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Abstract

Face alignment remains difficult under uncontrolled con-
ditions due to the many variations that may consider-
ably impact facial appearance. Recently, video-based ap-
proaches have been proposed, which take advantage of tem-
poral coherence to improve robustness. These new ap-
proaches suffer from limited temporal connectivity. We
show that early, direct pixel connectivity enables the de-
tection of local motion patterns and the learning of a hi-
erarchy of motion features. We integrate local motion to
the two predominant models in the literature, coordinate
regression networks and heatmap regression networks, and
combine it with late connectivity based on recurrent neural
networks. The experimental results on two datasets, 300VW
and SNaP-2DFe, show that local motion improves video-
based face alignment and is complementary to late tem-
poral information. Despite the simplicity of the proposed
architectures, our best model provides competitive perfor-
mance with more complex models from the literature.

1. Introduction

The problem of face alignment, also called facial land-

mark detection, receives a lot of attention due to its impor-

tance in many facial analysis tasks, e.g., identification, ex-

pression recognition, human-computer interaction, and 3D

reconstruction [14]. Given the position and size of a face,

the alignment process consists in modeling non-rigid fa-

cial structures. It can be done by identifying facial land-

marks, which are usually located around the eyes, nose and

mouth. From these landmarks, it is then easier to remove

the transformation, using for example Procrustes analysis

[7], to achieve the alignment of two or more faces. Under

uncontrolled conditions, the variations that may impact fa-

cial appearance, e.g., variations in pose, expression, illumi-

nation, occlusion, or image blur, associated with the insta-

bility of face detection, make it a difficult problem. A large

number of methods have been proposed to achieve robust

detection in such scenarios [14]. Most of them are based

on cascaded regression or deep neural networks [35]. The

latter either regress the coordinates directly [36, 20, 29, 30]

or compute heatmaps, one for each landmark, using a fully

convolutional network (FCN) [3, 21].

Despite considerable progress in recent years, the per-

formance of face alignment under uncontrolled conditions

is still not fully satisfactory [35] and, even today, this prob-

lem continues to be studied largely from still images. Yet,

with the ubiquity of video sensors, the vast majority of ap-

plications rely on videos. Current methods, when applied

to videos, usually track landmarks by detecting them and

are therefore not able to leverage the temporal dimension

[27, 6]. Recent work has proved that taking into account

video consistency helps to deal with the variability in the

facial appearance and the ambient environment encountered

under uncontrolled conditions [11, 22, 12, 19]. It generally

involves a convolutional neural network (CNN) coupled to a

recurrent neural network (RNN), which provides only lim-

ited temporal connectivity on feature maps with a high level

of abstraction. Such architectures can model global motion

(e.g., head motion) but not local motion like the movements

of the eyes or the lips, which are important to detect facial

landmarks accurately.

In this paper, we propose to include local motion infor-

mation and model it together with the appearance within the

same network. Our goal is to better exploit the dynamic na-

ture of the face in order to obtain more stable predictions

over time and more robustness to variations that consider-

ably impact facial appearance. Early temporal connectiv-

ity using 3D convolutions is applied to both predominant

models of the literature, coordinate regression networks and

heatmap regression networks. We also explore the combi-
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nation of early and late connectivities. Experimental results

show the benefits of early connectivity. To the best of our

knowledge, this is the first time that local motion model-

ing and spatio-temporal FCN architectures are proposed for

video-based face alignment.

In the next section, we review the existing solutions with

a first sub-section dedicated to image-based approaches,

followed by a second dedicated to video-based approaches.

Section 3 details our solution. The 2D base architectures are

described as well as their extension to the temporal domain.

The experimental protocol, implementation details, and re-

sults with their analysis are presented in Section 4. Exper-

iments on two datasets, 300VW [27] and SNaP-2DFe [1],

are conducted in order to evaluate the results obtained and

to compare them with state-of-the-art methods. Finally, we

conclude with Section 5 by highlighting some future work.

2. Related Work
2.1. Image-based Face Alignment

The vast majority of the methods proposed in the liter-

ature are based on cascaded regression [35]. Cascaded re-

gression is a coarse-to-fine strategy that consists in learning

a series of regression functions directly from the appear-

ance of the face to progressively update the position of the

landmarks. Regression can be done using a simple linear re-

gression model or using random forests or ferns [5, 33, 17].

Beyond the choice of the regressor, what differentiates these

methods is also the initial facial shape and the type of visual

features used, such as HOG, SIFT, or simply pixel intensi-

ties [38]. Since these handcrafted features are generic, they

are not considered as optimal for face alignment. To ad-

dress this problem, learning-based features are widely used

for discriminative and problem-specific feature extraction

[25].

