\mathbb{R}^+),$$

alors $\Phi_g \in (L^{\infty}(\mathbb{R}^+))^*$ et $\|\Phi_g\| = \|g\|_{L^1(\mathbb{R}^+)}$. Ainsi.

$$\Phi: L^1(\mathbb{R}^+) \longrightarrow L^{\infty}(\mathbb{R}^+)$$

$$g \longmapsto \Phi_g$$

est linéaire et isométrique. Nous voudrions montrer dans la suite que Φ n'est pas surjective.

(b) Soit V le sous-espace vectoriel de $L^{\infty}(\mathbb{R}^+)$ défini par

 $V = \{f : \mathbb{R}^+ \longrightarrow \mathbb{R} \text{ continue et telle que } f \text{ admet une limite en } +\infty\}.$

(i) Montrer qu'il existe $\widetilde{\Phi} \in (L^{\infty}(\mathbb{R}^+))^*$ telle que

$$\widetilde{\Phi}(f) = \lim_{x \to +\infty} f(x), \qquad f \in V.$$

(ii) Supposons qu'il existe $g \in L^1(\mathbb{R}^+)$ telle que $\widetilde{\Phi} = \Phi_g$. Montrer que pour toute fonction f continue à support compact, on a

$$\int_0^{+\infty} f(t)g(t) dt = 0.$$

(iii) En déduire que g = 0 presque partout, puis conclure.

Exercice 13 (Supplémentaire topologique). Soit E un espace de Banach et F un sous-espace vectoriel fermé de E. On dit que F admet un supplémentaire topologique s'il existe un sous-espace vectoriel fermé G tel que $E = F \oplus G$ (c'est-à-dire $F \cap G = \{0\}$ et E = F + G).

- (a) Montrer que F admet un supplémentaire topologique si et seulement s'il existe une projection continue p (c'est-à-dire $p \in \mathcal{L}(E)$, $p^2 = p$) telle que $\mathrm{Im} p = F$.
- (b) Soit E un espace de Banach. Montrer que si F est un sous-espace vectoriel de dimension finie, alors F admet un supplémentaire topologique.
- (c) Soit E un espace de Banach et F un sous-espace vectoriel fermé de E tel que $\dim(E/F) < \infty$. Montrer que F admet un supplémentaire topologique.

M402, Analyse: Feuille No. 5

Espaces L^p et convolution.

Le triplet (X, τ, μ) désignera un espace mesuré, avec X un ensemble non vide, τ une tribu sur X et μ une mesure (positive) sur l'espace mesurable (X, τ) . Pour $1 \le p \le +\infty$, on note $L^p(\mu) = L^p(X, \tau, \mu)$.

Exercice 1 (a) Soit $f \in L^1(\mu)$. Supposons que, pour tout $A \in \tau$, on a

$$\int_A f \, d\mu = 0.$$

Montrer que f = 0 p.p.

(b) Soit $1 \le p < +\infty$ et $A \in \tau$. On pose

$$F = \{ f \in L^p(\mu) : f = 0 \text{ p.p. sur } A \}.$$

Soit $(f_n)_n$ une suite d'éléments de F qui converge vers f dans $L^p(\mu)$.

(i) Soit q l'exposant conjugué de p. Montrer que pour tout $g \in L^q(\mu)$, on a

$$\lim_{n \to +\infty} \int_X f_n g \, d\mu = \int_X f g \, d\mu.$$

- (ii) En déduire que f=0 p.p. sur A. Indication : on considère $\Omega_+=\{x\in X: f(x)>0$ p.p.} et $\Omega_-=\{x\in X: f(x)<0$ p.p.} et si p>1, on pose $g=|f|^{p-1}\chi_{A\cap\Omega_+}-|f|^{p-1}\chi_{A\cap\Omega_-}$.
- (iii) Conclure.

Exercice 2 Dans cet exercice, on considère $X = \mathbb{R}$, $\tau = \mathcal{B}(\mathbb{R})$ la tribu borélienne et $\mu = \lambda$ la mesure de Lebesgue sur \mathbb{R} . Soit $1 \leq p \leq +\infty$ et

$$C = \left\{ f \in L^p(\lambda) : f \geq 0 \text{ p.p.} \right\}.$$

On veut montrer que C est d'intérieur vide pour $p < \infty$ et d'intérieur non vide pour $p = \infty$.

- (a) On suppose dans cette question que $p < \infty$ et soit $f \in C$ et $\varepsilon > 0$. Pour $n \ge 0$, posons $A_n = \{t \in \mathbb{R} : 0 \le f(t) \le n\}$.
 - (i) Montrer qu'il existe $n \geq 0$ tel que $\lambda(A_n) > 0$. Posons alors $A = A_n$. Fixons $m > (\frac{n+1}{\varepsilon})^p$.

- (ii) Montrer qu'il existe $i \in \mathbb{Z}$ tel que $\lambda(A \cap [\frac{i}{m}, \frac{i+1}{m}[) > 0$. On pose alors $B = A \cap [\frac{i}{m}, \frac{i+1}{m}[$.
- (iii) Soit g(x)=f(x) si $x\in B^c$ et g(x)=-1 si $x\in B.$ Vérifier que $\|f-g\|_p\leq \varepsilon$ et $g\notin C.$
- (iv) Conclure.
- (b) On suppose dans cette question que $p=\infty.$ Montrer que $f=\chi_{\mathbb{R}}$ est dans l'intérieur de C.

Exercice 3 On suppose dans cet exercice que μ est une mesure finie sur un espace mesurable (X,τ) et on considère $f:X\longrightarrow \mathbb{R}$ une fonction mesurable. Pour chaque $n\in \mathbb{N}$, on pose

$$A_n = \{x \in X : |f(x)| \ge n\}$$
 et $B_n = \{x \in X : n \le |f(x)| < n+1\}.$

Démontrer que les propositions suivantes sont équivalentes :

- (i) f est intégrable;
- (ii) la série $\sum_{n} n\mu(B_n)$ converge;
- (iii) la série $\sum_{n} \mu(A_n)$ converge.

Exercice 4 Pour $n \in \mathbb{N}$, calculer

$$\int_0^{+\infty} \frac{x^n}{e^x - 1} \, dx.$$

Indication: on pourra commencer par les cas n = 0 et n = 1.

Exercice 5 [Inégalité de Jensen]

(a) Soit μ une mesure positive sur (X, τ) telle que $\mu(X) = 1$. Soit $f \in L^1(\mu)$ une fonction à valeurs réelles et supposons que pour tout $x \in X$, on a a < f(x) < b. Soit φ une fonction convexe sur]a, b[. Montrer que

$$\varphi\left(\int_X f\,d\mu\right) \le \int_X \varphi \circ f\,d\mu.$$

(b) En déduire que, pour tous nombres réels positifs y_1, y_2, \dots, y_n , on a

$$\left(\prod_{i=1}^n y_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^n y_i.$$

Exercice 6 Soit $f \in L^1(\mu)$ et pour $n \in \mathbb{N}$, posons

$$g_n(t) = \begin{cases} |f(t)| & \text{si } |f(t)| \le n \\ n & \text{si } |f(t)| > n. \end{cases}$$

(a) Montrer que la suite $(g_n)_n$ est croissante et converge ponctuellement vers |f|.

(b) Montrer pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$(E \in \tau, \ \mu(E) < \delta) \Longrightarrow \int_{E} |f| \, d\mu < \varepsilon.$$

Exercice 7 Soit (X, τ, μ) un espace mesuré et soit $p_1, p_2 \in [1, \infty[$ avec $p_1 \leq p_2$.

