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Abstract. The purpose of these notes is to define an equivalence between the

natural homology theories associated to operads and the homology of functors

over certain categories of operators (PROPs) related to operads.

Introduction

The aim of these notes is to prove that the natural homology theory associated
to an operad is equivalent the homology of a category of functors over a certain
category of operators associated to our operad.

Recall that an operad P in a symmetric monoidal category C basically consists
of a sequence of objects P(n) ∈ C, n ∈ N, of which elements p ∈ P(n) (whenever
the notion of an element makes sense) intuitively represent operations on n inputs
and with 1 output:

A⊗n = A⊗ · · · ⊗A︸ ︷︷ ︸
n

p−→ A,

for any n ∈ N. In short, an operad is defined axiomatically as such a sequence of
objects P = {P(n), n ∈ N} equipped with an action of the symmetric group Σn on
the term P(n), for each n ∈ N, together with composition products which are shaped
on composition schemes associate with such operations. The notion of an operad
is mostly used to define a category of algebras, which basically consists of objects
A ∈ C on which the operations of our operad p ∈ P(n) act. We use the term of a
P-algebra, and the notation P C, to refer to this category of algebras associated to
any given operad P. Recall simply that the usual category of associative algebras in
a category of modules over a ring k, the category of (associative and) commutative
algebras, and the category of Lie algebras, are associated to operads, which we
respectively denote by P = As,Com, Lie. In the Lie algebra case, there is just
an issue when 2 is not invertible in the ground ring and we want to encode the
vanishing relation [x, x] = 0 in a structure defined by an operad (see [2]).

In good cases, we get that the category of operads in a symmetric monoidal
category equipped with a model structure C inherits a model structure itself, and
the category of algebras P C over an operad P inherits a natural model structure as
well, at least when the operad P is good enough. For instance, in the case where
the base category C is a category of differential graded modules C = dg Mod over
a ground ring k, we get a model structure on the category of associative algebras
without any further assumption on k, while the commutative algebras and the Lie
algebras form a model category only when we have Q ⊂ k. The model structure on
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the category of algebras P C is generally well defined when the operad P is cofibrant
(as an operad), and as we soon explain, this general statement will actually be
sufficient for our purpose.

The model structures on the category of operads and on the categories of algebras
over operads are defined by a general adjunction process. The homotopy category
of these model categories represents a localization with respect to a class of weak-
equivalences which is essentially created in the base category. In the case of operads,
we formally define a weak-equivalence as a morphism of operads φ : P

∼−→ Q which
forms a weak-equivalence in the base category term-wise φ : P(n)

∼−→ Q(n), n ∈ N.
In the case of algebras over an operad P, we similarly define a weak-equivalence as
morphism of P-algebras φ : A

∼−→ B which forms a weak-equivalence in the base
category (when we forget about the action of the operad). We use these model
structures to define the natural homology theory associated to an operad P.

Let us briefly recall the definition of this homology in the trivial coefficient case,
and when the base category C is the category of dg-modules C = dg Mod , for
a fixed ground ring k. We then assume that our operad P is equipped with an
augmentation ε : P → I , where I refers to the unit operad, which has I C = C

as associated category of algebras. We have a natural functor of indecomposables
on the category of P-algebras ε! : P C → C which is defined as the left adjoint of
the obvious restriction functor ε∗ : I C → P C associated with the augmentation
ε : P → I , and we can easily check that the pair ε! : P C � C : ε∗ defines a Quillen
adjunction whenever we have a well-defined model structure on the category of P-
algebras. We define the homology of a P-algebra A by the homology of the image
of this P-algebra under the derived functor of the functor of indecomposables:

HP∗ (A) = H∗(L ε!A).

The homology with coefficients HP∗ (A,M) is also defined by a model category con-
struction for any pair (A,M) consisting of a P-algebra A and of a corepresentation
M on this P-algebra A. We will review this construction (and the general definition
of a corepresentation for algebras over operads) later on. We also refer to [1] for
the introduction of the notion of a corepresentation.

The theory of Koszul operads implies that this operadic homology theory, which
we define by methods of homotopical algebra reduces to the classical Hochschild
homology when P = As is the operad of associative algebras (for any choice of a
ground ring), to the Harrison homology when P = Com is the operad of commu-
tative algebras (and the ground ring satisfies Q ⊂ k), to the Chevalley-Eilenberg
homology when P = Lie is the operad of Lie algebras (and we still assume Q ⊂ k).

In the case where the category of P-algebras is not equipped with a model
structure, we may still define a good homology theory for P-algebras by picking
a cofibrant resolution R

∼−→ P of our operad P, and forming our homology in
the model category of algebras associated with this operad R. We use the notation
HΓP∗ (A,M) for this homology theory, defined on pairs (A,M) where A is a P-algebra
and M is a corepresentation of A, and such that:

HΓP∗ (A,M) = HR∗ (A,M),

where we consider the homology over a cofibrant resolution R
∼−→ P of our operad

P. We also refer to this homology theory as the Γ-homology of P-algebras. We just
need to observe that the result of this construction does not depend on the choice
of the cofibrant resolution R

∼−→ P.
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The Γ-homology HΓP∗ (A,M) reduces to the ordinary homology HP∗ (A,M) if the
category of P-algebras is equipped with a model structure, but we get a new ho-
mology theory otherwise (for instance, when P = Com, Lie and Q 6⊂ k). In the
case of the commutative operad P = Com, we actually retrieve the Γ-homology
theory of A. Robinson and S. Whitehouse (see [8, 10]), initially introduced to study
obstruction problems in stable homotopy. We refer to E. Hoffbeck’s work [4] for the
definition of the Γ-homology theory in the general case of operads in dg-modules.

The main purpose of this article is to prove that the homology theory associated
to an operad HP∗ (−), and more generally, the Γ-homology HΓP∗ (−) is equivalent to a
homology of functors over a category of operators which we associate to the operad
P. Let us outline the correspondence in the trivial coefficient case, and yet, when
the base category is the category of dg-modules C = dg Mod .

