Une mise en route : Inégalités classiques

Exercice 1 (L'inégalité triangulaire) Montrer que pour tous réels a, b, on a

$$||a| - |b|| \le |a - b| \le |a| + |b|.$$

Exercice 2 (Inégalités de Cauchy–Schwarz et de Minkowski) On se donne un entier $n \geq 2$ et des réels strictement positifs $\omega_1, \omega_2, \ldots, \omega_n$. On désigne par φ la fonction définie sur $\mathbb{R}^n \times \mathbb{R}^n$ par

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \ \varphi(x,y) = \sum_{k=1}^n \omega_k x_k y_k,$$

et on associe à cette fonction φ la fonction q définie sur \mathbb{R}^n par

$$\forall x \in \mathbb{R}^n, \ q(x) = \varphi(x, x) = \sum_{k=1}^n \omega_k x_k^2.$$

- (a) Exprimer, pour tout réel t et tous vecteurs x, y dans \mathbb{R}^n , la quantité q(x+ty) en fonction de t, $\varphi(x,y)$, q(x) et q(y).
- (b) Rappeler à quelle condition portant sur les réels a, b, c, le réel a étant non nul, le polynôme de degré 2, $P(t) = at^2 + 2bt + c$ est à valeurs positives ou nulles.
- (c) En remarquant que pour x, y fixés dans $\mathbb{R}^n \setminus \{0\}$, la fonction $P: t \mapsto q(x+ty)$ est polynômiale de degré 2, montrer l'inégalité de Cauchy-Schwarz:

$$\left| \sum_{k=1}^{n} \omega_{k} x_{k} y_{k} \right| \leq \left(\sum_{k=1}^{n} \omega_{k} x_{k}^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \omega_{k} y_{k}^{2} \right)^{\frac{1}{2}}.$$

Préciser dans quels cas, l'égalité est réalisée.

(d) En déduire l'inégalité de Minkowski :

$$\left(\sum_{k=1}^{n} \omega_k (x_k + y_k)^2\right)^{\frac{1}{2}} \le \left(\sum_{k=1}^{n} \omega_k x_k^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} \omega_k y_k^2\right)^{\frac{1}{2}}.$$

Préciser dans quels cas, l'égalité est réalisée.

Exercice 3 (Inégalités de Hölder et de Minkowski) Soit $n \geq 2$ et soient a_1, a_2, \ldots, a_n et b_1, b_2, \ldots, b_n des réels strictement positifs. Pour 1 , on note <math>q son exposant conjugué, c'est-à-dire l'unique réel tel que $\frac{1}{p} + \frac{1}{q} = 1$.

(a) Notons

$$A = \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \quad et \quad B = \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}.$$

Supposons que $A \neq 0$, $B \neq 0$ et, pour chaque $1 \leq i \leq n$, notons $\tilde{a}_i = a_i/A$ et $\tilde{b}_i = b_i/B$. Montrer que

$$\tilde{a}_i \tilde{b}_i \le \frac{1}{p} \tilde{a}_i^p + \frac{1}{q} \tilde{b}_i^q.$$

Indication : on pourra considérer les deux réels s,t tels que $\tilde{a}_i = \exp(s/p)$ et $\tilde{b}_i = \exp(t/q)$ et utiliser la convexité de la fonction exponentielle.

(b) En déduire l'inégalité de Hölder :

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}.$$

Pour p = q = 2, quelle inégalité retrouve-t-on?

(c) En déduire l'inégalité de Minkowski :

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} b_i^p\right)^{1/p}.$$

Indication : on pourra écrire $(a_i + b_i)^p = a_i(a_i + b_i)^{p-1} + b_i(a_i + b_i)^{p-1}$ et appliquer l'inégalité de Hölder.

Exercice 4 On se donne un entier $n \geq 1$ et des réels x_1, x_2, \ldots, x_n tous non nuls.

(a) Montrer que

$$\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} \frac{1}{x_k^2}\right) \ge n^2.$$

Indication: on pourra utiliser l'inégalité de Cauchy-Schwarz.

(b) En déduire que

$$\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{6n}{(n+1)(2n+1)}.$$

Exercice 5 (Inégalité de Bernouilli) (a) Pour $n \ge 2$, on note P_n la fonction polynômiale définie par

$$P_n(x) = x^n - 1 - n(x - 1).$$

Montrer que pour tout $x \in \mathbb{R}_+$, on a $P_n(x) \geq 0$.

Indication : on pourra soit raisonner par récurrence, soit faire une étude de fonctions.

(b) En déduire que pour tout réel a > -1 et tout entier naturel n, on a

$$(1+a)^n \ge 1 + na.$$

(c) Dans le cas où $a \ge 0$, retrouver cette inégalité, en utilisant la formule du binôme de Newton.

Exercice 6 (Moyennes arithmétiques, géométriques et harmoniques.) Pour tout entier $n \ge 2$ et tout $x = (x_1, x_2, \dots, x_n) \in (\mathbb{R}_+^*)^n$, on note respectivement

$$A_n(x) = \frac{1}{n} \sum_{k=1}^n x_k, \quad G_n(x) = \sqrt[n]{\prod_{k=1}^n x_k}, \quad H_n(x) = \frac{n}{\sum_{k=1}^n \frac{1}{x_k}},$$

les moyennes arithmétiques, géométriques et harmoniques des réels x_1, x_2, \ldots, x_n .

- (a) Etablir une relation entre $H_n(x)$ et $A_n(y)$ où $y = (1/x_k)_{1 \le k \le n}$.
- (b) En utilisant la stricte concavité de la fonction $\ln sur \mathbb{R}_+^*$, montrer que $G_n(x) \le A_n(x)$. Dans quels cas, a-t-on égalité?
- (c) En déduire finalement que

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k.$$

Montrer que l'une des deux inégalités est réalisée si et seulement si tous les x_i sont égaux.

Bornes supérieures et inférieures. Suites numériques I.

1 Bornes supérieures et inférieures

Exercice 1.1 (a) Soit X une partie non vide de \mathbb{R} . Rappeler les définitions suivantes :

- (i) majorants/minorants de X.
- (ii) borne supérieure/borne inférieure de X.
- (iii) plus grand/plus petit élément (ou maximum/minimum) de X.
- (b) Déterminer s'ils existent la borne supérieure et le maximum de X dans les cas suivants :
 - (i) $X = \{2^{-n} : n \in \mathbb{N}\}.$
 - (ii) $X = [0, 1] \cap \mathbb{Q}$.
 - (iii) $X = \{(-1)^n + 1/n : n \in \mathbb{N}^*\}.$
- (c) Même question avec la borne inférieure et le minimum.