Yet these methods still encounter difficulties under un-

controlled conditions. Some work, complementary to ours,

is focused specifically on some selected issues. Occlusions

can be detected explicitly to improve the robustness to out-

liers, but it makes the annotation of datasets more oner-

ous [4, 31]. Multiple view-specific models can be used to

achieve better accuracy under extreme poses; still, model

fusion or model selection are not trivial tasks [10]. Pose

variations can also be handled by fitting a 3D dense model

to the image [15]. These 3D approaches are used for the

data augmentation required for optimal model training as

well [39]. Some authors also suggest that face alignment

should not be treated as an independent problem and pro-

pose to jointly learn various related tasks in order to achieve

individual performance gains [40, 37, 24]. This type of ap-

proaches can make the training stage much more complex

because the optimal convergence rates may vary from one

task to another.

Face alignment has also benefited from recent advances

in deep learning. With deep neural networks, feature ex-

traction and regression can be trained jointly. Two main ar-

chitectures have been widely used to replace the traditional

approaches: networks with fully connected layers that di-

rectly output landmark coordinates [36, 20], and fully con-

volutional networks that perform heatmap regression and

output a heatmap for each landmark [21, 3]. The latter has

become popular, especially through hourglass-like architec-

tures [3]. However, they struggle to run in real time. Bi-

narization can be applied to improve speed and reduce the

size of the model, but at the expense of accuracy [2]. Cas-

caded regression can still be used, either by stacking net-

works [3, 36], or by formulating the cascade as a recurrent

process by combining CNNs and RNNs [29, 30]. In this

paper, we focus on CNNs for landmark detection, as they

provide an effective and versatile baseline tool to solve this

problem.

2.2. Video-based Face Alignment

Image-based face alignment methods cannot use the

temporal information of image sequences. Recently, a com-

parative analysis of video-based face alignment methods

showed that the most popular strategy for this problem is

tracking by detection [27]. Tracking by detection runs in-

dependently on each frame without taking into account the

coherence of adjacent frames. An alternative is to use a

substitute for the detection, such as a rigid tracking algo-

rithm, which is able to capture some variations of the fa-

cial appearance during tracking [6]. However, it can easily

drift, especially under uncontrolled conditions, and there-

fore requires the development of a reset mechanism. Cas-

caded regression, classically used on still images, can be

adapted to the temporal domain. For example, the initial-

ization of the current shape can be done using the similarity

parameters at the previous frame [34]. Face alignment is

therefore no longer dependent on the detection window but

takes advantage of the previous pose instead. A more ad-

vanced approach consists in integrating an on-line model

update in order to make it person-specific and thus more ac-

curate [26]. As with rigid tracking algorithms, it may also

drift over time. However, it is possible to establish a synergy

between detection and tracking in order to limit the weak-

nesses of these two approaches but it requires performing

both detection and tracking [18].

RNNs can be used to jointly estimate and track visual

features over time without any specific nor complex config-

uration [22, 12] as with traditional Bayesian filters, which

have shown their inefficiency for video-based face align-

ment [11]. When training is done in conjunction with a

CNN, RNNs help stabilize predictions over time and im-

prove robustness under uncontrolled conditions. The pro-

cessing of the spatial and temporal information can also be
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decoupled in order to explicitly exploit their complemen-

tarity [19]. However, the individual CNN streams in [19]

cannot model any motion. These approaches only provide

late temporal connectivity on small feature maps with a high

level of abstraction at the level of the recurrent layer. The

latter is then able to compute global motion features, e.g.,

head motion, but may not be capable of accurately detecting

local motion, e.g., eye and lip movements.

In contrast, we propose to improve the temporal con-

nectivity of deep convolutional neural networks for video-

based face alignment, by including local motion to the

model. To do so, we extend the convolution layers by one

dimension, to perform spatio-temporal convolutions. This

provides early temporal connectivity directly at the pixel

level, allowing both appearance and motion to be mod-

eled within all layers of the same network. 3D convolu-

tion has already been used for other tasks such as action or

scene recognition, and has shown its ability to learn relevant

spatio-temporal features [13, 28, 16, 23, 8], which makes it

a natural candidate to model local motion in face alignment.

3. Face Alignment Regression Networks with
Local Motion

This section describes the architectures developed in this

work to extend the connectivity of CNN-based landmark

detectors to include local motion through early connectivity.

We consider lightweight architectures to isolate the contri-

bution of local motions from other factors.