The category of operators ΓP , which we use in the trivial coefficient case, has the
ordinals n = {1 < · · · < n} as objects and its homomorphisms f ∈ ΓP(m,n) model
maps

A
⊗

m w∗
// A

⊗
m

⊗n
i=1 pi// A

⊗
n ,

where w∗ is a tensor permutation, and we consider a tensor product of operations
pi : A⊗mi → A, i = 1, . . . , n, arising from our operad P, and such that m1 +
· · · + mn = m. In the literature, this object ΓP , which is actually an enriched
symmetric monoidal category over the base category C, is also referred to as the
PROP associated to the operad P. We use that any algebra A ∈ P C determines a
(covariant) functor RA : ΓP → C which takes the value RA(n) = A⊗n, on any object
n ∈ ΓP . We consider, on the other hand, the (contravariant) functor 1 : ΓopP → C

such that 1(1) = k and 1(n) = 0 for n 6= 1. Then our result reads as follows:

Theorem A. Let P be an operad in dg-modules such that each term P(r), r ∈ N,
forms a cofibrant object in the category of dg-modules. We assume that P is equipped
with an augmentation ε : P → I . We then have an identity:

HΓP∗ (A) = TorΓP∗ (1, RA),

for any P-algebra in dg-modules A which is cofibrant as an object of the category
of dg-modules.

The Tor-functor of this theorem is the homology of the derived functor of the
coend over the (enriched) category ΓP :

F⊗ΓP G =

∫ n∈ΓP
F(n)⊗ G(n),

which we may also regard as a generalized tensor product construction (as hinted
by our notation).

In the non-trivial coefficient case, we deal with a pointed version of our category
of operators Γ+

P of which objects are the pointed ordinals n+ = {1 < · · · < n}q{0},
for n ∈ N. To any pair (A,M), where A is a P-algebra and M is a corepresentation
of A, we associate a (covariant) functor RA,M : Γ+

P → C such that RA,M (n+) =

M ⊗A⊗n, for each n+ ∈ Γ+
P . We then get a result of the following form:

Theorem B. Let P be an operad in dg-modules such that each term P(r), r ∈ N,
forms a cofibrant object in the category of dg-modules. We have an identity:

HΓP∗ (A,M) = Tor
Γ+P
∗ (ωP , RA,M ),
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for any P-algebra in dg-modules A and any representation of this P-algebra M such
that both A and M are cofibrant as dg-modules.

The object ωP which occurs in this statement is a contravariant functor such
that:

ωP ⊗Γ+P
RA,M = M ⊗UP(A) ΩP(A),

where UP(A) and ΩP(A) are the operadic enveloping algebra and the Kähler form
functors considered in the definition of the homology of algebras over an operad.

The results of these theorems generalize several statements of the literature.
First, the category of operators Γ+

Com associated to the operad of commutative alge-
bras P = Com can be identified with the classical (opposite of the) Segal category
of finite pointed sets Γ. In this case, we retrieve a theorem of T. Pirashvili and
B. Richter [6] (see also [9] for a similar result), which precisely asserts that the
E∞-homology of a commutative algebra is equivalent to a Tor-functor over the
Segal category Γ. (The E∞-homology is the homology theory associated to a cofi-
brant resolution of the operad of commutative algebras Com.) In the case of the
associative operad P = As, the category of operators Γ+

As is identified with Loday’s
category of finite non-commutative pointed sets and we retrieve a theorem of T.
Pirashvili and B. Richter asserting that the Hochschild homology is equivalent to
a Tor-functor over that category (see [7]).

0. Background

We give a brief overview of the conventions which we follow all along these notes.
We mostly adopt the point of views and the language of the book [3], to which we
refer for further details and explanations on the background of our constructions.

0.1. On the category of dg-modules. We fix a (commutative) ground ring k, once
and for all. We assume that all our modules are defined over this ring k. We
similarly take the tensor product of modules over k as a primitive tensor structure
⊗ = ⊗k from which we derive all our symmetric monoidal category constructions.

The category of differential graded modules which we consider in these notes
(we also say dg-modules for short) C = dg Mod consist of modules C equipped with
a decomposition C =

⊕
n∈Z Cn into lower graded homogeneous components Cn,

n ∈ Z, and with a differential, usually denoted by δ : C → C, which lowers degrees
by one and satisfies the standard relation δ2 = 0.

We equip the category of dg-modules with its standard symmetric monoidal
structure, where the tensor product is inherited from the category of modules over
the ground ring, and the symmetry isomorphism satisfies the usual sign formula
of differential graded algebra. We give a more comprehensive reminder on these
concepts in §0.3.

We equip the category of dg-modules with the standard projective model struc-
ture, where the weak-equivalences are the morphisms which induce an iso in ho-
mology, and the fibrations are the morphisms which are surjective in each degree.

In what follows, we generally need minimal cofibration conditions in order to
make our constructions work. We usually have to assume that the structured
objects which we consider (operads, algebras) form, at least, cofibrant objects in
the category of dg-modules. If the ground ring is a field, then every dg-module is
cofibrant, and this condition is void. If this is not the case, then we will tacitely
assume that the dg-module cofibration requirement is fulfilled: by convention, all
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objects which we consider in these notes consist of cofibrant objects in the base
category of dg-modules. We only recall this convention in the statement of our
main theorems.

0.2. On operads and modules over operads. We adopt the notation O for the cat-
egory of operads in the base category (of dg-modules) C, and the notation M

for the category, underlying the category of operads, formed by the collections
M = {M(n), n ∈ N}, where M(n) ∈ C is an object of the base category equipped
with an action of the symmetric group Σn, for any n ∈ N. We also use the expres-
sion of a symmetric sequence to refer to the objects M = {M(n), n ∈ N}, of this
category M.

We generally follow the conventions of the book [3] for our constructions on the
category of operads and symmetric sequences (as already specified in the intro-
duction of this section). We use in particular that an operad is identified with a
monoid with respect a certain monoidal structure defined by a composition opera-
tion ◦ : M×M→M on the category of symmetric sequences M. We also adopt the
notation I for the unit object of this monoidal structure on M. In this approach,
an operad formally consists of a symmetric sequence P ∈ M equipped with a unit
morphism η : I → P and a product µ : P ◦P → P that fulfill the standard unit and
associativity relations in the category of symmetric sequences M.

The symmetric sequence I , which we actually already considered in the intro-
duction of these notes, defines the initial object of the category of operads. In our
module setting, we basically have I (1) = k and I (n) = 0 for n 6= 1.

We also use the composition operation ◦ : M×M→M to define the notion of a
right module (respectively, left module) over an operad P. We then consider sym-
metric sequences M ∈ M equipped with a morphism ρ : M ◦P → M (respectively,
λ : P ◦M → M) which fulfill basic unit and associativity relations with respect to
the internal unit and composition structure of the operad P. We also say that this
morphism ρ : M ◦P → M (respectively, λ : P ◦M → M) defines a right (respec-
tively, left) action of the operad P on M. We adopt the notation MP (respectively,

P M) for this category of a right P-modules (respectively, left P-modules). We have
a similarly defined category of (P,Q)-bimodules, denoted by P MQ , for any pair
of operads P,Q ∈ O, which consists of symmetric sequences equipped with a left
P-action and a right Q-action that commute to each other.