Exercice 1.2 Montrer que pour tous réels a et b, on a

$$\max(a, b) = \frac{a+b}{2} + \frac{|b-a|}{2}$$
 et $\min(a, b) = \frac{a+b}{2} - \frac{|b-a|}{2}$.

En déduire que si f et g sont deux fonctions continues sur un intervalle I de \mathbb{R} , alors $\max(f,g)$ et $\min(f,g)$ sont aussi continues sur I.

Exercice 1.3 Soient A,B deux parties non vides et bornées de \mathbb{R} . Montrer que

- (i) $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
- (ii) $\inf(A \cup B) = \min(\inf(A), \inf(B))$.
- (iii) Si $A \subset B$, alors $\inf(B) \le \inf(A)$ et $\sup(A) \le \sup(B)$.

Exercice 1.4 Soient A, B deux parties non vides et majorées de \mathbb{R} . On définit l'ensemble

$$A + B = \{x + y : x \in A, y \in B\}.$$

Montrer que A + B est majorée et

$$\sup(A+B) = \sup(A) + \sup(B).$$

Exercice 1.5 Montrer que si A est une partie fermée, non vide et majorée de \mathbb{R} , alors $\sup(A) \in A$.

Exercice 1.6 (Existence de la racine carrée) En n'utilisant que le théorème de la borne supérieure et inférieure, montrer l'existence et l'unicité d'une racine carrée dans \mathbb{R}_+ .

Indication: poser $A := \{ y \in \mathbb{R}_+ : y^2 \le x \}$ et $B := \{ y \in \mathbb{R}_+ : y^2 \ge x \}$. En justifiant leur existence, on considérera alors $M = \sup A$ et $m = \inf B$ et on montrera que $M^2 = m^2 = x$.

Exercice 1.7 (Une utilisation de la densité de \mathbb{Q} dans \mathbb{R}) On désigne par f une fonction monotone de \mathbb{R} dans \mathbb{R} , vérifiant

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

- (a) Montrer que f est impaire.
- (b) Montrer par récurrence, que pour tout $n \in \mathbb{N}$ et tout $a \in \mathbb{R}$, on a f(na) = nf(a).
- (c) Montrer que, pour tout $a \in \mathbb{R}$ et tout $r \in \mathbb{Q}$, on a f(ra) = rf(a).
- (d) Montrer qu'il existe un réel λ tel que $f(x) = \lambda x$, pour tout réel x. Indication: étant donné un réel x, on considéra deux suites de rationnels $(r_n)_{n\in\mathbb{N}}$ et $(s_n)_{n\in\mathbb{N}}$ qui convergent vers x avec $r_n < x < s_n$, pour tout n.
- (e) Montrer que l'identité est l'unique fonction non identiquement nulle $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que f(x+y) = f(x) + f(y) et f(xy) = f(x)f(y), pour tous réels x, y. Indication: on montrera que f(1) = 1, que $f(x) \ge 0$ pour tout $x \ge 0$ et que f est croissante.

2 Suites convergentes ou divergentes

Exercice 2.1 (a) Montrer que $\lim_{n\to+\infty}\frac{1}{n}=0$.

(b) En déduire que

$$\lim_{n\to +\infty}\frac{\cos n}{n}=0,\quad et\quad \lim_{n\to +\infty}\frac{n!}{n^n}=0.$$

(c) Soient $\lambda \in \mathbb{C}$ et $n_0 \in \mathbb{N}$ tel que $n_0 > |\lambda|$. Montrer que

$$0 \le \left| \frac{\lambda^n}{n!} \right| \le \left| \frac{\lambda^{n_0}}{n_0!} \right| \frac{|\lambda|}{n},$$

pour tout $n > n_0$. En déduire que

$$\lim_{n \to +\infty} \frac{\lambda^n}{n!} = 0.$$

Exercice 2.2 Montrer que si $\lim_{n\to+\infty} u_n = \ell$, alors $\lim_{n\to+\infty} |u_n| = |\ell|$. Que pensezvous de la réciproque?

Indication : pour la réciproque, on pourra séparer le cas $\ell = 0$ et $\ell \neq 0$. Pour $\ell \neq 0$, on pourra étudier le cas de la suite $u_n = (-1)^n$, $n \in \mathbb{N}$.

Exercice 2.3 Soit $x \in \mathbb{R}$ et soit $(u_n)_{n \in \mathbb{N}^*}$ la suite définie par

$$u_n = \frac{1}{n^2} \sum_{k=1}^n [kx],$$

où [·] désigne la partie entière.

(a) Montrer que

$$0 \le \frac{n+1}{2n}x - u_n < \frac{1}{n}.$$

Indication: on utilisera que $[u] \le u < [u] + 1$, pour tout $u \in \mathbb{R}$.

(b) En déduire que

$$\lim_{n \to +\infty} u_n = \frac{x}{2}.$$

Exercice 2.4 Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{Z} . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si elle est stationnaire.

Indication: utiliser la définition de la convergence avec $\varepsilon = 1/2$.

Exercice 2.5 (a) Montrer que si $\lim_{n\to+\infty} u_n = \ell$, alors $\lim_{n\to+\infty} (u_{n+1} - u_n) = 0$.

(b) En considérant la suite $u_n = \sqrt{n}$, $n \in \mathbb{N}$, étudier la réciproque.

Exercice 2.6 Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle ou complexe.

(a) On suppose dans cette question qu'il existe un réel $\lambda \in [0,1[$ tel que

$$|u_{n+1}| \le \lambda |u_n|,$$

à partir d'un certain rang n_0 .

(i) Montrer par récurrence que

$$|u_n| \le |u_{n_0}| \lambda^{n-n_0},$$

pour tout $n \geq n_0$.

- (ii) En déduire que $\lim_{n \to +\infty} u_n = 0$.
- (b) On suppose dans cette question qu'il existe un indice n_0 tel que $u_{n_0} \neq 0$ et qu'il existe un réel $\lambda > 1$ tel que

$$|u_{n+1}| \ge \lambda |u_n|,$$

pour tout $n \geq n_0$.