(a) Montrer que pour tout $p \in [p_1, p_2]$, si $f \in L^{p_1}(\mu) \cap L^{p_2}(\mu)$, alors $f \in L^p(\mu)$ et on a

$$||f||_{p}^{p} \leq ||f||_{p_{1}}^{tp_{1}} ||f||_{p_{2}}^{(1-t)p_{2}},$$

où $t \in [0, 1]$ est tel que $p = tp_1 + (1 - t)p_2$.

(b) Supposons $p_1=1$ et $p_2=2$ et $f\in L^1(\mu)\cap L^2(\mu)$. Montrer que

$$\lim_{p \to 1^+} ||f||_p = ||f||_1.$$

Exercice 8 (a) Soient $p,q,r\geq 1$ tels que $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. Montrer que si $f\in L^p(\mu)$ et $g\in L^q(\mu)$, alors $fg\in L^r(\mu)$ et

$$||fg||_r \le ||f||_p ||g||_q$$
.

(b) Soit $f: X \longrightarrow \mathbb{R}$ une fonction mesurable. Pour $p \in [1, +\infty[$, on pose

$$\varphi(p) = \int_X |f|^p d\mu$$
 et $D_f = \{ p \in [1, +\infty[: 0 < \varphi(p) < +\infty \} .$

Montrer que D_f est un intervalle (éventuellement vide).

- (c) Montrer que l'application $\phi: D_f \longrightarrow \mathbb{R}$ définie par $\phi(p) = \ln(\varphi(p))$ est une fonction convexe.
- (d) Montrer que pour tout $q \in [1, +\infty[$, on a

$$L^q(\mu)\cap L^\infty(\mu)\subset \bigcap_{q\leq p\leq +\infty}L^p(\mu),$$

et que pour toute fonction $f \in L^q(\mu) \cap L^{\infty}(\mu)$, on a

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

Exercice 9 Soit $1 \le p < +\infty$.

(a) Montrer que, pour tous $\alpha, \beta \in \mathbb{C}$, on a

$$|\alpha - \beta|^p \le 2^{p-1} (|\alpha|^p + |\beta|^p).$$

(b) Soit $(f_n)_n$ une suite de fonctions dans $L^p(\mu)$ et $f \in L^p(\mu)$ telles que

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad \mu - \text{p.p.} \quad \text{et} \quad \lim_{n \to +\infty} ||f_n||_p = ||f||_p.$$

Montrer que $(f_n)_n$ converge vers f dans $L^p(\mu)$.

Indication: on pourra utiliser (a) et le lemme de Fatou.

(c) Montrer que le résultat de (b) est faux pour $p = +\infty$.

Exercice 10 Soit $1 , <math>X =]0, +\infty[$ muni de la tribu des boréliens et $\mu = dt$ la mesure de Lebesgue sur X. Le but de l'exercice est l'étude de l'application linéaire T définie par

 $T(f)(x) = \frac{1}{x} \int_0^x f(t) dt, \qquad x > 0, f \in L^p(]0, +\infty[).$

- (a) Supposons dans cette question que $f \in C_c(]0, +\infty[)$ et est positive. Notons F(x) = T(f)(x). Montrer que
 - (i) $\lim_{x \to 0} xF^p(x) = 0$; (ii) $\lim_{x \to +\infty} xF^p(x) = 0$; (iii) F(x) + xF'(x) = f(x).
- (b) Montrer l'inégalité de Hardy : pour toute fonction $f \in L^p(]0, +\infty[)$, on a

$$||Tf||_p \le \frac{p}{p-1} ||f||_p.$$

- (c) Montrer qu'il y a égalité dans (b) si et seulement si f=0 p.p.
- (d) Démontrer que dans (b), p/(p-1) est la meilleure constante.
- (e) Montrer que si f > 0 et $f \in L^1$, alors $T(f) \notin L^1$.

Exercice 11 Calculer f * g pour les fonctions suivantes :

- (a) $f = \chi_{[-1,1]}$ et $g = \chi_{[-a,a]}$ avec $a \le 1$.
- (b) $f(x) = \exp(\alpha x)\chi_{[0,+\infty}(x) \text{ et } g(x) = \exp(\beta x)\chi_{[0,+\infty}(x), \text{ avec } \alpha, \beta \in \mathbb{R}.$

Exercice 12 Soit $\alpha > 0$. Pour $x \in \mathbb{R}$, posons

$$G_{\alpha}(x) = \frac{1}{\sqrt{2\pi\alpha}} \exp\left(-\frac{x^2}{2\alpha}\right).$$

(a) Montrer que

$$\int_{-\infty}^{+\infty} G_{\alpha}(x) dx = 1, \quad \int_{-\infty}^{+\infty} x G_{\alpha}(x) dx = 0, \quad \int_{-\infty}^{+\infty} x^2 G_{\alpha}(x) dx = \alpha.$$

(b) Montrer que pour tout $\alpha, \beta > 0$, on a $G_{\alpha} * G_{\beta} = G_{\alpha+\beta}$.

Indication: on pourra utiliser l'identité $\frac{(x-y)^2}{\alpha} + \frac{y^2}{\beta} = \frac{\alpha+\beta}{\alpha\beta} \left(y - \frac{\beta}{\alpha+\beta}x\right)^2 + \frac{1}{\alpha+\beta}x^2$.

Exercice 13 Pour $n \geq 1$, on définit $\phi_n : \mathbb{R} \longrightarrow \mathbb{C}$ par

$$\phi_n(t) = \frac{1}{\alpha_n} (1 - t^2)^n$$
, si $|t| \le 1$ et $\phi_n(t) = 0$, si $|t| > 1$,

avec

$$\alpha_n = \int_{-1}^{1} (1 - t^2)^n dt.$$

- (a) Montrer que la suite $(\phi_n)_n$ est une approximation de l'identité.
- (b) Soit $f \in C(\mathbb{R})$ vérifiant f(x) = 0 si $x \notin I$, où I = [-1/2, 1/2]. Montrer que $\phi_n * f$ est un polynôme sur I.
- (c) En déduire le théorème de Weiestrass : toute fonction continue sur un compact de \mathbb{R} est limite uniforme d'une suite de polynômes.

M402, Analyse: Devoir Maison No. 1

Exercice 1 (Complété d'un e.v.n.) Soit X un espace vectoriel normé. Le but de l'exercice est de montrer qu'il existe un espace de Banach \widehat{X} , appelé complété de X, avec la propriété suivante : il existe une application linéaire $i:X\longrightarrow \widehat{X}$ isométrique et d'image dense.

(a) On considère \widetilde{X} l'ensemble de toutes les suites de Cauchy de X. On définit sur \widetilde{X} la relation suivante

$$(x_n)_n \sim (y_n)_n$$
 si $\lim_{n \to +\infty} (x_n - y_n) = 0$.

- (i) Montrer que \sim est une relation d'équivalence sur \widetilde{X} .
- (ii) Justifier que si $(x_n)_n \in \widetilde{X}$, alors $\lim_{n \to +\infty} ||x_n||$ existe, et que si \widehat{X} désigne l'espace quotient $\widehat{X} := \widetilde{X} / \sim$, on peut poser

$$||[(x_n)_n]||_0 = \lim_{n \to +\infty} ||x_n||,$$

où $[(x_n)_n]$ désigne la classe d'équivalence de $(x_n)_n$ dans \widehat{X} .