We equip the category of operads (in dg-modules) O with the model structure

such that the weak-equivalences φ : P
∼−→ Q are the morphisms which define a

weak-equivalence term-wise φ : P(n)
∼−→ Q(n), n ∈ N (we also say arity-wise), in

the base category (of dg-modules) C, and similarly as regards the fibrations.
The category of symmetric sequences M and the category of right modules over

an operad MP are equipped with similarly defined model structures (we just assume
that the operad P consists of cofibrant objects in the base category P(n) ∈ C, n ∈ N,
in the case of the category of right P-modules MP). We also have a model structure
on the category of left modules P M and on the category of bimodules P MQ at
least when P is cofibrant as an operad. These model categories may actually be
regarded as generalizations of the model category of P-algebras which we consider
in a subsequent paragraph.

0.3. On symmetric monoidal category structures and algebras over operads. The
tensor product C ⊗D of dg-modules C,D ∈ dg Mod is equipped with the grading
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such that (C⊗D)n =
⊕

p+q=n Cp⊗Dq, for any n ∈ Z, and with the differential such

that δ(x⊗ y) = δ(x)⊗ y+±x⊗ δ(y), for any homogeneous tensor x⊗ y ∈ Cp⊗Dq,
where ± is a sign ± = (−1)p produced by the commutation of the differential δ
(which is a homogeneous homomorphism of degree −1) and the element x (which
is homogeneous of degree p by assumption).

By convention, we more generally assume that any transposition of homogeneous
factors x and y of degree p and q in a tensor product of dg-modules produces a
sign ± = (−1)pq (which we do not make explicit in general), and we equip the
tensor product of dg-modules with a symmetry isomorphism τ : C ⊗D → D ⊗ C
determined from this commutation rule. We often work in symmetric monoidal
categories E equipped with a symmetric monoidal functor η : C→ E over the base
category of dg-modules C = dg Mod . We say in this situation that the category E

forms a symmetric monoidal category over the category of dg-modules C = dg Mod .
We generally abusively do not mark the functor η when we consider the image of a
dg-module C ∈ C in such a category E.

The category of dg-modules E = dg Mod trivially forms a symmetric monoidal
category over itself. The category of (symmetric) collections E = M and the cat-
egory of right modules over an operad E = MP are other instances of symmetric
monoidal categories over C = dg Mod which we use in our constructions. In both
cases E = M,MP , we consider the obvious functor η : C → E which identifies any
object C ∈ C with a symmetric sequence, concentrated in arity zero, such that
C(0) = C and C(n) = 0 for n 6= 0.

In turn, we equip the category of symmetric sequences with a tensor product
operation ⊗ : M×M→M, which extends the tensor product of the base category
of dg-modules C = M, and maps any pair of objects M,N ∈ M to the symmetric
sequence such that (M ⊗N)(n) =

⊕
p+q=n Σn⊗Σp×Σq M(p)⊗N(q), for each n ∈ N.

We generally define the tensor product of an object C ∈ C with a set S ∈ Set as
a sum of copies of this object C, indexed by the elements w ∈ S, and formally
denoted by w⊗C. We identify Σp×Σq with the subgroup of Σn, n = p+q, formed
by the permutations s × t ∈ Σp × Σq such that s acts on {1, . . . , p} and t acts on
{p+ 1, . . . , p+ q}. When we take a tensor product over the group Σp × Σq in our
expression, we just perform an appropriate quotient to identify the action of these
permutations s×t ∈ Σp×Σq by right translation on Σn with their natural action on
the tensor product M(p)⊗N(q). We explicitly set (w ·s×t)⊗(x⊗y) ≡ w⊗(sx⊗ty),
for every w ∈ Σn and x⊗ y ∈ M(p)⊗N(q). We go back to this construction in §2.

We refer to [3] for the definition of the symmetry isomorphism c : M ⊗N
'−→ N ⊗M

associated to this tensor structure.
The tensor product of the category of right modules over an operad, let ⊗ :

MP ×MP → MP , is defined by observing that the symmetric sequence M ⊗N in-
herits a natural right P-action when we have M,N ∈ MP . This claim basically
follows from the observation that the tensor product satisfies the distribution rela-
tion (M ⊗N)◦P = M ◦P ⊗N ◦P with respect to the composition product (see [3]).

The category of P-algebras in the base category C consists of the left P-modules
A ∈ P M, which are concentrated in arity 0, and are equivalent to objects in the
base category A ∈ C when we forget about the operad action. We can also define P-
algebra structures in any category E which is symmetric monoidal over C. We just
use the structure functor η : C→ E to transport the operad P into the category E

and to give a sense to this notion. We may actually see that a left module M ∈ P M
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over an operad P in the base category C is equivalent to an algebra over P in
the category of symmetric sequences E = M, and a (P,Q)-bimodule M ∈ P MQ

is similarly identified with an algebra over P in the category of right Q-modules
E = MQ .

We already mentioned that the category of left modules over an operad P M,
and the category of bimodules P M R are equipped with a natural model structure,
at least when the operad P is cofibrant (and the operad Q consists of cofibrant dg-
modules in the bimodule case). We may regard these model categories as extensions

of a model category of P-algebras P C, where the weak-equivalences φ : A
∼−→ B are

the P-algebra morphisms which form a weak-equivalence in the base category (of
dg-modules) when we forget about the operad action, and the fibrations φ : A� B
are defined similarly.

We still have a well-defined semi-model structure on the category of P-algebras P C,
with the same class of weak-equivalences and fibrations, when P is cofibrant as a
symmetric sequence. The expression semi-model refers to the observation that, in
this situation, the lifting and factorization properties of model categories can only
be guaranteed for morphisms with a cofibrant object as domain. This is actually
enough for most constructions of homotopical algebra.

0.4. Relative composition products and functors. We have a relative composition
product operation M ◦P N, defined by a standard reflexive coequalizer construction:

(1) M ◦P N = coker
(
M ◦P ◦N

d0 //
d1

// M ◦N

s0

zz )
,

for any object M ∈ MP equipped with a right action of an operad P, and any
object N ∈ P M equipped with a left P-action. In our expression (1), the 0-face d0

is yielded by the right action of P on M, the 1-face d1 is yielded by the left action
of P on N and the degeneracy s0 is provided by the unit morphism of the operad
η : I → P.

