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Detection of aberration in video surveillance is an important task for public safety. This paper puts

forward a simple but effective framework to detect aberrations in video streams using Entropy, which is

estimated on the statistical treatments of the spatiotemporal information of a set of interest points

within a region of interest by measuring their degree of randomness of both directions and displacements.

Entropy is a measure of the disorder/randomness in video frame. It has been showed that degree of

randomness of the directions (circular variance) changes markedly in abnormal state of affairs and does

change only direction variation but does not change with displacement variation of the interest point.

Degree of randomness of the displacements has been put in for to counterbalance this deficiency.

Simple simulations have been exercised to see the characteristics of these crude elements of entropy.

Normalized entropy measure provides the knowledge of the state of anomalousness. Experiments have

been conducted on various real world video datasets. Both simulation and experimental results report

that entropy measures of the frames over time is an outstanding way to characterize anomalies in

videos.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Abnormal activities detection in video surveillance is a neces-
sary undertaking for public security and safety. As huge amount
of video data makes it an exhausting work for people to monitor
and find atypical events, an automatic system is badly needed for
detecting suspicious events which would exist a potential threat.
An abnormal video event, may vary greatly in duration, can be
defined to be an observable action or change of state in a video
stream that would be very important for security management.
There are some works [11–13,25,18,15,27,28,1–3,5,19] which
detect abnormalities in crowd flows. A system for automatically
learning motion patterns for anomaly detection and behavior
prediction based on a proposed algorithm for robustly tracking
multiple objects can be seen in [11]. Authors in [25] also detected
unusual events which have never occurred or occur so rarely that
they are not represented in the clustered activities. The method
includes robust tracking, based on probabilistic method for
background subtraction. But the robust tracking method is not
adapted to crowd scene, in which it is too complex to track
objects. A spatial model to represent the routes in an image has
been developed in [18]. But the system cannot differentiate
between a person walking and a person lingering around, or
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between a running and a walking person. A method for detecting
nonconforming trajectories of objects has been proposed in [15].
A framework for automatic behavior profiling and abnormality
sampling/detection without any manual labeling of the training
dataset can be found in [27,28].

Authors in [2,3] combined HMM, spectral clustering and principal
component for detecting crowd emergency scenarios. But the meth-
ods were experimented in simulated data. Using a supervised SVM
method, authors in [13] proposed an approach which makes a step
toward generic and automatic detection of unusual events in terms of
velocity and acceleration. The problem of detecting irregularities in
visual data has been addressed by [5]. The method would bring about
attention, yet it needs some sort of learning process and/or training
data. Authors in [1] proposed a holistic method for segmentation of
high density crowds by introducing a method based on Coherent
Structures from fluid dynamics and particle advection. Their frame-
work is suitable to detect flow instabilities from the events, e.g.,
marathon, religious festival, etc. by identifying changes in the
segmentation. For crowd segmentation, they have been taken into
account the goal-directed nature of human crowds, where the
members of the crowds have clear knowledge of what and where
their goals rest, e.g., extremely large number of people at sporting
events, religious festivals, etc. This goal-directed nature has been
implemented on to the crowd segmentation framework, where
segments are distinguished from each other on the basis of the fate
of the particles belong to that segment. The particles with similar fate
have similar goals, and, thus, characterize a distinct group of the
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Fig. 1. The summary of the proposed framework.
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crowd in a given scene. Results showed some satisfactory results for
extremely high crowded scenes, yet medium or low crowded scenes
such segmentation would be gone in vain. An approach to detect
abnormal situations in crowded scenes by analyzing the motion
aspect without tracking individual subjects can be viewed as [12]. The
authors in [19] introduced a method by capturing the dynamics of the
crowd behavior to detect and localize abnormal behaviors in crowd
videos using Social Force model. A grid of particles was placed over
the image and it was advected with the space–time average of optical
flow. The experiments were conducted on different datasets and the
algorithm captured the dynamics of the crowd behavior successfully.

However, most of the aforementioned methods require a
learning period to estimate various parameters of the system,
and hence reliable learning of unknown parameters is not always
accurately possible which could potentially increase the rate of
false alarms. For instance, the method of [19] detects and localizes
abnormal behaviors in crowd videos using social force model. Their
estimated social force model is capable of detecting the governing
dynamics of the abnormal behavior, even in the scenes that it is not
trained. But significant number of false positive detections in their
model are the results of incorrect estimation of social forces. This is
an unnecessarily extreme circumstances of their approach.

In this paper, we have introduced an approach which has no
explicit learning period but expects a threshold, consequently, the
false alarm rates are significantly low. The approach detects
abnormalities in videos based on the statistical treatments of
spatiotemporal information of a set of interest points within a
region of interest on estimating their degrees of disorder/chaos
over time entitled Entropy. Our primary goal is to introduce a
holistic method, which is free from segmentation or individual
subject tracking, to detect anomalies in videos by measuring the
degrees of disorder/chaos present in them. Fig. 1 outlines the
framework. A common aspect of our work and the works of
[2,3,12] is that there is enough perturbation in the optical flow
pattern in case of emergency. In the same vein, in the work of [13]
authors used few nearby terms of us e.g., velocity and acceleration.
Our approach would be deemed as a further enhancement of those
works in some senses. Notwithstanding, we profited from a
different course by using two statistical measures namely degree
of randomness of the directions (circular variance) and degree of
randomness of the displacements (coefficient of displacement
variation) of interest points, which are the essential and sufficient
crude elements of our defined entropy measure, which is a
measure of the disorder or randomness in video frame. The more
is the disorder/chaos presents in the video frame, the more is the
entropy, i.e., abnormal video frame has higher entropy than that of
normal. We showed that circular variance, one of the two crude
elements of the entropy, changes significantly in abnormal circum-
stances and it does not change with vector length variation of
interest point but does change only direction variation of interest
point. To compensate this shortcoming of circular variance we
used a normalized and dimensionless quantity namely the degree
of randomness of the displacements, another crude element of the
entropy, which is a statistical measure of ratio between standard
deviation and mean. Furthermore, we clarified that abnormality
concerns displacements as well. Hence the degree of randomness
of the displacements, the sufficient factor of the defined entropy
measure, plays an important role to detect some kind of aberra-
tions from videos. On estimating the entropy, we can detect
anomalies directly without segmentation or tracking subject
singly. In addition, the framework is effective for the high density
mover scenes as well as low density scenes. It has other boons:
(i) it detects all events in videos where entropy variations are
important as compared to previous events; (ii) it works all
directional flow of movers without imposing a restriction of their
numbers in the videos; (iii) it does not expect efficient learning
process and training data but would look for a prior cutoff.

In a nut shell, the strongest points of this paper are: (i) entropy
based measurement for determining abnormal event is novel;
(ii) proposed method works directly with the optical flows and
therefore overcomes problems with detection and tracking of indivi-
dual objects; (iii) extensive experiments have been performed on real
world datasets as well as some simple simulated data.

The rest of the paper is organized as follows: Section 2 outlines
the processing steps of the proposed framework; Section 3 reports
a detailed detection abilities of the approach followed by few clues
for further investigation; and Section 4 makes conclusion.
2. Processing steps

2.1. Region of interest (RoI) estimation

Irrespective of indoor and outdoor video surveillance, RoI makes
the video processing faster. Based on applications and type of
videos, RoI would extend from few parts of a video frame to the
whole frame. In case of applications, e.g., to monitor escalators,
linear passages, high-way, etc., video processing region can be
fixed by using a mask instead of analyzing the whole video frame.
We build a motion map (MM) for such applications. The MM,



xn yn dn an

Fig. 2. Motion map (MM) generator’s snapshot: escalator (left) and high-way (right) cases. (For interpretation of the references to color in this figure, the reader is referred

to the web version of this article.)