- (iii) Vérifier que $\|\cdot\|_0$ est une norme sur \widehat{X} et que $(\widehat{X}, \|\cdot\|_0)$ est complet.
- (b) On définit

$$\begin{array}{cccc} i: & X & \longrightarrow & \widehat{X} \\ & x & \longmapsto & [x], \end{array}$$

où [x] désigne la classe des suites qui convergent vers x.

- (i) Vérifier que i est linéaire et isométrique.
- (ii) Montrer que l'image de i est dense dans \widehat{X} .
- (c) Montrer que \widehat{X} est unique à un isomorphisme isométrique près, c'est-à-dire que si Y est un autre complété de X, alors il existe un isomorphisme isométrique $T:\widehat{X}\longrightarrow Y$.

Exercice 2 Soit (K, d) un espace métrique compact et a un point fixé de E. Soit \mathcal{A} une sous-algèbre de $C(K, \mathbb{R})$ vérifiant les deux propriétés suivantes :

- (i) pour tout $x_1, x_2 \in K$, $x_1 \neq x_2$, il existe $f \in \mathcal{A}$ tel que $f(x_1) \neq f(x_2)$;
- (ii) pour toute $f \in \mathcal{A}$, f(a) = 0.

Montrer que l'adhérence de \mathcal{A} est égale à

$$\overline{\mathcal{A}} = \{ f \in C(K, \mathbb{R}) : f(a) = 0 \}.$$

Exercice 3 1. On considère ℓ^1 l'espace des suites complexes $x=(x_n)_{n\geq 0}$ telles que

$$||x||_1 = \sum_{n=0}^{\infty} |x_n| < \infty,$$

et ℓ^{∞} l'espace des suites complexes bornées que l'on munit de la norme sup. Pour chaque élément $u = (u_n)_{n \geq 0} \in \ell^{\infty}$, on définit l'application $\varphi_u : \ell^1 \longrightarrow \mathbb{C}$ par

$$\varphi_u(v) = \sum_{n=0}^{\infty} u_n v_n, \qquad v = (v_n)_{n \ge 0} \in \ell^1.$$

- (a) Montrer que φ_u est linéaire, continue et vérifier que $\|\varphi_u\| = \|u\|_{\infty}$.
- (b) Soit maintenant $T: \ell^{\infty} \longrightarrow (\ell^{1})^{*}$ définie par $T(u) = \varphi_{u}$. Montrer que T est un isomorphisme isométrique de ℓ^{∞} sur $(\ell^{1})^{*}$. Dans la suite, on notera pour $u \in \ell^{\infty}$ et $v \in \ell^{1}$, $\langle v, u \rangle = \varphi_{u}(v)$.
- 2. Soient X un espace vectoriel normé et $(x_n)_n$ une suite de X. On dit que $(x_n)_n$ converge faiblement vers 0 si pour toute forme linéaire $\varphi: X \longrightarrow \mathbb{C}$ continue, on a

$$\lim_{n \to +\infty} \varphi(x_n) = 0.$$

Vérifier que si $(x_n)_n$ tend vers 0 dans X (au sens de la norme), alors $(x_n)_n$ converge faiblement vers 0. Le but de l'exercice est de montrer que la réciproque est vraie dans ℓ^1 .

3. On note \overline{B} la boule unité fermée de ℓ^{∞} et pour $x, y \in \overline{B}$, on pose

$$d(x,y) = \sum_{n=0}^{\infty} 2^{-n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$$

- (a) Montrer que d est une distance sur \overline{B} .
- (b) Montrer que la convergence dans l'espace métrique (\overline{B}, d) est équivalente à la convergence simple, c'est-à-dire que $y^{(k)} = (y_n^{(k)})_{n\geq 0}$ converge vers $y = (y_n)_{n\geq 0}$ dans (\overline{B}, d) si et seulement si pour tout $n \geq 0$,

$$\lim_{k \to \infty} y_n^{(k)} = y_n.$$

(c) Montrer que l'espace (\overline{B},d) est complet.

- 4. Soit $(x^{(k)})_{k>0}$ une suite d'éléments de ℓ^1 qui converge faiblement vers 0.
 - (a) Remarquer que pour tout entier n, on a

$$\lim_{k \to \infty} x_n^{(k)} = 0.$$

(b) On fixe $\varepsilon > 0$ et on considère, pour $n \ge 0$, l'ensemble

$$F_n = \{ y \in \overline{B} : |\langle x^k, y \rangle| \le \varepsilon, \, \forall k \ge n \}.$$

Montrer que F_n est un fermé de (\overline{B},d) et que

$$\overline{B} = \bigcup_{n \ge 0} F_n.$$

- (c) En déduire qu'il existe un entier n_0 tel que F_{n_0} est d'intérieur non vide.
- (d) En remarquant que F_{n_0} est convexe et symétrique par rapport à 0, montrer qu'il existe $\delta > 0$ tel que $B(0,\delta) \subset F_{n_0}$. En déduire qu'il existe un entier N_0 tel que pour tout $b \in \overline{B}$ vérifiant $b_n = 0$ pour $n \leq N_0$, on a $b \in F_{n_0}$.
- (e) En déduire que pour tout $k \geq n_0$, on a

$$||x^{(k)}|| \le \sum_{n=0}^{N_0} |x_n^{(k)}| + \varepsilon.$$

(f) Conclure finalement que $(x^{(k)})_k$ converge fortement vers 0 dans ℓ^1 .

Exercice 4 Soit $E = C([0, \pi], \mathbb{R})$ muni de la norme infinie

$$||f||_{\infty} = \sup_{t \in [0,\pi]} |f(t)|.$$

On fixe $\varphi \in E$ et on considère $T: E \longrightarrow \mathbb{R}$ définie par

$$T(f) = \int_0^{\pi} f(t)\varphi(t) dt, \qquad f \in E.$$

- (a) Montrer que T est une application linéaire et continue.
- (b) On suppose dans cette question que pour tout $t \in [0, \pi], \varphi(t) \ge 0$. Calculer ||T||.
- (c) On suppose maintenant que $\varphi(t) = \cos(t), t \in [0, \pi]$. Calculer ||T||.

Exercice 1: (a)(i) La relation ~ est réflexive: pour toute suite de Couchy (2,), or a (x,) ~ (2,) con lin (2,-2,)=0! La relation v en muchique ca si (20m) et (4m) ent deux entes de landy telles que $(2n) \vee (y_n)$, alors $\lim_{n \to \infty} (2n - y_n) = 0$ et duc lin (yn-2n) = 0. & 'ai (yn) ~ (2n). La relation ~ et transtive: ei (2m), (4m), (8m) sont trois sonte de Cauchy telle que (20m) ~ (yn) et (yn) ~ (5m) alors on a $\lim_{n\to\infty} (x_n - y_n) = 0 \text{ et } \lim_{n\to\infty} (y_n - y_n) = 0.$

En écrisant que 2 - 3 = (2 - 4 - 4 - 3 -) , on en deduct que lin (2 - 3 m) = 0, d'où (2 m) ~ (3 m).

La relation v est done reflexive, synétrique et transtère. C'et une relation d'équivalence.

(ii) Si (2,), et me senter de Cauchy, l'négalité tringulouie $|||\chi_{m}|| - ||\chi_{m}|| \leq ||\chi_{m} - \chi_{m}||, \forall m, m.$

Come $\lim_{M\to\infty} \|x_m - x_m\| = 0$, on en dédut que

lin(||xm||_ ||xm||)=0, ce qui proue que la sonte

(112 nll). At de Couchy donn R qui ast complet. (12 nll) converge.