If M is just a right P-module and N is a left P-module, then the outcome of
this operation is an object of the category of symmetric sequences M ◦P N ∈M. If
M is endowed with an additional left R-action and forms an (R,P)-bimodule, then
M ◦P N still inherits a left R-module structure. If N is endowed with an additional
right Q-action and forms a (P,Q)-bimodule, then we similarly obtain that M ◦P N
inherits a right R-module structure, and similarly in the case where both M and N
are equipped with bimodule structures.

We may still observe that M ◦PA is concentrated in arity 0 in the case where
N = A is left P-module, concentrated in arity 0, equivalent to a P-algebra in the
base category C. We accordingly get that the operation SP(M)(A) = M ◦PA defines
a functor such that SP(M) : P C → C, and similarly, when M ∈ R MP , we obtain
that the operation SP(M)(A) = M ◦PA defines a functor SP(M) : P C→ R C.

We may see that the tensor product and the (relative) composition products
on modules over operads actually reflect obvious point-wise tensor product and
composition operations on functors on this form. We can more formally check
that the obvious relations (M ⊗N) ◦P R = (M ◦P R) ⊗ (N ◦P R), P ◦P M = M and
(M ◦P N) ◦Q R = M ◦P(N ◦Q R), extending the standard associativity relations of
relative tensor products, hold for the tensor product and the composition product
of modules over operads whenever these relations make sense.
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In what follows, we also use the symmetric monoidal structure on the category
of right modules over an operad MP to define associative algebras and module
structures in this category. The mapping SP : M 7→ SP(M) carries such objects to
associative algebra functors and module functors on the category of P-algebras.

The main instance of an associative algebra structure in the category of right
modules over an operad P which we consider in these notes is the right P-module
UP which represents the enveloping algebra functor UP : A 7→ UP(A) on the category
of P-algebras. In the definition of the homology of P-algebras, we also consider a
right P-module ΩP , which represents a functor of Kähler forms on the category of
P-algebras, and which forms a left module over the algebra UP in the category of
right P-modules.

0.5. The left derived functor of the relative composition product. We establish in [3]
that the bifunctor −◦P − : (M,N) 7→ M ◦P N has a homotopy invariant left derived

functor − ◦LP −, which we may compute by taking a cofibrant resolution RM
∼−→ M

of the object M in the category of right P-modules. We explicitly set:

M ◦LP N = RM ◦P N,(1)

for any M ∈ MP and N ∈ P M. If the operad P and the right P-module M are
good enough (cofibrant as symmetric sequences), then we can also compute this

left derived functor by taking a cofibrant resolution RN
∼−→ N of the object N in

the category of left P-modules. We explicitly have an identity:

M ◦LP N = M ◦P RN .(2)

In all cases, we have to assume, at least, that the objects M(n), P(n) and N(n)
which form our collections M, P and N are cofibrant as dg-modules.

In what follows, we also use a Tor-functor notation for the homology of this
derived relative composition product:

(3) TorP∗ (M,N) = H∗(M ◦LP N).

0.6. The explicit definition of an operad structure. The action of an operad P over
an algebra A can be explicitly defined in terms of operations

(1) p : A⊗r → A,

associated to any operad element p ∈ P(r), satisfying natural equivariance, unit,
and associativity constraints. In what follows, we also write p(a1, . . . , ar) ∈ A for
the image of a tensor a1⊗· · ·⊗ar ∈ A⊗r under any such operation p ∈ P(r) arising
from an operad.

We have a similar representation for the composition structure of an operad
and the action of an operad on a module. We generally get that a morphism of
symmetric sequences µ : M ◦N → P, where M, N and P are any object in this
category M, is equivalent to a collection of morphisms

(2) µ : M(r)⊗ N(n1)⊗ · · · ⊗ N(nr)→ P(n1 + · · ·+ nr),

defined for all r ≥ 0, n1, . . . , nr ≥ 0, and which satisfy natural equivariance con-
straints. We also adopt the notation x(y1, . . . , yr) ∈ P(n1 + · · ·+ nr) for the image
of elements x ∈ M(r), y1 ∈ N(n1), . . . , yr ∈ N(nr), under such a composition op-
eration. In the case of the composition product µ : P ◦P → P of an operad P, a
composite element p(q1, . . . , qr) ∈ P(n1 + · · ·+ nr) simply reflects a composition of
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operations of the form (1) acting on a category of algebras. We use this interpreta-
tion in several constructions. We will moreover use that the unit morphism of an
operad η : I → P is equivalent to an element 1 ∈ P(1) which represents an identity
operation.

We also represent the operations p ∈ P(n) encoded by an operad P by a box
picture:

(3)

1

��

· · · n

��
p

��
0

.

We go back to this representation in §2, where we explain the definition of the
category of operators associated to an operad.

1. Homology and modules over operads

We assume that P is an operad in the category of dg-modules dg Mod . We revisit
the definition of the homology theory HP∗ (A,M) for a pair (A,M) such that A is
a P-algebra and M is a corepresentation of this P-algebra A. We also recall the
definition of this concept of a corepresentation for an algebra over an operad. We
review the definition of a representation of an algebra over an operad first.

1.1. Representations and enveloping algebras of algebras over an operad. In short,
a representation of a P-algebra A is an object of the base category M ∈ C equipped
with operations

(1) p : A⊗n−1 ⊗M →M,

associated to any p ∈ P(n), and which satisfy a natural extension of the basic
symmetry, unit, and associativity relations of the structure of an algebra over an
operad. In what follows, we also write p(a1, . . . , an−1, ξ) ∈ M for the image of a
tensor a1⊗· · ·⊗an−1⊗ξ ∈M under the product operation (1). In the definition of
these operations (1), we only use symmetry relations with respect to the first n− 1
inputs, marked by the algebra A, of the operation p ∈ P(n). In practice, we use
the full symmetry relations of operads to move the factor ξ ∈M to other inputs of
our operation p ∈ P(n).

To any representation M of a P-algebra A, we can associate a P-algebra over
A, denoted by A nM , which has the direct sum A nM = A ⊕M as underlying
dg-module, and which is equipped with an P-algebra structure that extends the
action of the operad P on A. We simply use the operations (1) to define the
action of operations p ∈ P(n) on a tensor with a single factor in M , and we
assume that the operations involving multiple factors in M vanish in AnM . These
objects AnM = A⊕M , which we associate to representations of a P-algebras M ,
are actually equivalent to abelian group objects in the category of P-algebras over
A.