Fig. 3. Optical flow: (a) monomorphically directed vector flows normal case, (b) haphazardly directed vector flows abnormal case. The more is the disorder/chaos presents

in the video frame, the more is the Entropy; e.g., entropy of (b) is greater than that of (a).
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represented as color, is a 2D histogram expressing briefly the
important (or all) regions of motion activity in videos. This
histogram is built from the accumulation of real-time representa-
tion of object movements, so-called motion history image (MHI) as
proposed by [4]. In an MHI pixel intensity is a function of the
temporal history of position or motion at that point. The result of
the function is a scalar-valued image where more recently moving
pixels are brighter. If we wish to build a RoI, which would be either
on-line or off-line, we need to store the information of pixels
where motion happened far ago so that the accumulation of object
silhouettes in the motion template can yield useful motion
information along the contours of the silhouette. Fig. 2 depicts
the occurrences of the obtained region of interests (red regions on
the images) for escalator (frame size 640�480) and high-way
(frame size 320�240) cases. Motion heat map [12] expects very
long video to recommend the desirable RoI (hot areas), whereas
the MM needs comparatively much less video duration and
contrives the RoI very quickly. In general, RoI ameliorates the
quality of results and makes the processing time fast a bit more.

2.2. Modeling of spatiotemporal information (STI)

To analyze the scene, we treat moving interest points as the
main cue instead of tracking individual subjects. The RoI, ascer-
tained by MM, is divided into small blocks. Once we define n

points of interest in the RoI, we track those points over the small
blocks of two successive region of interest images using optical
flow techniques [17,24,6]. We take down the static and noise
features. Static features are the features which moves less than
two pixels. Noise features are the isolated features which have a
big angle and distance difference with their near neighbors due to
tracking calculation errors. Yet, one broad problem in some
applications is that people near the camera are supposed to
produce ample optical flow vectors and people far from the
camera cannot produce such fully sufficient flow vectors even if
they would make very quick motion (e.g., running or falling). That
might be right in many examples but it does not generalize. For
example, a fronto parallel wall has the same depth everywhere in
the RoI, same for a person close to the camera. In the direction of
generalization one reasonable solution would be a vertical coor-
dinate system in the image. Moreover, authors in [29] used
vertical coordinate to model their motion vector. We can count
vertical coordinate system of each block where a weighing
coefficient z is calculated according to the vertical coordinate of
the block. Vertical coordinate system is an implementation stage
coordinate system, it depends on several factors of the context
of application and implementation e.g., area of RoI, number of
defined blocks within RoI, etc. A weighing coefficient zr1 is
calculated according to the vertical coordinate of the block.
A block far away from the camera has small vertical coordinate,
as a result its z should be large. Equally, block with large vertical
coordinate gets smaller z. If we see with attention the applica-
tions which are related to fronto parallel wall, then z is just 1.
Finally, for each video frame (e.g., Fig. 3) irrespective of normal or
abnormal events, we come into possession of a reliable and
workable spatiotemporal information (STI), i.e., an n�4 matrix
which is a function of time, broadly speaking a set of vectors V of
n elements variate in time, formulated as

V¼

x1 y1 d1 a1

: : : :

xi yi di ai

: : : :

2
6666664

3
7777775

ð1Þ
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where iAn, xi/x coordinate of any feature element i, yi/y

coordinate of i, di / some weighing factor zi is multiplied with
the displacement of i from one frame to the next, and ai /

moving direction of i. We will use displacement and vector length

interchangeably. As simple trigonometric function atan comes
into notice few potential problems e.g., infinite slope, false
quadrant, etc., the trigonometric function atan 2 has been used
to estimate the accurate moving direction ai of the feature i. On
the whole, the function atan 2 gracefully handles infinite slope
and places the angle in the correct quadrant [e.g., atanð�1

�1Þ ¼ p=4
differs from atan 2ð�1,�1Þ ¼�3p=4, etc.].

2.3. Statistical treatments of the STI

In this subsection, we will formulate Entropy, which is a
measure of the disorder or randomness of video sequence, from
its two crude elements namely degree of randomness of the
directions (circular variance) and the degree of randomness of the
displacements (coefficient of displacement variation).

2.3.1. Degree of randomness of the directions

Consider two cars on the high-way have changed directions
with respect to their original directions, i.e., one from 01 to 101
and other from 01 to 3401. The arithmetic means of these pairs of
direction changes are 51 and 1701, respectively. The direction
mean 51 seems intuitively reasonable, while the average of 1701 is
clearly in error. As the arithmetic mean is ineffective for angles, it
is important to find a good method to obtain both the mean value
and the measure for the variance of the angles. Assume that two
interest points of a frame went somewhere in the next frame with
a maneuver of unit vector lengths A and B having angles a1 and
a2, respectively. Their directional mean R can be found graphi-
cally as shown in Fig. 4. But the graphical solution becomes
extremely inefficient when a large number of directions to be
added and also often arises the problem of precision. Yet an
elementary trigonometric analysis can solve the problem with
high accuracies. If a1, . . . ,ai, . . . ,an, where iAn, be a set of direc-
tions of n interest points taken from a single origin, then the
tangent of R, also called mean of a series of angles or vector mean

and symbolized as yR, can be defined by

yR ¼ atan 2
1

n

Xn

i ¼ 1

sinðaiÞ,
1

n

Xn

i ¼ 1

cosðaiÞ

 !
: ð2Þ

An interesting manner is that the sum of the sines of the angular
deviations from each observation to the resultant is zero,
X-X

Y

-Y

O(0, 0)

Σi∈{�1, �2}sin�i

Σ i
∈

{�
1,

 �
2}

co
s�

i

R (x�1+x�2, y�1+y�2)y�1+y�2

x�1+x�2

�R

A (x�1, y�1)y�1

x�1

�2

B (x�2, y�2)y�2

x�2

�1

Fig. 4. Elementary vectors and trigonometric analysis.
mathematically this property can be shown as:
Pn

i ¼ 1

sinðai�yRÞ ¼ 0. The variability of a sample of directional measure-
ments is indicated by the length of R, which can be defined
for n vectors using Pythagorean theorem as: OR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
Pn

i ¼ 1 sinðaiÞ�
2þ½

Pn
i ¼ 1 cosðaiÞ�

2
q

which means the larger sample

sizes can have longer resultant lengths than smaller samples
without having less variability. A standardized measure of varia-
bility can solve this unacceptable property. To develop such a
measure of variability it is necessary to account for differing
sample sizes. Let ai be a set of directional measurements with

sample size n where iAn, then the degree of randomness of the

directions or circular variance Cv is defined as

Cv ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
Pn

i ¼ 1 sinðaiÞ�
2þ½

Pn
i ¼ 1 cosðaiÞ�

2
q

n
¼ 1�

OR

n
: ð3Þ

The OR=n ranges from 0 to 1. Its extreme values have some agreeable
properties. The case OR=n¼ 1 implies that all the data points are
coincident, whereas OR=n¼ 0 does not imply uniform dispersion
around the circle. Hence, OR=n is not necessarily a useful indicator of
dispersion or spread of the data unless they constitute a single group.
The Cv provides a smooth (0,1) scale. The smaller is the value of Cv,
the more is the concentration of distribution. It is worth mention-
ing that 0rCvr1, unlike an ordinary linear variance; and the
interpretation of OR=n¼ 0, the estimation of Cv¼1 does not necessa-
rily imply a maximally dispersed distribution.

Forthwith, we wish to pay our attention on: How differently does

the circular variance behave in normal and abnormal situations?
Superposable to the observation of Fig. 3, where directions and
displacements of interest points vary randomly in abnormal case
and they are almost symmetrically directed in normal case, we have
simulated the two cases in simpler way. Fig. 5 depicts the fate of 50
interest points for two cases. The directions of interest points have
been simulated in between 01 and 301 with their vector lengths
between 0.5 and 1 for normal case. While in abnormal case,
directions vary in between 01 and 3601 with vector lengths between
0 and 1. On account of simplicity outlier has not been taken into
account. Both linear and circular measures have been estimated in
each circumstances. In the symmetrically directed directions case,
there is almost no pressure on the choice of which preferred
direction, either linear or circular, is to be used because they both
perform similarly. In other words, in normal case, either linear or
circular direction can be the preferred direction painlessly. In spite
of that, circular measure is preferable because of its more accurate-
ness. The circular variance Cv ¼ 0:0123 illustrates that the flow
vectors of the interest points are well concentrated and the interest
points are systematically directed. Emphatically, the movements of
crowd in video for normal cases are hazard free. On the other hand,
there is sufficient difference between linear and circular measures in
abnormal case. Nevertheless, the linear mean goes wrong and only
choice is the circular measure. The circular variance Cv ¼ 0:8950
exemplifies that the flow vectors of the interest points are highly
scattered around. Intuitively speaking, the movements of crowd in
video for abnormal cases are full of hazard. Heretofore, we can
conclude in a gross manner that the circular variance varies
consequentially in abnormal circumstances.

