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Preface

The notion of an operad was introduced 40 years ago in algebraic topology [6,
47, 60] in order to model the structure of iterated loop spaces. Since then,
operads have been used fruitfully in many fields of mathematics and physics.

Indeed, the notion of an operad supplies both a conceptual and effective
device to handle a variety of algebraic structures in various situations. Many
usual categories of algebras (like the category of commutative and associative
algebras, the category of associative algebras, the category of Lie algebras,
the category of Poisson algebras, . . . ) are associated to operads.

The main successful applications of operads in algebra occur in deforma-
tion theory: the theory of operads unifies the construction of deformation
complexes, gives generalizations of powerful methods of rational homotopy,
and brings to light deep connections between the cohomology of algebras,
the structure of combinatorial polyhedra, the geometry of moduli spaces
of surfaces, and conformal field theory. The new proofs of the existence of
deformation-quantizations by Kontsevich and Tamarkin bring together all
these developments and lead Kontsevich to the fascinating conjecture that
the motivic Galois group operates on the space of deformation-quantizations
(see [35]).

The purpose of this monograph is to study not operads themselves, but
modules over operads as a device to model functors between categories of
algebras as effectively as operads model categories of algebras.

Modules over operads occur naturally when one needs to represent univer-
sal complexes associated to algebras over operads (see [14, 54]).

Modules over operads have not been studied as extensively as operads yet.
However, a generalization of the theory of Hopf algebras to modules over
operads has already proved to be useful in various mathematical fields: to
organize Hopf invariants in homotopy theory [2]; to study non-commutative
generalizations of formal groups [12, 13]; to understand the structure of cer-
tain combinatorial Hopf algebras [38, 39]. Besides, the notion of a module over
an operad unifies and generalizes classical structures, like Segal’s notion of a
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Γ -object, which occur in homological algebra and homotopy theory. In [33],
Kapranov and Manin give an application of the relationship between mod-
ules over operads and functors for the construction of Morita equivalences
between categories of algebras.

Our own motivation to write this monograph comes from homotopy theory:
we prove, with a view to applications, that functors determined by modules
over operads satisfy good homotopy invariance properties.
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Introduction

Main ideas and objectives

The background of the theory of operads is entirely reviewed in the first
part of the monograph. The main characters of the story appear in a natural
generalization of the symmetric algebra S(X), the module spanned by tensors
x1 ⊗ · · · ⊗ xn ∈ X⊗n divided out by the symmetry relations

xw(1) ⊗ · · · ⊗ xw(n) ≡ x1 ⊗ · · · ⊗ xn,

where w ranges permutations of (1, . . . , n). Formally, the symmetric algebra is
defined by the expansion S(X) =

⊕∞
n=0(X

⊗n)Σn
, where the notation (−)Σn

refers to a module of coinvariants under the action of the symmetric group in
n-letters, denoted by Σn. The theory of operads deals with functors S(M) :
X 7→ S(M,X) of generalized symmetric tensors

S(M,X) =
∞⊕
n=0

(M(n)⊗X⊗n)Σn

with coefficients in objects M(n) equipped with an action of the symmetric
groupsΣn. The structure formed by the coefficient sequenceM = {M(n)}n∈N
is called a Σ∗-object (or, in English words, a symmetric sequence or a sym-
metric object). The definition of S(M,X) makes sense in the setting of a
symmetric monoidal category E . The map S(M) : X 7→ S(M,X) defines a
functor S(M) : E → E .

In this book we study a generalization of this construction with the aim
to model functors on algebras over operads. For an operad P, we use the
notation PE to refer to the category of P-algebras in E . We aim to model
functors F : RE → E from a category of algebras over an operad R to the
underlying category E , functors F : E → PE from the underlying category E
to a category of algebras over an operad P, as well as functors F : RE → PE
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2 Introduction

from a category of algebras over an operad R to another category of algebras
over an operad P.

To define functors of these types we use left and right modules over oper-
ads, the structures formed by Σ∗-objects equipped with left or right operad
actions. For a right R-module M and an R-algebra A, we use a coequalizer
to make the right R-action on M agrees with the left R-action on A in the
object S(M,A). This construction returns an object SR(M,A) ∈ E naturally
associated to the pair (M,A) and the map SR(M) : A 7→ SR(M,A) defines a
functor SR(M) : RE → E naturally associated to M . For a left P-module N
the map S(N) : X 7→ S(N,X) defines naturally a functor S(N) : E → PE .
For a P-R-bimodule N , a right R-module equipped with a left P-action that
commutes with the right R-action on N , the map SR(N) : A 7→ SR(N,A)
defines naturally a functor SR(N) : RE → PE .

We study the categorical and homotopical properties of functors of these
form.

Not all functors are associated to modules over operads, but we check
that the categories of modules over operads are equipped with structures
that reflect natural operations on functors. As a byproduct, we obtain that
usual functors (enveloping operads, enveloping algebras, Kähler differentials,
bar constructions, . . . ), which are composed of tensor products and colimits,
can be associated to modules over operads.

In homotopy theory, operads are usually supposed to be cofibrant in the
underlying category of Σ∗-objects in order to ensure that the category of
algebras over an operad has a well defined model structure. In contrast, the
category of right modules over an operad R comes equipped with a natural
model structure which is always well defined if the operad R is cofibrant in the
underlying symmetric monoidal category. Bimodules over operads form model
categories in the same situation provided we restrict ourself to connected Σ∗-
objects for which the constant term N(0) vanishes. Thus for modules over
operads we have more homotopical structures than at the algebra and functor
levels. As a result, certain homotopical constructions, which are difficult to
carry out at the functor level, can be realized easily by passing to modules
over operads (motivating examples are sketched next). On the other hand, we
check that, for functors associated to cofibrant right modules over operads,
homotopy equivalences of modules correspond to pointwise equivalences of
functors. In the case where algebras over operads form a model category, we
can restrict ourself to cofibrant algebras to obtain that any weak-equivalence
between right modules over operads induce a pointwise weak-equivalence of
functors. These results show that modules over operads give good models for
the homotopy of associated functors.

We use that objects equipped with left operad actions are identified with
algebras over operads provided we change the underlying symmetric monoidal
category of algebras. Suppose that the operad R belongs to a fixed base sym-
metric monoidal category C. The notion of an R-algebra can be defined in
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any symmetric monoidal category E acted on by C, or equivalently equipped
with a symmetric monoidal functor η : C → E .

The category of Σ∗-objects in C forms an instance of a symmetric monoidal
category over C, and so does the category of right R-modules. One observes
that a left P-module is equivalent to a P-algebra in the category of Σ∗-objects
and a P-R-bimodule is equivalent to a P-algebra in the category of right R-
modules, for any operads P, R in the base category C.

Because of these observations, it is natural to assume that operads belong
to a base category C and algebras run over any symmetric monoidal category
E over C. We review constructions of the theory of operads in this relative
context. We study more specifically the functoriality of operadic constructions
with respect to the underlying symmetric monoidal category. We can deduce
properties of functors of the types S(N) : E → PE and SR(N) : RE → PE
from this generalization of the theory of algebras over operads after we prove
that the map SR : M 7→ SR(M) defines a functor of symmetric monoidal
categories, like S : M 7→ S(M). For this reason, the book is essentially devoted
to the study of the category of right R-modules and to the study of functors
SR(M) : RE → E associated to right R-modules.

Historical overview and prospects

Modules over operads occur naturally once one aims to represent the struc-
ture underlying the cotriple construction of Beck [3] and May [47, §9]. As far
as we know, a first instance of this idea occurs in Smirnov’s papers [56, 57]
where an operadic analogue of the cotriple construction is defined. This op-
eradic cotriple construction is studied more thoroughly in Rezk’s thesis [54]
to define a homology theory for operads.

The operadic bar construction of Getzler-Jones [17] and the Koszul con-
struction of Ginzburg-Kapranov [18] are other constructions of the homology
theory of operads. In [14], we prove that the operadic cotriple construction,
the operadic bar construction and the Koszul construction are associated to
free resolutions in categories of modules over operads, like the bar construc-
tion of algebras.

Classical theorems involving modules over algebras can be generalized to
the context of operads: in [33], Kapranov and Manin use functors of the form
SR(N) : RE → PE to define Morita equivalences for categories of algebras over
operads.

Our personal interest in modules over operads arose from the Lie theory of
formal groups over operads. In summary, we use Lie algebras in right modules
over operads to represent functors of the form SR(G) : RE → LE , where L refers
to the operad of Lie algebras. Formal groups over an operad R are functors on
nilpotent objects of the category of R-algebras. For a nilpotent R-algebra A,
the object SR(G, A) forms a nilpotent Lie algebra and the Campbell-Hausdorff
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formula provides this object with a natural group structure. Thus the map
A 7→ SR(G, A) gives rise to a functor from nilpotent R-algebras to groups.
The Lie theory asserts that all formal groups over operads arise this way
(see [11, 12, 13]). The operadic proof of this result relies on a generalization
of the classical structure theorems of Hopf algebras to Hopf algebras in right
modules over operads. Historically, the classification of formal groups was
first obtained by Lazard in [37] in the formalism of “analyzers”, an early
precursor of the notion of an operad.

Recently, Patras-Schocker [49], Livernet-Patras [39] and Livernet [38] have
observed that Hopf algebras in Σ∗-objects occur naturally to understand the
structure of certain classical combinatorial Hopf algebras.

Lie algebras in Σ∗-objects were introduced before in homotopy theory by
Barratt (see [2], see also [19, 61]) in order to model structures arising from
Milnor’s decomposition

ΩΣ(X1 ∨X2) ∼
∨
w

w(X1, X2),

where w runs over a Hall basis of the free Lie algebra in 2-generators x1, x2

and w(X1, X2) refers to a smash product of copies of X1, X2 (one per occur-
rence of the variables x1, x2 in w).

In sequels [15, 16] we use modules over operads to define multiplicative
structures on the bar complex of algebras. Recall that the bar complex
B(C∗(X)) of a cochain algebra A = C∗(X) is chain equivalent to the cochain
complex of ΩX, the loop space of X (under standard completeness assump-
tions on X). We obtain that this cochain complex B(C∗(X)) comes naturally
equipped with the structure of an E∞-algebra so that B(C∗(X)) is equivalent
to C∗(ΩX) as an E∞-algebra.

Recall that an E∞-operad refers to an operad E equipped with a weak-
equivalence E

∼−→ C, where C is the operad of associative and commutative
algebras. An E∞-algebra is an algebra over some E∞-operad. Roughly an
E∞-operad parameterizes operations that make an algebra structure com-
mutative up to a whole set of coherent homotopies.

In the differential graded context, the bar construction B(A) is defined
naturally for algebras A over Stasheff’s chain operad, the operad defined by
the chain complexes of Stasheff’s associahedra. We use the letter K to refer
to this operad. We observe that the bar construction is identified with the
functor B(A) = SK(BK, A) associated to a right K-module BK. We can restrict
the bar construction to any category of algebras associated to an operad R
equipped with a morphism η : K→ R. The functor obtained by this restriction
process is also associated to a right R-module BR obtained by an extension
of structures from BK. Homotopy equivalent operads R

∼−→ S have homotopy
equivalent modules BR

∼−→ BS.
The bar module BC of the commutative operad C has a commutative al-

gebra structure that reflects the classical structure of the bar construction of
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commutative algebras. The existence of an equivalence BE
∼−→ BC, where E

is any E∞-operad, allows us to transport the multiplicative structures of the
bar module BC to BE and hence to obtain a multiplicative structure on the
bar complex of E∞-algebras. Constructions and theorems of this book are
motivated by this application.

Note that modules over operads are applied differently in [25] in the study
of structures on the bar construction: according to this article, modules over
operads model morphisms between bar complexes of chain algebras.

In [15], we only deal with multiplicative structures on modules over op-
erads and with multiplicative structures on the bar construction, but the
bar complex forms naturally a coassociative coalgebra. In a subsequent pa-
per [16], we address coalgebras and bialgebras in right modules over operads
in order to extend constructions of [15] to the coalgebra setting and to obtain
a bialgebra structure on the bar complex.

For a cochain algebra, the comultiplicative structure of the bar complex
B(C∗(X)) models the multiplicative structure of the loop space ΩX. Bialge-
bras in right modules over operads give rise to Lie algebras, like the classical
ones. One should expect that Lie algebras arising from the bar module BR

are related to Barratt’s twisted Lie algebras.

Contents

The sections, paragraphs, and statements marked by the sign ‘¶’ can be
skipped in the course of a normal reading. These marks ¶ refer to refinement
outlines.

Part I. Categorical and operadic background

The purpose of the first part of the book is to clarify the background of our
constructions. This part does not contain any original result, but only changes
of presentation in our approach of operads. Roughly, we make use of functors
of symmetric monoidal categories in standard operadic constructions.

§1. Symmetric monoidal categories for operads

First of all, we give the definition of a symmetric monoidal category E over
a base symmetric monoidal category C. Formally, a symmetric monoidal cat-
egory over C is an object under C in the 2-category formed by symmetric
monoidal categories and symmetric monoidal functors. In §1 we give equiv-
alent axioms for this structure in a form suitable for our applications. Be-
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sides, we inspect properties of functors and adjunctions between symmetric
monoidal categories.

§2. Symmetric objects and functors

We survey categorical properties of the functor S : M 7→ S(M) from Σ∗-
objects to functors F : E → E . More specifically, we recall the definition of
the tensor product of Σ∗-objects, the operation that gives to Σ∗-objects the
structure of a symmetric monoidal category over C, and the definition of the
composition product of Σ∗-objects, an operation that reflects the composition
of functors. For the sake of completeness, we also recall that the functor
S : M 7→ S(M) has a right adjoint Γ : G 7→ Γ(G). In the case E = C = k Mod,
the category of modules over a ring k, we use this construction to prove
that the functor S : M 7→ S(M) is bijective on morphism sets for projective
Σ∗-objects or if the ground ring is an infinite field.

§3. Operads and algebras in symmetric monoidal categories

We recall the definition of an algebra over an operad P. We review the basic
examples of the commutative, associative, and Lie operads, which are asso-
ciated to commutative and associative algebras, associative algebras and Lie
algebras respectively.

We assume that the operad P belongs to the base category C and we
define the category PE of P-algebras in a symmetric monoidal category E over
C. We observe that any functor ρ : D → E of symmetric monoidal categories
over C induces a functor on the categories of P-algebras ρ : PD → PE , for
any operad P in the base category C. We review the classical constructions
of free objects, extension and restriction functors, colimits in categories of
algebras over operads, and we check that these constructions are invariant
under changes of symmetric monoidal categories. We review the classical
definition of endomorphism operads with similar functoriality questions in
mind.

At this point, we study the example of algebras in Σ∗-objects and the
example of algebras in functors. We make the observation that a left module
over an operad P is equivalent to a P-algebra in Σ∗-objects. We also observe
that a functor F : X → PE , where X is any source category, is equivalent
to a P-algebra in the category of functors of the form F : X → E . We use
that S : M 7→ S(M) defines a symmetric monoidal functor to obtain the
correspondence between left P-modules N and functors S(N) : E → PE .
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§4. Miscellaneous structures associated to algebras over operads

We recall the definition of miscellaneous structures associated to algebras
over operads: enveloping operads, which model comma categories of algebras
over operads; enveloping algebras, which are associative algebras formed from
the structure of enveloping operads; representations, which are nothing but
modules over enveloping algebras; and modules of Kähler differentials, which
represent the module of derivations of an algebra over an operad. We study
applications of these notions to the usual operads: commutative, associative,
and Lie. For each example, the operadic definition of an enveloping algebra
is equivalent to a standard construction of algebra, and similarly as regards
representations and Kähler differentials.

Part II. The category of right modules over operads
and functors

In the second part of the book, we study categorical structures of right mod-
ules over operads and functors. Roughly, we prove that the categories of right
modules over operads are equipped with structures that reflect natural op-
erations at the functor level. This part contains overlaps with the literature
(with [13] and [54, Chapter 2] in particular). Nevertheless, we prefer to give
a comprehensive account of definitions and categorical constructions on right
modules over operads.

§5. Definitions and basic constructions

First of all, we recall the definition of a right module over an operad R and
of the associated functors SR(M) : A 7→ SR(M,A), where the variable A
ranges over R-algebras in any symmetric monoidal category E over the base
category C.

In the book, we use the notation M for the category of Σ∗-objects in
the base category C and the notation F for the category of functors F :
E → E , where E is any given symmetric monoidal category over C. The map
S : M 7→ S(M) defines a functor S : M → F . In a similar way, we use the
notation M R for the category of right R-modules and the notation F R for
the category of functors F : RE → E . The map SR : M 7→ SR(M) defines a
functor SR :M R → F R.
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§6. Tensor products

For any source category A, the category of functors F : A → E has a natural
tensor product inherited pointwise from the symmetric monoidal category E .
In the first part of this introduction, we mention that the category of Σ∗-
objects M comes also equipped with a natural tensor product, as well as
the category of right R-modules M. The definition of the tensor product of
Σ∗-objects is recalled in §2. The tensor product of right R-modules is derived
from the tensor product of Σ∗-objects and this definition is recalled in §6.

Classical theorems assert that the functor S : M 7→ S(M) satisfies S(M ⊗
N) ' S(M) ⊗ S(N). In §6, we check that the functor SR : M 7→ SR(M)
satisfies similarly SR(M ⊗N) ' SR(M)⊗ SR(N). Formally, we prove that the
map SR : M 7→ SR(M) defines a functor of symmetric monoidal categories
over C:

(M R,⊗, 1)
SR−→ (F R,⊗, 1).

§7. Universal constructions on right modules over operads

An operad morphism ψ : R→ S gives rise to extension and restriction functors
ψ! : RE � SE : ψ!. The composition of functors F : RE → E with the restriction
functor ψ! : SE → RE defines an extension functor on functor categories:
ψ! : F R → F S. In the converse direction, the composition of functors G :
SE → E with the extension functor ψ! : RE → SE defines a restriction functor
ψ! : F S → F R. These extension and restriction functors ψ! : F R � F S : ψ!

form a pair of adjoint functors.
At the level of module categories, we also have extension and restriction

functors ψ! : M R � M S : ψ! that generalize the classical extension and
restriction functors of modules over associative algebras. We prove that these
operations on modules correspond to the extension and restriction of functors.
Explicitly, we have natural functor isomorphisms ψ! SR(M) ' SS(ψ!M) and
ψ! SR(M) ' SS(ψ!M). Besides, we check the coherence of these isomorphisms
with respect to adjunction relations and tensor structures.

In the particular case of the unit morphism of an operad, we obtain that
the composite of a functor SR(M) : RE → E with the free R-algebra functor
is identified with the functor S(M) : E → E associated to the underlying Σ∗-
object of M . In the converse direction, for a Σ∗-object L, we obtain that the
composite of the functor S(L) : E → E with the forgetful functor U : RE → E
is identified with the functor associated to a free right R-module associated
to L.
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§8. Adjunction and embedding properties

The functor SR : M R → F R has a right adjoint ΓR : F R → M R, like the
functor S : M → F . In the case E = C = k Mod, the category of modules
over a ring k, we use this result to prove that the functor SR : M 7→ SR(M)
is bijective on morphism sets in the same situations as the functor S : M 7→
S(M) on Σ∗-objects.