We adopt the notation RP(A) for the category of representations of a P-algebra
A. We use that this category is isomorphic to a category of left modules over an
associative algebra UP(A), naturally associated to A ∈ P C, and usually referred
to as the enveloping algebra of the P-algebra A. We basically define UP(A) as
the dg-module spanned by formal elements p(a1, . . . , an−1,−), where p ∈ P(n),
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a1, . . . , an−1 ∈ A, modulo natural symmetry, unit and associativity relations re-
flecting the symmetry, unit and associativity relations of the action of a P-algebra
on a representation (1).

The mark − in the expression of an element p(a1, . . . , an−1,−) ∈ UP(A) denotes
an input which we leave free for the action on representations. The multiplication of
the enveloping algebra is given by the composition at this free input. We explicitly
have:

(2) p(a1, . . . , am−1,−) · q(b1, . . . , bn−1,−)

= (p ◦m q)(a1, . . . , am−1, b1, . . . , bn−1,−),

for any pair of elements p(a1, . . . , am−1,−), q(b1, . . . , bn−1,−) ∈ UP(A), where p ◦n
q ∈ P(m + n − 1) is the notation for the operadic composite operation involved
in this multiplication process. We generally set p ◦k q = p(1, . . . , q, . . . , 1), for the
operation defined by composing p ∈ P(m) with q ∈ P(n) at position k and where
we plug operadic units 1 ∈ P(1) in the remaining positions (see §0.6).

1.2. The enveloping algebra module associated to an operad. We already mentioned
that the enveloping algebra is identified with a functor associated to an algebra UP
in the category of right modules over the operad P. We explicitly have:

UP(A) = UP ◦PA,(1)

where we consider the relative composition product of §0.4. We define this object
UP as a right P-module by the identity:

UP(n) = P(n+ 1),(2)

for any arity n ∈ N, so that the elements u ∈ UP(n) are identified with operations
p ∈ P(n + 1) with a distinguished input and n remaining inputs which we use for
the definition of the right P-action on UP .

In other contexts, we use the notation P[1] for this operadic shifting construction
P[1](n) = P(n + 1). We may also write p(x1, . . . , xn,−) ∈ P[1](n) for the element
of this shifted object P[1] associated to any p ∈ P(n + 1). We then use the mark
− to indicate the distinguished input (which arises from the shifting process), and
variables x1, . . . , xn for the remaining inputs of our operation in P[1](n). We keep
the same ordering as in the previous paragraph for the moment, but we more usually
move the distinguished input to the first position when we adopt the point of view
of this shifting construction. The multiplication of the enveloping algebra is defined
at the level of the shifted object P[1] by the formula:

(3) p(x1, . . . , xm,−) · q(x1, . . . , xn,−) = (p ◦m+1 q)(x1, . . . , xm+n,−),

for any p(x1, . . . , xm,−) ∈ P[1](m), q(x1, . . . , xn,−) ∈ P[1](n).
We also depict an element of the enveloping algebra module by a variant of the

box representation of §0.6:

(4)

0

''

1

��

· · · n− 1

��

n

wwp

��
0

.
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We then use the index 0 to mark the distinguish input of our operation p ∈ P[1](n).
We notably adopt this representation when we define the category of pointed op-
erators associated to an operad (see §??).

1.3. Kähler forms. We associate a dg-module of Kähler forms ΩP(A) to any P-
algebra A ∈ P C. We define this object as the left UP(A)-module spanned by formal
elements da, a ∈ A, to which we assign the degree deg(da) = deg(a) − 1, modulo
relations of the form

(1) dp(a1, . . . , an) ≡
n∑

i=1

±p(a1, . . . , dai, . . . , an),

when we consider the result of an operation p(a1, . . . , an) ∈ A in the P-algebra A.
We just use the representation operation p : A⊗n−1 ⊗ ΩP(A) → ΩP(A) equivalent
to the action of the enveloping algebra element p(a1, . . . , ξ, . . . , an) ∈ UP(A) on
M = ΩP(A) when we form the expression p(a1, . . . , dai, . . . , an) ∈ ΩP(A).

The mapping ΩP : A 7→ ΩP(A) clearly defines a functor on the category of P-
algebras, and we actually have an identity:

(2) ΩP(A) = ΩP ◦PA,

for a module ΩP over the algebra UP in the symmetric monoidal category of right
P-modules MP . This object ΩP is basically defined, as a right P-module, by the dg-
module spanned by formal elements p(x1, . . . , dxi, . . . , xn) ∈ ΩP(n), where p ∈ P(n)
is an operation and (x1, . . . , xn) are variables, modulo the obvious symmetry rela-
tions, and where we take the right P-action that reflects the derivation relation (1)
on the input dxi distinguished by the derivation symbol d.

1.4. corepresentations and homology. The corepresentations M which we consider
in the definition of the homology of a P-algebra A are just right modules over the
enveloping algebra UP(A). We also use the notation Rc

P(A) = Mod UP(A) for the
category of corepresentations associated to any A ∈ P C.

We now assume that P is cofibrant as a symmetric sequence so that we have at
least a well-defined semi-model structure on the category of P-algebras, which is
enough to do homotopical algebra. We then define the homology of a P-algebra A
with coefficients in a corepresentation M ∈ Rc

P(A) as the derived functor construc-
tion such that:

(1) HP∗ (A,M) = H∗(M ⊗UP(RA) ΩP(RA)),

where we consider a cofibrant resolution RA
∼−→ A of the P-algebra A, and the

module of Kähler forms ΩP(RA) associated to this object RA ∈ P C. We use the

morphism UP(RA) → U(A) induced by the resolution augmentation RA
∼−→ A to

provide M with a right UP(RA)-action.
When P is not cofibrant as a symmetric sequence, we just pick a cofibrant res-

olution R
∼−→ P and we perform this homology construction in the category of

R-algebras. We then set:

(2) HΓP∗ (A,M) = H∗(M ⊗UR(RA) ΩR(RA)),

to define the homology of any pair (A,M) such that A is a P-algebra and M ∈
Rc

P(A). We then assume that RA is a cofibrant resolution of A in the category of
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R-algebras. We have an identity:

M ⊗UR(RA) ΩR(RA) = M ⊗UP(A) (UP(A)⊗UR(RA) ΩR(RA)),(3)

and we may accordingly consider the object:

HΓP∗ (A, UP(A)) = H∗(UP(A)⊗UR(RA) ΩR(RA)),(4)

as a universal coefficient homology associated to A.
We have the following proposition:

1.5. Theorem. We assume that UP is cofibrant as a right P-module (which, ac-
cording to [3] is automatically true when P is cofibrant as an operad). We then
have an identity:

HΓP∗ (A, UP(A)) = TorP∗ (ΩP , A),

where we identify the P-algebra A with a left module over the operad P, and we
consider the operadic Tor-functor with coefficient in this left P-module.