How does the circular variance behave, if some (or all) points will
move slower or quicker than those of previous frame without
changing their directions in the next frame? Normally, vector lengths
in running case are larger than that of walking. What does happen, in
real world crowd video scenes, if some persons will stop or start
running suddenly without changing their direction of movements?
Based on the context both situations would be abnormal. For
example, some persons stopped running while Marathon running
or some persons started running while others walking. Do these cases
concern with the circular variance, any way?
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Fig. 5. A simple example of how the circular variances behave in normal and abnormal cases. Linear mean of directions (Ldm
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between normal and abnormal situations. (I) Vectors flow in normal case (e.g., Fig. 3(a)) and some statistical measures. (II) Vectors flow in abnormal case (e.g., Fig. 3(b))
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Let us take into account the vector length variation while
direction remains unchanged in both cases of Fig. 5. Images in
Fig. 6(I) and (II) depict circumstances where some interest points
changed their vector lengths only. The estimated circular variances,
circular resultant vector lengths, and linear mean of directions
continue the same as estimated in Fig. 5, solely the linear mean of
vector lengths has been changed from 0.8000 to 0.8302 and from
0.8064 to 0.8554 for normal and abnormal cases, respectively.
From this estimation, it is easy to show that any change of the
vector length without varying their directions, the circular variance
remains unaffected. Without any shadow of doubt, we can con-
clude that the circular variance does not bear any information
when some persons stopped running while Marathon running or
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some persons started running while others walking, if and only if
the direction of movement be the same. From this knowledge of
observation, we can reach a conclusion that the circular variance is
an extremely important factor for direction changing case but
exclusively it is not always adequate to pick up abnormality from
the real world video scenes. Henceforth, it needs its complement
for detecting wide varieties of aberration.
2.3.2. Degree of randomness of the displacements

We have observed that circular variance is a necessary factor
but not sufficient for detecting abnormality from the real world
videos where both systematic and unsystematic movements
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exist. Along with circular variance, it is important to take into
consideration the vector lengths or displacements of the point of
interests for exemplifying the abberation detection purposes.

One common query would be: How does the displacement

behave in normal and abnormal cases? To accord the answer in a
good way, let us simulate six different instances of the occurrence
of a straight avenue race (e.g., Marathon) and the number of
participating runners is 40. Beginning of the run all runners were
walking with some 0.30 unit displacement per frame without
changing their directions as simulated in Fig. 7(a). In real world
scene, this type of event usually holds up no surprisal and thus it
is normal. At certain frame, suddenly some runners started
running with some 0.33 unit displacement per frame without
changing their directions as simulated in Fig. 7(b). Such type of
event poses some degree of visual attention for the primates and
accordingly it would be abnormal. Afterwards, all runners were
running with some 0.40 unit displacement per frame without
changing their directions as simulated in Fig. 7(c). It is a usual
event like Fig. 7(a) as very systematic run or walk does not sustain
interesting facts. After a while, some runners grew fatigued and at
certain frame suddenly they decided to run slowly at 0.37 unit
displacement per frame without changing their directions as
simulated in Fig. 7(d). Such type of change in the crowd has
connection with some interesting information for the primates
and in this way it would be an abnormal event. At certain frame,
all runners faced a sudden panic situation (e.g., explosion, gun
shot, fire) and accordingly they were randomly scattered, i.e., they
changed their directions as well as displacements as simulated in
Fig. 7(e). This type of variation in the crowd bears very high
degree of interest for the primates and to this extent it is
necessarily an abnormal event. After the explosion, all the
scattered runners were running without changing their directions
and displacements (maybe varying displacements with respect to
others but fixed for each runner) over frames as simulated in
Fig. 7(f). This event is similar to Fig. 7(a) and (c). It does not
endorse interesting information, so it is normal.

From Fig. 7 it is noticeable that if an event where both
direction and displacement vary, then there will be high possibi-
lity to become that event an abnormal. So it is important to
consider carefully both direction and displacement simulta-
neously. The directional measure circular variance (Cv) is both
dimensionless and normalized. On the other hand, displacement
is neither a dimensionless nor a normalized quantity. Henceforth,
we put forward a reasonable solution of these problems in a
different way by taking ratio between two statistical measures of
displacements. The displacement variance to mean ratio would be
a good solution. Customarily, variance to mean ratio is a measure
used to quantify whether a set of observed occurrences are
clustered or dispersed compared to a standard statistical model.
It provides a good measure of the degree of randomness of the
displacements and may be dealt with normalization. But the
variance of a variable has different units from the variable, for
example square centimeters when the variable is in centimeters.
As a result, the displacement variance to mean ratio has unit of
centimeter. Since the displacement variance to mean ratio is
dimensional, the unit does not cancel, the ratio is not scale
invariant. Scale invariance is a feature of rules which do not
change if length scales are multiplied by a mutual factor. One
possible good solution of the scale invariance for this problem
would be the standard deviation (the square root of variance)
which is a widely used measure of the variability or dispersion. A
useful property of standard deviation is that, unlike variance, it is
expressed in the same units as the data (using the mean as a
measure of scale). The unit of the displacement standard devia-
tion to mean ratio is canceled out as they are measured in the
same scale and is thus a pure number. Evidently, the obtained
ratio is now scale invariant. The displacement standard deviation
to mean ratio (coefficient of displacement variation) is not only a
dimensionless quantity but also can provide a good measure
of the degree of randomness of the displacements. Having a
complement factor of circular variance for a wide variety of
aberration detections, the coefficient of displacement variation
plays an important role to detect some kind of abnormalities from
real videos. Deeming Eq. (1), the mean of displacements d is
delimited by dint of:

d ¼
1

n

Xn

i ¼ 1

di ð4Þ

where n is the number of optical flow vectors in the frame. With
this mean it is easy to ascertain displacement of standard deviation

by means of

dstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Xn

i ¼ 1

ðdi�dÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Xn

i ¼ 1

d2
i �

n

n�1
d

2

vuut : ð5Þ

The displacement standard deviation to mean ratio or degree of

randomness of the displacements is formulated as the ratio of the
standard deviation to the mean as

Dr ¼
dstd

d
ð6Þ

where d40. Accordingly, Dr is scale invariant and normalized
particularly for positive distribution such as the exponential
distribution and Poisson distribution.

2.4. Entropy estimation

Up until now, it is clear that circular variance and coefficient of

displacement variation are necessary and sufficient factors to
detect various aberrations in videos. How can the effective power
of them get mixed together? One possible solution would be the
usage of those statistical measures as the crude parameters of the
Entropy. The more is the entropy, the more is the disorder/chaos
in the system. For instance, to have order on the high-way means
to have cars follow the order of lanes, speed limits, directions, etc.
When these things get mixed in, entropy increases causing
disorder/chaos on the high-way traffic system.