Mortion maintenant que $\|\cdot\|_0$ of bien défisie. Autement dit, il s'agit de mortie que si $[(2n)] = [(y_n)]$ alors $\lim \|x_n\| = \lim \|y_n\| \cdot G_{x} [(x_n)] = [(y_n)] \text{ uiplique que } (x_n) \cdot (y_n) \text{ et dose que } \lim (x_n-y_n) = 0.$

En utisant une noulle fais l'inégalité tréangulance,

on a |||x_n||-||y_n|| ≤ ||2n-y_n|| →0

et donc lin (||xm||-||ym||)=0.

Come li ||2011 et li ||40|| existent, en an chiduite

que li || & || = li || \frac{1}{2} ||.

(iii) L'application ||. ||. : X _____ [0,+0[est une

nome can: * si || [(e.)] || = 0 aloro lin || x = 0

et done li 2 = 0.

Ains [(2)] ~ Og)

où Ox est le clarse d'équivalence de la suite identiquement 3

* hi (x, [(2m)]) e K x X, on a:

* Si ([(2.)], [(y.)]) e \(\hat{\chi}_x \hat{\chi}_, on a.

 $\| [(x_n)_n] + [(y_n)_n] \|_{\infty} = \| [(x_n + y_n)_n] \|_{\infty} = \lim_{n \to +\infty} \| x_n + y_n \|$

Gr come $\|.\|$ at we nome by X, on α : $\|x_m + y_m\| \le \|x_m\| + \|y_m\|$

et come chacun des ternes de cette négalité parè de un livite, on en déduit que lim ||x. +yn|| < lim ||x. || + lim ||yn||,

ce qui donne $\| [(x_n)_n] + [(y_n)_n] \|_{o} \le \| [(x_n)_n] \|_{o} + \| [(y_n)_n] \|_{o}$.

Montrono que (X, ||. ||.) est complet.

Soit (2(4)) une sonte de Couchy dans X, Z=[(2n),].

Pour $x \in X$, on notera dans la sutre [22] la classe des sonte qui convergent vers x (qui contient en particulier la sonte constante el gale à x!).

On sout que pour tout le >1, la soute (2 m) at we soute de Couchy dono X. Done pour tout k 71, il exite No(h)eIN* tel que $n > p > N_o(k) \implies \left\| \frac{2}{2} \left(\frac{k}{2} \right) \right\| \leq 2^{-k}$ $\left\| \begin{array}{c} \mathcal{L}^{(Q)} - \left[\frac{1}{2} \mathcal{L}^{(Q)} \right] \right\|_{o} = \lim_{n \to +\infty} \left\| \frac{\mathcal{L}^{(Q)}}{2n} - \frac{\mathcal{L}^{(Q)}}{2n} \right\|_{o} \leq 2^{-\frac{1}{2}} (*)$ Ains, on obtiet, ouce l'inégalité triangulaire, que: $\| \mathcal{Z}_{N_0(k)} - \mathcal{Z}_{N_0(p)} \| = \| [\mathcal{Z}_{N_0(k)}] - [\mathcal{Z}_{N_0(p)}] \|_{\circ}$ ≤ | [\(\frac{2}{2} \rm \left(\frac{1}{2} \right) - \(\frac{2}{2} \right) \right| + | \(\frac{2}{2} - \frac{2}{2} \right) \right| + | \(\frac{2}{2} - \frac{2}{2} \right) \right| \right| \(\frac{2}{2} - \frac{2}{2} \right| \right| \(\frac{2}{2} - \frac{2}{2} \right| \right| \\ \frac{2}{2} - \left| \\ \frac{2}{2} \\ \frac{2}{2} $\leq 2^{-k} + 2^{-p} + ||2^{(k)} - 2^{(p)}||_{o}$ Gra lin $(2^{-l}+2^{-p}+||2^{(l)}-2^{(e)}||_{o})=0$ et donc ce ci prouve que la suite (2No(h)) et une suite de Couchy dons X. Notoro Z:= [(ZNo(R))] TEX et montros que $({}^{2})_{k}$ converge vers 2 don \hat{X} . $\|z^{(k)} + \|z^{(k)} - \|z^{(k)}\| + \|z^{(k)} - z\|_{\infty}$ $\leq 2^{-\frac{1}{4}} + \left\| \left[\frac{1}{2} \cos(\frac{1}{4}) \right] - \frac{1}{2} \right\|_{0}$ d'apris (1).

On obtient donc

Come (2 N. (b)) & est me ente de Conshy dons X.

d'où li || 2 (3) _ 2 || = 0, et qui proue la

convergence de $(2^{(\ell)})_{k}$ dans $(X, \|.\|_{\bullet})$.

Ainsi (X, 11.11.) at complet.

(b)(4) Pour 2, y e X et Le IK, on a:

$$i(\lambda x + y) = [x + \lambda y] = [x] + \lambda [y] = i(x) + \lambda i(y).$$

Done i est linéaire.

D'autre part, or a par définition de la nome 11. 110, on a:

$$\|i(x)\|_{o} = \|[x]\|_{o} = \|x\|$$
, $x \in X$.

Ceci prouve que i et une isonétrie

(b)(i). boit $x = [(x_n)_n] \in \hat{X}$.

Gra
$$\|i(x_p) - x\|_{o} = \|[x_p - x_n]_{x_p}\|_{o}$$

$$= \lim_{n \to +\infty} \|x_p - x_n\|_{o}$$

Comme par définition $(x_n)_n$ et une soute de Couchy de X on a lin $||x_p - x_n|| = 0$.

Anisi $\lim_{p\to +\infty} ||i(x_p)-x||_0 = 0$, ce qui prouze que $(i(x_p))_p$, sonte de Imi, converge vuo x dans \hat{X} . Ceci étant veai pour tent élement $x \in \hat{X}$, or en didnit que Imi et deux dans \hat{X} .

c) soit (Y, ||. ||y) un appace de Barach tel qu'il
exote une application j: X -> Y luic'aux isontrégue
et d'image duoc.

Pour & EX, pours

$$T(i(x) = j(x).$$

Come i et isonitique donc en particulier injecture, Toot bien définit.

D'autre part, Tat linéaire son Imi

Enfin, $\|T(i(x)\|_{y} = \|i(x)\|_{y} = \|i(x)\|_{x} = \|i(x)\|_{0}$ Can j'i ortice $\|can i i ortine$.

Anie T at une isometrie du Imic X dans Y.

Comme Imi act deux dans X, T, l'étend en
une isométrie de X dans Y.

Il recte à montre que T est sujectif.

Pour cela remanquem que Imj c ImT c Y.

Conne Imj act deux dans Y, on en déduit que

ImT = Y.

Mais T était une isométice entre deux espaces de Barach, son image est nécessairement farmée.

Ainsi InT = InT = Y, ac qui acheix de prouver que Test un isomorphisme isométique.

Exercice @ Gratedit B = ct @ IRI,

on 11 at la forction définit sur K identiquement égaliais.

Il est faule de verifier que B est une

ens-algèbre de C(K, R) (noter que 1 ¢ ct). Gna 11 EB et B sépare les ponts de K (con et sépare les ponts de Ket et eB). Le Phetrem de Stone-Meienstrass implique alors que Bet denoe dans C(K,R): $\overline{B} = C(K,R)$. Montres maistenant que et = { fe c(K, R): f(a) = 0} L'inclusion e at immédiate car les fonctions de ct s'annulant en a, donc si fe cts, il existe (Pn). ue sonte de ct telle que $\|f_m - f\|_{\infty} \longrightarrow 0$.

En particulier $|f(a)| = |f(a) - f_m(a)| \le ||f_m - f||_{\infty}$.