Proof. �

We assume from now on that P is cofibrant as an operad, so that HΓP∗ = HP∗ .
When this is not the case, we just replace P by the associated cofibrant resolution
R, so that HΓP∗ = HΓR∗ = HR∗ .

2. The equivalence with functor homology

We now define the equivalence between the operadic homology theory defined
in §1.3 and the homology of functors. We first review the the definition of the
category of unpointed operators ΓP associated to any operad P, and we explain our
definition of the category of pointed operators Γ+

P .

2.1. The category of operators associated to an operad. The classical category of
unpointed operators ΓP , also called PROP, which we associate to an operad P has
the finite ordinals n = {1 < · · · < n} as objects, and is equipped with hom-objects
such that ΓP(m,n) = P⊗n(m), for any m,n ∈ N, where we consider the nth power
of the symmetric sequence P with respect to the symmetric monoidal structure
of §0.3.

By definition of this tensor structure on symmetric sequences, we also have:

ΓP(m,n) =
⊕

m1+···+mn=m

Σm ⊗Σm1
×···×Σmn

(P(m1)⊗ · · · ⊗ P(mn)),(1)

where we consider the obvious n-fold extension of the tensor product expression
of §0.3. We can more explicitly identify P⊗n(m) with the dg-module spanned by
tensors w⊗ (p1⊗· · ·⊗pn) such that w ∈ Σm, p1 ∈ P(m1), . . . , pn ∈ P(mn), modulo
relations such that:

(w · s1 × · · · × sn)⊗ (p1 ⊗ · · · ⊗ pn) ≡ w ⊗ (s1p1 ⊗ · · · ⊗ snpn),(2)

for any s1×· · ·×sn ∈ Σm1
×· · ·×Σmn

, and where we consider the obvious cartesian
subgroup embedding Σm1

× · · · × Σmn
⊂ Σm (see §0.3).

Intuitively, such a tensor represents a composite operation:

(3) A
⊗

m w∗
// A

⊗
m

⊗n
i=1 pi// A

⊗
n ,
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acting on any P-algebra A, where w∗ is the tensor permutation associated to w ∈
Σn, and we consider the tensor product of the operations pi : A⊗mi → A associated
to the elements pi ∈ P(mi), i = 1, . . . , n. The hom-objects ΓP(m,n) are equipped
with composition products ◦ : ΓP(k, n) ⊗ ΓP(m, k) → ΓP(m,n) which reflect the
composition of such operations. From this interpretation, we immediately get that
the collection RA(n) = A⊗n defines a functor RA : ΓP → C when A is a P-algebra.

2.2. The graphical description of the category of operators associated to an operad.
In what follows, we also represent the homomorphisms of the category ΓP by a box
diagram, such as in the picture of Figure 1, and where:

– the indices of the upper row correspond to the elements of the domain set
m = {1 < · · · < m}, and materialize the inputs of our tensor product
operation,

– the indices of the lower row correspond to the elements of the codomain
set n = {1 < · · · < n}, and materialize the outputs of our tensor product
operation,

– the graph on the upper part of our figure materializes the permutation w∗,
– and the boxes represent the operations pj ∈ P(mj), j = 1, . . . , n.

From this representation, we see that our hom-object ΓP(m,n) can also be defined
by an expression of the form:

(1) ΓP(m,n) =
⊕

f :m→n

P(f−1(1))⊗ · · · ⊗ P(f−1(n)),

where f runs over the set of all set-theoretic maps f : {1 < · · · < m} → {1 < · · · <
n}, and we set P(n) = Bij (n, n) ⊗Σn

P(n) to define the value of the symmetric
sequence underlying P on any finite set n of cardinal n. In our picture, the map f
is materialized by the graph that forms the composition scheme of our operation.
For instance, in the example depicted in Figure 1, we get a map f : {1 < · · · < 5} →
{1 < · · · < 3} such that f(1) = 2, f(2) = 1, f(3) = 3, f(4) = 1 and f(5) = 3. The
elements p ∈ P(f−1(j)) are equivalent to operations p = p(xi)i∈f−1(j) on variables

xi indexed by the elements i of the sets f−1(j). For instance, in our example, we
deal with operations of the form p1 = p1(x2, x4), p2 = p2(x1), p3 = p3(x3, x5).

In this formalism, the image of a tensor
⊗m

i=1 ai ∈ A⊗m under a homomorphism
φ of the category ΓP in §2.1(3) is given by an expression of the form:

(2) φ∗(
⊗n

i=1 ai) =
⊗n

j=1 pj(ai)i∈f−1(j),
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where, for each j = 1, . . . , n, we evaluate the operation pj ∈ P(f−1(j)) on the
factors ai such that i ∈ f−1(j). For instance, in the case of the homomorphism
φ ∈ ΓP(5, 3) depicted in Figure 1, we obtain the formula:

(3) φ∗(a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5) = p1(a2, a4)⊗ p2(a1)⊗ p3(a3, a5),

for any a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ∈ A⊗5. We may also retrieve this expression by
labeling the inputs of our morphism by the elements a1, . . . , a5 ∈ A in the diagram
of Figure 1. We then use the composition scheme depicted in this diagram in order
to determine the evaluation process associated with our homomorphism.

We can use the same representation in order to determine the composition scheme
of homomorphisms in our category of operators. We give an example of this process
in the picture of Figure 2.

2.3. The category of pointed operators associated to an operad. The category of
pointed operators Γ+

P which we associate to an operad P has the pointed finite
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ordinals n+ = {1 < · · · < n} q {0} as objects, and is equipped with hom-objects

such that Γ+
P (m+, n+) = (P[1]op ⊗ P⊗n)(m), for any m,n ∈ N, where we consider

the tensor product of the shifted symmetric sequence P[1] of §1.2 with the tensor
power P⊗n in the category of symmetric sequences M. The super-script op refers
to the consideration of the opposite of the internal multiplication of this algebra
P[1] when we perform compositions of this factor P[1] in the homomorphisms of
the category Γ+

P .
We adapt our description of the unpointed category of operators in §2.2, and

we represent the homomorphisms of the category Γ+
P by diagrams of the form of

Figure 3, where we now use wavy lines (with particular endings) to mark the com-
position path of the distinguished input, which is indexed by 0 in our domain and
codomain sets.