The term entropy was coined in 1865 by German physicist
Rudolph Clausius [10]. Thermodynamic entropy indicates a
measure of how organized or disorganized a system of atoms or
molecules is. It has an enabling factor of energy. Information (also
called Shannon) entropy with no inherent or integral energy
factor, thus it is solely related in form and not in function.
Shannon entropy, a measure of uncertainty, is the expectation
value of �logeðpÞ, where p is the probability assigned to the
measured value of a random variable. Shannon entropy is a broad
and general concept which finds applications in information
theory and thermodynamics. Shannon entropy and information
uncertainty can be used interchangeably [14]. Definition of the
Shannon entropy ES is quite usual, and is expressed in terms of a
discrete set of n probabilities pi with iAn as

ES ¼ pðx1Þloge

1

pðx1Þ
þpðx2Þloge

1

pðx2Þ
þ � � � þpðxnÞloge

1

pðxnÞ

¼�
Xn

i ¼ 1

pðxiÞloge pðxiÞ ð7Þ

where
Pn

i ¼ 1 pðxiÞ ¼ 1. If pðxiÞ ¼ 0 for some i, the value of the
corresponding summand 0 loge 0 is taken to be 0. The entropy is
zero signifies there is no uncertainty and hence there is no
information. Consequently, entropy always follows the nonnega-
tivity rule (ESZ0).
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To fit for the statistical measures of Cv and Dr in Eq. (7), the
measures have been modeled with their respective probabilities
as

pðcvÞ ¼
Cv

CvþDr
ð8Þ

pðdrÞ ¼
Dr

CvþDr
ð9Þ

Then the Shannon entropy at some frame f can be formulated as

Ef ¼ pðcvÞloge

1

pðcvÞ
þpðdrÞloge

1

pðdrÞ
ð10Þ

where pðcvÞþpðdrÞ ¼ 1. The more is the Ef, the more is the
disorder/chaos on the video frame. Higher value of Ef means the
corresponding video frame has a high possibility to become a
frame of abnormal case. To define and employ Shannon entropy
by Eq. (10) is an agreeable way; where a change in the Cv or Dr

(which directly reflects in Ef), separately or together, reports an
abnormal activity.

Theoretically, in some situations the proposed entropy Ef can
be both sensitive and incorrect. From Eq. (10) it is evident that
either Cv¼0 or Dr¼0 can make the proposed entropy Ef¼0.
Therefore, if the values of Cv or Dr are the same (i.e., move
towards the same direction or at the same velocity), then Ef will
become zero. The estimation of Ef¼0 would be very sensitive. For
example, if Cv¼0 and/or Dr¼0, then minimum value of Ef¼0 and
a small disturbance can change the value of Ef from its minimum
to maximum e.g., assume that Cv ¼ 6� e�6 and Dr ¼ 6� e�6,
subsequently Ef will approach to its maximum value loge 2. When
Cv¼Dr will occur in a frame, Eq. (10) will move aside Ef ¼ loge 2.
If there will exist an estimation of Ef¼0 just before that frame,
then the result of that frame will be counted as a finite impulse
(an outlier) value. If there would result an impulse or close to an
impulse value, then the decision might be either true positive or
false alarm. If there would exist a ground truth, then that impulse
value should be a true positive, otherwise a false alarm. Ground
truth is the process of manually marking what an algorithm is
expected to output. Theoretically, when the value of Cv and Dr are
very small, a small disturbance will make a great change on Ef.
However, in practice, due to optical flow estimation error (e.g.,
problems of illumination, motion discontinuities [16], etc.) and
some other factors, the value of Cv and/or Dr usually is larger than
the ground truth, henceforth, it is very unlike to get a very small
value and therefore becomes more stable than expected in theory.
Table 1

Simulation of people running towards the same Cv(j) direction at varying speeds Drði

correct and incorrect estimations or workable and not-workable ranges, respectively.

DrðiÞ9i¼ 1;2,3, . . . ,10 CvðjÞ9j¼ 1;2, . . . ,6

Cvð1Þ ¼ 6� 10�1 Cvð2Þ ¼ 6� 10�2 Cvð3Þ ¼

Ef ðDrðiÞ,CvðjÞÞ

Drð1Þ ¼ 0:1685 0.5260 0.5757 0.1496
Drð2Þ ¼ 0:0912 0.3902 0.6716 0.2316
Drð3Þ ¼ 0:0164 0.1229 0.5204 0.5808
Drð4Þ ¼ 0:1331 0.4738 0.6196 0.1778
Drð5Þ ¼ 0:0743 0.3469 0.6875 0.2657
Drð6Þ ¼ 0:0500 0.2713 0.6890 0.3404
Drð7Þ ¼ 0:3855 0.6693 0.3952 0.0792
Drð8Þ ¼ 0:0507 0.2735 0.6896 0.3379
Drð9Þ ¼ 0:0038 0.0383 0.2263 0.6681
Drð10Þ ¼ 0:0892 0.3853 0.6739 0.2352
2.5. Correct–incorrect estimation of Ef

In some cases the estimation of Ef could be incorrect. For example,
when people are running towards the same direction at different
speeds, this should be considered as abnormal. Nevertheless, the
estimation of entropy in Eq. (10) will be both abnormal (correct) and
normal (incorrect). Let us simulate this situation for 1024 people at
six different races (contest of speed). Assume that 1024 people are
running with various DrðiÞ9i¼ 1;2,3, . . . ,1024 speeds at their 1st,
2nd, 3rd, 4th, 5th, and 6th races in Cvð1Þ ¼ 6� 10�1,
Cvð2Þ ¼ 6� 10�2, Cvð3Þ ¼ 6� 10�3, Cvð4Þ ¼ 6� 10�4, Cvð5Þ ¼ 6�
10�5, and Cvð6Þ ¼ 6� 10�6 directions, respectively. During the simu-
lation 1024 random values for Dr(i) between 0 and 1 have been
generated from gamma distributions with shape parameters 2.8.

Simulation results have been presented in both numerically
and graphically. Due to the simplicity of presentation only first 10
values of Dr(i) have been listed in Table 1. But Fig. 8 depicts all
simulated results graphically. To avoid complexity data have been
plotted after accomplishing an ascending order of Dr(i) values.
However, in the 1st case the outcomes of Eq. (10) make clear and
visible of abnormal case as listed in the light gray colored column
Ef ði,1Þ in Table 1 as well as cyan colored curve in Fig. 8, which is a
correct estimation. In the 2nd case the outcomes of Eq. (10)
equally give evidence of abnormal case as listed in the light gray
colored column Ef ði,2Þ in Table 1 and also black colored curve in
Fig. 8, which is again a correct estimation. In the 3rd case the
outcomes of Eq. (10) may be deemed as an abnormal case as listed
in the light gray colored column Ef ði,3Þ in Table 1 as well as
magenta colored curve in Fig. 8, which would nearly be a correct
estimation. In the 4th case the outcomes of Eq. (10) represent
normal case as listed in the dark red colored column Ef ði,4Þ in
Table 1 and also green colored curve in Fig. 8, which is an
incorrect estimation. Similarly, in 5th and 6th cases the estimated
outcomes of Ef ði,5Þ and Ef ði,6Þ are incorrect.

Explicitly, the definition of entropy in Eq. (10) can provide
correct results up to certain range. Both Table 1 and Fig. 8
provide evident that this workable range could not go less than
some 10�3. Up to this point, we could apply a threshold on the
obtained Ef measure to get a decision whether the frame belongs
to normal or abnormal situations. But such kind of decision
would potentially lead the method sensitive and approximately
be equal to thresholding of pðcvÞ and/or pðdrÞ. Consequently, false
alarm rate would eventually be high. Nonetheless, to obtain
better performance we would like to improve the workable
range a bit more by performing an explicit normalization for
entropy Ef.
Þ9i¼ 1;2,3, . . . ,10 using Eq. (10) where j¼ 1, 2, y, 6. Bold and italic columns are

6� 10�3 Cvð4Þ ¼ 6� 10�4 Cvð5Þ ¼ 6� 10�5 Cvð6Þ ¼ 6� 10�6

0.0236 0.0032 0.0004

0.0394 0.0055 0.0007

0.1525 0.0241 0.0033

0.0287 0.0039 0.0005

0.0467 0.0066 0.0008

0.0643 0.0093 0.0012

0.0116 0.0015 0.0002

0.0637 0.0092 0.0012

0.3975 0.0799 0.0117

0.0401 0.0056 0.0007
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Fig. 8. Simulation result of 1024 people running towards each time one of CvðjÞ9j¼ 1;2, . . . ,6 directions at DrðiÞ9i¼ 1;2,3, . . . ,1024 various speeds using Eq. (10). On doing

an ascending order of Dr(i) values, data have been plotted. Workable range does not pass less than some 10�3 , thus green, blue, and red colored curves fall on the

not-workable range, i.e., incorrect estimation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.6. Explicit normalization