§9. Algebras in right modules over operads

We study the structure of algebras in a category of right modules over an
operad. We observe at this point that a bimodule over operads P, R is equiv-
alent to a P-algebra in right R-modules. We use that SR : M 7→ SR(M) defines
a symmetric monoidal functor to obtain the correspondence between P-R-
bimodules N and functors S(N) : RE → PE , as in the case of left P-modules.
We review applications of the general theory of §3 to this correspondence
between P-algebra structures.

§10. Miscellaneous examples

To give an illustration of our constructions, we prove that enveloping oper-
ads, enveloping algebras and modules of Kähler differentials, whose defini-
tions are recalled in §4, are instances of functors associated to modules over
operads. Besides we examine the structure of these modules for classical op-
erads, namely the operad of associative algebras A, the operad of Lie algebras
L, and the operad of associative and commutative algebras C.

New examples of functors associated to right modules over operads can be
derived by using the categorical operations of §6, §7 and §9.

Part III. Homotopical background

The purpose of the third part of the book is to survey applications of homo-
topical algebra to the theory of operads. We review carefully axioms of model
categories to define (semi-)model structures on categories of algebras over op-
erads. We study with more details the (semi-)model categories of algebras in
differential graded modules.

This part does not contain any original result, like our exposition of the
background of operads, but only changes of presentations. More specifically,
we observe that crucial verifications in the homotopy theory of algebras over
operads are consequences of general results about the homotopy of functors
associated to modules over operads. In this sense, this part gives first moti-
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vations to set a homotopy theory for modules over operads, the purpose of
the fourth part of the book.

§11. Symmetric monoidal model categories for operads

First of all, we review the axioms of model categories and the construction of
new model structures by adjunction from a given model category. The model
categories introduced in this book are defined by this adjunction process.

The notion of a symmetric monoidal model category gives the background
for the homotopy theory of operads. We give axioms for a symmetric monoidal
model category E over a base symmetric monoidal model category C.

We prove that the category of Σ∗-objects inherits a model structure and
forms a symmetric monoidal model category over the base category. Then we
study the homotopy invariance of the functor S(M) : E → E associated to a
Σ∗-object M . We prove more globally that the bifunctor (M,X) 7→ S(M,X)
satisfies an analogue of the pushout-product axiom of tensor products in
symmetric monoidal model categories.

§12. The homotopy of algebras over operads

To have a good homotopy theory for algebras over an operad P, we have
to make assumptions on the operad P. In general, it is only reasonable to
assume that the unit morphism of the operad η : I → P defines a cofibration
in the underlying category of Σ∗-objects – we say that the operad P is Σ∗-
cofibrant. In the differential graded context, this assumption implies that
each component of the operad P(n) forms a chain complex of projective Σn-
modules. For certain good symmetric monoidal categories, we can simply
assume that the unit morphism of the operad η : I → P defines a cofibration
in the base category C – we say that the operad P is C-cofibrant. In the
differential graded context, this assumption implies that the chain complex
P(n) consists of projective k-modules, but we do not assume that P(n) forms
a chain complex of projective Σn-modules.

The category of P-algebras PE inherits natural classes of weak-equivalences,
cofibrations, fibrations, which are defined by using the adjunction between
PE and the underlying category E . But none of our assumptions, though
reasonable, is sufficient to imply the full axioms of model categories: the lifting
and cofibration axioms hold in the category of P-algebras for morphisms with
a cofibrant domain only. In this situation, it is usual to say that P-algebras
forms a semi-model category.

In fact, the structure of a semi-model category is sufficient to carry out
every usual construction of homotopical algebra. For our purpose, we review
the definition of model structures by adjunction and the notion of a Quillen
adjunction in the context of semi-model categories.
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We prove the existence of semi-model structures on the category of P-
algebras PE for every symmetric monoidal model category E over the base
category C when the operad P is Σ∗-cofibrant. Since we prove that Σ∗-objects
form a symmetric monoidal model category over C, we can apply our result
to obtain a semi-model structure on the category of P-algebras in Σ∗-objects,
equivalently, on the category of left P-modules. Recall that a Σ∗-object is
connected if M(0) = 0. We observe that the semi-model structure of the
category of P-algebras in connected Σ∗-objects is well defined as long as the
operad P is C-cofibrant.

§13. The (co)homology of algebras over operads

The category of algebras over an operad P has a natural cohomology the-
ory H∗

P (A,E) defined as a derived functor from the functor of deriva-
tions DerP(A,E). There is also a natural homology theory HP

∗(A,E) de-
fined from the functor of Kähler differentials Ω1

P (A). We review the defi-
nition of these derived functors. The operadic (co)homology agrees with the
usual Hochschild (co)homology for associative algebras, with the Chevalley-
Eilenberg (co)homology for Lie algebras, and with the Harrison (co)homology
for commutative algebras.

The cohomology of a P-algebra A has coefficients in representations of
A, equivalently in left modules over the enveloping algebra of A. We prove
the existence of universal coefficient spectral sequences which determine the
cohomology H∗

P (A,E) from Ext-functors Ext∗U (H∗
P (A,U), E), where U refers

to the enveloping algebra of A. We have similar results for the homology
HP
∗(A,E).
We observe that the universal coefficients spectral sequences degenerate

for the associative and Lie operads, but not for the commutative operad. We
retrieve from this observation that the cohomology (respectively, homology)
of associative algebras is determined by an Ext-functor (respectively, by a
Tor-functor), and similarly as regards the cohomology of Lie algebras.

An alternative construction of a (co)homology theory for algebras over
an operad P comes from the cotriple construction of Beck. We recall the
definition of the cotriple complex and we prove that the cotriple construction
gives the same result as the abstract definition of the (co)homology by a
derived functor.

Part IV. The homotopy of modules over operads and
functors

In the fourth part of the book, we study the homotopical properties of the
functor SR(M) : A 7→ SR(M,A) associated to a right R-module M , and more
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globally of the bifunctor (M,A) 7→ SR(M,A) on right R-modules M and R-
algebras A. We aim to prove that modules over operads give a good homotopy
model of functors.

§14. The model category of right modules over an operad

First of all, we check that the category of right modules over an operad R
inherits the structure of a cofibrantly generated symmetric monoidal model
category from the base category C, like the category of Σ∗-objects, as long
as the operad R is C-cofibrant.

According to §12, the category of P-algebras in right R-modules (equiva-
lently, on the category of P-R-modules) inherits a semi-model structure pro-
vided that the operad P is Σ∗-cofibrant. If we restrict ourself to connected
right R-modules, then this model structure is well defined as long as the
operad P is C-cofibrant.

§15. Modules and homotopy invariance of functors

We study the homotopy invariance of the bifunctor (M,A) 7→ SR(M,A). We
prove that a weak-equivalence of right R-modules f : M ∼−→ N induces a
weak-equivalence SR(f,A) : SR(M,A) ∼−→ SR(N,A) provided that:

(1) the right R-moduleM,N are cofibrant as right R-modules and the R-algebra
A defines a cofibrant object in the underlying category E ,

(2) or the operad R is Σ∗-cofibrant, the right R-module M,N are cofibrant as
Σ∗-objects and the R-algebra A is cofibrant as an R-algebra.

We prove symmetrically that a weak-equivalence of R-algebras f : A ∼−→ B
induces a weak-equivalence SR(M,f) : SR(M,A) ∼−→ SR(M,B) provided that:

(1) the right R-module M is cofibrant as a right R-module and the R-algebras
A,B define cofibrant objects in the underlying category E ,

(2) or the operad R is Σ∗-cofibrant, the right R-module M is cofibrant as a
Σ∗-object and the R-algebras A,B are cofibrant as R-algebras.

Some instances of these assertions already occur in the literature, but the
unifying statement is completely new. Assertions (1) are proved by standard
homotopical arguments, but the technical verification of assertions (2), post-
poned to an appendix, takes a whole part of the book.

The assumption about the operad in assertions (2) ensures that the R-
algebras form a semi-model category. But we note that, for certain good
categories E , the semi-model structure of R-algebras is well defined as long as
the operad R is C-cofibrant. In this situation, we can simply assume that the
right R-modules are cofibrant as collections of objects M(n) ∈ C to have the
homotopy invariance properties of assertions (2).
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In §5, we observe that the relative composition product M ◦RN (a natural
operation between a right R-module M and a left R-module N) is a partic-
ular instance of a construction of the form SR(M,N), where we identify left
R-modules with R-algebras in Σ∗-objects. Accordingly, we can use our theo-
rems to study the homotopy invariance of the relative composition product
M ◦R N . In §15.3, we study finer homotopy invariance properties of relative
composition products M ◦R N which occur for a connected left R-module N .

§16. Extension and restriction functors and model structures

Let ψ : R→ S an operad morphism. If the operads R, S are C-cofibrant, then
the extension and restriction functors ψ! : M R � M S : ψ! define a Quillen
adjunction for modules. In the context of algebras over operads, we assume
that the operads R, S are Σ∗-cofibrant or that the monoidal category E is
good enough to ensure that R-algebras and S-algebras form model categories.
In this situation, we obtain that the extension and restriction functors ψ! :
RE � SE : ψ! define Quillen adjoint functors too.

In both contexts (modules and algebras), the extension and restriction
functors define Quillen adjoint equivalences when the morphism ψ is an op-
erad equivalence. In §16, we give a new general proof of this assertion, which
has already been verified in various situations: in the context of simplicial sets
and simplicial modules, [54, §3.6]; for certain operads in differential graded
modules, [26]; in the context of spectra, [21, Theorem 1.2.4] and [23]; under
the assumption that the underlying model category is left proper, [4].

For algebras, the crux is to check that the adjunction unit ηA : A→ ψ!ψ!A
defines a weak-equivalence for every cofibrant R-algebra A. In §7 and §9, we
observe that the functors ψ! : RE � SE : ψ! are associated to right modules
over operads, as well as the functors ψ! :M R �M S : ψ!. From this obser-
vation, the proof that ηA : A→ ψ!ψ!A defines a weak-equivalence occurs as
an application of the results of §15 on the homotopy invariance of functors
associated to modules over operads.

§17. Miscellaneous applications

To conclude the book, we survey some applications of the homotopy the-
ory of right modules of operads to the homotopy of algebras over operads.
More specifically, we use results of §15 to study the homotopy invariance
of usual operadic constructions, like enveloping operads, enveloping algebras
and Kähler differentials, and to revisit the definition of the (co)homology of
algebras over an operad. In particular, we prove in §17 that the (co)homology
of algebras over an operad agrees with the cohomology of the cotriple con-
struction.
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In §13, we define the (co)homology of algebras over an operad R by using
derived functors of Kähler differentials Ω1

R (A). In §10, we prove that Ω1
R (A)

is the functor associated to a right R-module Ω1
R . In §17, we use theorems

of §15 to prove that the homology of R-algebras is defined by a Tor-functor
(and the cohomology by an Ext-functor) if Ω1

R forms a free right R-module
(when R is an operad in k-modules). As an example, we retrieve that the
classical Hochschild homology of associative algebras, as well as the classi-
cal Chevalley-Eilenberg homology of Lie algebras, are given by Tor-functors
(respectively, Ext-functors for the cohomology), unlike Harrison or André-
Quillen homology of commutative algebras.

Part V. Appendix: technical verifications

The purpose of the appendix is to achieve technical verifications of §12
and §15. Namely we prove that the bifunctor (M,A) 7→ SR(M,A) associ-
ated to an operad R satisfies an analogue of the pushout-product axiom of
tensor products in symmetric monoidal model categories.



Part I

Categorical and operadic background





Foreword: categorical conventions

0.1 Functor categories. In this book, we deal with categories of functors F :
A → X . Generally, the category A is not supposed to be small, but to avoid
set-theoretic difficulties we assume tacitely that any category A considered
in the book* contains a small subcategory Af such that every object X ∈ A
is the filtered colimit of a diagram of Af . Moreover, we consider tacitely
only functors F : A → X that preserve filtered colimits and the notation
F(A,X ) refers to the category formed by these functors. All functors which
arise from our constructions satisfy this assumption. Under this convention,
we obtain that the category F(A,X ) has small morphism sets and no actual
set-theoretic difficulty occurs.

Besides, the existence of the small category Af implies that a functor
φ! : A → X admits a right adjoint φ∗ : X → A if and only if it preserves
colimits, because the set-theoretic condition of the adjoint functor theorem
is automatically fulfilled.

0.2 Notation for colimits. Categories occur at two levels in our construc-
tions: we use ground categories, which are usually symmetric monoidal cate-
gories, and categories of algebras over operads, which lie over an underlying
ground category. To distinguish the role of these categories, we use two sys-
tem of conventions to represent colimits: we adopt additive notation (0 for
the initial object and ⊕ for the coproduct) for ground categories, and the
pointed-set notation ∨ for the coproduct in categories of algebras over op-
erads. Nevertheless, we return to pointed-set (or set) notation in particular
instances of ground categories (sets, simplicial sets, topological spaces, . . . )
for which this convention is usual.

The pointed-set notation is applied to the category of operads in a base
symmetric monoidal category (see §3.1.1). The pointed-set notation is also
used for categories to which no role is assigned.

* We only make an exception for the category of topological spaces.

17
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Note that ground categories are not assumed to be additive in general.
The initial object 0 is not supposed to be a zero object, and the coproduct
⊕ is not supposed to be a bi-product.

0.3 Symmetric monoidal categories and enriched categories. The
structure of a symmetric monoidal category gives the categorical background
of the theory of operads. The definition of this notion is reviewed in the next
chapter. For the moment, recall briefly that a symmetric monoidal category
consists of a category C equipped with a tensor product ⊗ : C ×C → C and a
unit object 1 ∈ C which satisfies the usual unit, associativity and symmetry
relations of the tensor product of modules over a ring.

The notation MorE(X,Y ) is used throughout the book to refer to the
morphism-sets of any category E . But many categories are assumed to be
enriched over a base symmetric monoidal category and come equipped with
a hom-bifunctor with value in C, if C refers to the base category (see §1.1.12).
The hom-objects of every enriched category E are denoted by HomE(X,Y ),
to be distinguished from the morphism sets MorE(X,Y ).

0.4 Point-set symmetric monoidal categories. We illustrate our con-
structions by applications in categories of modules over a commutative
ground ring, in categories of differential graded modules (dg-modules for
short), in categories of Σ∗-objects (also called symmetric objects in English
words), or in categories of right modules over an operad. In these instances of
symmetric monoidal categories, the tensor product X⊗Y is spanned in a nat-
ural sense by certain tensors x⊗ y, where (x, y) ∈ X ×Y , and any morphism
φ : X ⊗Y → Z is equivalent to a kind of multilinear map φ : x⊗ y 7→ φ(x, y)
on the set of generating tensors. The tensor product θ : (x, y) 7→ x ⊗ y
represents itself a universal multilinear map θ : X × Y → X ⊗ Y . The rep-
resentation of morphisms φ : X ⊗ Y → Z by actual multilinear maps can
be extended to homomorphisms, elements of internal hom-objects of these
categories. This pointwise representation, usual for modules over a ring, is
formalized in §1.1.5 in the context of dg-modules, in §2.1.9 in the context
of Σ∗-objects, and in §6.1.3 in the context of right modules over an operad.

In illustrations, we apply the pointwise representation of tensors to the
categories, derived from the category of modules, which are mentioned in this
paragraph. But, of course, pointwise representations of tensors hold in the
category of sets, whose tensor product is defined by the cartesian product, and
more generally in any point-set category derived from the cartesian category
of sets, like the category of topological spaces or the category simplicial sets.

In the sequel, we speak abusively of a point-set context to refer to a
symmetric monoidal category in which a pointwise representation of tensors
holds.

0.5 The principle of generalized point-tensors. The pointwise represen-
tation, which makes many definitions more basic, is used in applications. To
simplify, we may make explicit the example of modules over a ring only and
we may omit the case of dg-modules (respectively, Σ∗-objects, right modules
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over operads) in illustrations. Usually, the generalization from modules to dg-
modules (respectively, Σ∗-objects, right modules over operads) can be carried
out automatically within the pointwise representation, without calling back
the category formalism.

The only rule is to keep track of tensor permutations in mappings to re-
place a tensor x⊗ y by a decorated tensor σ · x⊗ y, where the decoration σ
consists of a sign in the context of dg-modules (see §1.1.5), a block permu-
tation in the context of Σ∗-objects and modules over operads (see §2.1.9),
a sign combined with a block permutation in the context of symmetric ob-
jects in dg-modules . . . The rule arises from the definition of the symmetry
isomorphism τ : X ⊗ Y '−→ X ⊗ Y in these symmetric monoidal categories.

To refer to these rules, we say that we apply the principle of generalized
point-tensors.





Chapter 1

Symmetric monoidal categories
for operads

Introduction

The notion of a symmetric monoidal category is used to give a general back-
ground for the theory of operads. Standard examples of symmetric monoidal
categories include categories of modules over a commutative ring, categories
of differential graded modules, various categories of coalgebras, the category
of sets together with the cartesian product, the category of simplicial sets,
and the category of topological spaces. Other possible examples include the
modern categories of spectra used to model stable homotopy, but in applica-
tions operads come often from the category of topological spaces or simplicial
sets and categories of spectra are not used as the base category in our sense
(see next).

The first purpose of this chapter is to survey definitions of symmetric
monoidal categories.

To set our constructions, we fix a base symmetric monoidal category, usu-
ally denoted by C, in which all small colimits, all small limits exist, and we
assume that the tensor product of C preserves all colimits (see §1.1.1). In the
sequel, operads are usually defined within this base category C. But, in our
constructions, we use naturally algebras over operads in extensions of the base
category to which the operad belongs. For this reason, we review definitions
of symmetric monoidal categories to have an appropriate axiomatic back-
ground for our applications. The axiomatic structure, needed to generalize
the definition of an algebra over an operad, consists of a symmetric monoidal
category over the base category C, an object under C in the 2-category of
symmetric monoidal categories (see §1.1.2).

Definitions of symmetric monoidal categories are reviewed in §1.1 with this
aim in mind. The structure of a symmetric monoidal category over the base
category is made explicit in that section.

In §1.2, we recall the definition and properties of particular colimits
(namely, reflexive coequalizers and filtered colimits). We use repeatedly that

21
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these colimits are preserved by tensor powers in symmetric monoidal cate-
gories.

The categories of spectra form natural examples of symmetric monoidal
categories over the category of simplicial sets. In applications of the theory
of operads, categories of spectra are often used as such and the actual base
category in our sense is formed by the category of simplicial sets. The example
of spectra is only examined in remarks of parts III-IV of the book.

1.1 Symmetric monoidal categories over a base

In this section, we recall briefly the definition of a symmetric monoidal cat-
egory, essentially to fix axiomatic requirements on base symmetric monoidal
categories. Then we study the 2-category of symmetric monoidal categories
and we give an axiomatic definition of the structure of a symmetric monoidal
category over a base category. Besides we survey basic examples of symmetric
monoidal categories, used throughout the book in examples of applications.