From this picture, we see that our hom-object Γ+
P (m+, n+) now admits an ex-

pansion of the form:

(1) Γ+
P (m+, n+) =

⊕
f :m+→n+

P(f−1(0))⊗ P(f−1(1))⊗ · · · ⊗ P(f−1(n)),

where the sum now runs over the set of pointed maps f : {1 < · · · < m}+ → {1 <
· · · < n}+. In this expression, the factor P(f−1(0)), corresponds to the shifted
symmetric sequence P[1] of our initial definition, and the base point 0 ∈ f−1(0)
gives the place of the distinguished input, marked by the symbol − in our algebraic
notation. We therefore represent an element p0 ∈ P(f−1(0)) by an expression of the
form p0 = p0(−, xi)i∈f−1(0)−{0}, while we keep the same expression as in §2.2 for the

other factors pj = pj(xi)i∈f−1(j), j = 1, . . . , n, of a homomorphism φ ∈ Γ+
P (m+, n+).

In the example depicted in Figure 1, we get the pointed map f : {1 < 2 < 3 <
4}+ → {1 < 2}+ such that f(1) = 1, f(2) = 2, f(3) = 0 and f(4) = 2, and
we deal with operations p0 = p0(−, x3) ∈ P(f−1(0)), p1 = p1(x1) ∈ P(f−1(1)),
p2 = p2(x2, x4) ∈ P(f−1(2)).

We make explicit the action of such homomorphisms φ ∈ Γ+
P (m+, n+) on the

functor RA,M associated to a pair (A,M) where A is a P-algebra and M ∈ Rc
P(A)

is a corepresentation, before explaining the definition of the composition operation
of this category Γ+

P . This functor RA,M is defined on objects by the tensor prod-
uct RA,M (n+) = M ⊗ A⊗n, for any n ∈ N, where we put the corepresentation M
at the position corresponding to the base point 0 ∈ n+ We then define the image

of a tensor ξ ⊗ (
⊗m

i=1 ai) ∈M ⊗A⊗m under a homomorphism φ ∈ Γ+
P (m+, n+) by
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the formula:

(2) φ∗(ξ ⊗ (
⊗n

i=1 ai)) = (ξ · p0(−, ai)i∈f−1(0)−{0})⊗ (
⊗n

j=1 pj(ai)i∈f−1(j)),

which we explain as follows:

– The evaluation of the distinguished operation p0 ∈ P(f−1(0)) on the factors
ai ∈ A, i ∈ f−1(0)−{0}, returns an element of the enveloping algebra of our
P-algebra p0(−, ai)i∈f−1(0)−{0} ∈ UP(A), which, in turns, acts on ξ ∈M on
the right to produce the distinguished factor ξ · p0(−, ai)i∈f−1(0)−{0} ∈ M
occurring in our formula.

– The remaining factors pj(ai)i∈f−1(j) ∈ A, j = 1, . . . , n, are determined by
the same procedure as in §2.2.

For instance, in the case of the homomorphism φ ∈ Γ+
P (4+, 2+) depicted in Figure 3,

we obtain the formula:

(3) φ∗(ξ ⊗ a1 ⊗ a2 ⊗ a3 ⊗ a4) = (ξ · p0(−, a3))⊗ p1(a1)⊗ p2(a2, a4),

for any ξ ⊗ a1 ⊗ a2 ⊗ a3 ⊗ a4 ∈M ⊗A⊗4.
We equip the category Γ+

P with the composition structure that reflects the compo-
sition of operations of this form. We just have to replace the tensor ξ ⊗ (

⊗m
i=1 ai)

in our formula (2) by operations ξ = q0 ∈ P(g−1(0)) and ai = qi ∈ P(g−1(i)),
i = 1, . . . ,m, defining the factors of a homomorphism ψ to get the expression of
a composite φψ in Γ+

P . We use the right P-module structure of the object P[1]
to form the composite p0(−, qi)i∈f−1(0)−{0} ∈ P[1], which replaces our enveloping
algebra element of our formula (2), and we take the multiplication of the algebra
in right P-modules P[1] when we form the product q0 · p0(−, qi)i∈f−1(0)−{0} ∈ P[1].
We just plug p0(−, qi)i∈f−1(0)−{0} ∈ P[1] in the distinguished input of the operation
q0 ∈ P[1] according to the definition of this multiplication in §1.2. We note that
this operation swaps the positions of the factors p0 and q0 and this twist corre-
sponds to the mark op in our first expression of the hom-object Γ+

P . We just use the
operadic composition operation, in the standard order, to get the remaining factors
pj(qi)i∈f−1(j) of our composite homomorphism. We give an explicit example of
application of this process in the picture of Figure 4.

The definition of the functor RA,M makes sense in any symmetric monoidal cat-
egory over the category of dg-modules E. We apply this construction to the op-
erad A = P, which we regard as an algebra over itself in the category of right
modules over itself E = MP , and to the enveloping algebra module M = UP , which
we regard as a corepresentation of the object A = P in E = MP . We are going
to use the identity UP = P[1]. We get a functor RP,P[1] : Γ+

P → MP towards the
category of right P-modules MP . We have the following observations:

2.4. Proposition.

(a) We have an identity of functors in n+ ∈ Γ+
P

RA,UP(A)(n+) = RP,P[1](n+) ◦P A

for every A ∈ P C, where we consider the relative composition product
with the object RP,P[1](n+) assigned to n+ ∈ Γ+

P in the category of right
P-modules.

(b) The functor RP,P[1](−)(m) : n+ 7→ RP,P[1](n+)(m), defined by considering
the terms of a fixed arity m ∈ N in the right P-modules RP,P[1](n+) ∈M, is
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identified with a representable functor:

RP,P[1](−)(m) = Γ+
P (m+,−)

which we associate to the object m+ in the category Γ+
P .

Proof. �

We review the definition of the categorical bar construction before defining the
functor homology counterpart of the operadic homology of §1.