A normalized value is a value that has been processed in a way
that makes it possible to be efficiently compared against other
values. But the Shannon entropy is not normalized [23], i.e.,
Eq. (10) needs a little amelioration to have a normalized structure.
For instant, consider a probability space where exists pðx1Þ ¼ 0:51,
pðx2Þ ¼ 0:26, and pðx3Þ ¼ 0:23; then Eq. (7) estimates ES¼1.0317,
which is not normalized. For the sake of normalization, we may
use the functions e.g., 1=loge Ef , 1=ð1þ loge Ef Þ, etc. But the
selection of the function 1=loge Ef for normalization is an unac-
ceptable concept because to get something normalized from
non-normalized state or condition, we need a normalizing func-
tion or factor; yet logarithm itself is not such a case. In addition,
we wish to bring into existence the system parameters on the
user choices. None of these functions do offer a friendly change
option of Ef measure for the user, i.e., scaling problem. To solve
these problems, we would like to take up a versatile distribution
which has significant effect on its shape and scale parameters. In
this respect, we take the advantage of the cumulative distribution

function of Weibull distribution [26], which has strict lower and
upper bounds between 0 and 1. Due to accurate model quality
and performance characteristics of Weibull distribution and its
flexibility that makes it ideal for analysis on a dataset with
unknown distribution. It is worth mentioning that Weibull
distribution can mimic the behavior of other statistical distribu-
tions such as the normal and the exponential [26]. At this time,
we can essentially formulate the normalized entropy of some
frame f by means of

½Entropy�f ¼ 1�e�ðEf =lÞ
W

ð11Þ

where Ef Z0 as well as l40 and W40 respectively, denote
scale and shape parameters of the distribution. Using Eq. (11)
and being acquainted with values of l, W, and Ef we can desirably
estimate the normalized entropy of any frame ½Entropy�f between
0 and 1. Thus Weibull distribution not only provides a fair
normalized measure for Ef between its strict lower and upper
bounds but also offers a friendly change option of that measure
for the user by its l and W parameters. How does ½Entropy�f vary in
the effect of varying l and W with some fixed value of Ef? To study
such behavior, 50 pairs of l and W values have been generated
on the 0.05 incremental basis. Figs. 9 and 10 depict the
characteristics.

Using Eq. (11), we can widely and explicitly estimate Entropy

of the simulated situations listed in Table 1 and Fig. 8. Numerical
values in Table 2 and figurative Fig. 11 clarify further improve-
ment of the workable range where user friendly parameters have
been selected as l¼ 0:45 and W¼ 0:20. Table 2 as well as Fig. 11
suggest that the new workable range would go less than some
10�6. However, it has been already widened the workable range
about a factor of 10�3=10�6

¼ 1000. It is noticeable that the final
estimation depends not only on the estimated Ef, but also on the
significant effect of the Entropy definition in Eq. (11). The Eq. (11)
can provide more stable estimation than that of Eq. (10). Never-
theless, there is a disbursement to be paid for these improve-
ments. The selection of low or high values for l and W would give
rise to problems for both false alarms and thresholding; and
hence it is important to make a trade-off.

In an easily perceptible manner, we can estimate Entropy of
the simulated situations as simulated in Figs. 5–7 with the help of
Eq. (11). Table 3 shows their results for three different values of l
and W. Based on l and W, the values of Entropy increase for
sometimes and decrease for other times. This phenomena has
circumscribed the freely selection options of l and W in some
degree and thus it is related to the performance. If l and W will
possess high and low values, respectively, then higher value of Ef

will be compressed but lower value of Ef will be expanded
exceedingly. All Entropy values will fall into somewhat very short
range. If l and W will own low and high values, respectively, then
higher value of Ef will be expanded highly and lower value of Ef

will be compressed to a high degree. All Entropy values will fall
into wide range. If both l and W will bear high values, then all
values of Ef will be compressed. All Entropy values will fall into
wide range. If both l and W will contain low values, then higher
value of Ef will be expanded in lesser extent but lower value of Ef
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Fig. 10. Variation of ½Entropy�f in Eq. (11) for Ef¼0.90 with varying l and each fixed W. Exactly corresponding points are orchestrated by fixing Ef ¼ l and varying l. If l¼ 0,

then ½Entropy�f ¼ 1. If W¼ 0, then ½Entropy�f ¼ 0:6321 and thereof by varying l scores a l-axis parallel line. Before coincidence all W-fixed curves were above the line, after

they are underneath.
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Fig. 9. Variation of ½Entropy�f in Eq. (11) for Ef¼0.90 with varying W and each constant l. If W¼ 0, then ½Entropy�f ¼ 0:6321. Ef ¼ l with varying W results a W-axis parallel line.

All l-fixed curves with lo0:90 and l40:90 situate above and beneath of this line, respectively.
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will be expanded to a high extent. All Entropy values will fall into
somewhat short range. The phenomena of higher value compres-
sion and lower value expansion brings about high precision rate
by minimizing false alarms but thresholding problem may occur
as values of the Entropy will fall into a narrow range. But then
again, the phenomena of higher value expansion and lower value
compression puts through low precision rate by increasing false
alarms but the thresholding problem can be solved in some good
manner as values of the Entropy can fall into a wide range.
Accordingly, it is important to select l and W values in a way so
that precision rate will be as high as possible and simultaneously
thresholding problem can be minimized. Several simulation
results on large sets of random data obtained from gamma
distributions suggest that 0:35rlr1:5 and 0:56rWr2:2 can
be a good range of options for these user friendly parameters.

2.7. Supremacy of explicit normalization

From Fig. 8 at fixed direction e.g., Cvð4Þ ¼ 6� 10�4 (green
curve) case, it can be noticed that in the distribution of Ef



Table 2

Simulation of people running towards the identical Cv(j) direction at varying speeds DrðiÞ9i¼ 1;2,3, . . . ,10 with Eq. (11) where j¼1, 2, y, 6 and user friendly parameters

l¼ 0:45 and W¼ 0:20. Bold columns are correct estimation or workable range.

DrðiÞ9i¼ 1;2,3, . . . ,10 CvðjÞ9j¼ 1;2, . . . ,6

Cvð1Þ ¼ 6� 10�1 Cvð2Þ ¼ 6� 10�2 Cvð3Þ ¼ 6� 10�3 Cvð4Þ ¼ 6� 10�4 Cvð5Þ ¼ 6� 10�5 Cvð6Þ ¼ 6� 10�6

½Entropy�f ðDrðiÞ,CvðjÞÞ l¼ 0:45 W¼ 0:20

Drð1Þ ¼ 0:1685 0.6436 0.6502 0.5517 0.4256 0.3103 0.2176
Drð2Þ ¼ 0:0912 0.6216 0.6616 0.5834 0.4590 0.3390 0.2399
Drð3Þ ¼ 0:0164 0.5375 0.6428 0.6509 0.5532 0.4270 0.3115
Drð4Þ ¼ 0:1331 0.6359 0.6556 0.5642 0.4383 0.3211 0.2260
Drð5Þ ¼ 0:0743 0.6130 0.6633 0.5934 0.4703 0.3490 0.2478
Drð6Þ ¼ 0:0500 0.5949 0.6634 0.6116 0.4923 0.3687 0.2635
Drð7Þ ¼ 0:3855 0.6613 0.6226 0.5067 0.3819 0.2742 0.1902
Drð8Þ ¼ 0:0507 0.5956 0.6635 0.6110 0.4915 0.3680 0.2629
Drð9Þ ¼ 0:0038 0.4569 0.5815 0.6611 0.6231 0.5075 0.3827
Drð10Þ ¼ 0:0892 0.6207 0.6618 0.5845 0.4602 0.3401 0.2408
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Fig. 11. Simulation results of 1024 people running towards each time one of CvðjÞ9j¼ 1;2, . . . ,6 directions at DrðiÞ9i¼ 1;2,3, . . . ,1024 various speeds using Eq. (11) as well as

l¼ 0:45 and W¼ 0:20. Data have been plotted on performing an ascending order of Dr(i) values. Correct estimation or workable range may go less than some 10�6 and so

1000 times better performance.