1.1.1 The base symmetric monoidal category. Roughly (we refer to [44,
Chapter 11] for a detailed definition), a symmetric monoidal category consists
of a category C equipped with a tensor product ⊗ : C ×C → C and a unit
object 1 ∈ C such that we have unit relations

1⊗C ' C ' C ⊗ 1, ∀C ∈ C,

an associativity relation

(A⊗B)⊗ C ' A⊗ (B ⊗ C), ∀A,B,C ∈ C,

and a symmetry isomorphism

τ(C,D) : C ⊗D '−→ D ⊗ C, ∀C,D ∈ C .

The natural isomorphisms that give these relations are part of the structure
and, whenever relations are patched together, all composites of relation iso-
morphisms are supposed to return the same result. According to [44, Chapter
11], the verification of this coherence assumption reduces to the commuta-
tivity of a 4-term associativity pentagon, three 2-term unit triangles, and a
3-term symmetry hexagon.

Abusively, we omit to specify the unit, associativity, and symmetry isomor-
phisms in the notation of a symmetric monoidal category. Moreover, we use
the notation (C,⊗, 1) only to insist that we consider the symmetric monoidal
structure of the category C. Usually, we specify a symmetric monoidal cat-
egory by the underlying category C, assuming that C has a natural internal
symmetric monoidal structure.
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Throughout this book, we use the letter C to refer to a base symmetric
monoidal category, fixed once and for all. Usual examples are surveyed next.

All small colimits, all small limits are supposed to exist in the base cate-
gory C and the tensor product ⊗ : C ×C → C is assumed to preserve colimits
in each variable separately. Explicitly, the natural morphism

colim
i

(Ci ⊗D)→ (colim
i

Ci)⊗D,

is an isomorphism for all diagrams Ci, i ∈ I, and every fixed object D ∈ C,
and similarly for colimits on the right-hand side.

1.1.2 The axioms of a symmetric monoidal category over a base.
In brief, a symmetric monoidal category over C consists of an object under C
in the 2-category of symmetric monoidal categories. For our needs, we give
a more explicit definition of the structure of a symmetric monoidal category
over a base category and we prove afterwards that the explicit definition
agrees with the abstract categorical definition.

For us, a symmetric monoidal category over C consists of a symmetric
monoidal category (E ,⊗, 1) equipped with an external tensor product ⊗ :
C ×E → E such that we have a unit relation

1⊗X ' X, ∀X ∈ E ,

an associativity relation

(C ⊗D)⊗X ' C ⊗ (D ⊗X), ∀C,D ∈ C,∀X ∈ E ,

and such that we have a distribution relation

C ⊗ (X ⊗ Y ) ' (C ⊗X)⊗ Y ' X ⊗ (C ⊗ Y ), ∀C ∈ C,∀X,Y ∈ E ,

between the external tensor product and the internal tensor product of E .
Again, the isomorphisms that give these relations are part of the structure
and all composites of relation isomorphisms are supposed to return the same
result whenever relations are patched together. The verification of this coher-
ence assumption reduces to the commutativity of the associativity pentagons,
unit triangles and symmetry hexagons of symmetric monoidal categories, but
where internal and external tensor products are patched together in all pos-
sible ways.

Recall that a category E is tensored over a base symmetric monoidal cat-
egory C if it is equipped with an external tensor product ⊗ : C ×E → E
that satisfies the unit and associativity relations. The structure of a symmet-
ric monoidal category over C put together an internal symmetric monoidal
structure with the structure of a tensored category.

Again, we assume that all small colimits, all small limits exist in the cate-
gory E . To simplify (see next remark), we also assume that the internal tensor
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product of E preserves all colimits in each variable, and similarly as regards
the external tensor product ⊗ : C ×E → E .

The base category forms clearly a symmetric monoidal category over itself.

1.1.3 Remark. In constructions of parts I-II, (for instance, in the definition
of the category of algebras in E associated to an operad in C), it is only
necessary to assume that:

– The internal tensor product of E preserves initial objects, filtered colimits
and reflexive coequalizers on both sides (see §1.2 for recollections on these
particular colimits);

– The external tensor product ⊗ : C ⊗E → E preserves all colimits on the
left-hand side, but only initial objects, filtered colimits and reflexive co-
equalizers on the right-hand side.

The category of connected coalgebras used in [16] gives a motivating exam-
ple of a symmetric monoidal category over a base for which these weakened
axioms have to be taken.

In the next paragraphs, we recap our basic examples of base symmetric
monoidal categories and we give simple examples of symmetric monoidal
categories over the base. Usual tensor products are derived from two primitive
constructions: the tensor product of modules over a commutative ground ring
and the cartesian products of sets. Our exposition follows this subdivision.

1.1.4 Basic examples: symmetric monoidal categories of modules
and differential graded modules. Our first instance of a base symmetric
monoidal category is the category C = k Mod of modules over a fixed com-
mutative ground ring k together with the tensor product over the ground
ring ⊗ = ⊗k. The ground ring is usually omitted in this notation and the
tensor product of C = k Mod is denoted by ⊗, like every tensor product of a
symmetric monoidal category.

The usual categories of differential graded modules (non-negatively graded,
lower graded, . . . ) form other classical instances of symmetric monoidal cate-
gories. In the sequel, we use the notation dg k Mod for the category of differ-
ential lower Z-graded k-modules, whose objects (called dg-modules for short)
consists of a k-module C equipped with a grading C = ⊕∗∈ZC∗ and with an
internal differential, usually denoted by δ : C → C, that decreases degrees
by 1.

The tensor product of dg-modules C,D ∈ dg k Mod is the dg-module C⊗D
defined by the usual formula

(C ⊗D)n =
⊕
p+q=n

Cp ⊗Dq

together with the differential such that δ(x⊗y) = δ(x)⊗y+±x⊗δ(y), where
± = (−1)p for homogeneous elements x ∈ Cp, y ∈ Cq. The tensor product
of dg-modules is obviously associative, has a unit given by the ground ring
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k (put in degree 0 to form a dg-module), and has a symmetry isomorphism
τ(C,D) : C ⊗ D '−→ D ⊗ C defined by the usual formula τ(C,D)(x ⊗ y) =
±y ⊗ x, where ± = (−1)pq for homogeneous elements x ∈ Cp, y ∈ Cq. Hence
we obtain that the category of dg-modules comes equipped with the structure
of a symmetric monoidal category.

The symmetric monoidal category of dg-modules forms obviously a sym-
metric monoidal category over k-modules.

The symmetry isomorphism of dg-modules follows the standard sign con-
vention of differential graded algebra, according to which a permutation of
homogeneous objects of degree p and q produces a sign ± = (−1)pq. In the
sequel, we do not make explicit the signs which are determined by this rule.

1.1.5 The pointwise representation of dg-tensors. The pointwise repre-
sentation of tensors of §§0.4-0.5 can be applied to the category of dg-modules.
In this representation, the tensor product C⊗D is considered as a dg-module
spanned by tensor products x⊗y of homogeneous elements (x, y) ∈ Cp×Dq.
To justify this rule, observe that a morphism of dg-modules φ : C⊗D → E is
equivalent to a collection of homogeneous maps φ : Cp×Dq → En, which are
multilinear in the usual sense of linear algebra, together with a commutation
relation with respect to differentials. Hence a morphism φ : C ⊗ D → E is
well determined by a mapping x⊗y 7→ φ(x, y) on the set of generating tensors
x⊗ y, where (x, y) ∈ Cp ×Dq.

The definition of the symmetry isomorphism τ(C,D) : X ⊗ Y '−→ Y ⊗X
gives the commutation rule x⊗ y 7→ ±y ⊗ x, with a sign added.

1.1.6 Remark: symmetric monoidal categories of graded objects.
Let gr k Mod denote the category of graded k-modules, whose objects con-
sists simply of k-modules C ∈ k Mod equipped with a splitting C =

⊕
∗∈Z C∗.

Any object in that category can be identified with a dg-module equipped with
a trivial differential. The category gr k Mod inherits a symmetric monoidal
structure from this identification, since a tensor product of dg-modules
equipped with a trivial differential has still a trivial differential. The sym-
metry isomorphism of this symmetric monoidal structure includes the sign of
differential graded algebra.

In the context of graded modules, we can drop this sign to obtain another
natural symmetry isomorphism τ(C,D) : C ⊗D '−→ D ⊗ C. This convention
gives another symmetric monoidal structure on graded modules, which is not
equivalent to the symmetric monoidal structure of differential graded algebra.

These symmetric monoidal categories of graded modules form both sym-
metric monoidal categories over k-modules.

1.1.7 Basic examples: symmetric monoidal structures based on the
cartesian product. The category of sets Set together with the cartesian
product × forms an obvious instance of a symmetric monoidal category. The
cartesian product is also used to define a symmetric monoidal structure in
the usual category of topological spaces Top, and in the usual category of
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simplicial sets S. The one-point set, which gives the unit of these symmetric
monoidal categories, is represented by the notation ∗.

Suppose C is any category with colimits. For a set K ∈ Set and an object
C ∈ C, we have a tensor product K ⊗ C ∈ C formed by the coproduct over
the set K of copies of the object C :

K ⊗ C :=
⊕
k∈K

C.

This construction provides any category with colimits with a tensor product
over the category of sets. If we assume further that C is a symmetric monoidal
category so that the tensor product ⊗ : C ×C → C preserves colimits, then
our external tensor product ⊗ : Set×C → C satisfies the distribution relation
of §1.1.2. Hence every symmetric monoidal category C whose tensor product
⊗ : C ×C → C preserves colimits forms naturally a symmetric monoidal
category over the category of sets.

Recall that a simplicial object in a category C consists of a collection of
objects Xn ∈ E , n ∈ N, equipped with faces di : Xn → Xn−1, i = 0, . . . , n,
and degeneracies sj : Xn → Xn+1, j = 0, . . . , n, that satisfy the universal
relations of faces and degeneracies of simplicial sets. The category of simplicial
objects in C is denoted by C∆.

If C is a symmetric monoidal category, then C∆ inherits a tensor product
and forms still a symmetric monoidal category. The construction is standard:
the tensor product of simplicial objects C,D ∈ C∆ is defined dimensionwise
by (C ⊗ D)n = Cn ⊗ Dn and comes equipped with the diagonal action of
faces and degeneracies. If E is a symmetric monoidal category over a base
symmetric monoidal category C, then the category of simplicial objects E∆
forms similarly a symmetric monoidal category over C∆.

If we apply this general construction to the base category of sets and to any
symmetric monoidal category C such that the tensor product ⊗ : C ×C → C
preserves colimits, then we obtain that the category of simplicial objects C∆
forms a symmetric monoidal category over simplicial sets S. Next, in §1.1.11,
we shall observe that the category of topological spaces Top forms another
instance of a symmetric monoidal category over the category of simplicial
sets S.

The categories of spectra, alluded to in the introduction of this chapter,
form other instances of symmetric monoidal categories over simplicial sets,
but we defer applications of this idea to brief remarks in parts III-IV of the
book.

1.1.8 Functors and natural transformations. A functor ρ : D → E is a
functor of symmetric monoidal categories over C if we have a relation

ρ(X ⊗ Y ) ' ρ(X)⊗ ρ(Y )

for the internal tensor product of objects X,Y ∈ D, a relation
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ρ(C ⊗ Y ) ' C ⊗ ρ(Y ),

for the external tensor product of Y ∈ D with C ∈ C, and an isomorphism

ρ(1) ' 1

for the unit object 1 ∈ E . Again, the isomorphisms that give these relations
are part of the structure and are supposed to satisfy coherence relations with
respect to the isomorphisms that give the internal relations of symmetric
monoidal categories.

A natural transformation θ(X) : ρ(X) → σ(X), where ρ, σ : D → E are
functors of symmetric monoidal categories over C, is a natural transformation
of symmetric monoidal categories over C if we have θ(1) = id, for unit objects,
θ(X ⊗ Y ) = θ(X) ⊗ θ(Y ), for all X,Y ∈ D, and θ(C ⊗ Y ) = C ⊗ θ(Y ), for
all C ∈ C, Y ∈ D. In these equations, we identify abusively the relations
of symmetric monoidal functors with identities. The relations are defined
properly by commutative diagrams obtained by patching together the natural
transformations with the isomorphisms that give these relations.

Adjoint functors ρ! : D � E : ρ∗ define an adjunction of symmetric
monoidal categories over C if ρ! and ρ∗ are functors of symmetric monoidal
categories over C, and the adjunction unit ηX : X → ρ∗ρ!X, as well as the
adjunction augmentation εY : ρ!ρ

∗Y → Y , are natural transformations of
symmetric monoidal categories over C.

The next assertion is straightforward:

1.1.9 Proposition. For any symmetric monoidal category E over C, we have
a symmetric monoidal functor η : (C,⊗, 1) → (E ,⊗, 1) defined by η(C) =
C ⊗ 1, where C ⊗ 1 refers to the external tensor product of C ∈ C with the
unit object of E.

Conversely, any symmetric monoidal category (E ,⊗, 1) equipped with a
symmetric monoidal functor η : (C,⊗, 1) → (E ,⊗, 1) forms a symmetric
monoidal category over C so that C ⊗X = η(C)⊗X, for all C ∈ C, X ∈ E.
In addition, the functor η : C → E preserves colimits if and only if the
associated external tensor product C ⊗X = η(C) ⊗X preserves colimits on
the left.

These constructions define inverse equivalences of 2-categories between the
category of symmetric monoidal categories over C and the comma category
of objects under (C,⊗, 1) in the 2-category of symmetric monoidal categories.

ut

The functor η : C → E is usually omitted in the notation of the object
η(C) ∈ E associated to C ∈ C. Note however that the identification η(C) = C
may be excessively abusive, though the functor η : C → E is canonically
determined by the structure of E , because η : C → E is not supposed to be
faithful.

Proposition 1.1.9 makes clear the following transitivity relation:
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1.1.10 Observation. Let D be a symmetric monoidal category over the base
category C. Suppose E is a symmetric monoidal category over D. Then E
forms itself a symmetric monoidal category over the base category C.

1.1.11 Examples.
(a) In §1.1.7, we observe that any symmetric monoidal category C forms
naturally a symmetric monoidal category over the cartesian category of sets
provided that the tensor product of C preserves colimits. The canonical func-
tor η : Set→ C determined by this structure is given by the explicit formula
η(K) = K ⊗ 1 =

⊕
k∈K 1. Throughout the book, we also adopt the notation

1[K] = K ⊗ 1 for this construction.
(b) The standard geometric realization of simplicial sets defines a functor of
symmetric monoidal categories |−| : (S,×, ∗)→ (Top,×, ∗) since the classical
Eilenberg-Zilber subdivision of prisms gives rise to a natural homeomorphism

∇ : |K| × |L| '−→ |K × L|

which satisfies the coherence relations alluded to in §1.1.8. Thus the category
of topological spaces forms a symmetric monoidal category over simplicial
sets.
(c) The normalized chain complex of simplicial sets defines a functor N∗(−) :
S → dg k Mod, but in this context we only have a weak-equivalence

∇ : N∗(K)×N∗(L) ∼−→ N∗(K × L),

for K,L ∈ S, and the category of dg-modules does not form a symmetric
monoidal category over simplicial sets in our sense.

1.1.12 Enriched symmetric monoidal categories over the base cat-
egory. Throughout this book, we assume that all categories E which are
tensored over the base category C satisfy the assumption that the external
tensor product ⊗ : C ×E → E preserves colimits on the left-hand side, as as-
serted in §1.1.2 for symmetric monoidal categories over C. According to our
convention (see §0.1 in the foreword), this assumption implies the existence
of an external hom-bifunctor

HomE(−,−) : Eop × E → C

such that
MorE(C ⊗X,Y ) = MorC(C,HomE(X,Y )),

for all C ∈ C, X,Y ∈ E . Thus we obtain that the category E is naturally
enriched over the base category C.*

* In the context of topological spaces, the set-theoretic convention of §0.1 is not satisfied,
but the existence of a good homomorphism object is a classical issue, which can be solved

if we take a good category of topological spaces (see the survey and the bibliographical

references of [28, §§2.4.21-26]).
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In a point-set context, where the objects of C have an actual underlying
set, we call homomorphisms the elements of HomE(X,Y ), which have to be
distinguished from the actual morphisms f ∈ MorE(X,Y ).

1.1.13 Examples.
(a) For E = C = k Mod, the category of k-modules, we have simply
Homk Mod(X,Y ) = Mork Mod(X,Y ) since the set of k-module morphisms
forms itself a k-module and this k-module satisfies the adjunction relation of
hom-objects.
(b) For E = C = dg k Mod, the category of dg-modules, the dg-object
Homdg k Mod(C,D) is spanned in degree d by homogeneous maps f : C → D
which raise degrees by d. The differential of a map f ∈ Homdg k Mod(C,D) is
given by the usual commutator formula δ(f) = δ · f −±f · δ in which we use
the internal differential of the dg-modules C and D.

Observe that a homogeneous element f ∈ Homdg k Mod(C ⊗ D,E) of
degree d is also equivalent to a collection of actual multilinear maps f :
Cp × Dq → En, where n = p + q + d. Thus the pointwise representation
of §1.1.4 can be extended to homomorphisms of the category of dg-modules.
(c) For E = C = Set, the category of sets, we have simply HomSet(X,Y ) =
MorSet(X,Y ), the set of maps f : X → Y .
(d) The n-simplex ∆n in the category of simplicial sets S is charac-
terized by the relation MorS(∆n,K) = Kn, for all K ∈ S. The col-
lection ∆n, n ∈ N, form a cosimplicial object in S. For a category E
tensored over the category of simplicial sets S, we have a hom-object
HomE(C,D) ∈ S defined by HomE(C,D)n = MorE(∆n ⊗ C,D), together
with faces di : MorE(∆n ⊗ C,D) → MorE(∆n−1 ⊗ C,D) and degenera-
cies sj : MorE(∆n ⊗ C,D) → MorE(∆n+1 ⊗ C,D) induced by the faces
di : ∆n−1 → ∆n and the degeneracies sj : ∆n+1 → ∆n of the n-simplex ∆n.
This definition is forced by the relations

HomE(X,Y )n = MorS(∆n,HomE(X,Y )) = MorE(∆n ⊗X,Y ).

Use that the simplices ∆n, n ∈ N, generate the category of simplicial sets to
extend the adjunction relation MorS(∆n,HomE(X,Y )) = MorE(∆n ⊗X,Y )
to all simplicial sets.