- (i) Montrer par récurrence que $u_n \neq 0$, pour tout $n \geq n_0$.
- (ii) En appliquant le résultat de la question (a), en déduire que $\lim_{n\to+\infty} |u_n| = +\infty$.
- (c) Montrer que si $u_n \neq 0$ à partir d'un certain rang et si

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lambda \in [0, 1[,$$

alors $\lim_{n\to+\infty} u_n = 0$.

Indication: étant donné β tel que $\lambda < \beta < 1$, on pourra montrer que $|u_{n+1}| \leq \beta |u_n|$, à partir d'un certain rang et appliquer le résultat de la question (a).

(d) Montrer que si $u_n \neq 0$ à partir d'un certain rang et si

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lambda > 1,$$

alors $(u_n)_{n\in\mathbb{N}}$ diverge.

(e) Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\neq 0$ pour tout $n\in\mathbb{N}$ et

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1 \quad et \quad \lim_{n \to +\infty} u_n = +\infty.$$

(f) Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\neq 0$ pour tout $n\in\mathbb{N}$ et

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1 \quad et \quad \lim_{n \to +\infty} u_n = 0.$$

(g) Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\neq 0$ pour tout $n\in\mathbb{N}$ et

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1 \quad et \quad \lim_{n \to +\infty} u_n = 10.$$

Exercice 2.7 En utilisant l'exercice 2.6 (c), montrer que la suite $u_n = \frac{n!}{n^n}$, $n \ge 1$, est convergente vers 0.

Suites numériques II

1 Suites de Cauchy

Exercice 1.1 (Une suite de Cauchy dans \mathbb{Q} non convergente) (a) Soient $(r_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $|r_{n+1}-r_n| \leq \lambda^n$, pour tout $n \in \mathbb{N}$, où λ est un réel strictement compris entre 0 et 1. Montrer que la suite $(r_n)_{n\in\mathbb{N}}$ est de Cauchy.

Indication: on pourra écrire, pour m > n, $r_m - r_n = \sum_{k=n}^{m-1} (r_{k+1} - r_k)$.

(b) Soient $(r_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $r_0=2$ et $r_{n+1}=1+1/r_n$, $n\geq 0$. Montrer que $(r_n)_{n\geq 0}$ est une suite de Cauchy dans \mathbb{Q} qui ne converge pas dans \mathbb{Q} . Conclusion?

Exercice 1.2 (Irrationalité de e) Soit $(r_n)_{n\in\mathbb{N}}$ la suite définie par

$$r_n = \sum_{k=1}^n \frac{1}{k!}.$$

- (a) Montrer que la suite $(r_n)_{n\in\mathbb{N}}$ est à valeurs dans \mathbb{Q} .
- (b) Montrer que, pour tout m > n > 2, on a

$$|r_m - r_n| \le \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \dots + \frac{1}{(n+2)^{m-n-1}} \right).$$

(c) En déduire que, pour tout m > n > 2, on a

$$|r_m - r_n| \le \frac{1}{n}.$$

Indication: on pourra utiliser que $\frac{n+2}{(n+1)^2} \leq \frac{1}{2}$.

- (d) En déduire que la suite $(r_n)_{n\in\mathbb{N}}$ est de Cauchy et donc qu'elle converge dans \mathbb{R} . On notera e sa limite.
- (e) Supposons que $e \in \mathbb{Q}$, c'est-à-dire qu'il existe p, q deux entiers premiers entre eux (strictement positifs) tels que e = p/q.
 - (i) Montrer que pour tout n > q, le nombre $p_n = n!(e r_n)$ est un entier strictement positif.

(ii) Montrer que $0 < p_n < 1$.

Indication: on pourra écrire que $p_n = \lim_{m \to +\infty} (n!(r_m - r_n))$.

(f) Conclure que e est irrationnel.

Exercice 1.3 Pour tout nombre complexe z et tout entier $n \in \mathbb{N}^*$, on définit

$$u_n(z) := \sum_{k=0}^n \frac{z^k}{k!}$$
 et $v_n(z) := \sum_{k=1}^n \frac{z^k}{k}$.

- (i) Montrer que, pour tout nombre complexe z, la suite $(u_n(z))_{n\in\mathbb{N}^*}$ est convergente. La limite de cette suite est (par définition) l'exponentielle complexe de z, notée $\exp(z)$.
- (ii) Montrer que, pour tout nombre complexe z tel que |z| < 1, la suite $(v_n(z))_{n \in \mathbb{N}}$ est convergente.

2 Valeurs d'adhérence

On rappelle qu'un réel ℓ est une valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge vers ℓ . Rappelons le

Théorème 2.1 (Bolzano-Weierstrass) De toute suite bornée de nombres réels, on peut extraire une sous-suite convergente. Autrement dit, toute suite bornée de nombres réels possède (au moins) une valeur d'adhérence.

Exercice 2.1 Montrer que si

$$\lim_{n \to +\infty} u_{2n} = \ell_1 \quad et \quad \lim_{n \to +\infty} u_{2n+1} = \ell_2,$$

alors les valeurs d'adhérence de $(u_n)_{n\in\mathbb{N}}$ sont ℓ_1 et ℓ_2 .

Exercice 2.2 Calculer les valeurs d'adhérence de

$$u_n = (-1)^n \left(1 + \frac{1}{n+1}\right), \qquad n \in \mathbb{N}.$$

Exercise 2.3 Soit $u_n := n^{(-1)^n}$, $n \in \mathbb{N}$.

- (i) En considérant u_{2n+1} , montrer que 0 est une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$.
- (ii) Soit ℓ une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$. Montrer que $\ell=0$. Indication: on pourra raisonner par l'absurde et considérer $\ln(u_{\varphi(n)})$.
- (iii) En déduire que 0 est l'unique valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$.
- (iv) Peut-on conclure à la convergence de $(u_n)_{n\in\mathbb{N}}$?

Indication : $consid\acute{e}rer\ u_{2n}$.

Exercice 2.4 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ou complexe telles que les deux suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont convergentes. A quelle condition la suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente?