Table 3
Entropy estimation of the simulated situations as simulated in Figs. 5–7.

Diverse cases Required parameters ½Entropy�f

Cv Eq. (3) Dr Eq. (6) pðcvÞ Eq. (8) pðdrÞ Eq. (9) Ef Eq. (10) l¼ 0:4 W¼ 0:2 l¼ 0:5 W¼ 1:5 l¼ 0:5 W¼ 2:2 l¼ 0:6 W¼ 2:5 Conclusive remarks

Fig. 5(I) 0.0123 0.1525 0.0748 0.9252 0.2658 0.6020 0.3208 0.2199 0.1221 Normal
Fig. 5(II) 0.8950 0.1386 0.8659 0.1341 0.3940 0.6319 0.5033 0.4470 0.2951 Abnormal
Fig. 6(I) 0.0123 0.1399 0.0809 0.9191 0.2810 0.6031 0.3435 0.2449 0.1391 Normal
Fig. 6(II) 0.8950 0.1570 0.8508 0.1492 0.4214 0.6401 0.5387 0.4966 0.3386 Abnormal
Fig. 7(a) 0.0063 4�10�6 0.9994 6�10�4 0.0051 0.3438 0.0029 5�10�5 7�10�6 Normal
Fig. 7(b) 0.0063 0.0451 0.1230 0.8770 0.3729 0.6302 0.4736 0.4065 0.2612 Abnormal
Fig. 7(c) 0.0063 3�10�6 0.9995 5� 10�4 0.0039 0.3301 0.0017 3�10�5 4�10�6 Normal

Fig. 7(d) 0.0063 0.0356 0.1508 0.8492 0.4240 0.6413 0.5412 0.5001 0.3417 Abnormal
Fig. 7(e) 0.9735 0.2959 0.7669 0.2331 0.5430 0.6546 0.6775 0.6985 0.5412 Abnormal
Fig. 7(f) 0.9735 0.0351 0.9652 0.0348 0.1510 0.5629 0.1530 0.0693 0.0313 Normal
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Fig. 12. Percentages of Ef and ½Entropy�f values in their individual Dr and Cv varying distributions which exceed x¼ 0:1 applying the simulation results with wider Cv range

in Figs. 8 and 11. Usable values of both Ef and ½Entropy�f decrease on decreasing Cv nearly after 10�3 and 10�8, respectively. Thus ½Entropy�f gives 105 times better result at

x¼ 0:1 than that of Ef.
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essentially 74.12% and 88.57% of the values fall into less than
0.1 and 0.2 threshold labels, respectively. Cutoff like 0.1 is often
impractical in both simulation and real world video applications
for anomalies detection, as a consequence more than 74.12% of Ef

values fall into simple not-workable range. Conversely, from
Fig. 11 at the same situation in the distribution of ½Entropy�f all
values are in running order. Accordingly, Eq. (11) reasons out the
incompleteness and imperfection of Eq. (10) (e.g., Fig. 8) by
improving the workable range in a clearly noticeable manner
(e.g., Fig. 11).

How does the explicit normalization improve the stability of Ef

and in which extent? Overall pleasantness resulting from explicit
normalization would not be quickly seen from Figs. 8 and 11.
Figs. 9 and 10 may not help too much in this talking point, since
the value of Ef is fixed in both cases. In order to pay close attention
to the overall improvement factors of ½Entropy�f with respect to Ef,
we have investigated two measures namely Gx and Lx where the
cutoff x would see with attention the upper borderline of the not-
workable range in the distributions of Ef and ½Entropy�f . The Gx
affords access to information how many Ef and ½Entropy�f values,
measured in percentage, run into workable or not-workable
ranges under certain cutoff x in the distributions of Ef and
½Entropy�f . In a formalistic manner Gx can be formulated as

Gx ¼
Average % of ½Entropy�f values which exceed x

Average % of Ef values which exceed x
: ð12Þ

The Lx provides the ratio of the Cv value at any given percentage
of Ef values in the distribution of Ef which exceed x and the Cv

value at the same percentage found in ½Entropy�f distribution
which exceed x. Formally Lx can be defined as

Lx ¼
Cv value at any given maximum % of Ef values which exceed x

Cv value at the same % found in ½Entropy�f distribution which exceed x
:

ð13Þ

Taking into account the simulation results in Figs. 8 and 11
considering Cv range up to and including 10�11, the derived
Fig. 12 bears witness the percentage of Ef and ½Entropy�f values
in their corresponding Dr and Cv varying distributions which go
beyond x¼ 0:1. After certain point usable values of both Ef and
½Entropy�f decrease on decreasing Cv. In case of x¼ 0:1 the decay
starts approximately from 10�3 and 10�8 for Ef and ½Entropy�f ,
respectively. This phenomena provides 10�3

10�8 ¼ 105 times better
quality of result for ½Entropy�f at cutoff label x¼ 0:1. But in case of
x¼ 0:3 the similar decay starts approximately from 10�2 and
10�5 for Ef and ½Entropy�f , respectively and thus the gain is 103.
Yet, average percentage of Ef and ½Entropy�f values which tower
above x¼ 0:1 are 28.0717 and 72.4165, respectively. Apply-
ing Eq. (12) the improvement factor puts through G0:1 ¼
72:4165
28:0717 ¼ 2:5797. On the other hand, at Cv ¼ 6� 10�6 the max-
imum percentage of Ef values which exceed x¼ 0:1 is 0.1953. In
the distribution of ½Entropy�f exactly 0.1953 can be found at
Cv ¼ 6� 10�11. On applying Eq. (13), this phenomena gives
evidence of L0:1 ¼ ð6� 10�6

Þ=ð6� 10�11
Þ ¼ 105 times better qual-

ity of outcome for ½Entropy�f at cutoff label x¼ 0:1, i.e., if the upper
bound of not-worktable range is x¼ 0:1, then improvement factor
L0:1 ¼ 100 000.

Fig. 13 describes in vivid detail of improvement factors of the
explicit normalization resulting from the simulation results with
Cv limit up to and including 10�11 in Section 2.5 along with
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Fig. 14. Two sample videos from the escalator dataset: first row concerns a person falling episode on the escalator egress; second row presents an aberrant situation

caused by a wheel broken trolley.

Md. Haidar Sharif, C. Djeraba / Pattern Recognition 45 (2012) 2543–2561 2555
Eq. (11)–(13) plus l¼ 0:45 as well as W¼ 0:20. Without any
shadow of doubt from Fig. 13 it can be easily concluded that
½Entropy�f in Eq. (11) has a better performance.

2.8. Polynomial fitting

We can apply a threshold on the obtained Entropy measures
data to get a decision of normal or abnormal event frame. But any
discrete value of Entropy which exceeds a predefined threshold TE

is not a clear evidence of abnormal event frame. It may frequently
fear that at least one attribute (e.g., an outlier) may have been
severely corrupted by a mistake or error (e.g., tracking calculation
errors) which would lead an erroneous decision of the normal or
abnormal event frame. An outlier is a sample that is very different
from the average sample in the dataset. An outlier may be an
ordinary sample, but of which at least one attribute has been
severely corrupted by a mistake or error (e.g., tracking calculation
errors). An outlier may also be a bona fide sample, that simply
turns out to be exceptional. To minimize this outlier problem, a
polynomial fitting would be a good solution. Runge’s phenom-
enon [22] shows that lower-order polynomials are normally to be
preferred instead of augmenting the degree of the interpolation
polynomial, even if some of the badness of this interpolation may
be overcome by using Chebyshev polynomials [7] instead of
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equidistant points. Accordingly, we can apply some lower degree
(e.g., 5) of polynomial fitting on the obtained Entropy measures
data. As a consequence a more reliable, stable, workable, pala-
table, and much less erroneous and sensitive measures over the
originally obtained Entropy measures data for a decision of
normal or abnormal frame can be gained.