3.1. Problem Formulation

The aim is to model the non-linear relationship between

the image and the facial shape. We study coordinate and

heatmap regression techniques and we use CNNs to learn

these mappings in a supervised manner. To this end, we

minimize a L2 cost function that measures the difference

between the prediction and the associated ground truth over

a batch of n samples.

Coordinate Regression. In the case of coordi-

nate regression, the ground truth is a vector s =
[x1, y1, x2, y2, ..., xL, yL]

T with s ∈ R2L, L the number of

landmarks and x, y the Cartesian coordinates of a landmark.

LMSE =
1

n

n∑

i=1

(si − ŝi)
2 (1)

Heatmap Regression. For heatmap regression, the ground

truth h ∈ RL×H×W is a set of m heatmaps where the coor-

dinates of the maximum value correspond to the coordinates

of a landmark.

LMSE =
1

n

n∑

i=1

m∑

j=1

(hij − ĥij)
2 (2)

Since we work with RGB videos, the input of our CNN can

be a 3-channel image f ∈ RH×W×3 as well as a 3-channel

image sequence v ∈ RT×H×W×3 with H ×W the height

and width of the image and T the temporal window.

3.2. Coordinate Regression Networks

2D Baseline. Our 2D baseline coordinate regression model,

in Figure 1(a), is inspired by [9]. It contains only convolu-

tions with a kernel size of 3× 3, a stride of 1 and a padding

of 2, followed by a batch normalization layer, an ELU ac-

tivation layer and a max-pooling layer with a stride and a

padding of 2. The number of filters increases by a factor of

2 at each of the 5 convolutions, from 32 to 512. This model

produces feature maps of size 2x2x512 from an input image

of size 64x64x3. These maps are vectorized and passed on

to two fully-connected layers to obtain the landmark predic-

tions. The first fully-connected layer has a capacity of 1,024

units and is followed by a batch normalization layer and an

ELU activation layer. We add a dropout layer with a rate of

0.2 for regularization. The second and last fully connected

layer outputs 136 values corresponding to the 68 landmark

coordinates.

Convolutional Neural Network (CNN) with Temporal
Connectivity. We experiment with different types of con-

nectivities, early and late, each taking as an input a temporal

window of 3 frames. As shown in Figure 1(b), local mo-

tion information is added by extending the convolution and

pooling layers by one dimension [13]. This allows the net-

work to detect local motion patterns and learn a hierarchy

of motion features. We use the same parameters as for spa-

tial dimensions, as suggested by Tran et al. [28], except for

pooling. Since the temporal depth of the input is only 3, we

do not apply any pooling along this dimension to preserve

the temporal information. 3D convolution can be expressed

as:

vxyzij = bij +
∑

m

Pi−1∑

p=0

Qi−1∑

q=0

Ri−1∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m (3)

where vxyzij is the value at position (x, y, z) on the jth fea-

ture map in the ith layer, b is the bias, m is the index of the

feature map in the previous layer, P,Q,R are the height,

width and depth of the kernel, and w is the value of the ker-

nel.

Finally, we integrate late connectivity to these two mod-

els by replacing the first fully-connected layer by a long

short-term memory (LSTM) [32, 11] recurrent layer with

identical capacity, cf. Figures 1(c) and 1(d). The 2D CNN

model is distributed in time with shared parameters. By

processing the output of the streams, the recurrent layer is

able to compute global motion features. Dropout is also per-

formed on recurrent connections, with the same rate as for
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Figure 1. The proposed coordinate regression networks. (a) Baseline 2D architecture, (b) early temporal connectivity based on 3D con-

volution, (c) late temporal connectivity based on RNNs, and (d) both connectivity levels. These four lightweight architectures are used to

evaluate the contribution of local motion for coordinate regression.

feed forward connections. The LSTM can be expressed as:

it = sigmoid(WxiXt +WhiHt−1 +Wci ◦ Ct−1 + bi)

ft = sigmoid(WxfXt +WhfHt−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(WxcXt +WhcHt−1 + bc)

ot = sigmoid(WxoXt +WhoHt−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(4)

where Xt and Ht are respectively the input and the hidden

state at time t. W denotes the weights, b the bias and ◦ the

Hadamard product. Ct is the memory cell of the LSTM,

which is updated by the input gate it, the forget gate ft and

the output gate ot. Theses gates help reduce the vanishing

gradient effect which is a known issue with conventional

RNNs. We keep only the last timestep of the LSTM, which

encodes the spatio-temporal context.