2.5. The categorical bar construction. We assume that F : Γop → dg Mod (respec-
tively, G : Γ → dg Mod) is any contravariant (respectively, covariant) functor over
a category enriched in dg-modules Γ. We will go back to the case of the category
Γ = Γ+

P later on. We just assume that Γ has the pointed finite ordinals n+, n ∈ N, as
object for simplicity, and we denote the hom-objects of this category by Γ(m+, n+),
for every m,n ∈ N.
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The categorical bar construction B(F, Γ, G) is the simplicial object B•(F, Γ, G) such
that:

(1) Bt(F, Γ, G) =
⊕

n0+
,...,nt+

F(n0+)⊗ Γ(n1+, n0+)⊗ · · · ⊗ Γ(nt+, nt−1+
)⊗ G(nt+),

for every dimension t ∈ N. The face operators of this simplicial object di are given:

– by the right action of the hom-object Γ(n1+, n0+) on the functor F for i = 0
– by the composition operation of the category Γ on the (i, i + 1) homomor-

phism factors, for i = 1, . . . , t− 1,
– by the left action of the hom-object Γ(n1+, n0+) on the functor G for i = t.

The degeneracy sj are given by the insertion of an identity homomorphism id at
the jth position of the tensor product Bt+1(F, Γ, G) for any j = 0, . . . , t. The sum in
our expression (1) runs over all t+ 1-tuples of objects n0+, . . . , nt+.

The simplicial object B•(F, Γ, G) is equipped with an augmentation over the coend:

(2) F⊗Γ G =

∫ n+∈Γ
F(n+)⊗ G(n+).

We can also take the homology (of the normalized complex) of this simplicial object
to compute Tor-functors over the category Γ:

(3) TorΓ∗(F, G) = H∗(B•(F, Γ, G)).

We apply this definition to the category Γ = Γ+
P associated to an operad P, and to

the functor G = RA,M associated to a P-algebra A ∈ P C and a corepresentation M ∈
Rc

P(A). We can represent the tensors defining the bar complex B•(F, Γ
+
P , RA,M )

associated to these objects by arranging the diagrams of our homomorphisms φi ∈
Γ+
P (ni+, ni−1+

) on a series of levels. We label the root of this composite diagram by

the factor α ∈ F(n0+) of the left coefficient of our complex, and the leaves by the

tensor ξ⊗a1⊗· · ·⊗an ∈M⊗A⊗n corresponding to the right coefficient RA,M (n+).
We give an example of this representation in the picture of Figure 5.

We now define the contravariant functor ωP which we use to retrieve the operadic
homology of §1 from this categorical bar complex.

2.6. The functor of Kähler forms. We take:

(1) ωP(n+) = ΩP(n),

for any object n+. We therefore identify the elements α ∈ ωP(n+) with Kähler
forms α = π(x1, . . . , dxk, . . . , xn), such that π ∈ P(n) and x1, . . . , xn represent
abstract variables.

We use the right module structure of the object ωP over the operad P and the
left module structure over the algebra P[1] to determine the contravariant action
of the homomorphisms φ ∈ Γ+

P (m+, n+) on ωP(n+). We assume, to be explicit,
that φ is given by the tensor product of a marked operation p0(−, xi)i∈f−1(0)−{0} ∈
P(f−1(0)), which represents an element of the algebra P[1], together with formal
operations pj = pj(xi)i∈f−1(j), j = 1, . . . , n. We get the action of this homomor-
phism φ on our Kähler form α = π(x1, . . . , dxk, . . . , xn) by plugging the operations
pj , j = 1, . . . , n, in the input variables x1, . . . , xn, and composing α on the left with
the distinguished operation p0. We therefore obtain an expression of the following
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form:

(2) φ∗(π(x1, . . . , dxi, . . . , xn))

= ±p0(π(p1(xi)f−1(1), . . . , dpk(xi)f−1(k), . . . , pn(xi)f−1(n)), xi)f−1(0)−{0},

which we may still reduce by using the derivation relation in the right P-module ΩP .
For instance, if we assume α = π(dx1, x2), and we consider the homomorphism

φ ∈ Γ+
P (4+, 2+) depicted in Figure 3, then we get the following formula:

(3) φ∗(π(dx1, x2)) = ±p0(π(dp1(x1), p2(x2, x4)), x3)

= ±p0(π(p1(dx1), p2(x2, x4)), x3)

= ±p0(π(p1, p2), 1)(dx1, x2, x4, x3).

We have the following proposition:

2.7. Proposition. We have the identity:

ωP ⊗Γ+P
RA,M = M ⊗UP(A) ΩP(A),

for every P-algebra A ∈ P C, and every corepresentation M ∈ Rc
P(A).

Proof. �

We can easily extend the result of Proposition 2.4(a) to the categorical bar
complex. We basically get an identity:

B(ωP , Γ
+
P , RA,UP(A)) = B(ωP , Γ

+
P , RP,P[1]) ◦P A
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for every P-algebra A ∈ P C, where we consider the functor towards the category
right P-module RP,P[1] associated to the operad P and the shifted object P[1].
We check that this categorical bar complex in right P-modules has the following
properties:

2.8. Proposition. The object B(ωP , Γ
+
P , RP,P[1]) is cofibrant as a right P-module,

and is equipped with a weak-equivalence:

B(ωP , Γ
+
P , RP,P[1])

∼−→ ΩP

in the category of left UP-modules in right P-modules.

Proof. The first assertion readily follows from the characterization of cofibrant ob-
jects in the category of right P-modules in [4].

In the caseA = P andM = P[1], the result of Proposition 2.7 gives ωP ⊗Γ+P
RP,P[1] =

P[1] ⊗P[1] ΩP = ΩP and the augmentation of the categorical bar complex defines a
morphism:

ε : B(ωP , Γ
+
P , RP,P[1])→ ΩP .

We aim to check that this morphism is a weak-equivalence.
We readily see that the result of Proposition 2.4(b) has an extension to the

categorical bar complex, and that we have

B(ωP , Γ
+
P , RP,P[1])(m) = B(ωP , Γ

+
P , Γ

+
P (m+,−))

when we consider a term of a fixed arity m ∈ N, in this right P-module. We
conclude that our augmentation ε defines a weak-equivalence arity-wise, by using
that the categorical bar complex is acyclic on representable functors. �

We use the statement of Theorem 1.5 to get the universal coefficient case M =
UP(A) of Theorem B from the result of this proposition. We get the general case
Theorem B by using the following observation:

2.9. Proposition. We have an identity:

B(ωP , Γ
+
P , RA,M ) = M ⊗UP(A) B(ωP , Γ

+
P , RA,UP(A))

for every P-algebra A and every corepresentation M ∈ Rc
P(A).

Proof. �

3. The trivial coefficient case

We can significantly simplifies our construction in the case where the operad P
is equipped with an augmentation ε : P → I and the coefficients are given by the
trivial representation M = k. We then get the result of Theorem A.

Outlook: the case of operads and algebras in spectra
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