2.9. Threshold estimation

The decision of normal or abnormal frame can be taken either
static way by comparing with polynomial fitting data with a
predefined threshold TE or dynamic way by detecting considerable
sudden changes of the polynomial fitting data over time. In static
way, a predefined threshold TE, calculated from video which
contains exclusively normal activities, can differentiate each
frame with respect to its estimated Entropy whether it is normal
or exceptional. An abnormal frame can be detected if & only if

Entropy4TE, otherwise normal frame. The TE (also Entropy)
depends on the controlled environment (video stream Vs), speci-
fically the remoteness of the camera to the scene, the orientation
of the camera, the type and the position of the camera, lighting
system, density of the crowd, etc. In general, the more is the
remoteness between the camera and the scene, the less is the
considerable amount of optical flows and blobs. In case of
escalator, TE also places trust on the escalator type and position.
Looking on these facts, we have at least one threshold for a video
stream. If we have N video streams, which are the case in sites
e.g., airports, banks, hospitals, hotels, concerts, cinema halls,
parking places, political events, shopping malls, subways, sta-
tions, schools, sporting events, town centers, etc., then we put
forward at least N thresholds. If the video stream Vs�1 (where
s�1AN ) leaves for another Vs (where sAN ), then the threshold
TE of Vs will be made over through the use of

½TE�Vs
¼ arg max

f ¼ 1...m
½Entropy�f þarg min

f ¼ 1...m

1

ð2pÞ2
X1
k ¼ 0

ð�1ÞkðEntropyÞ2kþ1

k!ð2kþ1Þ

" #
f

ð14Þ

where m is the number of frames in the video Vs and second term
indicates some minimum Gaussian error, which is added for a
good estimation of the threshold.
3. Experimental results and discussion

To conduct experiments, we have principally made use of the
Escalator dataset [20] and the two datasets as operated by [19]
so-called, respectively, the UMN dataset [21] and the Web Dataset

[19]. Routinely, z limits 0:65rzr1 and n¼2000. Adjacent to
camera region, z¼ 0:65 suits well while z bears 1 at opposite end.
User friendly parameters have been selected as l¼ 0:5 and
W¼ 1:20.

3.1. The escalator dataset

Escalators have become an imperative part of urban life.
Escalator related injuries occur infrequently but may result in
significant trauma. In 2000, the accident rate for escalator riding
was about 0.815 accidents per million passenger trips through
Taipei Metro Rapid Transit heavy capacity stations [8]. There are
approximately 7300 escalator-related injuries in the United States
each year [9].

However, our used Escalator dataset [20] consists of 29 real
videos of total duration 15 min (� 285 608 frames), taken in
spanning days and seasons, of frame size 640�480 pixels,
collected by cameras installed in an airport to monitor especially



Fig. 15. The algorithm has hardly effect on handling occlusion anomalies e.g., (a)–(f).
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the escalator exits, provided by a video surveillance company
under the MIAUCE project [20]. The videos were used to provide
informative data for the security team. Each video stream consists
of normal and abnormal events. The normal situations correspond
to crowd flows without any eccentric event on the escalator
elsewhere. Eccentric events correspond to videos which contain
collapsing events mostly in the escalator egresses. Generally, in
the videos we have two escalators corresponding to two-way-
traffic of opposite directions.

Images in Fig. 14 are the output of the abnormal event
detector, depict two crowd scenarios of collapsing events on the
escalator exits. First row (V1 listed in Table 4) depicts a scenario
where two persons were standing on the moving escalator and
suddenly a trolley became unbalanced and rushed out toward
them. One person got away by running and was not run down
under the force of trolley, while other was ill-fated. As a result the
non-escapee was run down by the runaway trolley, and subse-
quently fell down at the exit point of the moving escalator.
Second row (V2 listed in Table 4) describes another inconsistent
circumstances on the exit point where a wheel from the trolley
has suddenly been broken off by the friction during its travel over
the escalator. Most of the inconsistent situations were detected
by the proposed approach. The detailed evaluation of the pro-
posed algorithm considering static method of thresholding for the
provided escalator dataset has been listed in Table 4.

The algorithm has scarcely effect on detecting abnormalities
from the video streams 6th, 9th, 14th, 17th, 22nd, and 28th listed
in Table 4 as shown their sample frames in Fig. 15(a), (b), (c), (d),
(e), and (f), respectively. This is due to the fact that the video
sequences include abnormal events occur with occlusion. Accord-
ingly, the estimated Entropy obtained from the quantity of
extracted information is insufficient to draw out anomalous
frames. Of course, it is well known that occlusion handling is an
arduous part of optical flow technique. In Table 4, except six
videos, the first detected abnormal frame DVs

of some video Vs has
been compared with the respective ground truth GVs

and thereof
root mean squared error C and mean absolute error F have been
estimated for 23 out of 29 videos. The estimation of C¼ 0 and
F¼ 0 corresponds to perfect detection or ideal case or ground
truth. In spite of the fact that, the estimated C� 5 and F� 5 fall
within the fitting range of many computer vision applications
along with escalators.

3.2. The UMN dataset

The publicly available dataset of normal and abnormal crowd
videos from University of Minnesota [21] comprises the videos of
11 different scenarios of an escape event in three different indoor
and outdoor scenes. Duration of the videos is 4.3 min (� 7724
frames) and the frame size is 320�240 pixels. Each video consists
of an initial part of normal behavior and ends with sequences of
the abnormal behavior.

The qualitative results of the abnormal behavior detection for
four sample videos (we named d1, d2, d3, d4 from top to bottom) of
UMN dataset, as demonstrated by [19], have been presented in
Fig. 16. In all the sample videos, abnormal motion includes a
sudden situation when the group of people start running the
measured Entropy will be higher than that of any other before
estimated. Gaussian like curves present the abnormal motions
when those groups of people are trying to leave their places with
atypical motions. Results report that the proposed method
performs something to a greater degree to distinguish abnormal
sequences. The results are likely a bit superior to [12,19] in the
sense that there is no significant reported false positives. Table 5
provides the quantitative results of a comparison with Ihadda-
dene et al.’s [12] and Mehran et al.’s [19] results for the same four
videos. Most false alarms in [12] have been resulted from the
incorrect estimation of influencing features e.g., direction histo-
gram peaks, linear direction variance, etc. Like the approach of
Mehran et al.’s [19], our approach does not require an explicit
learning period to estimate various parameters of the system.
Consequently, there is no serious concern of the reliable learning
of unknown parameters which leads to potentially decrease the
number of false alarms.



Fig. 16. Qualitative results of abnormal behaviors detection using the proposed framework for the same four sample videos as demonstrated in [19] from the UMN dataset.

Table 5
Comparison of Ihaddadene et al.’s [12] and Mehran et al.’s [19] results.

Approaches d1 d2 d3 d4 C F False alarms

Ihaddadene et al. [12] 478 595 734 689 12 12 9
Mehran et al. [19] 482 593 741 696 16 16 6
Proposed 461 576 718 671 6 6 0
Ground truth case 466 581 724 678 0 0 0
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3.3. The Web dataset

We have likewise conducted the experiments on the challen-
ging set of videos that has been used by [19] and placed together
from the sites e.g., Getty Images, ThoughtEquity (http://www.
thoughtequity.com), Google Videos, etc. which contain documen-
tary and high quality videos of crowds essentially in different
urban scenes. This dataset consists of video streams with duration
17 min (� 30 536 frames) and the frame size is 320�240 pixels.
Video sequences of normal crowd scenes are pedestrian walking,
marathon running, and so forth as well as abnormal crowd scenes
include escape panics, protesters clashing, crowd fighting on the
street, etc. Fig. 17 shows five sample videos (we named w1, w2,
w3, w4, w5 from top to bottom) of the Web dataset [19] where w1

pedestrian walking, w2 marathon running, w3 crowd fighting on
the street, and w4 and w5 escape panics.
Beyond the crowd aberrant activities detection, the algorithm
can monitor illegal traffic activities on the high-way, e.g., car
making illegal U-turn. Fig. 18 depicts an illegal U-turn situation
which has been picked up by the algorithm.