3.3. Heatmap Regression Networks

2D Baseline. Our 2D heatmap regression model, illus-

trated in Figure 2(a), is designed by adapting the 2D base

architecture from Section 3.2 to a fully-convolutional auto-

encoder architecture. Inspired by recent advances in the

literature, we adopt an hourglass-like architecture. At the

encoder level, we remove the spatial pooling and replace it

by convolutions with strides to obtain a fully-convolutional

structure. We use a constant number of 256 filters and a

stride of 2 along spatial dimensions. The decoder has an

equivalent number of transposed convolutions with identi-

cal parameters. Two convolutional layers with a kernel size

of 1×1, a stride of 1 and a padding of 2 are applied after the

decoder in order to generate heatmap predictions. The first

one has 512 filters and is followed by a batch normalization

layer and an ELU activation layer. The second one outputs

68 heatmaps, one for each facial landmark.

Fully-Convolutional Network (FCN) with Temporal
Connectivity. As before, the transition from 2D to 3D

(Figure 2(b)) is done by extending the convolutions to the

temporal domain with the same parameters as for spatial

dimensions and a temporal depth of 3. Both models inte-

grate late connectivity through the use of a convolutional

LSTM layer between the encoder and the decoder, with

the same parameters as the other convolutions, except the

stride which is set to 1. ConvLSTM turns out to be bet-

ter than FC-LSTM at handling spatio-temporal correlations

[32] and allows to preserve a fully-convolutional architec-

ture. Unlike FC-LSTM, the input and state are 3D tensors

and convolutions are used for both input-to-state and state-

to-state connections instead of matrix multiplications. De-

coding is done in 2D by keeping only the feature maps of

the last timestep of the convolutional LSTM layer. We only

used dropout on recurrent connections for heatmap regres-

sion networks, with a rate of 0.2.

4. Experiments
We conduct experiments on two datasets, 300VW [27]

and SNaP-2DFe [1]. 300VW is the dataset commonly used

for evaluating video-based face alignment. SNaP-2DFe is

a dataset where specific head movements and facial expres-

sions are recorded for each participant; it allows us to study

the impact of such motions on face alignment and to iden-

tify the respective benefits of early and late connectivities.

We also analyze the performance of each architecture in

terms of speed, size and number of parameters.

4.1. Datasets and Evaluation Protocols

300VW. 300VW [27] is a dataset from a competition on

long-term tracking of facial landmarks in uncontrolled con-

ditions. It contains 114 videos of about 1 minute each and

featuring one person, for a total of 218,595 images anno-

tated with 68 landmarks. 50 videos are intended for training

and 64 for testing. The test set is divided into 3 categories of

increasing difficulty: category 1 presents videos recorded in

well-lit conditions with various head poses, category 2 con-

tains additional lighting variations, and category 3 includes

severe difficulties such as lighting, occlusions, expression,
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Figure 2. The proposed heatmap regression networks. (a) Late temporal connectivity based on RNNs, and (b) both connectivity levels.

These two lightweight architectures are used to evaluate the contribution of local motion for heatmap regression.

and head pose. We keep the same split as the challenge

[27] for training and testing on 300VW, without adding any

external data. 20% of randomly selected training data was

used for validation.

SNaP-2DFe. SNaP-2DFe [1] is a video dataset recently

developed to quantify the impact of head movements on ex-

pression recognition performance. As it contains landmark

annotations, it also provides an interesting partitioning by

movement and expression to study video-based face align-

ment. It consists of 6 movements composed of a horizontal

translation and/or a rotation (roll, pitch, yaw), each associ-

ated with 7 acted expressions (neutral, joy, fear, anger, dis-

gust, sadness, surprise). Data from 12 participants has been

collected, i.e. 37,297 images annotated with 68 landmarks.

We use data from subjects 1 to 6 for fine-tuning, 7 to 8 for

validation and 9 to 12 for testing.

Pre-processing. All models are trained from scratch with-

out any pre-training on 300VW. On SNaP-2DFe, we fine-

tune the models trained on 300VW due to the limited num-

ber of images present in SNaP-2DFe. Our training data is

augmented by reversing each image sequence and flipping

each image horizontally. The same data is used for each

training session. The input of each 2D network is an RGB

image cropped from the face bounding box, resized to a

size of 64x64x3 and normalized by Z-score. For their 3D

counterpart, we opt for an input window of size 3x64x64x3.

Each video of the training set is then split into several non-

overlapping image sequences of size 3. From our experi-

ments, this value seems suitable for face-alignment and en-

sures a reasonable amount of training data. Ground truth co-

ordinates are normalized between [-0.5; 0.5]. Ground truth

heatmaps are generated by computing a bivariate Gaussian

of bandwidth 3×3 centered at the location of the landmarks.