Exercice 2.5 Montrer que si $u = (u_n)_{n \in \mathbb{N}}$ est une suite complexe telle que les trois suites extraites $(u_{2n})_{n \in \mathbb{N}}$, $(u_{2n+1})_{n \in \mathbb{N}}$ et $(u_{3n})_{n \in \mathbb{N}}$ sont convergentes, alors u est convergente.

Exercice 2.6 Le but de l'exercice est de montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite réelle, alors les assertions suivantes sont équivalentes :

- (i) La suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- (ii) La suite $(u_n)_{n\in\mathbb{N}}$ est bornée et ne possède qu'une seule valeur d'adhérence.
- (a) Montrer que $(i) \Longrightarrow (ii)$.
- (b) On suppose dans cette question que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et admet ℓ pour seule valeur d'adhérence. On suppose de plus que $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers ℓ .
 - (b1) Montrer qu'il existe un réel $\varepsilon > 0$ et une suite strictement croissante d'entiers $(\varphi(n))_{n \in \mathbb{N}}$ telle que

$$|u_{\varphi(n)} - \ell| \ge \varepsilon, \qquad (n \in \mathbb{N}).$$

- (b2) En utilisant le théorème de Bolzano-Weierstrass, conclure que la suite $(u_n)_{n\in\mathbb{N}}$ admet une deuxième valeur d'adhérence, distincte de ℓ .
- (b3) En déduire que $(ii) \Longrightarrow (i)$.

3 Suites monotones

Exercice 3.1 Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite définie par

$$u_n = \sum_{k=1}^{n} \frac{1}{k} - \log(n), \quad n \ge 1.$$

(i) Montrer que $(u_n)_{n\geq 1}$ est décroissante.

Indication: on pourra calculer l'intégrale

$$\int_{n}^{n+1} \left(\frac{1}{n+1} - \frac{1}{t} \right) dt,$$

et l'exprimer en fonction de $u_{n+1} - u_n$.

(ii) Montrer que $(u_n)_{n>1}$ est minorée par 0.

Indication : on montrera d'abord que, pour tout $k \ge 1$, on a

$$\int_{k}^{k+1} \frac{dt}{t} \le \frac{1}{k},$$

puis que

$$\sum_{k=1}^{n} \frac{1}{k} \ge \log(n+1).$$

(iii) En déduire que $(u_n)_{n\geq 1}$ converge. On note γ sa limite qui s'appelle la constante d'Euler.

Exercice 3.2 On désigne par $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ les suites respectivement définies par

$$u_n = \sum_{k=1}^n \frac{1}{k} - \log(n)$$
 et $v_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.

- (i) Montrer que, pour tout $n \in \mathbb{N}$, on a $v_{2n} = u_{2n} u_n + \log(2)$.
- (ii) En utilisant l'exercice 3.1, montrer que $\lim_{n\to+\infty} v_{2n} = \log(2)$, et en déduire que

$$\lim_{n \to +\infty} v_n = \log(2).$$

4 Suites adjacentes

Exercice 4.1 Soient

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n!}$.

- (i) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- (ii) Conclure que les deux suites sont adjacentes.
- (iii) Soit e la limite commune de ces deux suites. En calculant u_{10} et v_{10} , donner une valeur approchée de e, en précisant l'erreur d'approximation.

Exercice 4.2 Montrer que les suites $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ définies par

$$u_n = \sum_{k=1}^n \frac{1}{k} - \log(n), \quad et \quad v_n = \sum_{k=1}^n \frac{1}{k} - \log(n+1),$$

convergent vers la même limite γ .

Indication: on pourra utiliser et s'inspirer de l'exercice 3.1.

Exercice 4.3 Soient 0 < a < b et $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ définies par $u_0 = a$, $v_0 = b$ et

$$\begin{cases} u_{n+1} = \frac{2}{\frac{1}{u_n} + \frac{1}{v_n}} & (moyenne \ harmonique) \\ v_{n+1} = \frac{u_n + v_n}{2} & (moyenne \ arithm\'etique). \end{cases}$$

Le but de l'exercice est de montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites adjacentes, de limite \sqrt{ab} .

- (i) Montrer, par récurrence que $u_n > 0$ et $v_n > 0$, pour tout $n \in \mathbb{N}$.
- (ii) Montrer que $u_n v_n \leq 0$, pour tout $n \in \mathbb{N}$ et en déduire que $(v_n)_{n \in \mathbb{N}}$ est décroissante.
- (iii) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (iv) Vérifier, par récurrence que

$$0 \le u_n - v_n \le \frac{b - a}{2^n},$$

et en déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites adjacentes.

- (v) Montrer qu'elles convergent vers \sqrt{ab} .
- (vi) Donner une valeur approchée de $\sqrt{2}$ à 10^{-4} près.

Exercice 4.4 Le but de l'exercice est de donner une démonstration de la non dénombrabilité de \mathbb{R} . On raisonne par l'absurde, en supposant que [0,1] est dénombrable. Autrement dit, il existe une bijection $\varphi: \mathbb{N} \to [0,1]$.

- (i) Construire, par récurrence une suite de segments emboîtés $(I_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, I_n ne contient pas $\varphi(n)$ et I_n est de longueur 3^{-n} .
- (ii) En déduire qu'il existe $x \in [0,1]$ tel que

$$\bigcap_{n\in\mathbb{N}}I_n=\{x\},$$

et $x \neq \varphi(n)$, pour tout $n \in \mathbb{N}$.

(iii) Conclure que \mathbb{R} n'est pas dénombrable.

5 Le théorème de Césaro

Exercice 5.1 (Le théorème de Césaro) $Soit(u_n)_{n\in\mathbb{N}}$ une suite réelle (ou complexe) qui converge vers un nombre réel (ou complexe) ℓ . Soit $(v_n)_{n\geq 1}$ la suite définie par

$$v_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k, \qquad n \ge 1.$$

Montrer que la suite $(v_n)_{n\in\geq 1}$ converge aussi vers ℓ (on dit dans ce cas que la suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de Césaro vers ℓ). Que pensez-vous de la réciproque? Indication: pour la réciproque, on pourra étudier la suite $u_n = (-1)^n$, $n \geq 0$.

Exercice 5.2 Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite réelle ou complexe telle que $\lim_{n\to+\infty}(u_{n+1}-u_n)=\ell$, alors

$$\lim_{n \to +\infty} \frac{u_n}{n} = \ell.$$

Indication : on pourra calculer $\frac{1}{n} \sum_{k=0}^{n-1} (u_{k+1} - u_k)$ et appliquer le théorème de Césaro.