1.1.14 Functors on enriched categories. Recall that 1[−] : Set → C
refers to the canonical functor of symmetric monoidal categories such that
1[K] =

⊕
k∈K 1. For K = MorE(X,Y ), we have a morphism

1[MorE(X,Y )]⊗X '
⊕

f∈MorE(X,Y )

X
(f)∗−−−→ Y

that determines a natural morphism

1[MorE(X,Y )]→ HomE(X,Y ).
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A functor ρ : D → E , where the categories D and E are tensored over C,
is a functor in the enriched sense if we have a natural transformation ρ :
HomD(X,Y )→ HomE(ρX, ρY ) which preserves compositions in hom-objects
and so that the diagram

1[MorD(X,Y )]
1[ρ] //

��

1[MorE(ρX, ρY )]

��
HomD(X,Y )

ρ
// HomE(ρX, ρY )

commutes, for all X,Y ∈ D.

The next assertion is formal:

1.1.15 Proposition. Let ρ : D → E be a functor, where the categories D
and E are tensored over C. If ρ preserves external tensor products, then the
map f 7→ ρ(f), defined for morphisms in E, extends to a morphism

HomD(X,Y )
ρ−→ HomE(ρX, ρY ),

so that we have a commutative diagram

MorC(C,HomD(X,Y ))
ρ∗ //

'

��

MorC(C,HomE(ρX, ρY ))

'
��

MorE(C ⊗ ρX, ρY )

MorD(C ⊗X,Y )
ρ

// MorE(ρ(C ⊗X), ρY )

'

OO

for all C ∈ C, and ρ defines a functor in the enriched sense. ut

For our needs we check further:

1.1.16 Proposition. Let ρ! : D � E : ρ∗ be adjoint functors, where the cat-
egories D and E are tensored over C. If ρ! preserves external tensor products,
then the functors ρ! : D � E : ρ∗ satisfy an enriched adjunction relation

HomE(ρ!X,Y ) ' HomD(X, ρ∗Y ),

where morphism sets are replaced by hom-objects over C. Moreover, the mor-
phism on hom-objects induced by ρ! : D → E fits a commutative diagram
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HomD(X,Y )
ρ! //

ηY∗ ((RRRRRRRRRRRRR
HomE(ρ!X, ρ!Y )

HomD(X, ρ∗ρ!Y )

'

55kkkkkkkkkkkkkk

,

where ηY∗ denotes the morphism induced by the adjunction unit ηY : Y →
ρ∗ρ!Y .

Proof. Apply the adjunction relation on morphism sets to a tensor product
C⊗Y ∈ D, where C ∈ C and X ∈ D. Since we assume ρ!(C⊗X) ' C⊗ρ!(X),
we obtain natural isomorphisms

MorE(C ⊗ ρ!X,Y ) ' //

'
��

MorE(ρ!(C ⊗X), Y ) ' // MorD(C ⊗X, ρ∗Y )

'
��

MorC(C,HomE(ρ!X,Y )) '
// MorC(C,HomD(X, ρ∗Y ))

from which we deduce the existence of an isomorphism

HomE(ρ!X,Y ) ' HomD(X, ρ∗Y ),

for all X ∈ D, Y ∈ E .
For X,Y ∈ D, we have a commutative diagram on morphism sets

MorD(X,Y )
ρ! //

ηY∗ ((QQQQQQQQQQQQQ
MorE(ρ!X, ρ!Y )

MorD(X, ρ∗ρ!Y )

'

55lllllllllllll

.

This assertion is a formal consequence of the definition of an adjunction unit.
Again, we apply this diagram to a tensor product X := C ⊗X ∈ D, where
C ∈ C and X ∈ D, and we use the relation ρ!(C ⊗X) ' C ⊗ ρ!(X) to check
that the diagram commutes at the level of hom-objects. ut

1.1.17 Reduced symmetric monoidal categories over a base. In the
sequel, we also consider reduced symmetric monoidal categories E0 which
come equipped with a symmetric internal tensor product and with an external
tensor product over C, but which have no internal unit object. In this case,
we assume all axioms of a symmetric monoidal category over a base, except
the axioms that involve the unit of E .

Any reduced symmetric monoidal category E0 is equivalent to a symmetric
monoidal category over C of the form E = C ×E0, together with the functor
η : C → E such that ηC = (C, 0) and the internal tensor product so that:
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(C,X0)⊗ Y = ηC ⊗ Y ⊕ (0, X0)⊗ Y, ∀(C,X0) ∈ C ×E0, ∀Y ∈ E ,
X ⊗ (D,Y 0) = X ⊗ ηD ⊕X ⊗ (0, Y 0), ∀X ∈ E , ∀(D,Y 0) ∈ C ×E0,

ηC ⊗ (0, X0) = (0, X0)⊗ ηC = (0, C ⊗X0), ∀(C,X0) ∈ C ×E0,

and (0, X0)⊗ (0, Y 0) = (0, X0 ⊗ Y 0), ∀(X0, Y 0) ∈ E0 × E0.

The coproduct in E = C ×E0 is given by the obvious formula (C,X0) ⊕
(D,Y 0) = (C ⊕D,X0 ⊕ Y 0).

This construction gives readily:

1.1.18 Proposition. The category of reduced symmetric monoidal categories
over C is equivalent to a subcategory of the 2-category of symmetric monoidal
categories over C. ut

1.2 Reflexive coequalizers and filtered colimits

Recall that a coequalizer

X1

d0 //

d1

// X0
// coker(X1 ⇒ X0)

is reflexive if there exists a morphism s0 : X0 → X1 such that d0s0 = id =
d1s0. In this context, we say that d0, d1 forms a reflexive pair of morphisms.

The importance of reflexive coequalizers for our purpose comes from the
following assertions:

1.2.1 Proposition (see [20, p. 46] and [54, Lemma 2.3.2]). Suppose T :
A×B → E is a bifunctor that preserves reflexive coequalizers in each variable
separately. Explicitly: the natural morphism

coker(T (X1, Y ) ⇒ T (X0, Y ))→ T (coker(X1 ⇒ X0), Y ),

is an isomorphism, for all reflexive pairs of morphisms d0, d1 : X1 ⇒ X0 and
all objects Y , and similarly for coequalizers in the second variable. Then:
(a) The functor T preserves reflexive coequalizers in two variables. Explicitly,
the natural morphism

coker(T (X1, Y1) ⇒ T (X0, Y0))→ T (coker(X1 ⇒ X0), coker(Y1 ⇒ Y0))

is an isomorphism for all reflexive pairs of morphisms d0, d1 : X1 ⇒ X0

and d0, d1 : Y1 ⇒ Y0.
(b) In the case A = B, the composite of (X,Y ) 7→ T (X,Y ) with the diagonal
functor X 7→ (X,X) preserves reflexive coequalizers as well.
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Proof. Check that the obvious implication

εT (d0, id) = εT (d1, id) and εT (id, d0) = εT (id, d1)
⇒ εT (d0, d0) = εT (d1, d1)

is an equivalence if the parallel morphisms d0, d1 : X1 → X0 and d0, d1 :
Y1 → Y0 have a reflection. Deduce from this observation:

coker(T (X1, Y1) ⇒ T (X0, Y0)) ' colim
(i,j)

T (Xi, Yj),

where colim(i,j) T (Xi, Yj) refers to the colimit over the diagram

T (X1, Y1) // //

����

T (X0, Y1)

����
T (X1, Y0) // // T (X0, X0)

,

and use the assumption to conclude:

coker(T (X1, Y1) ⇒ T (X0, Y0)) ' colim
(i,j)

T (Xi, Yj)

' colim
i

colim
j

T (Xi, Yj) ' T (coker(X1 ⇒ X0), coker(Y1 ⇒ Y0)).

Use that diagonal functors preserve all colimits to obtain assertion (b). ut

The same assertions hold for filtered colimits. Recall that a filtered colimit
refers to a colimit over a filtered category, and a category I is filtered if
(see [44, Chapter 9]):

(1) Any pair of objects i, j ∈ I can be joined together by morphisms

i

��

j

��
k

in I;
(2) Any pair of parallel morphisms u, v : i→ j can be equalized by a morphism

i
u //
v
// j

w // k

in I.

As an example, any ordinal (see [27, 28]) forms a filtered category.

1.2.2 Proposition (see [54, Lemma 2.3.2]). Suppose T : A×B → E is a
bifunctor that preserves filtered colimits in each variable separately. Explicitly:
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the natural morphism

colim
i

T (Xi, Y )→ T (colim
i

Xi, Y ),

is an isomorphism, for all I-diagrams i 7→ Xi, where I is a filtered category,
and similarly with respect to the second variable. Then:
(a) The functor T preserves filtered colimits in two variables. Explicitly, the
natural morphism

colim
i

T (Xi, Yi)→ T (colim
i

Xi, colim
i

Yi)

is an isomorphism for all I-diagrams i 7→ Xi and i 7→ Yi, where I is a filtered
category.
(b) In the case A = B, the composite of (X,Y ) 7→ T (X,Y ) with the diagonal
functor X 7→ (X,X) preserves filtered colimits as well.

Proof. Observe that the diagonal ∆ : I → I × I is a final functor when I is
filtered (see [44, Chapter 9] for the notion of a final functor) to conclude that

colim
i∈I

T (Xi, Yi) ' colim
(i,j)∈I×I

T (Xi, Yj)

' colim
i∈I

colim
j∈I

T (Xi, Yj) ' T (colim
i

Xi, colim
j

Yj).

Use again that diagonal functors preserve all colimits to obtain assertion (b).
ut

These assertions imply:

1.2.3 Proposition. The tensor power functors Id⊗r : X 7→ X⊗r in a sym-
metric monoidal category E preserve reflexive coequalizers and filtered colim-
its. ut



Chapter 2

Symmetric objects and functors

Introduction

In this chapter, we recall the definition of the category of Σ∗-objects and we
review the relationship between Σ∗-objects and functors. In short, a Σ∗-object
(in English words, a symmetric sequence of objects, or simply a symmetric
object) is the coefficient sequence of a generalized symmetric functor S(M) :
X 7→ S(M,X), defined by a formula of the form

S(M,X) =
∞⊕
r=0

(M(r)⊗X⊗r)Σr
.

In §2.1, we recall the definition of the tensor product of Σ∗-objects, the op-
eration which reflects the pointwise tensor product of functors and which pro-
vides the category of Σ∗-objects with the structure of a symmetric monoidal
category over the base category.

Beside the tensor product, the category of Σ∗-objects comes equipped
with a composition product that reflects the composition of functors. The
definition of this composition structure is recalled in §2.2.

The map S : M 7→ S(M) defines a functor S :M→ F , where M denotes
the category of Σ∗-objects and F denotes the category of functors F : E → E
on any symmetric monoidal category E over the base category C. The adjoint
functor theorem implies that this functor has a right adjoint Γ : F → M.
In §2.3 we give an explicit construction of this adjoint functor by using that
the symmetric monoidal category E is enriched over the base category C. In
addition, we prove that the map S : M 7→ S(M) defines a faithful functor
in the enriched sense as long as the category E is equipped with a faithful
functor η : C → E . In the case E = C = k Mod, the category of modules over
a ring k, we use the explicit construction of the adjoint functor Γ : G 7→ Γ(G)
to prove that the functor S : M 7→ S(M) is bijective on object sets under
mild conditions on Σ∗-objects or on the ground ring k.

35
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In §§2.1-2.3, we deal with global structures of the category of Σ∗-objects.
In §2.4, we study the image of colimits under the functor S(M) : E → E associ-
ated to a Σ∗-object M . Explicitly, we record that the functor S(M) : E → E
preserves filtered colimits and reflexive coequalizers (but not all colimits).
This verification is required by our conventions on functors (see §0.1) and is
also used in §3.3, where we address the construction of colimits in categories
of algebras over operads.

2.1 The symmetric monoidal category of Σ∗-objects
and functors

Formally, a Σ∗-object in a category C consists of a sequence M(n), n ∈ N,
where M(n) is an object of C equipped with an action of the symmetric
group Σn. A morphism of Σ∗-objects f : M → N consists of a sequence of
morphisms f : M(n) → N(n) that commute with the action of symmetric
groups.

Usually, we have a base category C, fixed once and for all, and we deal
tacitely with Σ∗-objects in that category C. Otherwise we specify explicitly
the category in which we define our Σ∗-object. We may use the notation
EΣ∗ to refer to the category of Σ∗-objects in a given category E , but we
usually adopt the short notation M for the category of Σ∗-objects in the
base category E = C.

In the introduction of the chapter, we recall that M forms a symmetric
monoidal category over C. In this section, we address the definition and appli-
cations of this categorical structure. More specifically, we use the formalism
of symmetric monoidal categories over a base category to express the rela-
tionship between the tensor product of Σ∗-objects and the pointwise tensor
product of functors on a symmetric monoidal category E over C. Formally,
the category F of functors F : E → E inherits the structure of a symmetric
monoidal category over C and the map S : M 7→ S(M) defines a functor of
symmetric monoidal categories over C:

(M,⊗, 1) S−→ (F ,⊗, 1).

2.1.1 The functor associated to a Σ∗-object. First of all, we recall the
definition of the functor S(M) : E → E associated to a Σ∗-object M , for E a
symmetric monoidal category over C. The image of an object X ∈ E under
this functor, denoted by S(M,X) ∈ E , is defined by the formula

S(M,X) =
∞⊕
r=0

(M(r)⊗X⊗r)Σr
,
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where we consider the coinvariants of the tensor products M(r)⊗X⊗r under
the action of the symmetric groups Σr. We use the internal tensor product
of E to form the tensor power X⊗r, the external tensor product to form
the object M(r) ⊗X⊗r in E , and the existence of colimits in E to form the
coinvariant object (M(r)⊗X⊗r)Σr and S(M,X).

In §2.1.4, we introduce pointwise operations on functors F : E → E that
correspond to tensor operations on the target. In light of these structures on
functors, we have a functor identity

S(M) =
∞⊕
r=0

(M(r)⊗ Id⊗r)Σr
,

where Id : E → E denotes the identity functor on E .
The construction S : M 7→ S(M) is clearly functorial in E . Explicitly, for

a functor ρ : D → E of symmetric monoidal categories over C, the diagram
of functors

D
S(M)

��

ρ // E
S(M)

��
D ρ

// E

commutes up to natural isomorphisms. Equivalently, we have a natural func-
tor isomorphism S(M) ◦ ρ ' ρ ◦ S(M), for every M ∈M.

In the point-set context, the element of S(M,V ) represented by the tensor
ξ⊗ (x1⊗· · ·⊗xr) ∈M(r)⊗V ⊗r is denoted by ξ(x1, . . . , xr) ∈ S(M,V ). The
coinvariant relations read σξ(x1, . . . , xr) = ξ(xσ(1), . . . , xσ(r)), for σ ∈ Σr.

Clearly, the map S : M 7→ S(M) defines a functor S : M → F , where
F = F(E , E) denotes the category of functors F : E → E . (Because of our con-
ventions on functor categories, we should check that S(M) : E → E preserves
filtered colimits, but we postpone the simple verification of this assertion
to §2.4.)

The category M is equipped with colimits and limits created termwise
in C. The category of functors F = F(E , E) is equipped with colimits as
well, inherited pointwise from the category E . By interchange of colimits, we
obtain immediately that the functor S :M→ F(E , E) preserves colimits.

2.1.2 Constant Σ∗-objects and constant functors. Recall that a Σ∗-
object M is constant if we have M(r) = 0 for all r > 0. The base category
C is isomorphic to the full subcategory of M formed by constant objects.
Explicitly, to any object C ∈ C, we associate the constant Σ∗-object η(C)
such that η(C)(0) = C. This constant Σ∗-object is associated to the constant
functor S(C,X) ≡ C.

2.1.3 Connected Σ∗-objects and functors. The category embedding η :
C →M has an obvious left-inverse ε :M→ C defined by ε(M) = M(0). The
category of connected Σ∗-objects M0 is the full subcategory ofM formed by
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Σ∗-objects M such that ε(M) = M(0) = 0, the initial object of C. Clearly,
connected Σ∗-objects are associated to functors S(M) : E → E such that
S(M, 0) = 0.

In the case of a connected Σ∗-object M ∈ M0, we can extend the con-
struction of §2.1.1 to reduced symmetric monoidal categories. To be explicit,
for objects X in a reduced symmetric monoidal category E0 over C, we set

S0(M,X) =
∞⊕
n=1

(M(n)⊗X⊗n)Σn

to obtain a functor S0(M) : E0 → E0.

2.1.4 The symmetric monoidal category of functors. Let F = F(A, C)
denote the category of functors F : A → C, whereA is any category (see §0.1).
Recall that F = F(A, C) has all small colimits and limits, inherited pointwise
from the base category C.

Observe that the category F is equipped with an internal tensor product
⊗ : F ⊗F → F and with an external tensor product ⊗ : C ⊗F → F ,
inherited from the base symmetric monoidal category, so that F forms a
symmetric monoidal category over C. Explicitly: the internal tensor product
of functors F,G : A → C is defined pointwise by (F⊗G)(X) = F (X)⊗G(X),
for all X ∈ A; the tensor product of a functor G : A → C with an object
C ∈ C is defined by (C⊗F )(X) = C⊗F (X); the constant functor 1(X) ≡ 1,
where 1 is the unit object of C, represents the unit object in the category of
functors.

The functor of symmetric monoidal categories

η : (C,⊗, 1)→ (F ,⊗, 1)

determined by this structure identifies an object C ∈ C with the constant
functor η(C)(X) ≡ C. If A is equipped with a base object 0 ∈ A, then we
have a natural splitting F = C ×F0, where F0 is the reduced symmetric
monoidal category over C formed by functors F such that F (0) = 0, the
initial object of C.

Obviously, we can extend the observations of this paragraph to a category
of functors F = F(A, E), where E is a symmetric monoidal category over the
base category C. In this case, the category F = F(A, E) forms a symmetric
monoidal category over E , and hence over the base category by transitivity.

We have:

2.1.5 Proposition (cf. [12, §1.1.3] or [14, §1.2] or [54, Lemma 2.2.4]). The
category M is equipped with the structure of a symmetric monoidal category
over C so that the map S : M 7→ S(M) defines a functor of symmetric
monoidal categories over C

S : (M,⊗, 1)→ (F(E , E),⊗, 1),
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functorially in E, for every symmetric monoidal category E over C. ut

The functoriality claim asserts explicitly that, for any functor ρ : D → E of
symmetric monoidal categories over C, the tensor isomorphisms S(M ⊗N) '
S(M) ⊗ S(N) and the functoriality isomorphisms S(M) ◦ ρ ' ρ ◦ S(M) fit a
commutative hexagon

S(M ⊗N) ◦ ρ
'
��

' // ρ ◦ S(M ⊗N)

'
��

(S(M)⊗ S(N)) ◦ ρ

= ��?
??

??
ρ ◦ (S(M)⊗ S(N))

'����
��

�

S(M) ◦ ρ⊗ S(N) ◦ ρ '
// ρ ◦ S(M)⊗ ρ ◦ S(N)

and similarly for the isomorphism S(1) ' 1.
We have further:

2.1.6 Proposition. The category M0 of connected Σ∗-objects forms a re-
duced symmetric monoidal category over C.

The categoryM admits a splittingM = C ×M0 and is isomorphic to the
symmetric monoidal category over C associated to the reduced category M0.
The functor S : M 7→ S(M) fits a diagram of symmetric monoidal categories
over C

M S // F(E , E)

C ×M0
Id× S

//

'

OO

C ×F(E , E)0

'

OO
. ut

We refer to the literature for the proof of the assertions of proposi-
tions 2.1.5-2.1.6. For our needs, we recall simply the explicit construction
of the tensor product M ⊗N . This construction also occurs in the definition
of the category of symmetric spectra in stable homotopy (see [30, §2.1]).