Evaluation metrics. In our experiments, we use the metrics

of [6], i.e., mean Euclidean distance of the 68 points nor-

malized by the diagonal of the ground truth bounding box,

from which we compute the cumulative error distribution,

and failure rate with a 8% threshold. We choose this met-

ric for its robustness to pose variations, which often occur

in these datasets. For a fair comparison with other existing

approaches, we normalize the error by interocular distance

as in the 300VW challenge.

4.2. Implementation Details

Network weights are initialized with the Xavier uniform

initializer. The Adam optimizer with L2 loss is used for all

models, following the original paper parameters except for

the learning rate that we set to 10−4. During training, the

learning rate is reduced by a factor of 0.1 when the error

on the validation set has not improved for 10 epochs. We

performed several training sessions of 100 epochs for each

model and report the best run. Batch sizes of 8 and 4 are

used for the 2D and 3D models, respectively. These param-

eters have been found to be optimal based on empirical tun-

ing. We observed the same convergence behavior for both

types of models, i.e., coordinate regression and heatmap re-

gression.

4.3. Evaluation on SNaP-2DFe

Table 1. Comparison of the different architectures presented in

Section 3.2 on SNaP-2DFe (subjects 9 to 12). AUCs and failure

rates at thresholds of 8% and 4% are reported.

Method AUC@8 FR@8 AUC@4 FR@4

2D 78.53 0.27 57.44 0.79

3D 79.57 0.15 59.44 0.64
2DRNN 83.32 0.08 66.83 0.35

3DRNN 84.12 0.09 68.41 0.28

Table 1 summarizes the performance of coordinate regres-

sion models over the entire SNaP-2DFe test set in terms

of AUC and FR with thresholds at 8% and 4%. We ob-

serve a performance gain between 2D and 3D approaches;

it is larger when the threshold is 4%, showing a better ro-
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Table 2. Comparison of the different architectures presented in Section 3.2 on SNaP-2DFe (subjects 9 to 12; motion only). AUCs at

thresholds of 8% and 4% are reported.

Method
2D 3D 2DRNN 3DRNN

@8 @4 @8 @4 @8 @4 @8 @4

Nothing 82.11 64.22 81.19 62.39 86.20 72.41 86.84 73.68
Diag 82.29 64.58 82.77 65.54 85.28 70.55 85.40 70.81
Pitch 82.69 65.37 83.56 67.12 84.76 69.51 85.26 70.52
Roll 79.72 59.43 80.90 61.80 83.38 66.75 84.01 68.02
Tx 80.43 60.87 82.14 64.27 85.28 70.55 85.33 70.66

Yaw 82.64 65.29 84.23 68.47 85.42 70.83 85.23 70.47

Table 3. Comparison of the different architectures presented in Section 3.2 on SNaP-2DFe (subjects 9 to 12; emotion only). AUCs at

thresholds of 8% and 4% are reported.

Method
2D 3D 2DRNN 3DRNN

@8 @4 @8 @4 @8 @4 @8 @4

Anger 77.97 55.94 79.27 58.53 83.54 67.09 84.16 68.33
Disgust 76.35 52.70 78.76 57.52 83.57 67.15 84.49 68.98

Fear 77.51 55.01 78.48 56.95 83.92 67.85 84.32 68.64
Happy 80.69 61.37 83.80 67.60 85.60 71.20 86.42 72.83
Neutral 82.11 64.22 81.19 62.39 86.20 72.41 86.84 73.68

Sad 76.75 53.49 79.15 58.31 82.33 64.67 84.63 69.26
Surprise 77.29 54.59 80.93 61.85 84.33 68.67 85.36 70.72

bustness in a more challenging evaluation context. This un-

derlines the effectiveness of 3D convolutions for landmark

localization. Early temporal connectivity provides a signif-

icant gain in accuracy while reducing the failure rate. The

results of models with RNN layers suggest that early and

late temporal connectivities may be complementary.

In order to better understand the strengths and weak-

nesses of these models, we compute the error for each type

of head movement and facial expression. Table 2 presents

the results regarding head movements. A notable perfor-

mance gain is observed for all movements by applying early

time connectivity only. However, when no movement oc-

curs, there is a drop in performance, which may indicate a

weakness of 3D convolution in static conditions, but could

also be due to the fully-connected layer. With the addition

of late temporal connectivity, there is also an improvement

in performance, but it is more modest. This can be ex-

plained by the fact that the RNN layer is already capable

of capturing global motion, as shown by the significant im-

provement from 2D to 2DRNN.