3.4. Performance evaluation

We have conducted experiments of our proposed approach
essentially on three datasets and its effectiveness on those
datasets has been listed in Table 6. We have considered two
statistical probability measures namely recall rate (also called
sensitivity) and precision rate (also called positive predictive
value). Precision is the probability that can be seen as a measure
of exactness or fidelity, whereas recall is also the probability that
is a measure of completeness. A general desired attribute for a
smart detector is that the recall and precision rates from a given
video stream are expected to be very high by minimizing the
number of false negatives and false alarms, respectively. An
average sensitivity of 100% means that the detector recognizes
all actual abnormal activities from the video streams and such
kind of detector is called perfect or ideal detector, which is yet
unknown to the computer vision research community.

The proposed approach has a figurative support on optical flow
concepts and therefore overcomes problems with detection and
tracking of individual objects. Yet, abnormal events which occur
with occlusion have circumscribed the average performance of

http://www.thoughtequity.com
http://www.thoughtequity.com


Fig. 17. Qualitative results of normal and abnormal behaviors detection using the proposed approach for five sample videos from Web dataset as operated by [19]. First

and second rows concern normal activities of pedestrian walking and marathon running, respectively. The leftover rows bear reference to the aberrations: third row

demonstrates crowd fighting on the street, the last two rows touch upon escape panics (e.g., overwhelming feeling of fear and anxiety).

Fig. 18. Example video in which cars are ensuing the regular traffic flow which hints that Entropies are normal; while a car making an illegal U-turn which infers that

Entropies are higher, and consequently the illegal traffic activity has been picked up by the pointed framework.
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Table 6
The effectiveness of the proposed approach on different datasets.

Datasets Number of frames Recall rate (%) Precision rate (%)

Escalator [20] 285 608 80 86
UMN [21] 7724 94 97
Web (e.g., [19]) 30 536 91 89
Average 107 957 88.3 90.6

Table 7
General characteristics. Symbols | and � denote yes and no, respectively.

Different issues Different approaches

Andrade et al.

[2,3]

Ihaddadene

et al. [12]

Mehran

et al. [19]

Our

approach

Detected anomaly? | | | |
Region of interest

used?

� | � |

Low rate of false

alarm?

� � � |

Tested with real

dataset?

� | | |

Tested with

simulated data?

| � � |
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the detector to a certain degree to detect abnormal activities from
video streams. Unambiguously, handling of occlusion is a labor-
ious work in optical flow as occluded pixels violate a major
assumption of optical flow that each pixel goes somewhere. In
theory, the pixels at the occlusion area should not be assigned any
flow vector since there is no correspondence available in the other
frame. As the proposed approach touches base with optical flow
techniques, no flow vector can come to have possession on
occlusion areas. Subsequently, the detector has scarcely effect
on overlapping standpoints. In spite of that, the mainstream
performance of the detector demonstrates an affording satisfac-
tion in many applications of computer vision.

3.5. Comparison with state-of-the-art

Our proposed approach has several important differences from
the most related body of works, e.g., Andrade et al. [2,3],
Ihaddadene et al. [12], and Mehran et al. [19]. A brief overview
of some important issues of these research works along with our
approach have been listed in Table 7.

Like our approaches, in the work of Andrade et al. [2,3] crowd
behavior has been characterized at a global level by using the
optical flow of the video sequence. Unlike our approaches, during
the learning stage, a reduced order representation of the optical
flow was generated by performing PCA on the flow vectors.
Afterwards, top few eigenvectors were used as the representative
features and spectral clustering was performed to identify the
number of distinct motion patterns present in the video. The
features in the clustered motion segments were used to train
different HMMs which were then used for event detection in
crowds. The method was only tested by data obtained from
simulation. A general limitation of simulation is that models are
typically unstructured and must be developed for problems that
are also unstructured. It is often impractical to realistically
validate simulation results all of the above. Furthermore, the
model building for simulation is customarily costly and time-
consuming.

In video surveillance scenes, camera positions, and lighting
conditions allow getting a large number of Harris corners that
can be easily captured and tracked. Since the most influencing
features (e.g., direction histogram peaks, ordinary linear direction
variance, etc.), as proposed by Ihaddadene et al. [12], are extracted
based on the result of Harris corner detection, these features would
be sensitive to textures. For example, if a person wears a grid-dress
like cloth, there will be too many corners detected from the region
of him/her so that most motion directions (e.g., 50% or more) in
that frame are the same as the movement direction of the person.
Consequently, features like direction histogram will be distorted in
such situation. Moreover, the ordinary linear direction variance is
not always accurate. As a result, the false positive as well as false
negative will be increased significantly. As our proposed approach
considers circular variance Cv (as discussed in Section 2.3.1), it is
too accurate and reliable to report any angular change as compared
to [12], where along with other measures the ordinary linear
direction and direction histogram have been taken into account.
Fact is that in case of any angular change circular variance is more
skillful than that of linear statistic. For this reason, our approach
can detect the U-turn like Fig. 18 successfully, whereas the method
of [12] has narrow effect on the detection of such nearly unde-
tectable change on the video. In this regard, our proposed method
is again superior to [12].

Many existing methods of abnormal event detection require a
learning period to estimate various parameters of the system, and
hence reliable learning of unknown parameters is not always
accurately possible which could potentially increase the rate of
false alarms. For instance, Mehran et al. [19] have introduced an
approach to detect and localize abnormal behaviors in crowd
videos using social force model. They have presented that their
estimated social force model is capable of detecting the governing
dynamics of the abnormal behavior, even in the scenes that it is
not trained. Nevertheless, significant number of false alarms in
their framework are the result of incorrect estimation of social
forces. This is a severe shortcoming of their approach. In a
contrary manner, the implicit learning period in our approach is
threshold, consequently, the false alarm rates are significantly
low as compared to their approach.

3.6. Future work directions

Future work would carry on the method to bring about
circumstances of overlapping abnormal activities along with
some smarter threshold estimation process. Occlusion handling
is still one of the major challenges in computer vision. Advances
in sensing technologies as well as the increasing availability of
computational power and efficient bandwidth usage methods are
favoring the emergence of applications based on systems combin-
ing multiple cameras and other sensing modalities. Multiple
cameras can provide different viewpoints of a region of interest.
Since all experiments have been conducted on videos of single
fixed camera, it would be interesting to test the approaches with
moving single camera datasets or multi-camera datasets. Future
work would take into account the dedication of multiple cameras
so that videos, like escalators, could be conclusively broken down
into its essential features properly in all parts (e.g., commence-
ment, halfway point, and outlet) of an elongated escalator to
proclaim the eccentric event if there will exist any. Consequently,
the engagement of multiple cameras would help to analyze many
region of interests which would be occluded by a single camera.
4. Conclusion

We keyed out a simple but effective approach to detect
abnormal activities in video streams upon estimating Entropy

over time on frames without the motive to track subjects
individually or carry out segmentation. The framework is robust



Md. Haidar Sharif, C. Djeraba / Pattern Recognition 45 (2012) 2543–2561 2561
against variable number of subjects in the scenes. We clarified
that both degree of randomness of the directions (circular variance)
and degree of randomness of the displacements of interest points
are necessary and sufficient crude elements of the defined
entropy measure to detect a wide variety of abnormal activities
from video streams. Simple simulations were exercised to under-
stand their potential characteristics in both normal and abnormal
circumstances. Normalized entropy measure renders the knowl-
edge of the state of anomalousness. Experiments were conducted
on more than a few real world video datasets. Both simulation
and experimental results reported that entropy measures of the
frames over time is a first-rate technique to characterize aberra-
tions in video streams. Future study include improving the
abnormal activity detection by incorporating overlapping occur-
rences of multi-camera as well as some smarter threshold
estimation process.
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