2.1.7 The tensor product of Σ∗-objects. The terms of the tensor product
of Σ∗-objects are defined explicitly by a formula of the form

(M ⊗N)(n) =
⊕
p+q=n

Σn ⊗Σp×Σq
M(p)⊗N(q),

where we use the tensor product over the category of sets, defined explicitly
in §1.1.7. In the construction, we use the canonical group embedding Σp ×
Σq ⊂ Σp+q which identifies a permutation σ ∈ Σp (respectively, τ ∈ Σq) to a
permutation of the subset {1, . . . , p} ⊂ {1, . . . , p, p+1, . . . , p+q} (respectively,
{p+1, . . . , p+q} ⊂ {1, . . . , p, p+1, . . . , p+q}). The tensor productM(p)⊗N(q)
forms a Σp×Σq-object in C. The group Σp×Σq acts on Σn by translations on
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the right. The quotient in the tensor product makes this right Σp×Σq-action
agree with the left Σp ×Σq-action on M(p)⊗N(q).

The group Σn also acts on Σn by translation on the left. This left Σn-
action induces a left Σn-action on (M ⊗N)(n) and determines the Σ∗-object
structure of the collection M ⊗N = {(M ⊗N)(n)}n∈N.

The constant Σ∗-object 1 such that

1(n) =

{
1 (the unit object of C), if n = 0,
0, otherwise,

defines a unit for this tensor product. The associativity of the tensor product
of Σ∗-objects is inherited from the base category. Let τ(p, q) ∈ Σn be the
permutation such that:

τ(p, q)(i) = p+ i, for i = 1, . . . , q,
τ(p, q)(q + i) = i, for i = 1, . . . , p.

The symmetry isomorphism τ(M,N) : M ⊗N → N ⊗M is induced compo-
nentwise by morphisms of the form

Σn ⊗M(p)⊗N(q)
τ(p,q)∗⊗τ−−−−−−→ Σn ⊗N(q)⊗M(p)

where we use the symmetry isomorphism τ : M(p) ⊗ N(q) → N(q) ⊗M(p)
of the category C and a translation of the right by the block transposition
τ(p, q) on the symmetric group Σn.

The functor η : C → M which identifies the objects of C to constant
Σ∗-objects defines a functor of symmetric monoidal categories

η : (C,⊗, 1)→ (M,⊗, 1)

and makes (M,⊗, 1) into a symmetric monoidal category over C. By an im-
mediate inspection of definitions, we obtain that the external tensor product
of a Σ∗-object M with an object C ∈ C is given by the obvious formula
(C ⊗M)(r) = C ⊗M(r).

2.1.8 Tensor powers. For the needs of §3.2, we make explicit the structure
of tensor powers M⊗r in the category of Σ∗-objects.

For all n ∈ N, we have obviously:

M⊗r(n) =
⊕

n1+···+nr=n

Σn ⊗Σn1×···×Σnr
(M(n1)⊗ · · · ⊗M(nr)).

In this formula, we use the canonical group embedding Σn1 × · · · × Σnr
↪→

Σn which identifies a permutation of Σni to a permutation of the subset
{n1 + · · ·+ni−1 +1, . . . , n1 + · · ·+ni−1 +ni} ⊂ {1, . . . , n}. Again the quotient
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in the tensor product makes agree the internal Σni
-action on M(ni) with the

action of Σni
by right translations on Σn.

The tensor power M⊗r is equipped with a Σr-action, deduced from the
symmetric structure of the tensor product of Σ∗-objects. Let w ∈ Σr be
any permutation. For any partition n = n1 + · · · + nr, we form the block
permutation w(n1, . . . , nr) ∈ Σn such that:

w(n1, . . . , nr)(nw(1) + · · ·+ nw(i−1) + k) = n1 + · · ·+ nw(i)−1 + k,

for k = 1, . . . , nw(i), i = 1, . . . , r.

The tensor permutation w∗ : M⊗r → M⊗r is induced componentwise by
morphisms of the form

Σn ⊗M(n1)⊗ · · · ⊗M(nr)
w(n1,...,nr)⊗w∗−−−−−−−−−−→ Σn ⊗M(nw(1))⊗ · · · ⊗M(nw(r))

where we use the tensor permutation w∗ : M(n1)⊗· · ·⊗M(nr)→M(nw(1))⊗
· · · ⊗ M(nw(r)) within the category C and a left translation by the block
permutation w(n1, . . . , nr) on the symmetric group Σn. This formula extends
obviously the definition of §2.1.7 in the case r = 2. To prove the general
formula, check the definition of associativity isomorphisms for the tensor
product of Σ∗-objects and observe that composites of block permutations are
still block permutations to determine composites of symmetry isomorphisms.

2.1.9 The pointwise representation of tensors in Σ∗-objects. In the
point-set context, we use the notation w · x ⊗ y ∈ M ⊗ N to represent the
element defined by w ⊗ x ⊗ y ∈ Σn ⊗M(p) ⊗ N(q) in the tensor product
of Σ∗-objects

M ⊗N(n) =
⊕
p+q=n

Σn ⊗Σp×Σq M(p)⊗N(q),

and the notation x ⊗ y ∈ M ⊗ N in the case where w = id is the identity
permutation.

By definition, the action of a permutation w onM⊗N maps the tensor x⊗y
to w ·x⊗y. Accordingly, the tensor product M⊗N is spanned, as a Σ∗-object,
by the tensors x⊗ y ∈M(p)⊗N(q), where (x, y) ∈M(p)×N(q).

In our sense (see §§0.4-0.5), the tensor product of Σ∗-objects inherits a
pointwise representation from the base category. To justify our pointwise
representation, we also use the next assertion which identifies morphisms
f : M ⊗ N → T with actual multilinear maps on the set of generating
tensors.

The abstract definition of §2.1.7 implies that the symmetry isomorphism
τ(M,N) : M ⊗N '−→ N ⊗M maps the tensor x⊗ y ∈M ⊗N to a tensor of
the form τ(p, q) · y⊗ x ∈ N ⊗M , where τ(p, q) is a block permutation. Thus
the permutation rule of tensors in Σ∗-objects is determined by the mapping
x⊗ y 7→ τ(p, q) · y ⊗ x.
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2.1.10 Fact. For any Σ∗-object T , a morphism f : M⊗N → T is equivalent
to a collection of morphisms

f : M(p)⊗N(q)→ T (p+ q)

which commute with the action of the subgroup Σp ×Σq ⊂ Σp+q.

This assertion is an obvious consequence of the definition of the tensor
product in §2.1.7.

2.1.11 Enriched category structures. In §1.1.12, we observe that any
symmetric monoidal category over C that satisfies the conventions of §0.1 is
naturally enriched over C. An explicit construction of external hom-objects
for categories of functors F = F(A, E) and the category of Σ∗-objects M
can be derived from the existence of hom-objects in E (respectively, C)*.

The external hom of the functor category F = F(A, E) is given by the end

HomF (F,G) =
∫
X∈A

HomE(F (X), G(X)).

The adjunction relation

MorF (C ⊗ F,G) = MorC(C,HomF (F,G)),

for C ∈ C, F,G ∈ F , is equivalent to the definition of an end.
The external hom of the category of Σ∗-objects is defined by a product of

the form

HomM(M,N) =
∞∏
n=0

HomC(M(n), N(n))Σn .

The hom-object HomC(M(n), N(n)) inherits a conjugate action of the sym-
metric group from theΣn-objectsM(n) andN(n). The expression HomC(M(n), N(n))Σn

refers to the invariant object with respect to this action of Σn. The adjunction
relation of hom-objects

MorM(C ⊗M,N) = MorC(C,HomM(F,G))

for C ∈ C, M,N ∈M, is immediate.

2.1.12 Generating Σ∗-objects. The identity functor Id : E → E is identi-
fied with the functor S(I) = Id associated to a Σ∗-object I defined by:

I(n) =

{
1, if n = 1,
0, otherwise.

* But serious set-theoretic difficulties occur for the category of functors F = F(A, E) if A
does not satisfy the condition of §0.1, for instance when we take A = E = Top, the category
of topological spaces.
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This object I represents the unit of the composition product of Σ∗-objects
defined next.

For r ∈ N, let Fr = I⊗r be the rth tensor power of I inM. Since S(Fr) =
S(I)⊗r = Id⊗r, we obtain that S(Fr) : E → E represents the rth tensor power
functor Id⊗r : X 7→ X⊗r.

The definition of the tensor product of Σ∗-objects (see §2.1.7) implies that
Fr = I⊗r satisfies

Fr(n) =

{
1[Σr], if n = r,

0, otherwise.

Recall that 1[Σr] denotes the Σr-object in C formed by the sum over Σr of
copies of the tensor unit 1 ∈ C.

The symmetric group Σr acts on Fr(r) = 1[Σr] equivariantly by trans-
lations on the right, and hence acts on Fr on the right by automorphisms
of Σ∗-objects. This symmetric group action corresponds to the action by
tensor permutations on tensor powers I⊗r.

The Σ∗-objects Fr, r ∈ N, are characterized by the following property:

2.1.13 Proposition. We have a natural Σr-equivariant isomorphism

ωr(M) : M(r) '−→ HomM(Fr,M),

for all M ∈M.

Proof. Immediate: we have

HomM(Fr,M) ' HomC(1[Σr],M(r))Σr

and HomC(1[Σr],M(r))Σr ' HomC(1,M(r)) 'M(r).

One checks readily that the Σr-action by right translations on 1[Σr] cor-
responds to the internal Σr-action of M(r) under the latter isomorphisms.
Hence we obtain a Σr-equivariant isomorphism

ωr(M) : M(r) '−→ HomM(Fr,M),

as stated. ut

2.1.14 Canonical generating morphisms. Observe that

(M(r)⊗ Fr(n))Σr
'

{
M(r), if n = r,

0, otherwise.

Accordingly, for a Σ∗-object M , we have obvious morphisms

ιr(M) : (M(r)⊗ Fr)Σr
→M

that sum up to an isomorphism
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ι(M) :
∞⊕
r=0

(M(r)⊗ Fr)Σr

'−→M.

At the functor level, we have S((M(r) ⊗ Fr)Σr ) ' (M(r) ⊗ Id⊗r)Σr

and S(ιr(M)) represents the canonical morphism

(M(r)⊗ Id⊗r)Σr →
∞⊕
r=0

(M(r)⊗ Id⊗r)Σr = S(M).

The morphism Hom(Fr,M) ⊗ Fr → M induces a natural morphism
(Hom(Fr,M)⊗Fr)Σr

→M . We check readily that the isomorphism of propo-
sition 2.1.13 fits a commutative diagram

(M(r)⊗ Fr)Σr

' //

ιr(M)
++VVVVVVVVVVVVVVVVVVVVVV

(Hom(Fr,M)⊗ Fr)Σr

ε

��
M

.

Equivalently, the isomorphism ωr(M) corresponds to the morphism ιr(M)
under the adjunction relation

MorM((M(r)⊗ Fr)Σr ,M) ' MorC(M(r),HomM(Fr,M))Σr .

To conclude, proposition 2.1.13 and the discussion of §2.1.14 imply:

2.1.15 Proposition. The objects Fr, r ∈ N, define small projective genera-
tors of M in the sense of enriched categories. Explicitly, the functors

HomM(Fr,−) : M 7→ HomM(Fr,M)

preserve filtered colimits and coequalizers and the canonical morphism

∞⊕
r=0

HomM(Fr,M)⊗ Fr →M

is a regular epi, for all M ∈M. ut

Note that the functors S(Fr) = Id⊗r do not generate F and do not form
projective objects in F in general.

2.1.16 Remark. Since Fr = I⊗r, the isomorphism of §2.1.14 can be identi-
fied with an isomorphism

S(M, I) =
∞⊕
r=0

(M(r)⊗ I⊗r)Σr 'M
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between M and the Σ∗-object S(M, I) ∈ M associated to I ∈ M by the
functor S(M) : E → E for E =M. This observation can be used to recover a
Σ∗-object M from the associated collection of functors S(M) : E → E , where
E runs over all monoidal symmetric categories over C.

2.2 Composition of Σ∗-objects and functors

The category of functors F = F(E , E) is equipped with another (non-
symmetric) monoidal structure (F , ◦, Id) defined by the composition of func-
tors F,G 7→ F ◦ G, together with the identity functor Id as a unit object.
The category of Σ∗-objects has a (non-symmetric) monoidal structure that
reflects the composition structure of functors. Formally, we have:

2.2.1 Proposition (see [17, 56]). The category of Σ∗-objectsM is equipped
with a monoidal structure (M, ◦, I) so that the map S : M 7→ S(M) defines
a functor of monoidal categories

S : (M, ◦, I)→ (F(E , E), ◦, Id),

for all symmetric monoidal categories E over C. ut

The composition product of Σ∗-objects refers to the operation M,N 7→
M ◦ N that yields this monoidal structure. For our purposes, we recall the
construction of [14, §1.3] which uses the symmetric monoidal structure of the
category of Σ∗-objects in the definition of the composition product M,N 7→
M ◦N .

2.2.2 The monoidal composition structure of the category of Σ∗-
objects. In fact, the composite M ◦N is defined by a generalized symmetric
tensor construction formed in the category E =M:

M ◦N = S(M,N) =
∞⊕
r=0

(M(r)⊗N⊗r)Σr .

Since the functor S : M 7→ S(M) preserves colimits and tensor products, we
have identities

S(M ◦N) =
∞⊕
r=0

S(M(r)⊗N⊗r)Σr
=

∞⊕
r=0

(M(r)⊗ S(N)⊗r)Σr
.

Hence, we obtain immediately that this composition product M ◦N satisfies
the relation S(M ◦N) ' S(M) ◦ S(N), asserted by proposition 2.2.1.

The unit of the composition product is the object I, defined in §2.1.12,
which corresponds to the identity functor S(I) = Id. The isomorphism
of §2.1.14, identified with
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S(M, I) =
∞⊕
r=0

(M(r)⊗ I⊗r)Σr 'M

(see §2.1.16), is equivalent to the right unit relation M ◦ I 'M .

2.2.3 The distribution relation between tensor and composition
products. In the category of functors, the tensor product and the composi-
tion product satisfy the distribution relation (F ⊗G) ◦S = (F ◦S)⊗ (G ◦S).
In the category of Σ∗-modules, we have a natural distribution isomorphism

θ(M,N,P ) : (M ⊗N) ◦ P '−→ (M ◦ P )⊗ (N ◦ P )

which arises from the relation S(M ⊗ N,P ) ' S(M,P ) ⊗ S(N,P ) yielded
by proposition 2.1.5. This distribution isomorphism reflects the distribution
relation at the functor level. Formally, we have a commutative hexagon

S(M ⊗N) ◦ S(P )
'

**UUUUUUUUUUUUUUUUU

S((M ⊗N) ◦ P )

'
55kkkkkkkkkkkkkk

'
��

(S(M)⊗ S(N)) ◦ S(P )

=

��
S((M ◦ P )⊗ (N ◦ P ))

'
))SSSSSSSSSSSSSS

(S(M) ◦ S(P ))⊗ (S(N) ◦ S(P ))

S(M ◦ P )⊗ S(N ◦ P )

'

44iiiiiiiiiiiiiiiii

that connects the distribution isomorphism θ(M,N,P ) to the functor identity
(S(M)⊗ S(N)) ◦ S(P ) = (S(M) ◦ S(P ))⊗ (S(N) ◦ S(P )).

To summarize, we obtain:

2.2.4 Observation. Let F = F(E , E). For any functor S ∈ F , the composi-
tion product F 7→ F ◦ S defines a functor of symmetric monoidal categories
over C

− ◦ S : (F ,⊗, 1)→ (F ,⊗, 1).

For any N ∈ M, the composition product M 7→ M ◦N defines a functor
of symmetric monoidal categories over C

− ◦N : (M,⊗, 1)→ (M,⊗, 1)

and the diagram of functors
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M S //

−◦N
��

F
−◦S(N)

��
M

S
// F

commutes up to a natural equivalence of symmetric monoidal categories
over C.

Besides, we check readily:

2.2.5 Observation. The distribution isomorphisms θ(M,N,P ) satisfy

θ(M,N, I) = id

for the unit object C = I and make commute the triangles

(M ⊗N) ◦ P ◦Q
θ(M,N,P◦Q) //

θ(M,N,P )◦Q ))TTTTTTTTTTTTTTT
(M ◦ P ◦Q)⊗ (N ◦ P ◦Q)

((M ◦ P )⊗ (N ◦ P )) ◦Q
θ(M◦P,N◦P,Q)

55jjjjjjjjjjjjjjj

,

for all M,N,P,Q ∈M.

These coherence relations are obvious at the functor level since all isomor-
phisms are identities in this case.

2.3 Adjunction and embedding properties

In the context of a module category E = C = k Mod, where k is an infinite
field, we recall in [14, §1.2] that the functor S : M 7→ S(M) is full and faithful.
To prove this assertion, one can observe that the functor S : M 7→ S(M) has a
right adjoint Γ : G 7→ Γ(G) so that the adjunction unit η(M) : M → Γ(S(M))
forms an isomorphism (see proposition 1.2.5 in loc. cit.). In the general case
of a module category E = C = k Mod, where k is any ground ring, we obtain
further that η(M) : M → Γ(S(M)) forms an isomorphism if M is a projective
Σ∗-module (see proposition 2.3.12).

The aim of this section is to review these properties in the context of a
symmetric monoidal category E over C. For short, we set F = F(E , E).

Since we observe that the functor S :M→ F preserves colimits, we obtain
that this functor has a right adjoint Γ : F → M. In a first part, we give an
explicit construction of this adjoint functor Γ : G 7→ Γ(G). For this purpose,
we assume that C has an internal hom, E is enriched over C, and we generalize
a construction of [14, §1.2]. In a second part, we observe that S : M 7→ S(M)
extends to a functor of enriched categories and we prove that this functor
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S : M 7→ F is faithful in an enriched sense, at least if the category E is
equipped with a faithful functor η : C → E . Equivalently, we obtain that the
adjunction unit η(M) : M → Γ(S(M)) defines a monomorphism.

This account is motivated by the subsequent generalization of §8 in the
context of right modules over operad. The results and constructions of this
section are not used anywhere else in the book.

2.3.1 The endomorphism module of a pair. Observe first that the func-
tor M 7→ S(M,Y ), for a fixed object Y ∈ E , has a right adjoint. For this aim,
form, for X,Y ∈ E , the Σ∗-object EndX,Y such that

EndX,Y (r) = HomE(X⊗r, Y ).

In §8.1.1, we observe that this Σ∗-object defines naturally a right module
over EndX , the endomorphism operad of X, and we call this structure the
endomorphism module of the pair (X,Y ).