Car $f_n(a) = 0$

Airi en faisant tendre m-s+00, on obtient que f(a)=0.

Pou l'inclusion réciproque D, renouqueme que si fe $C(K_1R)$ et f(a)=0 alors par devoité de B dous $C(K_1R)$,

il existe $g_n=f_n+\lambda_n I=B$, $f_n\in C_1$, $\lambda_n\in IR$,

telle que $\|g_n-f\|_{\infty} \to 0$.

En particular, on a $g_n(a) - f(a) \xrightarrow{n \to +\infty} 0$.

Or: $g_n(a) = f_n(a) + \lambda_n = \lambda_n$ can $f_n(a) = 0$ et f(a) = 0.

Ainsi $\|f_n - f\|_{\infty} = \|g_n - f - \lambda_n A\|_{\infty}$ $\leq \|g_m - f\|_{\infty} + |\lambda_m| \xrightarrow{n \to +\infty} 0$.

Ceci proux que fect-

Exercice 3

(a) Remarques que pour tont $u = (u_n)_{n>0} \in l^{\infty}$ et $v = (v_n)_{n>0} \in l^{\Delta}$, en a:

|un vn | < ||u|| 00 |vn .

Come la seine I | v_ | converge, la seine I un vi converge absolument donc converge et lu (v) est bien définit. Il réalte innédiatement de propriétés son le sommes de seine convergentes que in v, ve el 1, le C.

$$\sum_{m=0}^{+\infty} (\lambda U_m + W_m) u_m = \lambda \sum_{m=0}^{+\infty} V_m u_m + \sum_{m=0}^{+\infty} w_m u_m,$$

ce qui donce Pu (Lv+vv) = L Pu (v) + Pu (w).

Ainsi Pu et linéanie. Remarqueme d'autre part que si u e l° et v e l¹, or a pour tout N ∈ N,

 $\left| \frac{1}{100} |u_n v_n| \leq \frac{1}{100} |u_n| |v_n| \leq ||u_n|| |v_n| \leq ||u_n|| ||v_n|| \leq ||u_n|| ||v_n|| \leq ||v_n|| ||v_n|| ||v_n|| \leq ||v_n|| ||v_n|||v_n||| ||v_n|| ||v_n|||v_n|||v_n|||v_n|| ||v_n|||v_n|||v_n||| ||v_n||| ||v_n||| ||v_n||||v_n|$

En passant à la liente quand N-+0, or obtient que

| Yu (v) | \le ||u || 0 || \sqrt{1}.

Ceci prouve que l'est continue et || l'u || \le || u || \sigma.

Pou mortrer l'égalité de le nonne, remarquer que

pour tout E >0, 3 N \in N tq

|| u || - E \le || u || \le || u || \sigma.

Covidera V:= (0,0,...,0,1,0,...)

Gua $v \in l^1$ et $||v||_1 = 1$.

De plus, Pu (v) = = un vn = un

Aini | Pu (v) = |un > ||u|| - E.

Ceci permet d'en déduie que || Yu || > || U|| 00 - E, et comme ceci de vai pour tout 2 >0, on obtient que 11/4/13/14/100 et donc finalement | | Pu | = | | u | | 00.

(b) Graver au (a) que, pour u e los jon a T(u) e(l1) * et ||T(u)|| (21) * = || Yu || = || u || =

De plus, il est facile de verifier que Test linéaire.

Ainsi, Test une isométrie linéaire de la dons (l1)*.

La seule chose qu'il reste à démontrer est le sujectivité de

T. Sit donc PE (1)*. Gu cherche ue la tel que

Pu=9. Si on applique cette égalite à

e:= (0,0,-,0,1,0,0,-) e l', nice portion

on obtint que Yu (e()) = Y (e())

Jule (

Posos donc un = Y(em), M7,0.

Remarques que Sup 19 (en) < 119/164+.

Aini u = (um) = e los.

De plus, par construction, pour tout no,0,00 a 4(e(m)) = 4 (e(m)).

Par linéante, on obtrent que pour boute sonte ve Vect (e^(m): 100)

on a: $\underline{\varphi(v)} = \underline{\varphi_u(v)}$.

Remarquons alors que Vect (e(m): 10) est dense dans l':

en effet, h $W = (V_{\ell})_{\ell,0} \in \ell^{1}$, on a

N- 2 v. e = (0,0,-70, Vm+1, Vm+2,1-)

et donc $\|v - \sum_{k=0}^{n} v_k e\|_1 = \sum_{k>n+1} |v_k| \xrightarrow{n \to +\infty} 0$

Airsi li ve elle) = v et comme

July Vie (e) e Vect (e(n): 120), cela prom

la dente de Vect (e(n) n20)

D'aprè (*), 4 et l'u coincident mu un sous copace deux et come elle soit continues, elle consident un tout

l'espace. Ainsi $Y = Y_u = T(u)$ et T et un isomorphisme sujectif. Cela achire de prouve que T et un isomorphisme iso-étique de l^{∞} su $(l^{1})^{*}$.

2) boit 4: X - C lingais continue.

et come liment opre en déduit que

Li P(2m) = 0, ce qui prouve que (2m) converge faiblement

vero O:

(3(a)) Remarques que 0 \le 2 - 1/2n - 4n \le 2 - n

et la sine 2 - conveyer. Airò la

d: B x B --- R+ at bien définie.

D'antre port, or a:

* Y 2, y & B x B , d(2, y) = d(y, 2)

* d(x,y)=0 \$\times \forall ->0, 2^- \frac{|2-7|}{1+|2-7|}=0

⇒ ∀ ~>, | 2cn - yn | = 0 => ∀ ~>, 0, 2n = yn >

d'ai d(213)=0 0 2=4.

* Remarques que $t \mapsto \gamma(t) = \frac{t}{1+t}$ at crossante en $[0,+\infty[$. Ainsi pour tous $a_1b_1c_2o_1$, $a_1b_2c_3o_4$, $a_2b_2c_4$, on a

 $\frac{a}{1+a} = 9(a) \le 9(b+c) = \frac{b+c}{1+b+c} = \frac{b}{1+b+c} + \frac{c}{1+b+c}$

a < b + c ...

Suit mainterant 2, y 13 & B. Comme

|2n-yn| < |2n-3n+13n-yn)

on part appliques ce qui précède à $a = |x_n - y_n|$, $b = |x_n - y_n|$, $c = |y_n - y_n|$, ce qui donne:

 $\frac{\left|2n-y_{n}\right|}{1+\left|2n-y_{n}\right|}\leq\frac{\left|2n-3n\right|}{1+\left|2n-5n\right|}+\frac{\left|3-y_{n}\right|}{1+\left|3n-y_{n}\right|}.$

En multipliant par 2⁻ⁿ et en sommant sur n, on oblieit $d(z,y) \leq d(z,y) + d(z,y)$.

Anisi d'est une distance.

3(b) Suppose que $y^{(4)} = (y^{(4)})_n$ conveye vers $y = (y_n)_n$ dans (B, d).

$$2^{-P} \frac{|y^{(k)}_{P} - y_{P}|}{1 + |y^{(k)}_{P} - y_{P}|} \leq d(y^{(k)}, y)$$

ot due
$$|y^{(2)}_{P} - y_{P}| \leq \frac{2^{P} d(y^{(2)}, y)}{1 - 2^{P} d(y^{(2)}, y)}$$

pour le sufficament grand pour que 1_2°d(y(1),y)>0.

En faisant tendre k - + , conver d(y", y) - 0, on obtient que li |4p-4p| = 0.