Table 3 presents the results with respect to facial expres-

sions. The performance gain for this kind of motion is more

significant than with head movements, even with the addi-

tion of late temporal connectivity. Facial expressions con-

sist of local motion patterns that RNNs cannot capture, un-

like 3D convolution. In the absence of any expression (i.e.,

neutral sequences), with early connectivity alone, we ob-

tain lower performances due to the lack of motion, as ob-

served earlier. These results clearly illustrate the value of

local motion for face alignment. They also demonstrate the

complementarity of local motion modeling and global mo-

tion modeling with RNNs.

4.4. Evaluation on 300VW

Coordinate Regression Networks. Table 4 shows the per-

formance of coordinate regression models in terms of AUC

and FR with a 8% threshold on the 3 categories of 300VW.

Compared to the results obtained on SNaP-2DFe, the con-

tribution of early temporal connectivity is not as clear. How-

ever, a gain is systematically observed for models without

late temporal connectivity, either in terms of AUC or FR.

In categories 1 and 2, we obtain more accurate predictions,

while in category 3 we observe a lower failure rate. Accord-

ing to these results and considering the observations made

on SNaP-2DFe, it seems that the 3D convolution is affected

by the lack of motion and by occlusions, which are common

in 300VW.
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Table 4. Comparison of the different architectures presented in Section 3.2 on the 3 categories of the 300VW test set. AUC and FR at a

threshold of 8% are reported.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2D 71.82 1.73 67.17 0.61 65.48 4.54

3D 72.26 1.88 67.62 2.21 64.23 4.22
2DRNN 76.04 1.52 73.45 0.14 71.25 2.83

3DRNN 76.21 1.60 73.14 0.17 70.86 2.70

Table 5. Comparison of the different architectures presented in Section 3.3 on the 3 categories of the 300VW test set. AUC and FR at a

threshold of 8% are reported.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2DFCRNN 73.99 3.79 73.73 0.30 70.55 4.91

3DFCRNN 75.25 2.50 74.23 0.30 71.60 4.40

Heatmap Regression Networks. The performance of

heatmap regression networks in terms of AUC and FR with

a 8% threshold is reported in Table 5. Early temporal

connectivity brings here significant and consistent perfor-

mance gains over the 3 categories of 300VW. Despite the

decoding from 2D feature maps, local motion information

is preserved well in the reconstruction, which may explain

the variance of the results with coordinate regression mod-

els. As previously reported, the latter might by mostly

due to their fully-connected layers. Due to their fully-

convolutional structure, heatmap regression networks seem

more suitable to handle spatio-temporal correlations.

4.5. Comparison with existing models

Table 6 shows the average error of our best models with

major models from the literature on the full 300VW test

set. Numbers are reported from [19]. The comparison in-

cludes static methods with handcrafted [33, 38] and learned

features [37], and approaches that leverage temporal infor-

mation [19]. The results show the effectiveness of our mod-

els, especially on Category 3, which is the most challenging

one. Despite their simplicity, our coordinate regression 3D

convolutional RNN model (3DRNN) and our heatmap re-

gression 3D fully-convolutional RNN model (3DFCRNN)

are among the top-performing methods. Thanks to their

ability to capture both local and global motion, they out-

perform static methods and show competitive performance

with other, more complex, video-based approaches.

4.6. Qualitative results

Figure 3 shows some failure case and qualitative results

from 300VW data set. We observe that under static condi-

tions (a), our 3D model has issues with accuracy. However,

Table 6. Comparison of our best models, 3DRNN and 3DFCRNN,

with existing models on the 3 categories of the 300VW test set.

Mean error is reported.

Method Category 1 Category 2 Category 3

SDM [33] 7.41 6.18 13.04

CFSS [38] 7.68 6.42 13.67

TCDCN [37] 7.66 6.77 14.98

TSTN [19] 5.36 4.51 12.84

3DRNN 5.34 5.01 8.14
3DFCRNN 5.73 4.83 8.70

,

during expression variations (b), it shows the best perfor-

mance especially around the mouth area. Notice the lack of

influence of the RNN in this type of situation. Early con-

nectivity proves to be more suitable for modeling local mo-

tions. In the presence of large head movements (c), 3DRNN

provides more robustness than 3D alone. The RNN shows

its ability to model global motions. The complementarity

between early and late connectivities is also highlighted.

In Figure 4, we show the inputs that activate the filters

and the filter weights in the first layer for the 2D, 3D and

3DRNN models. It helps to understand what kind of pat-

terns activate the filters. The 2D model encodes local pat-

terns and color while the 3D and 3DRNN models encode

variations of local patterns and color.

4.7. Properties of the Networks

Table 7 presents different properties of the architectures

proposed in this paper: number of parameters, size of the
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Figure 3. Failure case and qualitative results from 300VW data set. Our 3D model is less accurate under static conditions (a) but handles

local motions better (b). When combined with a RNN, the robustness to large motions is improved (c).