Exercice 5.3 Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique convergente au sens de Césaro vers ℓ . Supposons de plus que $\lim_{n\to+\infty}(n(u_n-u_{n-1}))=0$. Montrer alors que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Indication: on montrera que

$$\sum_{k=1}^{n} k(u_k - u_{k-1}) = nu_n - \sum_{k=0}^{n-1} u_k,$$

et on appliquera le théorème de Césaro à la suite $(n(u_n - u_{n-1}))_{n \ge 1}$.

Autour du théorème de Rolle et des formules de Taylor

Exercice 1 Soit I un intervalle de \mathbb{R} et $f: I \longmapsto \mathbb{R}$ une fonction continue sur I. Montrer que les assertions suivantes sont équivalentes 1 :

- (i) la fonction f est injective;
- (ii) la fonction f est strictement monotone.

Indication : on pourra considérer l'ensemble

$$K = \{(x, y) \in I^2 : x < y\}$$

et $g: I \times I \longrightarrow \mathbb{R}$ définie par g(x,y) = (x-y)(f(x)-f(y)).

Exercice 2 (Théorème de Darboux) Soit I un intervalle de \mathbb{R} et $f: I \mapsto \mathbb{R}$ une fonction dérivable sur I. Le but de l'exercice I est de montrer que I est un intervalle de I est un intervalle de I est un intervalle de I est une fonction dérivable sur I est un intervalle de I est une fonction de I est une for I est une fonction de I est une fonction de I est une for I est une fonction de I est une fonction de I est une for I est une fonction de I est une fonction de I est une for I est une fonction de I est une fonction de I est une for I est une for

- (a) Montrer f'(I) est un intervalle si et seulement si pour tous éléments a et b de I et pour tout réel λ compris entre f'(a) et f'(b), il existe un réel $c \in I$ tel que $f'(c) = \lambda$.
- (b) On fixe maintenant a et b deux éléments de I tels que a < b et soit λ un réel compris entre f'(a) et f'(b). On veut montrer qu'il existe un réel $c \in I$ tel que $f'(c) = \lambda$.
 - (i) Montrer qu'on peut supposer que $f'(a) \neq f'(b)$.
 - (ii) On définit alors $g(x) = f(x) \lambda x$. Montrer que g n'est pas monotone sur [a, b] et en déduire que g n'est pas injective.
 - (iii) En déduire qu'il existe $c \in]a, b[$ tel que g'(c) = 0.
 - (iv) Conclure.

Exercice 3 (Inégalités de Kolmogorov) Soient n un entier, $n \geq 2$, et $f : \mathbb{R} \longrightarrow \mathbb{R}$ une application de classe C^n . Pour tout entier k, $0 \leq k \leq n$, on note

$$M_k := \sup_{t \in \mathbb{R}} |f^{(k)}(t)|.$$

On remarque que $M_k \in \mathbb{R}^+ \cup \{+\infty\}$. On suppose que M_0 et M_n ont des valeurs finies.

^{1.} On trouvera d'autres démonstrations dans J.E. Rombaldi, page 61

^{2.} On trouvera deux autres méthodes dans X. Gourdon, page 47 et 78.

- (a) Montrer que, pour tout entier $k, 0 < k < n, M_k$ a une valeur finie. Indication: fixer $x \in \mathbb{R}$ et pour tout $i \in \{1, 2, ..., n-1\}$ appliquer la formule de Taylor-Lagrange à l'ordre n, à la fonction f sur l'intervalle [x, x+i]. Introduire alors le vecteur Y(x) de \mathbb{R}^{n-1} de coordonnées $Y_k(x) = \frac{f^{(k)}(x)}{k!}$, $1 \le k \le n-1$ et récerrire les n équations obtenues comme un système matriciel dont on montrera qu'il est inversible.
- (b) Montrer que si $\lim_{n\to+\infty} f(t) = \lim_{t\to+\infty} f^{(n)}(t) = 0$, alors $\lim_{t\to+\infty} f^{(k)}(t) = 0$, pour tout entier k tel que 0 < k < n.
- (c) Montrer que pour tout entier $m, 1 \le m \le n$ et pour tout entier $k, 0 \le k \le m$, on a

$$M_k \le 2^{k(m-k)/2} M_0^{1-k/m} M_m^{k/m}$$
.

Indication: on pourra commencer par montrer que $M_1 \leq \sqrt{2M_0M_2}$ puis effectuer une récurrence sur l'entier m.

Exercice 4 (Un principe des zéros isolés) Soit I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ une fonction de classe C^{∞} sur I.

- (a) Montrer que si a est un zéro de f d'ordre fini, alors il est isolé, autrement dit, il existe un voisinage V(a) de a tel que $f(z) \neq 0$ pour tout $z \in V(a) \setminus \{a\}$.
 - Indication : considérer l'ordre du zéro et appliquer la formule de Taylor-Lagrange sur un voisinage bien choisi de a.
- (b) On suppose que I est un intervalle compact. Montrer que si f possède une infinité de zéros dans I, alors f possède au moins un zéro d'ordre infini.
- (c) Pouvez-vous donner un exemple d'une fonction de classe C^{∞} sur \mathbb{R} , non indentiquement nulle et qui possède un zéro d'ordre infini en 0?

Exercice 5 (Théorème de Bernstein) Soit a > 0 et $f:]-a, a[\longrightarrow \mathbb{R}$ une fonction de classe C^{∞} sur]-a, a[. On suppose que pour tout entier $k \in \mathbb{N}$ et tout réel $x \in]-a, a[$, on a

$$f^{(2k)}(x) \ge 0.$$

Le but de l'exercice est de montrer que f est développable en série entière sur]-a,a[.

- (a) Montrer qu'il suffit de prouver que, pour tout $b \in]0, a[$, la fonction f est développable en série entière sur]-b, b[. Fixons maintenant $b \in]0, a[$.
- (b) Soit $F(x) := f(x) + f(-x), x \in [0, b]$, et

$$R_n(x) = \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} F^{(2n+2)}(t) dt.$$

(i) Montrer que $0 \le R_n(x) \le \left(\frac{x}{b}\right)^{2n+1} F(b)$ pour tout $x \in [0, b]$.