Ais pour tout pro, liyp = yp

Réciproquement, Infosos que V p>,0, li 4p = 4p.

Fixon ε >0 et commençon par charin $N \in \mathbb{N}$ tel qua $\sum_{p, \geq N} 2^{-p} \leq \frac{\varepsilon}{2}$.

Con a donc

$$\frac{\sum_{P \ni N} 2^{-p} \frac{|y^{(k)}_{P} - y_{P}|}{1 + |y^{(k)}_{P} - y_{P}|} \leq \frac{\epsilon}{2} \quad (*)$$

Maintenant, comme pour tout p >0, on a: ling y = 4p,

il exate $K_P \in \mathbb{N} / \mathcal{L}_{>} K_P \Rightarrow 2^{-P} \frac{|y|^{(L)} - y_P|}{1 + |y|^{(L)} - y_P|} \leq \frac{\varepsilon}{2N}$

D'in pru l > max (Ko, Ki,.., Kn-1), on a

 $\forall p \in [0, N-1], \quad 2^{-p} \frac{|y_p - y_p|}{1 + |y_p - y_p|} \leq \frac{\varepsilon}{2N}$

et donc $\frac{1}{p=0} 2^{-p} \frac{|y^{(l)}_{p} - y_{p}|}{1 + |y^{(l)}_{p} - y_{p}|} \leq \frac{\varepsilon}{2} \cdot (**)$

En rosenblant (*) et (**), or obtiet que pour tout le >, max (Ko, Ki,.., KN-1), or a:

 $d(y^{(k)}, y) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Aires (y(2)) converge vers y dans (B,d).

(c) soit (y(4)), une sonte de Cauchy dans (B,d).

Pour tout m,o, on a

 $|y_n - y_n| \le 2^n \frac{d(y^{(k)}, y^{(k)})}{1 - 2^n d(y^{(k)}, y^{(k)})}$

et dunc li |y(!) - y(!) = 0.

donc elle conveye vero y « « C.

a par pasage à la liste que 14 n/ <1.

Ainsi y= (ym) = B.

Il rote à remourques que conne Vn 30, on a:

lie y(le) = ym, les quetion 3(b) implique que

(y(l)) converge vois y dans (B, d).

Aini (B, d) est complet.

(40) Par définition de la convergence faible, on a Y re (l')*, li r(2(1)) = 0

Comidéon (= (0,0,...,0,1,0,0,) e la et $\varphi = \varphi_{u}(e)$ Alos $\varphi_{u}(e)(e) = \sum_{p=0}^{\infty} u_{p}(e) x_{p}(e)$ $= \chi^{(1)}$

 \mathcal{D} in $\lim_{n \to \infty} a_n^{(4)} = 0$.

4(b) Soit (yP)) une suite d'éléments de Fon qui converge

vero y dans (B,d). On vent montre que y \in Fn,

autrement det que pour tout k >, n, on a: \ \ \(\chi^{\left(k)}, y > \left| \left\left\).

Fixono donc him et écrisons

$$|\langle \chi^{(k)}, y \rangle| = |\sum_{k=0}^{+\infty} \chi^{(k)}_{k}| y_{k} | \leq |\sum_{k=0}^{+\infty} \chi^{(k)}_{k}| y_{k} | + |\sum_{k=0}^{+\infty} \chi^{(k)}_{k}|$$

$$\leq \varepsilon + \frac{\int_{1=0}^{+\infty} |\chi(k)| |\chi_{1} - \chi_{2}^{(k)}|}{|\chi_{1} - \chi_{2}^{(k)}|}, \quad (*)$$

la dernien inégalité provenant du fait que y PEFM. Come & El', pour tout 12 > 0, INEIN tq

$$\frac{\int_{-\infty}^{+\infty} |x_{\ell}^{(k)}| \leq \frac{n}{2}}{\ell + \frac{n}{2}}$$

Gr pont alors décomposer le deuxième souve qui apparent dans (*) de le façon souvente (en utilisant le fait que y et y (°) ∈ B done Y l, |y2/≤1 el: |y2/≤

$$\sum_{\ell=0}^{+-} |\chi_{\ell}^{(k)}| |y_{\ell} - y_{\ell}^{(p)}| \leq \sum_{\ell=0}^{N-1} |\chi_{\ell}^{(k)}| |y_{\ell} - y_{\ell}^{(p)}| + 2 \sum_{\ell \geq N} |\chi_{\ell}^{(k)}|$$

D'où avec (*), on en déduit que:

(26) y> = E+ h+ = |2(4) | ye-ye) D'après (Bb), come (y(e)), converge vus y dans (B,d), on a pour tout le [0, N-1], lim | ye-ye |=0 En passant à le linte quand p -> +00, on en déduit <2 € + 12. Ce à étant naix pour tout 120, on obtient finalement (2(4), y> (& E, Y h >, n et donc ye Fn. Ainsi Fn & un fame de (B,d). B=UFm. Soit y & B C la. Comme (x (2)), tend faiblement vero 0, $\lim_{k \to \infty} \Upsilon_y(x^{(k)}) = 0 \text{ , i.e. que } \lim_{k \to \infty} \langle x^{(k)}, y \rangle = 0.$ Ainsi, il exste no tel que Yk>, no, on a |< x', y> | < E. Authent det, y & Fro C UF. Cra prour que BCUFa et l'induror ricipoque et inmédiate.

(c) On a B = UFn (B,d) all complet et Fn at femi dom (B,d).

Ainsi d'après le Keissem de Bair, il exite un entir (20) no tel que Fno $\neq \emptyset$.

(d) Il et facile de voir que si ye Fn alors -y & Fn: en effet, tout d'abord ye Fr => ye B => -ye B et d'autre part, y Fr. => Vh >m, / (2(4), y >) < E, et comme $|\langle x^{(k)}, -y \rangle| = |-\langle x^{(k)}, y \rangle| = |\langle x^{(k)}, y \rangle| \le \varepsilon$ on a déduit que - y e Fn. On verife avoir que Fr et course con si y1142 EF.

et de [0,1] alos ly,+(1-1)y2 e B et

 $< 2^{(k)} \lambda y_1 + (1 - \lambda) y_2 > = \lambda < 2^{(k)} y_1 > + (1 - \lambda) < 2^{(k)} y_2 >$ d'on (20), /4,+ (1-1) y2> = 2 | <2", y, > |+0-2) | <2", y27 | $(3=3(k-1)+3k \ge$

pour tout koon.

Ainsi ly1+(1-1) /2 EFm et donc Fm et comexe.

Maintenant d'aprè la que tion (c), on a Fro + 9. Autement dit 3 a c Fro et 800 teleque B(a,8) cFno.

Si $x \in B(0,8)$, on a $x = \frac{1}{2} \left[(x+a) + (x-a) \right]$ Runarques que x+a e B(a, 8) c Fro et

d'où comme Fino det synéttique par rapport à 0, on a ausai x-a e Fino.

Airsi x + a et x - a sont dann F_{mo} et par convexité, on a anon $2 = \frac{1}{2}(x+a)+(x-a) \in F_{mo}$.

Par conséquent $B(0,8) \subset F_{mo}$.

Il exote un entien No tel que

Maintenant in be B et bn = 0 pour n < No, or q:

$$d(0,b) = \frac{\int_{-\infty}^{+\infty} \frac{1}{2^n} \frac{|b_n|}{|a_n|}}{\frac{1}{2^n} \frac{1}{|a_n|}}$$

$$= \frac{\int_{-\infty}^{+\infty} \frac{1}{2^n} \frac{|b_n|}{|a_n|}}{\frac{1}{2^n} \frac{1}{2^n}} < 8.$$

Amsi be B(0,8) = Fno.