Figure 4. Activation maximization of two filters of the first layer

(top) and their weights (bottom), for the 2D (left), 3D (center) and

3DRNN (right) models. The top images are sub-sampled while

the bottom images are upsampled to facilitate viewing.

model, and prediction speed (in frames per second – FPS)

on CPU and GPU. Runs are performed on a Intel Xeon E5

3.50GHz CPU and a Nvidia GeForce GTX 1080 Ti GPU.

Although the number of parameters and the size increase

considerably when the temporal dimension is added, the

models remain light with less than 20M parameters and 70

MB. As a comparison, an architecture such as VGG16, used

for instance in [11, 22], has more than 130M parameters and

a size of more than 500 MB. We can also observe that all

models run in real time on GPU, and all coordinate regres-

sion models on CPU. Moreover, we believe that, by revising

the architectures or by applying techniques such as bina-

rization [2], real time could be reachable on CPU for FCN

models too.

Table 7. Comparison of the proposed architectures regarding their

numbers of parameters, model sizes and speeds.

Method #params (M) Size (MB)
Speed (FPS)

CPU GPU

2D 3.8 15 178 285

3D 11.1 43 40 205

2DRNN 14.2 55 60 252

3DRNN 17.4 67 36 205

2DFCRNN 10.2 40 14 104

3DFCRNN 14.9 58 11 99

,

5. Conclusions and Future Work

In this paper, we consider local motion for video-based

face alignment. To the best of our knowledge, this is the

first work to focus on local motion and to learn low-level

spatio-temporal features for this problem; previous work

uses RNNs, which rather encode motion at a larger scale.

We designed several architectures based on the two main

models in the literature: coordinate regression networks and

heatmap regression networks. Experiments on two datasets

confirm that modeling local motion improves the results

(e.g. with expressions, see Table 3), and that it is comple-

mentary to RNNs, which model global motion. In future

work, spatial and temporal information processing could be

decoupled to improve accuracy under static conditions. It

might also be interesting to revise spatio-temporal features

decoding and to properly manage residual connections be-

tween the encoder and the decoder since, from our experi-

ence, an efficient 3D hourglass is not trivial to design.

2113

Authorized licensed use limited to: UNIVERSITE DE LILLE. Downloaded on April 27,2021 at 10:25:41 UTC from IEEE Xplore.  Restrictions apply. 



References
[1] B. Allaert, J. Mennesson, I. Bilasco, and C. Djeraba. Im-

pact of the face registration techniques on facial expressions

recognition. Signal Processing: Image Communication,

61:44 – 53, 2018.

[2] A. Bulat and G. Tzimiropoulos. Binarized convolutional

landmark localizers for human pose estimation and face

alignment with limited resources. In ICCV, 2017.

[3] A. Bulat and G. Tzimiropoulos. How far are we from solv-

ing the 2d & 3d face alignment problem?(and a dataset of

230,000 3d facial landmarks). In IJCV, volume 1, page 8,

2017.

[4] X. P. Burgos-Artizzu, P. Perona, and P. Dollár. Robust face

landmark estimation under occlusion. In ICCV, pages 1513–

1520. IEEE, 2013.

[5] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by ex-

plicit shape regression. IJCV, 107(2):177–190, 2014.

[6] G. G. Chrysos, E. Antonakos, P. Snape, A. Asthana, and

S. Zafeiriou. A comprehensive performance evaluation of

deformable face tracking in-the-wild. IJCV, 126(2-4):198–

232, 2018.

[7] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. TPAMI, 23(6):681–685, 2001.

[8] A. Diba, M. Fayyaz, V. Sharma, A. H. Karami, M. M.

Arzani, R. Yousefzadeh, and L. Van Gool. Temporal 3D

convnets: New architecture and transfer learning for video

classification. arXiv preprint arXiv:1711.08200, 2017.

[9] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J. Wu.

Wing loss for robust facial landmark localisation with con-

volutional neural networks. In CVPR. IEEE, 2018.

[10] Z.-H. Feng, J. Kittler, W. Christmas, P. Huber, and X.-J. Wu.

Dynamic attention-controlled cascaded shape regression ex-

ploiting training data augmentation and fuzzy-set sample

weighting. In CVPR, pages 3681–3690. IEEE, 2017.

[11] J. Gu, X. Yang, S. D. Mello, and J. Kautz. Dynamic fa-

cial analysis: From bayesian filtering to recurrent neural net-

work. In CVPR, pages 1531–1540, July 2017.

[12] Q. Hou, J. Wang, R. Bai, S. Zhou, and Y. Gong. Face align-

ment recurrent network. PR, 74:448–458, 2018.