For the moment, observe simply:

2.3.2 Proposition (cf. [54, Proposition 2.2.7]). We have a natural isomor-
phism

MorE(S(M,X), Y ) ' MorM(M,EndX,Y )

for all M ∈M and X,Y ∈ E.

Proof. This adjunction relation arises from the canonical isomorphisms:

MorE(
∞⊕
r=0

(M(r)⊗X⊗r)Σr
, Y ) '

∞∏
r=0

MorE((M(r)⊗X⊗r)Σr
, Y )

'
∞∏
r=0

MorC(M(r),MorE(X⊗r, Y ))Σr

= MorM(M,EndX,Y ).

ut

2.3.3 Observation. Next (see observation 3.2.15) we observe that the map
S(N) : X 7→ S(N,X) defines a functor S(N) : E → PE to the category PE of
algebras over an operad P when N is equipped with the structure of a left
P-module. One can observe that the endomorphism module EndX,Y forms a
left module over the endomorphism operad of Y . As a corollary, if Y = B
is a P-algebra, then we obtain that EndX,B forms a left module over P by
restriction of structures. In the context of P-algebras, we have an adjunction
relation

Mor
PE(S(N,X), B) ' Mor

PM(N,EndX,B)

for all N ∈ PM, X ∈ E and B ∈ PE , where PM refers to the category of left
P-modules (see §§3.2.9-3.2.10).
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2.3.4 Definition of the adjoint functor Γ : F →M. We apply the point-
wise adjunction relation of proposition 2.3.2 to the category of functors F .

In §2.1.1, we notice that the functor S(M) satisfies

S(M) =
∞⊕
r=0

(M(r)⊗ Id⊗r)Σr
= S(M, Id),

where Id is the identity functor on E . According to this relation, if we set
Γ(G) = End Id,G for G ∈ F , then proposition 2.3.2 returns:

2.3.5 Proposition. The functor Γ : F → M defined by the map G 7→
End Id,G is right adjoint to S :M→ F . ut

By proposition 1.1.16, we have as well:

2.3.6 Proposition. The functors S : M � F : Γ satisfy an enriched ad-
junction relation

HomM(S(M), G) ' HomF (M,Γ(G)),

where morphism sets are replaced by hom-objects over C. ut

Proposition 1.1.15 implies that any functor of symmetric monoidal cat-
egories over C, like S : M → F , defines a functor in the enriched sense.
Accordingly, the map f 7→ S(f), defined for morphisms of Σ∗-objects, ex-
tends to a morphism on hom-objects:

HomM(M,N) S−→ HomF (S(M),S(N)).

By proposition 1.1.16, we obtain further:

2.3.7 Proposition. The diagram

HomM(M,N) S //

η(N)∗ ))SSSSSSSSSSSSSS
HomF (S(M),S(N))

HomM(M,Γ(S(N)))

'

44jjjjjjjjjjjjjjjj

commutes. ut

According to this assertion, we can use the adjunction unit η(N) : N →
Γ(S(N)) and the adjunction relation between S :M→ F and Γ : F →M to
determine S : HomM(M,N) → HomF (S(M),S(N)). In the converse direc-
tion, we can apply the morphism S : HomM(M,N) → HomF (S(M),S(N))
to the generating Σ∗-objects M = Fr = I⊗r, r ∈ N, in order to determine
the adjunction unit:

2.3.8 Proposition. The component η(N) : N(r) → HomF (Id⊗r,S(N)) of
the adjunction unit η(N) : N → Γ(S(N)) coincides with the morphism
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N(r) '−→ HomM(Fr, N) S−→ HomF (S(Fr),S(N)) '−→ HomF (Id⊗r,S(N))

formed by the composite of the isomorphism ωr(N) : N(r) '−→ HomM(Fr, N)
of proposition 2.1.13, the morphism induced by the functor S : M → F on
hom-objects, and the isomorphism induced by the relation S(Fr) ' Id⊗r.

Proof. This proposition is a consequence of proposition 2.3.7. In the case
M = Fr, we obtain a commutative diagram:

N(r) ' //

η(N)

��

HomM(Fr, N)

η(N)∗

��

S

**TTTTTTTTTTTTTTTT

Γ(S(N))(r) '
// HomM(Fr,Γ(S(N))) '

// HomM(S(Fr),S(N))

.

One proves by a straightforward verification that the composite

Γ(S(N))(r) ' // HomM(Fr,Γ(S(N))) ' // HomM(S(Fr),S(N))

'
��

HomM(Id⊗r, N)

is the identity morphism of Γ(S(N))(r) = HomM(Id⊗r,S(N)) and the propo-
sition follows. ut

In the remainder of this section, we check that the morphism S : HomM(M,N)→
HomF (S(M),S(N)) is mono under the assumption that the symmetric
monoidal category E is equipped with a faithful functor η : C → E . The
proof of this observation is based on the next lemma:

2.3.9 Lemma. Let 1⊕r = 11⊕ · · · ⊕ 1r be the sum of r copies of the unit
object 1 ∈ C. For M ∈M, we have a canonical isomorphism

S(M, 1⊕r) '
⊕

n1+···+nr=n

M(n1 + · · ·+ nr)Σn1×···×Σnr
.

Proof. We have Σn-equivariant isomorphisms

(11⊕ · · · ⊕ 1r)⊗n '
⊕

(i1,...,in)

1i1 ⊗ · · · ⊗ 1in

'
⊕

(i1,...,in)

1

where the symmetric group Σn acts on n-tuples (i1, . . . , in) by permutations
of terms. We have an identification
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(i1,...,in)

1 =
⊕

n1+···+nr=n

1[Σn1 × · · · ×Σnr
\Σn],

from which we deduce the splitting

(M(n)⊗ (11⊕ · · · ⊕ 1r)⊗n)Σn '
⊕

n1+···+nr=n

(M(n)⊗ 1[Σn1 × · · · ×Σnr\Σn])Σn

'
⊕

n1+···+nr=n

M(n1 + · · ·+ nr)Σn1×···×Σnr

and the lemma follows. ut

We deduce from lemma 2.3.9:

2.3.10 Proposition. The functor S :M→ F(E , E) is faithful for all sym-
metric monoidal categories over C equipped with a faithful functor η : C → E.

Moreover, the functor S : M → F(E , E) is faithful in an enriched sense.
Explicitly, the morphism induced by S on hom-objects

HomM(M,N) S−→ HomF (S(M),S(N))

is mono in C, for all M,N ∈M.

Proof. The object M(r) is isomorphic to the component n1 = · · · = nr = 1
in the decomposition of lemma 2.3.9. As a byproduct, lemma 2.3.9 implies
the existence of a natural monomorphism σ(M) : M(r) → S(M, 1⊕r), for
all M ∈ M. From this assertion we deduce that S induces an injection on
hom-sets

MorM(M,N) S−→ MorC(S(M, 1⊕r),S(N, 1⊕r)),

for all M,N ∈ M. If E is a symmetric monoidal category equipped with a
faithful functor η : C → E , then the map

MorC(S(M, 1⊕r),S(N, 1⊕r))→ MorE(S(M, 1⊕r),S(N, 1⊕r))

is injective as well. Hence we conclude readily that S induces an injection on
hom-sets

MorM(M,N) S−→
∫
X∈E

MorC(S(M,X),S(N,X)) = MorF (S(M),S(N)),

for all M,N ∈M, and defines a faithful functor S :M→ F .
In the context of enriched categories, we obtain that the map on hom-sets

MorM(C ⊗M,N) S−→ MorF (S(C ⊗M),S(N)) ' MorF (C ⊗ S(M),S(N))

is injective for all C ∈ C,M,N ∈M. By adjunction, we conclude immediately
that
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HomM(M,N) S−→ HomF (S(M),S(N))

is mono. ut

By proposition 2.3.7 and proposition 2.3.8, we have equivalently:

2.3.11 Proposition. The adjunction unit

η(N) : N → Γ(S(N))

is mono in M, for all N ∈M. ut

We record stronger results in the case E = C = k Mod:

2.3.12 Proposition. In the case E = C = k Mod, the category of modules
over a ring k, the adjunction unit η(M) : M → Γ(S(M)) is an isomorphism
as long as M is a projective Σ∗-module or the ground ring is an infinite field.

Proof. The case of an infinite ground field, recalled in the introduction of
this section, is stated explicitly in [14, Proposition 1.2.5]. In the other case,
one can check directly that the adjunction unit η(M) : M → Γ(S(M)) forms
an isomorphism for the generating projective Σ∗-modules M = Fr, r ∈ N.
This implies that η(M) : M → Γ(S(M)) forms an isomorphism if M is a
projective Σ∗-module. ut

2.4 Colimits

In §2.1.1, we observe that the functor S : M 7→ S(M) preserves colimits. Since
colimits in functor categories are obtained pointwise, we obtain equivalently
that the bifunctor (M,X) 7→ S(M,X) preserves colimits in M , for any fixed
object X ∈ E .

In contrast, one can observe that the functor S(M) : E → E associated to
a fixed Σ∗-object does not preserve all colimits. Equivalently, the bifunctor
(M,X) 7→ S(M,X) does not preserve colimits in X in general.

Nevertheless:

2.4.1 Proposition (cf. [54, Lemma 2.3.3]). The functor S(M) : E → E
associated to a Σ∗-object M ∈ M preserves filtered colimits and reflexive
coequalizers.

Proof. In proposition 1.2.1 we observe that the tensor power functors Id⊗r :
X 7→ X⊗r preserves filtered colimits and reflexive coequalizers. By assump-
tion, the external tensor products Y 7→M(r)⊗Y preserves these colimits. By
interchange of colimits, we deduce readily from these assertions that the func-
tor S(M,X) =

⊕∞
r=0(M(r)⊗X⊗r)Σr

preserves filtered colimits and reflexive
coequalizers as well. ut
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As regards reflexive coequalizers, a first occurrence of proposition 2.4.1
appears in [51, §B.3] in the particular case of the symmetric algebra V 7→
S(V ) on dg-modules.





Chapter 3

Operads and algebras
in symmetric monoidal categories

Introduction

Operads are used to define categories of algebras, usually within a fixed un-
derlying symmetric monoidal category C. But in the sequel, we form algebras
in extensions of the category in which the operad is defined. Formally, we
define algebras in symmetric monoidal categories E over the base category C.

In principle, we can use the functor η : C → E associated to the structure
of a symmetric monoidal category over C to transport all objects in E . This
functor maps an operad in C to an operad in E . Thus we could just change
the underlying category to retrieve standard definitions.

But this point of view is not natural in applications and supposes to forget
the natural category in which the operad is defined. Besides, universal struc-
tures, like operads, are better determined by a collection rather than by a
single category of algebras. For this reason, we fix the underlying category of
operads, but we allow the underlying category of algebras to vary. The pur-
pose of this section is to review basic constructions of the theory of operads
in this setting.

In §3.1 we recall the definition of an operad and the usual examples of
the commutative, associative and Lie operads, which are used throughout
the book to illustrate our constructions. Though we study algebras over op-
erads rather than operad themselves, we can not avoid this survey of basic
definitions, at least to fix conventions.

In §3.2 we review the definition of an algebra over an operad in the context
of symmetric monoidal categories over a base and we study the structure of
algebras in functors and in Σ∗-objects. In §3.3 we review the construction
of categorical operations (colimits, extension and restriction functors) in cat-
egories of algebras associated to operads. In §3.4 we address the definition
of endomorphism operads in the context of enriched symmetric monoidal
categories.

55



56 3 Operads and algebras in symmetric monoidal categories

3.1 Recollections: operads

The purpose of this section is to recall the definition of an operad, at least
to fix conventions. Though we have to extend the setting in which algebras
over operads are defined, we still use the standard notion of an operad in a
symmetric monoidal category.

For the sake of completeness, we also recall the definition of usual op-
erad constructions, like free operads, and the classical examples of operads
mentioned in the introduction of this chapter.

3.1.1 The category of operads. By definition, an operad in a symmetric
monoidal category C consists of a Σ∗-object P ∈ M equipped with a com-
position product µ : P ◦ P → P and a unit morphism η : I → P that make
commute the diagrams

I ◦ P
η◦P //

=
##G

GGGGGGGG P ◦ P
µ

��

P ◦I
P ◦ηoo

=
{{ww

ww
ww

ww
w

P

, P ◦ P ◦ P
µ◦P //

P ◦µ
��

P ◦ P
µ

��
P ◦ P

µ // P

,

equivalent to usual unit and associativity relations of monoids. In short, an
operad can be defined abstractly as a monoid object with respect to the
composition structure of the category of Σ∗-objects (see [17] or [46, §1.8]
for this definition). An operad morphism consists obviously of a morphism
of Σ∗-objects φ : P→ Q that preserves operad structures. In principle, we use
the notation OC for the category of operads in C.

Most often, we consider operads within a base symmetric monoidal cate-
gory C, which is supposed to be fixed. In this context, we can omit to refer to
the category in the definition of an operad and we adopt the short notation
O = OC for the category of operads in C.

The initial object of the category of operads is obviously given by the
composition unit I of the category of Σ∗-objects. For the category of operads,
we use the pointed-set notation ∨ to denote the coproduct.

3.1.2 The composition morphisms of an operad. The composition mor-
phism of an operad µ : P ◦ P→ P is equivalent to a collection of morphisms

P(r)⊗ P(n1)⊗ · · · ⊗ P(nr)
µ−→ P(n1 + · · ·+ nr)

that satisfy natural equivariance properties. This assertion follows from the
explicit definition of the composition product of Σ∗-objects. The unit mor-
phism η : I → P is equivalent to a morphism η : 1→ P(1) in C. The unit and
associativity relations of operads have natural expressions in terms of these
componentwise composition and unit morphisms (May’s axioms, see [47]).

In the point-set context, we use the notation p(q1, . . . , qr) ∈ P(n1+· · ·+nr)
to refer to the composite of the elements p ∈ P(r) and q1 ∈ P(n1), . . . , qr ∈
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P(nr) in the operad. The unit morphism is determined by a unit element
1 ∈ P(1).

3.1.3 Partial composites. We also use partial composites

P(r)⊗ P(s) ◦e−→ P(r + s− 1),

defined by composites

P(r)⊗ P(s) ' P(r)⊗ (1⊗ · · · ⊗ P(s)⊗ · · · ⊗ 1)

→ P(r)⊗ (P(1)⊗ · · · ⊗ P(s)⊗ · · · ⊗ P(1))
µ−→ P(r + s− 1),

where operad units η : I → P(1) are applied at positions k 6= e of the tensor
product. In the point-set context, we have p ◦e q = p(1, . . . , q, . . . , 1), where
q ∈ P(s) is set at the eth entry of p ∈ P(r).

The unit and associativity relations imply that the composition morphism
of an operad is determined by its partial composition products. The unit
and associativity relations of the composition morphism have an equivalent
formulation in terms of partial composition products (see [46]).

3.1.4 The intuitive interpretation of operads. The elements of an op-
erad p ∈ P(n) have to be interpreted as operations of n-variables

p = p(x1, . . . , xn).

The composition morphism of an operad models composites of such opera-
tions. The partial composites represent composites of the form

p ◦e q = p(x1, . . . , xe−1, q(xe, . . . , xe+n−1), xi+n, . . . , xm+n−1),

for p ∈ P(m), q ∈ P(n). The action of permutations w ∈ Σn on P(n) models
permutations of variables:

wp = p(xw(1), . . . , xw(n)).

The unit element 1 ∈ P(1) has to be interpreted as an identity operation
1(x1) = x1.

3.1.5 Free operads. The obvious forgetful functor U : O →M from operads
to Σ∗-objects has a left adjoint F :M→O which maps any Σ∗-object M to
an associated free operad F(M).

In the point-set context, the free operad F(M) on a Σ∗-object M consists
roughly of all formal composites

(· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er
ξr
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of generating elements ξ1 ∈ M(m1), . . . , ξr ∈ M(mr). The definition of the
partial composition product of the free operad ◦i : F(M)⊗ F(M)→ F(M) is
deduced from associativity relations of partial composites.

The proper explicit construction of the free operad, for which we refer
to [18], [14, §1.1.9], [46], uses the language of trees. This construction comes
from Boardman-Vogt’ original monograph [6] where free objects are intro-
duced in the category of algebraic theories, the structures, more general than
operads, which model operations of the form p : X×m → X×n.

3.1.6 Limits and colimits of operads. The forgetful functor U : O →M
which maps an operad to its underlying Σ∗-object creates all limits, creates
reflexive coequalizers and filtered colimits as well, but does not preserve all
colimits.

In fact, for a limit of operads, we can use the canonical morphism (limi Pi)◦
(limi Pi) → limi(Pi ◦ Pi) to define a composition product µ : (limi Pi) ◦
(limi Pi) → (limi Pi). For colimits, the natural morphism colimi(Pi ◦ Pi) →
(colimi Pi) ◦ (colimi Pi) goes in the wrong direction to define a composition
product on colimi Pi. But proposition 2.4.1 and proposition 1.2 imply that
this natural morphism colimi(Pi ◦ Pi) → (colimi Pi) ◦ (colimi Pi) is iso in the
case of a reflexive coequalizer and in the case of a filtered colimit. Therefore,
for these particular colimits, we can form a composition product

(colim
i

Pi) ◦ (colim
i

Pi)
'←− colim

i
(Pi ◦ Pi)→ colim

i
Pi

to provide colimi Pi with an operad structure. The conclusion follows readily.
The existence of reflexive coequalizers and filtered colimits in the category

of operads together with the existence of free objects suffices to prove the
existence of all colimits in the category of operads. But we insist that the
forgetful functor U : O →M does not preserves all colimits.

3.1.7 Operads defined by generators and relations. The classical ba-
sic examples of operads, the commutative operad C, the associative operad
A, and the Lie operad L, are associated to the classical structure of an as-
sociative and commutative algebra, of an associative algebras, and of a Lie
algebra respectively. These operads can be defined naturally by generators
and relations. This definition reflects the usual definition of a commutative
algebra, of an associative algebra, of a Lie algebra, as an object equipped
with generating operations that satisfy a set of relations.

In this paragraph we recall briefly the general construction of operads by
generators and relations. For more details on this construction we refer to [18]
and [14, §1.1.9]. The examples of the commutative operad C, the associative
operad A, and the Lie operad L are addressed in the next paragraph.

In the usual context of k-modules, a presentation of an operad P by gen-
erators and relations consists of a Σ∗-object M , whose elements represent
the generating operations of P, together with a collection R ⊂ F(M) whose
elements represent generating relations between composites of the generat-
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ing operations ξ ∈M . The operad is defined as the quotient P = F(M)/(R),
where (R) refers to the ideal generated by (R) in the operadic sense. This
ideal (R) is spanned by composites which include a factor of the form p = wρ,
where w ∈ Σn and ρ ∈ R(n). The definition of an operad ideal implies essen-
tially that a morphism on the free operad∇f : F(M)→ Q induces a morphism
on the quotient operad ∇f : F(M)/(R) → Q if and only if ∇f cancels the
generating relations ρ ∈ R.