(e) Fixoro le 7, mo et définisons $b_n = \begin{cases} 0 & \text{si } n \leq N_0 \\ 2 \frac{(k)}{12} \frac{(k)}{12} & \text{si } n > N_0 + 1 \text{ et } 2 \frac{(k)}{n} = 0. \end{cases}$ $1 & \text{si } n > N_0 + 1 \text{ et } 2 \frac{(k)}{n} = 0.$

Gn a b:= (bn) = B et bn=0 pom n &No.

Ainsi d'aprè (d), on a b & Fno.

De plus, comme pour n ? Not1, on a b, & m = |2 m, ,

on en dédent que

$$\langle \chi^{(k)}, b \rangle = \sum_{m=0}^{\infty} \chi^{(k)} b_m = \sum_{m=N_0+1}^{\infty} b_m \chi^{(k)} = \sum_{m=N_0+1}^{\infty} |\chi^{(k)}|$$

$$d' = |x| =$$

Ais, on obtient que

$$\|\chi^{(4)}\|_{A} = \sum_{n=0}^{N_{o}} |\chi_{n}^{(4)}| + \sum_{n=N_{o}+1}^{+\infty} |\chi_{n}^{(4)}|$$

$$\leq \sum_{n=0}^{N_{o}} |\chi_{n}^{(4)}| + \epsilon.$$

come la some est fuie, en a avoi

$$\left|\sum_{n=0}^{\infty} |2^{n}| = 0.$$

Par consignet, I m, tel que i ling alors

No 12(1) | E E.

comenge fortenent vers O.

Exercice 4.

deT

(a) La linéarité provient de la linéarité de l'intégrale.
Montrons maintenant que Tet continue.

(b) D'après (b), on a ||T|| \(\lambda \rightarrow \ri

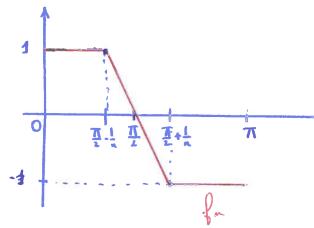
car 9(t) ≥0, t∈[0, 1].

D'autre part, on a T(1) = 1 4(H) dt.

D'ai South & ||T|| ||I|| = ||T||

Airi ||T||= 5 4 (Adt.

(c) $\int_{0}^{\infty} apnC(a), a = a$ $||T|| \leq \int_{0}^{\infty} |T| = \int_{0}^{\infty} \int_{0}^{\infty} apnC(a), a = a$ $||T|| \leq \int_{0}^{\infty} |T| = \int_{0}^{\infty} \int_{0}^{\infty} apnC(a), a = a$



$$G_{n} = \int_{0}^{\frac{\pi}{2} - \frac{1}{n}} \int_{0}^{\pi} \int_{0}^{\pi}$$

$$2 = \int_{0}^{\frac{\pi}{2} - \frac{1}{n}} a_n t dt - \int_{0}^{\frac{\pi}{2} - \frac{1}{n}} a_n t dt = T(h) - \int_{0}^{\frac{\pi}{2} - \frac{1}{n}} a_n t dt.$$

Ge obtiet donc

$$\left|\int_{0}^{\frac{\pi}{2}-\frac{1}{n}} \cot t \, dt - \int_{0}^{\pi} \cot t \, dt \right| \leq ||T|| + \frac{2}{n}$$

En faisant tendre n-+ cela dome

$$\int_{0}^{\frac{\pi}{2}} \cosh dt - \int_{\frac{\pi}{2}}^{\pi} \cosh dt \leq ||T||.$$

Master 1 mathématiques

Analyse

Devoir surveillé du 4 novembre 2016

Durée: 2 heures

Les documents ne sont pas autorisés. Le sujet comporte 4 exercices indépendants qui pourront être traités dans l'ordre de votre choix. Une attention particulière devra être apportée à la rédaction qui sera un élément important d'appréciation.

Exercice 1 On rappelle que c_0 est l'espace des suites complexes qui convergent vers 0 et c_0 muni de la norme

$$||x||_{\infty} = \sup_{n \ge 1} |x_n|, \qquad x = (x_n)_{n \ge 1} \in c_0,$$

est un espace de Banach. Soit $a=(a_n)_{n\geq 1}$ une suite de nombres complexes. On suppose que a vérifie la propriété suivante : pour toute suite $x=(x_n)_{n\geq 1}\in c_0$, la série $\sum_n a_n x_n$ est convergente.

(1) Pour tout $N \geq 1$, on définit une forme linéaire $\Phi_N : c_0 \longrightarrow \mathbb{C}$ par

$$\Phi_N(x) = \sum_{n=1}^N a_n x_n.$$

Montrer que Φ_N est continue et calculer $\|\Phi_N\|$.

(2) Montrer que $a \in \ell^1$.

Exercice 2 Soient E, F et G trois espaces vectoriels normés. On désigne par T une application linéaire de E dans F et par S une application linéaire **injective** de F dans G. On suppose que ST et S sont continues.

Dans les questions (1) et (2) ci-dessous (qui sont indépendantes) on ajoute des hypothèses supplémentaires qui suffisent à assurer, dans les deux cas, la continuité de T.

(1) On suppose que les espaces E et F sont complets. Montrer que T est continue.

(2) On suppose que F et G sont complets et que S(F) est un fermé de G. Montrer que T est continue.

Exercice 3 Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels. Montrer qu'il n'existe pas sur $\mathbb{R}[X]$ de norme pour laquelle cet espace est un espace de Banach.

Indication : on pourra raisonner par l'absurde et introduire les sous-espaces F_n des polynômes de degré inférieur ou égal à n.

Exercice 4 Soient $E = C([0,1], \mathbb{R})$ l'espace vectoriel des fonctions continues sur [0,1] à valeurs réelles et F l'espace vectoriel des fonctions continues sur $[0,+\infty[$ admettant une limite finie en $+\infty$. On munit ces deux espaces de la norme de la convergence uniforme

$$\|f\|_E = \sup_{x \in [0,1]} |f(x)|, \quad (f \in E) \quad ext{et} \quad \|g\|_F = \sup_{x \in [0,\infty[} |g(x)|, \quad (g \in F).$$

On rappelle que E et F munis de ces normes sont des espaces de Banach.

- (1) Montrer que l'application $\Theta: E \longrightarrow F$ définie par $\Theta(f)(x) = f(e^{-x})$ est un isomorphisme isométrique de E sur F (c'est-à-dire une application linéaire, isométrique et bijective).
- (2) Montrer que si E_0 est un sous-espace fermé de E, alors $\Theta(E_0)$ est fermée dans
- (3) En déduire que pour tout sous-espace E_1 de E (non nécessairement fermé), on a $\overline{\Theta(E_1)} = \Theta(\overline{E_1})$.
- (4) Soit $e_n(x) = e^{-nx}$, $n \in \mathbb{N}$ et A le sous-espace vectoriel de F engendré par les e_n , $n \geq 0$. Montrer que A est dense dans F.

Exercice 1.

(1) Pour se = (xn) x s, E Co, on a:

$$|\phi_N(z)| = \left| \sum_{n=1}^N a_n a_n \right| \leq \sum_{n=1}^N |a_n| |a_n| \leq |a_n|$$

Come on est luicaire, on en déduit que on est continue

et
$$\|\phi_{N}\| \leq \sum_{n=1}^{N} |a_{n}|$$
.

Montros que $\|\phi_{N}\| = \sum_{n=1}^{N} |a_{n}|$.