(ii) En déduire que, pour tout $x \in]-b, b[$, on a

$$F(x) = \sum_{n=0}^{+\infty} \frac{F^{(2n)}(0)}{(2n)!} x^{2n}.$$

(iii) Soit

$$r_n(x) = \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} f^{(2n+2)}(t) dt.$$

Montrer que $|r_n(x)| \le R_n(|x|)$.

(iv) Soit $p \in \mathbb{N}$ et

$$S_p(x) = \sum_{k=0}^p \frac{f^{(p)}(0)}{p!} x^p.$$

Montrer que, pour tout $x \in]-b, b[$, on a $\lim_{n\to+\infty} S_{2n+1}(x)=f(x)$.

(v) Montrer que pour tout $x \in]-b, b[$, on a $\lim_{n\to+\infty} S_n(x) = f(x)$ et en déduire que

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n, \qquad (x \in]-b, b[).$$

Exercice 6 (Théorème de Sunyer et Balaguer) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application de classe C^{∞} .

Première partie:

On suppose qu'il existe un entier $n_0 \in \mathbb{N}$ tel que, pour tout $x \in \mathbb{R}$, $f^{(n_0)}(x) = 0$. Montrer que f est un polynôme de degré au plus $n_0 - 1$.

Deuxième partie :

On suppose maintenant que pour tout $x \in \mathbb{R}$, il existe un entier $n = n(x) \in \mathbb{N}$ tel que $f^{(n)}(x) = 0$. Le but de l'exercice est de montrer que f est encore un polynôme. Soit \mathcal{O} l'ensemble des points $x \in \mathbb{R}$ tels qu'il existe un voisinage V(x) de x et un entier n = n(x) tel que $f^{(n)}(t) = 0$ pour tout $t \in V(x)$.

- 1. Soit I un intervalle ouvert non vide (borné ou non) contenu dans \mathcal{O} et soit $x_0 \in I$.
 - (a) Montrer qu'il existe un entier n et un intervalle ouvert contenant x_0 sur lequel $f^{(n)}$ s'annule.
 - (b) Soit $J =]\alpha, \beta[$ le plus grand intervalle ouvert contenant x_0 et contenu dans I sur lequel $f^{(n)}$ s'annule. Montrer que J = I. Indication: on pourra raisonner par l'absurde et supposer par exemple que $\beta \in \mathbb{R}$. Montrer alors, en utilisant la formule de Taylor-Young appliquée en β à un ordre suffisamment grand, que f est un polynôme de degré n-1 au voisinage de β . Conclure à une absurdité.

- (c) En déduire que si $\mathcal{O} = \mathbb{R}$, alors il existe un entier n tel que $f^{(n)}(x) = 0$ pour tout $x \in \mathbb{R}$. Conclure.
- 2. On suppose alors que $\mathcal{O} \neq \mathbb{R}$ et on va aboutir à une contradiction. Posons $F = \mathbb{R} \setminus \mathcal{O}$.
 - (a) Supposons que F possède un point isolé x_0 et soit $\varepsilon > 0$ tel que l'intervalle $]x_0 \varepsilon, x_0 + \varepsilon[$ intersecte l'ensemble $F \setminus \{x_0\}.$
 - (i) Montrer qu'il existe un entier n tel que $f^{(n)}(x) = 0$ pour tout $x \in]x_0 \varepsilon, x_0[\cup]x_0, x_0 + \varepsilon[$.
 - Indication: on pourra appliquer la question 1.b).
 - (ii) En déduire que $x_0 \in \mathcal{O}$ et que F n'a pas de points isolés.
 - (b) Soit $F_n = \{x \in F : f^{(n)}(x) = 0\}, n \in \mathbb{N}.$
 - (i) Montrer que F_n est fermé et que $F = \bigcup_{n \in \mathbb{N}} F_n$.
 - (ii) En déduire qu'il existe un entier n_0 tel que $F_{n_0}^{\circ} \neq \emptyset$. Indication : on pourra appliquer le théorème de Baire.
 - (iii) En déduire qu'il existe $\varepsilon > 0$ et $x_0 \in F_{n_0}$ tel que si $H =]x_0 \varepsilon, x_0 + \varepsilon \cap F$, alors $f^{(n)}(x) = 0$ pour tout $x \in H$.
 - (c) Soit $y \in H$.
 - (i) Montrer qu'il existe une suite strictement croissante $(y_n)_n$ de H qui converge vers y.
 - (ii) Montrer alors qu'il existe une suite infinie de points qui converge vers y et sur lesquels $f^{(n_0+1)}$ s'annule.
 - (iii) En déduire que, pour tout entier $p \ge 0$, il existe une suite infinie de points qui converge vers y et sur lesquels $f^{(n_0+p)}$ s'annule.
 - (iv) En déduire que, pour tout entier $p \ge 0$, on a $f^{(n_0+p)}(y) = 0$.
 - (d) Montrer que $]x_0 \varepsilon, x_0 + \varepsilon[\]$ est une réunion d'intervalles ouverts $I_n =]a_n, b_n[, n \ge 0.$
 - (e) Montrer que, pour tout entier $n \geq 0$, il existe un entier $m_n \geq 0$ tel que $f^{(m_n)}$ est nulle sur I_n .
 - (f) En déduire que f est un polynôme de degré n_0-1 sur I_n . Indication : on pourra appliquer la formule de Taylor en a_n , à un ordre suffisamment élevé.
 - (g) Montrer que $f^{(n_0)}(x) = 0$ pour tout $x \in]x_0 \varepsilon, x_0 + \varepsilon[$.
 - (h) En déduire que $x_0 \in F$ et conclure.

Commentaire : les références utilisées pour cette feuille sont :

- 1. X. Gourdon, Les maths en tête, 2ème édition, Ellipses : Exercice 3, p. 83. Exercice 5, p. 250. Exercice 6, p. 402.
- 2. A. Dufetel, Analyse, Cours et exercices corrigés, Capes externe, agrégation interne Mathématiques, Vuibert-CNED : Exercice 2, p.195.
- 3. J.E. Rombaldi, Éléments d'analyse réelle, Capes et Agrégation de mathématiques, EDP Sciences : **Exercice 1**, p. 61.
- 4. A. Pommellet, Agrégation de mathématiques : cours d'analyse, Ellipses : **Exercice 4**, p. 105.