In the general setting of symmetric monoidal categories, a presentation of
an operad P by generators and relations is defined by a coequalizer of the
form

F(R)
d0 //

d1

// F(M) // P .

The generating relations are represented by identities ρ0 ≡ ρ1 in the free
operad F(M), for pairs ρ0 = d0(ρ), ρ1 = d1(ρ), where ρ ∈ R. The quotient of
an operad by an ideal P = F(M)/(R) is equivalent to a presentation of this
form where d1 = 0. By definition of free operads, a morphism ∇f : F(M)→ Q
induces a morphism on the coequalizer ∇f : P→ Q if and only if the identity
∇fd0 = ∇fd1 holds on R ⊂ F(R).

3.1.8 Basic examples in k-modules. The classical examples of operads,
the commutative operad C, the associative operad A, and the Lie operad L,
are all defined by a presentation P = F(M)/(R), such that the Σ∗-object M
is spanned by operations of 2-variables ξ = ξ(x1, x2). In all examples, we use
the notation τ to refer to the transposition τ = (1 2) ∈ Σ2.
(a) The commutative operad C is defined by a presentation of the form

C = F(kµ)/(associativity),

where the generating Σ∗-object M = kµ is spanned by a single operation
µ = µ(x1, x2) so that τµ = µ. Equivalently, the operation µ = µ(x1, x2)
satisfies the symmetry relation

µ(x1, x2) = µ(x2, x1).

The ideal (associativity) is generated by the element µ◦1µ−µ◦2µ ∈ F(kµ)(3)
which represents the associativity relation

µ(µ(x1, x2), x3) ≡ µ(x1, µ(x2, x3)).

Thus the operation µ(x1, x2) represents a commutative and associative prod-
uct µ(x1, x2) = x1 · x2.

Any element p ∈ C(n) has a unique representative of the form

p = µ(· · ·µ(µ(x1, x2), x3), . . .), xn).
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Equivalently, the commutative operad is spanned in arity n by the single
multilinear monomial of n commutative variables:

C(n) = kx1 · . . . · xn.

The symmetric group acts trivially on C(n).
This construction gives an operad without unitary operations, an operad

such that C(0) = 0.
(b) The associative operad A is defined by a presentation of the same form
as the commutative operad

A = F(kµ⊕ k τµ)/(associativity),

but where the generating Σ∗-object M = kµ ⊕ k τµ is spanned by an
operation µ = µ(x1, x2) and its transposite τµ = µ(x2, x1). The ideal
(associativity) is generated again by the element µ ◦1 µ − µ ◦2 µ ∈ F(kµ ⊕
k τµ)(3) which gives an associativity relation in the quotient. Thus the op-
eration µ(x1, x2) represents an associative but non-commutative product
µ(x1, x2) = x1 · x2.

The elements of the associative operad can be represented by multilinear
monomials of n non-commutative variables. Thus we have an identity

A(n) =
⊕

(i1,...,in)

kxi1 · . . . · xin

where the indices (i1, . . . , in) range over permutations of (1, . . . , n). The sym-
metric group acts by translation on A(n). Thus we can also identify A(n) with
the regular representation A(n) = k[Σn] for n > 0. This construction gives
an operad without unitary operations, an operad such that A(0) = 0.
(c) The Lie operad L is defined by a presentation of the form

L = F(k γ)/(Jacobi),

where the generating operation γ = µ(x1, x2) satisfies τγ = −γ. Equivalently,
the operation γ = γ(x1, x2) satisfies the antisymmetry relation γ(x1, x2) =
−γ(x2, x1). The ideal (Jacobi) is generated by the element (1+c+c2)·γ◦1γ ∈
F(k γ)(3), where c represents the 3-cycle c = (1 2 3) ∈ Σ3. This element gives
the Jacobi relation

γ(γ(x1, x2), x3) + γ(γ(x1, x2), x3) + γ(γ(x1, x2), x3) ≡ 0

of a Lie bracket γ(x1, x2) = [x1, x2].
The elements of the Lie operad can be represented by multilinear Lie

monomials of n variables. According to [53, §5.6], we have an identity
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L(n) =
⊕

(i1,...,in)

k[· · · [[xi1 , xi2 ], . . .], xin ],

where the indices (i1, . . . , in) range over the permutations of (1, . . . , n) such
that i1 = 1, but the action of the symmetric group on this monomial basis is
non-trivial.

3.1.9 The commutative and associative operads in sets. In fact, the
commutative and the associative operads can be defined within the category
of sets. The commutative and associative operads in k-modules consist of free
k-modules on the set versions of these operads. This assertion can be deduced
from the explicit description of the previous paragraph.

For the set commutative operad, we have C(n) = ∗, the base point equipped
with a trivial Σn-action. For the set associative operad, we have A(n) = Σn,
the set of permutations equipped with the action of the symmetric group by
left translations. In both cases, we assume C(0) = A(0) = ∅ to have operads
without unitary operations.

In the case of the commutative operad, the partial composition products
◦e : C(m) × C(n) → C(m + n − 1) are trivially given by identity maps.
In the case of the commutative operad, the partial composition products
◦e : A(m) × A(n) → A(m + n − 1) have a natural combinatorial expres-
sion in terms of permutations: identify any permutation w ∈ Σn with the
sequence of its values w = (w(1), . . . , w(r)); to form the composite s ◦e t
of s = (i1, . . . , im) with t = (j1, . . . , jn), we replace the term ik = e in the
sequence s = (i1, . . . , im) by the sequence t = (j1, . . . , jn) and we perform
standard shifts i∗ 7→ i∗ + n on i∗ = e+ 1, . . . ,m, respectively j∗ 7→ j∗ + e on
j∗ = 1, . . . , n. As an example, we have (1, 3, 2, 4) ◦2 (2, 1, 3) = (1, 5, 3, 2, 4, 6).
In the sequel, we also refer to this structure as the permutation operad.

The definition of the commutative and associative operads in sets can
also be deduced from the general construction of operads by generators and
relations in symmetric monoidal categories.

One can use the natural functor 1[−] : Set → C, associated to any sym-
metric monoidal category C, to transport the commutative and associative
operads to any such category C. In the context of k-modules, we get the
commutative and associative operads defined in §3.1.8 since we have identi-
fications C(n) = k and A(n) = k[Σn] for all n > 0.

3.1.10 Non-unitary operads and the unitary commutative and as-
sociative operads. In the sequel, we say that an operad P in a symmetric
monoidal category C is non-unitary if we have P(0) = 0, the initial object
of C. In the literature, non-unitary operads are also called connected [14], or
reduced [4]. The term unitary is used to replace the term unital used [47]
to refer to an operad P such that P(0) = 1, the monoidal unit of C. The
term unital is now used to refer to an operad equipped with a unit element
1 ∈ P(1) (see [46]). Therefore we prefer to introduce another terminology to
avoid confusions.
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The operads C and A, defined in §§3.1.8-3.1.9, are non-unitary versions of
the commutative and associative operads.

The commutative and associative operads have unitary versions, C+ and A+,
such that C+(n) = k, for all n ∈ N, respectively A+(n) = k[Σn], for all n ∈ N.
In the context of sets, we have similarly C+(n) = ∗, for all n ∈ N, respectively
A+(n) = Σn, for all n ∈ N.

The partial composition products of C+, respectively A+, are defined by
the formula of §3.1.9 which has a natural and obvious extension for unitary
operations.

3.1.11 Initial unitary operads. In contrast to non-unitary operads, we
have operads ∗C , associated to objects C ∈ C, so that ∗C(0) = C, ∗C(1) = 1,
and ∗C(n) = 0 for n > 1. The composition morphisms of such operads are
reduced to a component µ : ∗C(1) ⊗ ∗C(0) → ∗C(1) given, according to the
unit relation of an operad, by the natural isomorphism 1⊗C ' C.

We call this operad ∗C the initial unitary operad associated to the object
C ∈ C. We shorten the notation to ∗ = ∗1 for the unit object of the monoidal
category.

3.2 Basic definitions: algebras over operads

In the classical theory of operads, one uses that the functor S(P) associated
to an operad P forms a monad to define the category of algebras associated to
P. The first purpose of this section is to review this definition in the relative
context of a symmetric monoidal category over the base. To extend the usual
definition, we use simply that a functor S(P) : E → E is defined on every
symmetric monoidal category E over the base category C. By definition, a
P-algebra in E is an algebra over the monad S(P) : E → E .

In the previous chapter, we recall that the category of Σ∗-objects M, as
well as categories of functors F : A → E , are instances of symmetric monoidal
categories over C. We examine the structure of a P-algebra in the category
of Σ∗-objects M and of a P-algebra in a category of functors F : A → E .
We obtain that the former are equivalent to left P-modules, the latter are
equivalent to functors F : A → PE to the category of P-algebras in E .

3.2.1 Algebras over operads. Let P be any operad in the base symmetric
monoidal category C. Let E be any symmetric monoidal category over C. The
structure of a P-algebra in E consists explicitly of an object A ∈ E equipped
with an evaluation morphism λ : S(P, A) → A that makes commute the
diagrams
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S(I,A)
S(η,A) //

'
%%KKKKKKKKKK

S(P, A)

λ

��
A

, S(P ◦ P, A) ' //

S(µ,A)

��

S(P,S(P, A))
S(P,λ) // S(P, A)

λ

��
S(P, A) λ // A

,

equivalent to usual unit and associativity relations of monoid actions.
The category of P-algebras in E is denoted by PE , a morphism of P-algebras

f : A → B consists obviously of a morphism in E which commutes with
evaluation morphisms.

The definition of S(P, A) implies immediately that the evaluation mor-
phism λ : S(P, A)→ A is also equivalent to a collection of morphisms

λ : P(n)⊗A⊗n → A,

which are equivariant with respect to the action of symmetric groups, and
for which we have natural unit and associativity relations equivalent to the
unit and associativity relations of operad actions. In the standard setting,
the tensor product P(n) ⊗ A⊗n is formed within the base category C. In
our context, we use the internal and external tensor products of E to form
this tensor product. In a point-set context, the evaluation of the operation
p ∈ P(n) on elements a1, . . . , an ∈ A is usually denoted by p(a1, . . . , an) ∈ A.
The unit relation reads 1(a) = a, ∀a ∈ A, and the associativity relation can
be written in terms of partial composites:

p◦eq(a1, . . . , am+n−1) = p(a1, . . . , ae−1, q(ae, . . . , ae+n−1), ae+n, . . . , am+n−1),

for p ∈ P(m), q ∈ P(n), a1, . . . , am+n−1 ∈ A.

3.2.2 Non-unitary operads and algebras in reduced symmetric
monoidal categories. Recall that an operad P is non-unitary if we have
P(0) = 0. One checks readily that the image of P(0) ∈ C under the canonical
functor η : C → E defines the initial object of the category of P-algebras in E .
Accordingly, an operad P is non-unitary if and only if the initial object of
the category of P-algebras in E is defined by the initial object of E , for every
symmetric monoidal category over C.

For a non-unitary operad P, we can generalize the definition of a P-algebra
to every reduced symmetric monoidal category over C. Use simply the functor
S0(P) : E0 → E0, defined on any such category E0 by the formula of §2.1.3:

S0(P, X) =
∞⊕
n=1

(P(n)⊗X⊗n)Σn ,

to form the evaluation morphism of P-algebras in E0.
The next constructions of this chapter (free objects, colimits, extension

and restriction functors, endomorphism operads) have a straightforward gen-
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eralization in the context of non-unitary operads and reduced symmetric
monoidal categories.

3.2.3 Algebras over free operads and over operads defined by gen-
erators and relation. If P = F(M) is a free operad, then the structure
of a P-algebra on an object A ∈ E is equivalent to a collection of mor-
phisms λ : M(n) ⊗ A⊗n → A, n ∈ N, with no relation required outside
Σn-equivariance relations. Informally, the associativity of operad actions im-
plies that the action of formal composites (· · · ((ξ1 ◦e2 ξ2)◦e3 · · · )◦er ξr, which
span the free operad F(M), is determined by the action of the generating
operations ξi ∈ M(ni) on A. To prove the assertion properly, one has to
use the endomorphism operad EndA, whose definition is recalled later on
(in §3.4) and the equivalence of proposition 3.4.3 between operad actions
λ : S(P, A) → A and operad morphisms ∇ : P → EndA. In the case of a free
operad, an operad morphism ∇ : F(M)→ EndA is equivalent to a morphism
of Σ∗-objects ∇ : M → EndA and this equivalence imply our assertion.

If P = F(M)/(R) is an operad given by generators and relations in k-
modules, then the structure of a P-algebra on an object A ∈ E is determined
by a collection of morphisms λ : M(n)⊗A⊗n → A such that the generating
relations ρ ∈ R are canceled by the induced action of the free operad F(M)
on A. This assertion is also an immediate consequence of the equivalence of
proposition 3.4.3 applied to a quotient operad P = F(M)/(R).

3.2.4 Examples: algebras over classical operads in k-modules. The
usual structures of commutative algebras, respectively associative algebras,
have natural generalizations in the setting of a symmetric monoidal cat-
egory. The generalized commutative algebra structures, respectively asso-
ciative algebras, are also called commutative monoids, respectively associa-
tive monoids, because these structures are equivalent to usual commutative
monoids, respectively associative monoids, in the context of sets. The struc-
ture of a Lie algebra has as well a natural generalization in the setting of a
symmetric monoidal category over Z-modules.

The equivalence of §3.2.3 implies that the structures of algebras over the
usual operads P = C, L, A, agree with such generalizations in the context of
symmetric monoidal categories over k-modules. Indeed, for these operads
P = C, L, A, the assertions of §3.2.3 return:
(a) The structure of a C-algebra in E is determined by a product µ : A⊗A→
A formed in the category E , which satisfies the symmetry relation µ · τ∗ = µ,
where τ∗ : X ⊗ Y → Y ⊗X refers to the symmetry isomorphism of E , and
the associativity relation µ(µ, id) = µ(id, µ).
(b) The structure of an A-algebra in E is determined by a product µ :
A ⊗ A → A which satisfies the associativity relation µ(µ, id) = µ(id, µ), but
without any commutativity requirement.
(c) The structure of an L-algebra in E is determined by a morphism γ :
A ⊗ A → A which satisfies the antisymmetry relation γ · τ∗ + γ = 0 and a
Jacobi relation
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γ(γ, id) + γ(γ, id) · c∗ + γ(γ, id) · c∗ · c∗ = 0,

where c∗ : A⊗A⊗A→ A⊗A⊗A refers to the cyclic permutation of 3-tensors
in E .

To summarize, say that C-algebras (respectively, A-algebras) in E are equiv-
alent to commutative (respectively, associative) algebras (without unit) in E ,
and L-algebras in E are equivalent to Lie algebras in E . Note that L-algebras
in k-modules do not necessarily satisfy the relation γ(a, a) = 0, where the
element a is repeated. In our sense, a Lie algebra is only assumed to satisfy
an antisymmetry relation γ(a, b) + γ(b, a) = 0.

If we take the set versions of the commutative (respectively associative
operads), then the identity between C-algebras (respectively, A-algebras) and
usual commutative (respectively, associative) algebras (without unit) holds
in any symmetric monoidal category, and not only in symmetric monoidal
categories over k-modules. This result can still be deduced from the presen-
tation of these operads in sets, by an obvious generalization of the equivalence
of §3.2.3. In the next paragraph, we reprove this equivalence by another ap-
proach to illustrate the abstract definition of an algebra over an operad.

3.2.5 More on commutative and associative algebras. In this para-
graph, we consider the set-theoretic version of the commutative operad C
(respectively, of the associative operad A) and we adopt the set-monoid lan-
guage to refer to commutative (respectively, associative) algebras in symmet-
ric monoidal categories.

Since the operads P = C, A have a simple underlying Σ∗-object, we can
easily make explicit the monad S(P) : E → E associated to these operads
and the evaluation morphism S(P, A) → A for algebras over these operads.
Indeed, the identity C(n) = ∗ gives immediately

S(C, X) =
∞⊕
n=1

(X⊗n)Σn
.

The identity A(n) = Σn gives the relation

S(A, X) =
∞⊕
n=1

(Σn ⊗X⊗n)Σn
'

∞⊕
n=1

X⊗n.

The components λ : (A⊗n)Σn
→ A of the evaluation morphism of a C-

algebra are equivalent to the n-fold products of a commutative and associative
monoid. The product is yielded by the 2-ary component of the operad action:
λ : (A⊗2)Σ2 → A. The identity between the n-ary component of the operad
action λ : (A⊗n)Σn → A and a composite of the product λ : (A⊗2)Σ2 → A
comes from the associativity relation for operad actions. In this manner we
still obtain that C-algebras in E are equivalent to commutative and associative
monoids (without unit) in E .
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Similarly, the components λ : A⊗n → A of the evaluation morphism of an
A-algebra are equivalent to the n-fold products of an associative monoid, and
we can still obtain that A-algebras in E are equivalent to associative monoids
(without unit) in E .

For the unitary versions of the commutative and associative operads,
the evaluation morphisms have an additional component λ : ∗ → A since
C+(0) = A+(0) = ∗. This morphism provides C+-algebras (respectively, A+-
algebras) with a unit. Hence we obtain that algebras over the unitary com-
mutative operad C+ (respectively over the unitary associative operad C+) are
equivalent to commutative and associative monoids with unit in E (respec-
tively, to associative monoids with unit).

3.2.6 Algebras over initial unitary operads. We can also easily de-
termine the category of algebras associated to the initial unitary operads
such that ∗C(0) = C, for an object C ∈ C. Since we have ∗C(n) = 0 for
n > 0, and λ : ∗C(1) ⊗ A = 1⊗A → A is necessarily the natural isomor-
phism 1⊗A ' A, we obtain that the structure of a ∗C-algebra is completely
determined by a morphism λ : C → A in the category E . Hence the cate-
gory of ∗C-algebras in E is isomorphic to the comma category of morphisms
λ : C → X, where X ∈ E .
3.2.7 Algebras in functor categories and functors to algebras over
operads. In §2.1.4, we observe that a category of functors F = F(A, E),
where E is a symmetric monoidal category over C, forms naturally a symmet-
ric monoidal category over C. Hence, we can use our formalism to define the
notion of a P-algebra in F , for P an operad in C.

By definition, the action of an operad P on a functor F : A → E is
determined by collections of morphisms λ(X) : P(r)⊗F (X)⊗r → F (X) that
define a natural transformation inX ∈ A. Accordingly, we obtain readily that
a functor F : A → E forms a P-algebra in F if and only if all objects F (X),
X ∈ A, are equipped with a P-algebra structure so that the map X 7→ F (X)
defines a functor from A to the category of P-algebras in E .

Thus, we obtain:

3.2.8 Observation. The category of P-algebras in F(A, E) is isomorphic
to F(A, PE), the category of functors F : A → PE from A to the category
P-algebras in E.