Considerum
$$x = (x_n)_{n>1}$$
, où $x_n = \begin{cases} \frac{\overline{a_n}}{|a_n|} & \text{si} & a_n \neq 0, n \leq N \\ 0 & \text{si} & a_n = 0, n \leq N \text{ ou } n>N \end{cases}$

Gn a
$$\|z\|_{\infty} \le 1$$
 et $z \in C_0$. De plus,
$$\phi_N(z) = \sum_{n=1}^N a_n a_n = \sum_{n=1}^N |a_n|$$

$$\mathcal{D}'$$
 on $\left| \frac{1}{2} \left| a_{N} \right| = \left| \phi_{N} \left(a \right) \right| \leq \left| \left| \phi_{N} \right| \right|$,

et finalement
$$\|\phi_N\| = \sum_{n=1}^N |a_n|$$
.

(2) Par hypothese, pour toute soute & = (2-), E Co (2) la scie Zanan converge. Avisi, pour toute sonte $\mathcal{R} = (\mathcal{R}_n)_n \in \mathbb{C}_0$, $\lim_{N \to +\infty} \sum_{n=1}^{\infty} a_n \mathcal{R}_n = \lim_{N \to +\infty} \phi_N(z)$ existe. En particulier, $\forall z = (a)_{a,c} \in C_0$, Sup | φN(x) <+ 0. Le Phéorene de Barach Steinheurs implique alors que Sup | On | < to. Autrement det, soup = |an| < += (*) Comme Dan on me seine à terme positife, les somme partielle sont crossante et la propriété (*) implique que 2 lan < +0 et donc a l'.

Exercice 2.

(1) TE Fat liséaire et E et Food de especes de Barach. On peut donc coayer d'appliquer le Révouve du graphe fermé pour montrer que Tect continue. Autrement det, soit

(2m) une suite de E telle que 2m -> 2 dans E 3 et Tan - y dans F. Il s'aget de montrée que y = Tx. Comme STat continue de E dans G, on a: STX STX dows G. De mêns, come S est continue de F dous G, on a STan Sy dans G. Par unicité de le limite, en obtient que ST2 = Sy et l'injectionté de S implique que Toz=y. Airsi le graphe de Table fermé et Test continue. (2) L'application S: F _____ SF) C G 2 FS2 ed injecture et surjecture donc bijecture. Come S(F) all suppose ferme dons G qui el complet, on en décluit que S(F) as aussi complets. Auxà 3 d'une application linéaux, continux, bejection entre espace de Barach. Le Révière d'isonorphime de Barach implique alors que 5º-1 al auroi continue. En écrisant que T = 3 (ST), on

en déduit que Tast continue comme composée d'application (4)
continue.

Exercice 3. Suppose qu'il exote une norme |1. || tel que (R[X], |1. ||) est un espace de Banach.

Gna R[X] = UFm,

où Fm = { p \in R[X]: degp \le m}

Come din Fn < +0, les Fn sont des famés

de R[X]. Le Phéorème de Banie permet alors

d'affirm qu' il exote no e IN tel que Fno est

d'intérieur non vide. Autrement dit, $\exists Po \in Fno$,

3 roo by IP-Poll < F => P & Fmo.

Remarques maintenant que cela implique que

p∥<r ⇒ pe Fno.

En effet si p/<r , écrisons

p = (p+ po) - po.

Come ||p+po-po||= ||p||<1 alors p+po & Fmo

et comme Fro est un s. e. v., on en déduit que

Maitenant i pe R[X], p \ to, alors q: = \frac{\Gamma}{2||p||} P \ \in R[X]

Ausi $q \in F_{no}$. En utilisant une nouvelle fois que F_{no} est un s. c. v, on en diduit que $p = \frac{2||p||}{r} q \in F_{no}$.

Ausi $R[X] = F_{no}$, ce qui at bien évidenment abourde.

est continue et brijective et 9-(4)= lny, yelo,1].

si feE, l'application $\Theta(f) = f \circ \gamma$ a continue

bu
$$[0,+-]$$
 et $\lim_{z\to+\infty} \Theta(f)(z) = \lim_{z\to+\infty} f(e^{-z}) = f(0)$

Donc O(f) EF et O ewoie E dons F. D'autre part, on a

 $\|\Theta(\xi)\|_{\infty} = \sup_{z \in [0,+\infty)} |\Theta(\xi(z))| = \sup_{z \in [0,+\infty)} |\xi(\gamma(z))|$

Conne $Y([0,+\infty[]=]0,1]$, on en déduit que

Aus 0 et une isométué, donne en particulier injecture.

Il roste à nuentier que O(E) = F.

Soit g & F, i.e g et continue son [0,+0 ? et

ling(2) = l'existe et le R.

Poors alos

 $f(x) = \begin{cases} g(p^{-1}(x)), & \text{if } z \in]0,1] \\ f(x) = \begin{cases} f(x) & \text{if } z \in]0,1] \end{cases}$

 $= \begin{cases} g(-\ln x), & \text{at } J_{0,1} \end{bmatrix}$ $= \begin{cases} l, & \text{at } J_{0,1} \end{bmatrix}$

Il est clair que fest continue son Jo,1) et de plus

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(-\ln x) = \lim_{y\to \infty} g(y) = l = f(0)$

Donc fot continie son [0,1] et le E.

Il rete à remarque que

O(b/a) =
$$f(e^{-\alpha}) = g(-la(e^{-\alpha})) = g(a), \forall a \in [0, + -1]$$

D'ui $g = O(f) \in O(E)$ et donc $O(E) = F$.

(2) Soit $g_n = O(f_n), f_n \in E_0$ telle que $g_n = g$ done F .

Ca a: $\|f_n - f_e\|_{\infty} = \|O(f_n) - O(f_e)\|_{\infty} = \|g_n - g_n\|_{\infty} = 0$

Ari $(f_n)_n$ et une sonte de Couchy dons E complet donc elle uneque vero f . Comme $f_n \in E_0$ et que E_0 est femé, on en diduit que $f \in E_0$.

Par continute de O , on a alas $g_m = O(f_n) = O(f_n) = 0$

de la luite $g = O(f_n) = O(f_n)$ et par unicité de la luite $g = O(f_n) = O(f_n)$ et par unicité de la luite $g = O(f_n) = O(f_n)$ et femé dan F .

(3) Gran $E_n \subseteq E_n$ d'oi $O(E_n) = O(E_n)$

et come d'aprè (2), O(E,) et femée, or en deduit que O(E,) C O(E,).

 \mathcal{D}' autre part si $g \in \mathcal{O}(E_1)$ along $g = \mathcal{O}(\ell)$, (8) JEE. Il couste alors for E, top for -f Par continute de 0, on en déduit alors que $\Theta(f_n) \longrightarrow \Theta(f) = g$ et come $\Theta(f_n) \in \Theta(E_1)$, on obtient que ge O(E1). Airsi O(E,) C O(E) C O(E), doi l'égalité O(EI) = O(EI). (4) Notos En(E)= En, te [0,1], N. 20. G a $\Theta(\xi_{n})(z) = \xi_{n}(e^{-2}) = e^{-nz} = e_{n}(z), z \in [0, + \cdot [c]]$ (Lin (En: N > 0) = Lin (en: N > 0) = A A = 0 (Lu (En: M20)) = 0 (Zi (E.: No) d'aprè (3) Or le Révier de Weierstras assur que Lon (En: No) = ((0,1], R) = E.

D'an

 $\overline{A} = O(E) = F$ car Θ sot sujecture.

Airei A est deux dem F.