Séries numériques et séries de fonctions.

Exercice 1 (Approximation de π)

(a) Etablir que pour tout $x \in]-1,1[$, on a

$$\arctan x = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{2k+1}.$$

- (b) Montrer que la série $\sum \frac{(-1)^k x^{2k+1}}{2k+1}$ converge uniformément sur [0,1].
- (c) En déduire que

$$\frac{\pi}{4} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}.$$

- (d) Combien faut-il de termes pour obtenir une approximation de π à 10^{-6} près?
- (e) Montrer que

$$\frac{\pi}{4} = 4 \arctan \frac{1}{5} - \arctan \frac{1}{239}.$$

Indication: en posant $a = \arctan 1/5$ et $b = \arctan 1/239$, on pourra montrer que $\tan(2a) = 5/12$ puis $\tan(4a) = \tan(\frac{\pi}{4} + b)$.

(f) Montrer que si $S = \frac{4}{239} + 16 \sum_{k=0}^{4} \frac{(-1)^k}{5^{2k+1}(2k+1)}$, on a

$$-3 \times 10^{-8} \le \pi - S \le 10^{-7}.$$

Indication: on utilisera que $11 \times 5^{11} \ge 16 \times 10^8/3$ et $3 \times 239^3 \ge 4 \times 10^7$.

(g) Comparer avec le résultat de (d).

Exercice 2 (Un théorème d'Abel) Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R=1. Pour |z|<1, on pose

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

On suppose aussi que la série $\sum_n a_n$ converge et on note S sa somme.

(a) Posons $S_n = \sum_{k=0}^n a_k$. Démontrer que, pour |x| < 1, la série de terme général $S_n x^n$ est convergente et que l'on a

$$f(x) = (1-x)\sum_{n=0}^{+\infty} S_n x^n$$
 et $f(x) - S = (1-x)\sum_{n=0}^{+\infty} (S_n - S) x^n$.

(b) Soit $\varepsilon > 0$. Démontrer qu'il existe alors $N_0 \in \mathbb{N}$ tel que pour tout $x \in [0, 1[$, on ait

$$|f(x) - S| \le (1 - x) \left| \sum_{n=0}^{N_0} (S_n - S) x^n \right| + \varepsilon x^{N_0 + 1}.$$

- (c) Démontrer que f(x) tend vers S quand $x \to 1^-$.
- (d) En utilisant ce qui précède, prouver que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4} \quad \text{et} \quad \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \log 2.$$

Exercice 3 (Equivalent du reste d'une série convergente) Soit $f : \mathbb{R}_+ \longrightarrow \mathbb{R}_+^*$ une fonction de classe C^1 vérifiant

$$\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = -\infty.$$

- (a) Soit A > 0.
 - (i) Montrer qu'il existe un entier N tel que, pour tout $n \geq N$ et tout $p \geq 1$, on ait

$$f(n+p) \le f(n)e^{-pA}.$$

(ii) En déduire que la série $\sum_{n} f(n)$ converge et que si $R_n = \sum_{k=n}^{+\infty} f(k)$ est le reste d'ordre n de la série, on a

$$0 \le R_{n+1} \le \frac{e^{-A}}{1 - e^{-A}} f(n).$$

- (iii) En déduire que $R_{n+1} = o(f(n)), n \to +\infty$, puis que $R_n \sim_{+\infty} f(n)$.
- (b) En utilisant ce qui précède, montrer que la série $\sum_n e^{-n^2}$ converge et

$$\sum_{p=n}^{+\infty} e^{-p^2} \sim_{\infty} e^{-n^2}.$$

Exercice 4 (Autour de la fonction zéta de Riemann) On rappelle que la fonction zéta de Riemann est définie pour $\Re(s) > 1$ par

$$\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}.$$

(a) Montrer que, pour tout entier $k \geq 2$, on a

$$\zeta(k) - 1 \le \frac{1}{2^k} + \frac{1}{(k+1)2^k} \le \frac{1}{2^{k-1}}.$$

(b) En déduire que la série $\sum_{k\geq 2}(\zeta(k)-1)$ est convergente et que

$$\sum_{k=2}^{+\infty} (\zeta(k) - 1) = 1.$$

(c) On rappelle que la suite $(a_n)_n$ définie par

$$a_n = -\log(n) + \sum_{k=1}^{n} \frac{1}{k}, \quad n \ge 1,$$

est convergente et sa limite, notée γ , est appelée constante d'Euler. Soit $\delta_n = a_n - a_{n-1}, \ n \ge 2.$

(i) Montrer que

$$\delta_n = -\sum_{k=2}^{+\infty} \frac{1}{kn^k}.$$

- (ii) Montrer que la série $\sum_n \delta_n$ converge et que sa somme est $\gamma-1$.
- (iii) En déduire que

$$\sum_{k=2}^{+\infty} \frac{\zeta(k) - 1}{k} = 1 - \gamma.$$

Exercice 5 (Un résultat d'équation diophantienne) Soient $\alpha_1, \ldots, \alpha_p$ des entiers naturels non nuls premiers entre eux dans leur ensemble. Pour tout $n \in \mathbb{N}$, on note S_n le nombre de solutions $(n_1, \ldots, n_p) \in \mathbb{N}^p$ de l'équation

$$\alpha_1 n_1 + \alpha_2 n_2 + \dots + \alpha_p n_p = n.$$

Montrer que $S_n \sim \frac{1}{\alpha_1...\alpha_p} \frac{n^{p-1}}{(p-1)!}$. On pourra interpréter S_n comme le coefficient d'une série entière qui s'exprime simplement en fonction de $\alpha_1, \ldots, \alpha_p$.

Commentaire : les références utilisées pour cette feuille sont :

- 1. X. Gourdon, Les maths en tête, 2ème édition, Ellipses: Exercice 2, p. 252. Exercice 3, p. 212. Exercice 4, p. 211. Exercice 5, p. 249.
- 2. A. Dufetel, Analyse, Cours et exercices corrigés, Capes externe, agrégation interne Mathématiques, Vuibert-CNED: Exercice 2, p. 310-311.