[13] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural

networks for human action recognition. TPAMI, 35(1):221–

231, 2013.

[14] X. Jin and X. Tan. Face alignment in-the-wild: A survey.

CVIU, 162:1–22, 2017.

[15] A. Jourabloo and X. Liu. Pose-invariant face alignment via

cnn-based dense 3D model fitting. IJCV, 124(2):187–203,

2017.

[16] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, pages 1725–1732, 2014.

[17] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In CVPR, pages 1867–

1874, 2014.

[18] M. H. Khan, J. McDonagh, and G. Tzimiropoulos. Syn-

ergy between face alignment and tracking via discriminative

global consensus optimization. In ICCV, pages 3811–3819.

IEEE, 2017.

[19] H. Liu, J. Lu, J. Feng, and J. Zhou. Two-stream transformer

networks for video-based face alignment. TPAMI, 2017.

[20] J. Lv, X. Shao, J. Xing, C. Cheng, and X. Zhou. A deep re-

gression architecture with two-stage re-initialization for high

performance facial landmark detection. In CVPR, 2017.

[21] D. Merget, M. Rock, and G. Rigoll. Robust facial landmark

detection via a fully-convolutional local-global context net-

work. In CVPR, June 2018.

[22] X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas. Red-net:

A recurrent encoder–decoder network for video-based face

alignment. IJCV, May 2018.

[23] Z. Qiu, T. Yao, and T. Mei. Learning spatio-temporal repre-

sentation with pseudo-3D residual networks. In ICCV, pages

5534–5542. IEEE, 2017.

[24] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A

deep multi-task learning framework for face detection, land-

mark localization, pose estimation, and gender recognition.

TPAMI, 2017.

[25] S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000

fps via regressing local binary features. In CVPR, pages

1685–1692, 2014.

[26] E. Sánchez-Lozano, G. Tzimiropoulos, B. Martinez, F. De la

Torre, and M. Valstar. A functional regression approach to

facial landmark tracking. TPAMI, 2017.

[27] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tz-

imiropoulos, and M. Pantic. The first facial landmark track-

ing in-the-wild challenge: Benchmark and results. In ICCV

Workshop, pages 50–58, 2015.

[28] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3D convolutional net-

works. In ICCV, pages 4489–4497. IEEE, 2015.

[29] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and

S. Zafeiriou. Mnemonic descent method: A recurrent pro-

cess applied for end-to-end face alignment. In CVPR, pages

4177–4187, 2016.

[30] W. Wang, S. Tulyakov, and N. Sebe. Recurrent convolutional

shape regression. TPAMI, pages 1–1, 2018.

[31] Y. Wu and Q. Ji. Robust facial landmark detection under

significant head poses and occlusion. In ICCV, pages 3658–

3666, 2015.

[32] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,

and W.-c. Woo. Convolutional LSTM network: A machine

learning approach for precipitation nowcasting. In NIPS,

pages 802–810, 2015.

[33] X. Xiong and F. De la Torre. Supervised descent method and

its applications to face alignment. In CVPR, pages 532–539.

IEEE, 2013.

[34] J. Yang, J. Deng, K. Zhang, and Q. Liu. Facial shape track-

ing via spatio-temporal cascade shape regression. In ICCV

Workshop, pages 41–49, 2015.

[35] S. Zafeiriou, G. Trigeorgis, G. Chrysos, J. Deng, and J. Shen.

The menpo facial landmark localisation challenge: A step

towards the solution. In CVPR Workshop, pages 2116–2125,

2017.

[36] J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine

auto-encoder networks (cfan) for real-time face alignment.

In ECCV, pages 1–16. Springer, 2014.

2114

Authorized licensed use limited to: UNIVERSITE DE LILLE. Downloaded on April 27,2021 at 10:25:41 UTC from IEEE Xplore.  Restrictions apply. 



[37] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Learning deep

representation for face alignment with auxiliary attributes.

TPAMI, 38(5):918–930, 2016.

[38] S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment

by coarse-to-fine shape searching. In CVPR, pages 4998–

5006, 2015.

[39] X. Zhu, Z. Lei, S. Z. Li, et al. Face alignment in full pose

range: A 3D total solution. TPAMI, 2017.

[40] X. Zhu and D. Ramanan. Face detection, pose estimation,

and landmark localization in the wild. In CVPR, pages

2879–2886. IEEE, 2012.

2115

Authorized licensed use limited to: UNIVERSITE DE LILLE. Downloaded on April 27,2021 at 10:25:41 UTC from IEEE Xplore.  Restrictions apply. 