Exercice 1 (Développement en série de Fourier et formule de Parseval) Soit f la fonction paire, 2π -périodique définie sur $[0, \pi]$ par

$$f(x) = \begin{cases} \frac{1}{2} & \text{si } x \in [0, 1] \\ 0 & \text{si } x \in]1, \pi]. \end{cases}$$

- 1. Déterminer la série de Fourier associée à la fonction f et préciser sa convergence.
- 2. Montrer que

$$\sum_{n=1}^{+\infty} \frac{\sin(n)}{n} = \sum_{n=1}^{+\infty} \frac{\sin^2(n)}{n^2} = \frac{\pi - 1}{2}.$$

3. Montrer que

$$\sum_{n=1}^{+\infty} \frac{\sin(2n)}{n} = \frac{\pi}{2} - 1.$$

Exercice 2 (L'inégalité de Wirtinger) Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique de classe C^1 . On suppose que $\int_0^{2\pi} f(t) dt = 0$. Le but de l'exercice est de montrer l'inégalité de Wirtinger :

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt. \tag{1}$$

1. Rappelons que si g est une fonction 2π -périodique et continue par morceaux, on note $c_n(g)$ son n-ième coefficient de Fourier défini par

$$c_n(g) = \frac{1}{2\pi} \int_0^{2\pi} g(t)e^{-int} dt \qquad (n \in \mathbb{Z}).$$

Montrer que $c_n(f') = inc_n(f)$ pour tout $n \in \mathbb{Z}^*$.

2. En utilisant la formule de Parseval, en déduire (1).

Exercice 3 (Le développement eulérien du sinus) Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. On désigne par f_{α} la fonction 2π -périodique sur \mathbb{R} telle que

$$\forall t \in]-\pi,\pi], \qquad f_{\alpha}(t) = \cos(\alpha t).$$

1. Calculer la série de Fourier de f_{α} . En déduire que

$$\forall t \in \mathbb{R} \setminus \pi \mathbb{Z}, \qquad \cot(t) = \frac{1}{t} + 2t \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2 \pi^2}.$$

2. Fixons $x \in]0, \pi[$ et soit $f:[0,x] \longrightarrow \mathbb{R}$ définie par

$$f(t) = \begin{cases} \cot(t) - \frac{1}{t} & \text{si } 0 < t \le x \\ 0 & \text{si } t = 0. \end{cases}$$

Vérifier que f est continue sur [0, x] et montrer que

$$\int_0^x f(t) \, dt = \sum_{n=1}^{+\infty} \log \left(1 - \frac{x^2}{n^2 \pi^2} \right).$$

3. En déduire que

$$\forall t \in]-\pi, \pi[, \quad \sin(t) = t \prod_{n=1}^{+\infty} \left(1 - \frac{t^2}{n^2 \pi^2}\right),$$

où l'égalité ci-dessus signifie que la suite $t \prod_{n=1}^{N} \left(1 - \frac{t^2}{n^2 \pi^2}\right)$ converge vers $\sin(t)$ quand $N \to +\infty$.

Exercice 4 (Equations différentielles et séries de Fourier) On considère l'équation différentielle

$$(E_{a,b})$$
 $y''(t) + (a + be^{2it})y(t) = 0,$

avec a, b deux nombres complexes.

- 1. On suppose dans cette question que a est réel et b = 0. Résoudre $(E_{a,0})$. L'équation $(E_{a,0})$ admet-elle des solutions non nulles 2π -périodiques?
- 2. Soit f une fonction indéfiniment dérivable et 2π -périodique de \mathbb{R} dans \mathbb{R} . Montrer que, pour tout entier k strictement positif, on a lorsque n tend vers $+\infty$:

$$c_n(f) = o\left(\frac{1}{n^k}\right)$$
 et $c_{-n}(f) = o\left(\frac{1}{n^k}\right)$.

- 3. (a) Montrer que toute solution de $(E_{a,b})$, 2π -périodique, est indéfiniment dérivable, développable en série de Fourier ainsi que ses dérivées.
 - (b) Soit g la fonction définie de \mathbb{R} dans \mathbb{C} par $g(t) = (a + be^{2it})f(t)$. Pour tout entier n, calculer $c_n(g)$ en fonction de $c_n(f)$.
- 4. Montrer que les coefficients de Fourier $c_n(f)$ d'une solution 2π -périodique de l'équation $(E_{a,b})$ vérifient la relation :

$$\forall n \in \mathbb{Z}, \qquad (n^2 - a)c_n(f) = bc_{n-2}(f).$$

5. Soit $(\gamma_n)_{n\in\mathbb{N}}$ une suite de nombres complexes définie par :

$$\begin{cases} \gamma_0 = 1 \\ \forall n \in \mathbb{N}^*, \quad \gamma_n = \frac{b\gamma_{n-1}}{4n^2}, \end{cases}$$

et φ la fonction définie sur \mathbb{R} par $\varphi(t) = \sum_{n=0}^{+\infty} \gamma_n e^{2int}$. Montrer que la fonction φ est une solution 2π -périodique de l'équation $(E_{0,b})$.

Exercice 5 (Le théorème de Féjer) Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue et 2π -périodique. Pour tout $k \in \mathbb{Z}$, on note $e_k: \mathbb{R} \longrightarrow \mathbb{C}$ la fonction définie par $e_k(x) = e^{ikx}$. Pour tout $n \in \mathbb{N}$, on définit les fonctions

$$S_n(f) = \sum_{k=-n}^{n} c_k(f)e_k, \qquad C_n(f) = \frac{S_0(f) + S_1(f) + \dots + S_n(f)}{n+1},$$

où les $c_k(f)$ sont les coefficients de Fourier de f et

$$\tilde{S}_n = \sum_{k=-n}^n e_k, \qquad \tilde{C}_n = \frac{\tilde{S}_0 + \tilde{S}_1 + \dots + \tilde{S}_n}{n+1}.$$

1. Vérifier que, pour tout $n \in \mathbb{N}$, on a

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{C}_n(t) dt = 1.$$

- 2. Montrer que, pour tout $\alpha \in]0,\pi]$, la suite de fonction (\tilde{C}_n) converge uniformément vers 0 sur $[-\pi,\pi] \setminus [-\alpha,\alpha]$.
- 3. Montrer, que pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{N}^*$, on a

$$C_n(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)\tilde{C}_n(t) dt.$$

4. En déduire le théorème de Féjer : la suite de fonction $(C_n(f))$ converge uniformément vers f sur \mathbb{R} .