Equivalently, we have a category identity P F(A, E) = F(A, PE).
For a fixed symmetric monoidal category over C, we use the short notation

F to refer to the category of functors F = F(E , E). According to observa-
tion 3.2.8, the notation P F is coherent with our conventions to refer to the
category of functors P F = F(E , PE) and we shall use this short notation in
the sequel.

3.2.9 Algebras in Σ∗-objects and left modules over operads. In par-
allel with P-algebras in functors, we study P-algebras in the category of Σ∗-
objects M for P an operad in C. In §2.2.2, we observe that the generalized
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symmetric power functor S(M) : E → E for E =M represents the composi-
tion product N 7→ M ◦ N in the category of Σ∗-objects. As a consequence,
the structure of a P-algebra in Σ∗-objects is determined by a morphism

S(P, N) = P ◦N λ−→ N

which provides the object N ∈ M with a left action of the monoid object
defined by the operad P in the monoidal category (M, ◦, I). In [14, §2.1.6],
we call this structure a left P-module.

To summarize, we have obtained:

3.2.10 Observation. The structure of a P-algebra in the category of Σ∗-
objects M is identified with the structure of a left P-module.

We adopt the notation PM for the category of left P-modules. This no-
tation PM is coherent with our conventions for categories of algebras over
operads.

To make explicit the structure of a left module over the usual commutative
C, associative A, and Lie operads L, we use the next fact, which extends the
assertion of fact 2.1.10 and, like this statement, is an immediate consequence
of the explicit definition of the tensor product of Σ∗-objects in §§2.1.7-2.1.8:

3.2.11 Fact. For any Σ∗-object M , a morphism φ : M⊗r →M is equivalent
to a collection of morphisms

φ : M(n1)⊗ · · · ⊗M(nr)→M(n1 + · · ·+ nr), n1, . . . , nr ∈ N,

which commute with the action of the subgroup Σn1×· · ·×Σnr
⊂ Σn1+···+nr

.
The composite of φ : M⊗r → M with a tensor permutation w∗ : M⊗r →

M⊗r, where w ∈ Σr, is determined by composites of the form:

M(n1)⊗ · · · ⊗M(nr)
w∗−−→M(nw(1))⊗ · · · ⊗M(nw(r))

φ−→M(nw(1) + · · ·+ nw(r))
w(n1,...,nr)−−−−−−−→M(n1 + · · ·+ nr),

where we perform a permutation of tensors on the source together with an
action of the bloc permutation w(n1, . . . , nr) ∈ Σn1+···+nr

on the target
M(n1 + · · ·+ nr).

From this fact and the assertions of §3.2.4, we obtain:

3.2.12 Proposition. Suppose E = C = k Mod, or E is any category with a
pointwise representation of tensor products (see §0.4).
(a) The structure of a C-algebra in Σ∗-objects consists of a Σ∗-object N
equipped with a collection of Σp ×Σq-equivariant morphisms

µ : N(p)⊗N(q)→ N(p+ q), p, q ∈ N,
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that satisfy the twisted symmetry relation

µ(a, b) = τ(p, q) · µ(b, a), ∀a ∈ N(p),∀b ∈ N(q),

and the associativity relation

µ(µ(a, b), c) = µ(a, µ(b, c)), ∀a ∈ N(p),∀b ∈ N(q),∀c ∈ N(r).

(b) The structure of an A-algebra in Σ∗-objects consists of a Σ∗-object N
equipped with a collection of Σp ×Σq-equivariant morphisms

µ : N(p)⊗N(q)→ N(p+ q), p, q ∈ N,

that satisfy the associativity relation

µ(µ(a, b), c) = µ(a, µ(b, c)), ∀a ∈ N(p),∀b ∈ N(q),∀c ∈ N(r).

(c) The structure of an L-algebra in Σ∗-objects consists of a Σ∗-object N
equipped with a collection of Σp ×Σq-equivariant morphisms

γ : N(p)⊗N(q)→ N(p+ q), p, q ∈ N,

that satisfy the twisted antisymmetry relation

γ(a, b) + τ(p, q) · γ(b, a) = 0, ∀a ∈ N(p),∀b ∈ N(q),

and the twisted Jacobi relation

γ(γ(a, b), c) + c(p, q, r) · γ(γ(b, c), a) + c2(p, q, r) · γ(γ(c, a), b) = 0,
∀a ∈ N(p),∀b ∈ N(q),∀c ∈ N(r),

where c denotes the 3-cycle c = (1 2 3) ∈ Σ3.

This proposition illustrates the principle (formalized in §0.5) of generalized
point-tensors: to obtain the definition of a commutative (respectively, asso-
ciative, Lie) algebra in Σ∗-objects from the usual pointwise definition in the
context of k-modules, we take simply point-tensors in Σ∗-objects and we add
a permutation, determined by the symmetry isomorphisms of the category
of Σ∗-objects, to every tensor commutation.

3.2.13 Free objects. Since the category of P-algebras in E is defined by a
monad, we obtain that this category has a free object functor P(−) : E → PE ,
left adjoint to the forgetful functor U : PE → E . Explicitly, the free P-algebra
in E generated byX ∈ E is defined by the object P(X) = S(P, X) ∈ E together
with the evaluation product λ : S(P, P(X))→ P(X) defined by the morphism

S(P, P(X)) = S(P ◦ P, X)
S(µ,X)−−−−→ S(P, X)
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induced by the composition product of the operad.
In this book, we use the notation P(X) to refer to the free P-algebra gen-

erated by X and the notation S(P, X) to refer to the underlying object in E .
In the context of a category of functors F = F(A, E), we obtain readily

P(F )(X) = P(F (X)),

for all X ∈ A, where on the right-hand side we consider the free P-algebra
in E generated by the object F (X) ∈ E associated to X ∈ A by the functor
F : E → E .

In the context of Σ∗-modules, we have an identity

P(M) = P ◦M.

In the formalism of left P-modules, the operad P acts on the composite P ◦M
by the natural morphism

P ◦ P ◦M µ◦M−−−→ P ◦M,

where µ : P ◦ P→ P refers to the composition product of P.

The next assertion is an easy consequence of definitions:

3.2.14 Observation (compare with [54, Corollary 2.4.5]). Let P be an operad
in C. Any functor of symmetric monoidal categories over C

ρ : D → E

restricts to a functor on P-algebras so that we have a commutative diagram

D
ρ // E

PD
ρ //

U

OO

PE

U

OO ,

where U : A 7→ U(A) denotes the forgetful functors on the category of P-
algebras in D (respectively, in E).

If ρ preserves colimits, then the diagram

D

P(−)

��

ρ // E

P(−)

��
PD

ρ //
PE

,

where P(−) : X 7→ P(X) denotes the free P-algebra functor, commutes as well.

As a corollary, in the case of the functor S :M→ F , where F = F(E , E),
we obtain:
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3.2.15 Observation. Let P be an operad in C. Set F = F(E , E) and P F =
F(E , PE).

The functor S :M→ F restricts to a functor

S : PM→ P F

so that for the free P-algebra N = P(M) generated by M ∈M we have

S(P(M), X) = P(S(M,X)),

for all X ∈ E, where on the right-hand side we consider the free P-algebra
in E generated by the object S(M,X) ∈ E associated to X ∈ E by the functor
S(M) : E → E.

This construction is functorial in E. Explicitly, for any functor ρ : D → E
of symmetric monoidal categories over C, the diagram

D

S(N)

��

ρ // E

S(N)

��
PD ρ

//
PE

commutes up to natural functor isomorphisms, for all N ∈ PM.

3.2.16 Restriction of functors. Let α : A → B be a functor. For any
target category X , we have a functor α∗ : F(B,X )→ F(A,X ) induced by α,
defined by α∗G(A) = G(α(A)), for all G : B → X

In the case X = E , the map G 7→ α∗(G) defines clearly a functor of
symmetric monoidal categories over C

α∗ : (F(B, E),⊗, 1)→ (F(A, E),⊗, 1).

By observations of §§3.2.7-3.2.8, the induced functor on P-algebras, obtained
by the construction of observation 3.2.14, is identified with the natural functor

α∗ : (F(B, PE),⊗, 1)→ (F(A, PE),⊗, 1),

which is induced by α for the target category X = PE .

3.3 Universal constructions for algebras over operads

The forgetful functor U : PE → E , from a category of algebras over an operad
P to the underlying category E , creates all limits. This assertion is proved
by a straightforward inspection. On the other hand, the example of com-
mutative algebras shows that the forgetful functor U : PE → E does not
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preserves colimits in general. This difference relies on the direction of natural
morphisms

S(P, lim
i∈I

Xi)→ lim
i∈I

S(P, Xi),

respectively colim
i∈I

S(P, Xi)→ S(P, colim
i∈I

Xi),

when the functor S(P) : E → E is applied to a limit, respectively to a colimit.
For a limit, this direction is the good one to form an evaluation product on
limi∈I Ai from evaluation products on each Ai. For a colimit, this direction
is the wrong one.

But we prove in §2.4 that the functor S(M) : E → E associated to any
Σ∗-object M preserves filtered colimits and reflexive coequalizers. If we apply
this assertion, then we obtain as an easy corollary:

3.3.1 Proposition (cf. [12, Lemma 1.1.9], [54, Proposition 2.3.5]). Let P be
an operad in C. The forgetful functor U : PE → E, from the category of P-
algebras in E to the underlying category E, creates filtered colimits and the
coequalizers which are reflexive in E. ut

Proposition 3.3.1 can be applied to prove the existence of other universal
constructions in categories of algebras other operads: colimits over every small
category and extension functors φ! : PE → QE . The purpose of this section is
to review these constructions.

In the context of symmetric monoidal categories over a base, the univer-
sality of the constructions is used to prove the functoriality of colimits and
extensions with respect to functors ρ : D → E of symmetric monoidal cate-
gories over C.

The existence of colimits arises from the following assertion:

3.3.2 Proposition (cf. [54, Proposition 2.3.5]). Let I be a small category.
Assume that colimits of I-diagram exists in E, as well as reflexive coequalizers.
Use the notation colimE

i Xi to refer to the colimit formed in the category E,
for any I-diagram of objects Xi.

Let i 7→ Ai be an I-diagram of P-algebras in E. The colimit of i 7→ Ai
in the category of P-algebras in E is realized by a reflexive coequalizer of the
form:

P(colimE
i P(Ai))

d0 //

d1

// P(colimE
i Ai) //

s0

ww
colimiAi ,

where d0, d1 are morphisms of free P-algebras in E and the reflection s0 is a
morphism of E. ut

This construction occurs in [12, Lemma 1.1.10] in the particular case of
coproducts. We refer to the proof of proposition 2.3.5 in [54] for the general
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case. We recall simply the definition of the morphisms d0, d1, s0 for the sake
of completeness. The canonical morphisms αi : Ai → colimE

i Ai induce

P(colim E
i P(Ai))

P(α∗)−−−→ P(P(colim E
i Ai))

The morphism d0 is defined by the composite of P(α∗) with the morphism

P(P(colim E
i Ai)) = S(P ◦ P, colim E

i Ai)
S(µ,colim E

i Ai)−−−−−−−−−→ S(P, colim E
i Ai)

induced by the operad composition product µ : P ◦ P → P. The P-actions
λi : P(Ai)→ Ai induce

P(colim E
i P(Ai))

P(λ∗)−−−→ P(colim E
i Ai)

and this morphism defines d1. The operad unit η : I → P induces

P(colim E
i Ai)

P(η(A∗))−−−−−→ P(colim E
i P(Ai))

and this morphism defines s0.

By universality of this construction, we obtain:

3.3.3 Proposition (compare with [54, Corollary 2.4.5]). Let P be an operad
in C. Let ρ : D → E be a functor of symmetric monoidal categories over C. If
ρ : D → E preserves colimits, then so does the induced functor ρ : PD → PE
on categories of P-algebras.

Proof. Since ρ preserves colimits by assumption and free P-algebras by obser-
vation 3.2.14, we obtain that the functor ρ preserves the coequalizers of the
form of proposition 3.3.2, the coequalizers that realize colimits in categories
of P-algebras. The conclusion follows. ut

In the case of the functor S :M→ F(E , E), we obtain as a corollary:

3.3.4 Proposition. Let P be an operad in C. Let i 7→ Ni be a diagram
of P-algebras in M. We have a natural isomorphism

S(colim
i

Ni, X) = colim
i

S(Ni, X),

for all X ∈ E, where on the right-hand side we consider the colimit of the
P-algebras S(Ni, X), i ∈ I, associated to X ∈ E by the functors S(Ni) : E →
PE. ut

This assertion is also a corollary of the adjunction relation of §2.3.3.

3.3.5 Extension and restriction of structures for algebras over op-
erads. Recall that a morphism of operads φ : P → Q yields adjoint functors
of extension and restriction of structures
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φ! : PE � QE : φ∗.

This classical assertion for algebras in the base category C can be general-
ized to algebras in a symmetric monoidal category over C. For the sake of
completeness we recall the construction of these functors.

The operad P operates on any Q-algebra B through the morphism φ :
P→ Q and this operation defines the P-algebra φ∗B associated to B ∈ QE by
restriction of structures. The map B 7→ φ∗B defines the restriction functor
φ∗ : QE → PE .

In the converse direction, the Q-algebra φ!A associated to a P-algebra A ∈
PE is defined by a reflexive coequalizer of the form:

S(Q ◦ P, A)
d0 //

d1

// S(Q, A)

s0

{{
// φ!A .

The composite

S(Q ◦ P, A)
S(Q ◦φ,A)−−−−−−→ S(Q ◦ Q, A)

S(µ,A)−−−−→ S(Q, A),

where µ : Q ◦ Q→ Q is the composition product of Q, defines d0 : S(Q ◦ P, A)→
S(Q, A). The morphism

S(Q ◦ P, A) = S(Q,S(P, A))
S(Q,λ)−−−−→ S(Q, A)

induced by the P-action onA defines d1 : S(Q ◦ P, A)→ S(Q, A). The morphism

S(Q, A) = S(Q ◦I,A)
S(Q ◦η,A)−−−−−−→ S(Q ◦ P, A)

induced by the operad unit of P gives the reflection s0 : S(Q, A)→ S(Q ◦ P, A).
Observe that d0, d1 define morphisms of free Q-algebras d0, d1 : Q(S(P, A)) ⇒
Q(A). Since the forgetful functor U : QE → E creates the coequalizers which
are reflexive in E , we obtain that the coequalizer of d0, d1 in E is equipped
with a natural Q-algebra structure and represents the coequalizer of d0, d1 in
the category of Q-algebras. The map A 7→ φ!A defines the extension functor
φ! : PE → QE .

One checks readily that the extension functor φ! : PE → QE , defined by our
coequalizer construction, is left adjoint to the restriction functor φ∗ : QE → PE
as required. The adjunction unit ηA : A→ φ∗φ!A is the morphism

A

S(η,A)

��

ηA

%%
S(Q, A) // φ∗φ!A
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determined by the operad unit η : I → Q. The adjunction augmentation
εB : φ!φ

∗B → B is the morphism

S(Q, B)

λ

��

// φ!φ
∗B

εB
yy

B

induced by the Q-action on B.
In §9.3, we observe that these functors are instances of functors associated

to right modules over operads.
For the unit morphism η : I → P, we have IE = E , the restriction functor

A 7→ η∗A is identified with the forgetful functor U : PE → E and the extension
functor M 7→ η!M represents the free object functor P(−) : E → PE . Thus
in this case we obtain the adjunction between the forgetful and free object
functors.

3.3.6 Extension and restriction of left modules over operads. In the
case E = M and PE = PM, the category of left P-modules, we obtain that
the extension of structures of a left P-module N ∈ PE is defined by a reflexive
coequalizer of the form:

Q ◦ P ◦N
d0 //

d1

// Q ◦N

s0

~~
// φ!N .

In §9.3, we identify this coequalizer construction with a relative composi-
tion product Q ◦PN , where the operad P acts on Q on the right through the
morphism φ : P→ Q and the operad composition product µ : Q ◦ Q→ Q.

3.3.7 Extension and restriction of functors. In the case of functor cat-
egories F = F(A, E) and P F = F(A, PE), the extension and restriction func-
tors

φ! : F(A, PE) � F(A, QE) : φ∗

defined by the construction of §3.3.5 are given by the composition of functors
with the extension and restriction functors on target categories.

This assertion is straightforward for the restriction functor φ∗. To check
the assertion for the extension functor φ! use simply that colimits are created
pointwise in functor categories or check directly that the functor F 7→ φ! ◦F
is left adjoint to F 7→ φ∗ ◦ F .

The next assertion is an immediate consequence of the universality of the
construction of §3.3.5:

3.3.8 Proposition. Let φ : P→ Q be an operad morphism. Let ρ : D → E be
a functor of symmetric monoidal categories over C. If ρ preserves colimits,
then the diagram of functors
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PD
ρ //

φ!

��

PE

φ!

��
QD

φ∗

OO

ρ //
QE

φ∗

OO ,

where we consider the functor on algebras induced by ρ, commutes. ut

3.4 Endomorphism operads
in enriched symmetric monoidal categories

In §1.1.12, we observe that any symmetric monoidal category E over C is
equipped with an external hom-bifunctor HomE : Eop × E → C such that

MorE(C ⊗X,Y ) = MorC(C,HomE(X,Y )),

for all C ∈ C, X,Y ∈ E . In this section, we use the existence of these hom-
objects to prove the existence of a universal operad acting on X, the endo-
morphism operad of X.

This assertion is standard in the classical setting of operads in a closed
symmetric monoidal categories. We extend simply the usual construction to
our relative context of a symmetric monoidal category E enriched over the
base C.
3.4.1 The general construction in enriched symmetric monoidal cat-
egories. The endomorphism operad in C of an object X ∈ E is formed by
the hom-objects

EndX(r) = HomE(X⊗r, X).

As usual, the symmetric group operates on EndX(r) by permutations of
tensors on the source. The operad composition products ◦i : EndX(r) ⊗
EndX(s)→ EndX(r+ s− 1) are deduced from the enriched monoidal struc-
ture.

The canonical morphisms

ε : HomE(X⊗r, X)⊗X⊗r → X

give an action of the endomorphism operad EndX on X so that X forms an
algebra over EndX in E .

The next assertion is a formal generalization of the classical universal
definition of internal endomorphism operads:

3.4.2 Proposition. The endomorphism operad EndX is the universal operad
in C acting on X: any action on X of an operad P in C is the restriction, by
a uniquely determined operad morphism ∇ : P→ EndX , of the action of the
endomorphism operad EndX . ut
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Accordingly:

3.4.3 Proposition. We have a one-to-one correspondence between operad
morphisms ∇ : P→ EndX and P-algebra structures on X. ut

3.4.4 Endomorphism operads of functors. We apply the construction
of §3.4.1 to a category of functors F = F(A, E). We have then:

EndF (r) =
∫
X∈A

HomC(F (X)⊗r, F (X)),

where we consider the end of the bifunctor (X,Y ) 7→ HomC(F (X)⊗r, F (Y )).
Recall that a functor F : A → E forms a P-algebra in F if and only if the

objects F (X), X ∈ A, are equipped with a P-algebra structure, functorially
in X, so that the map X 7→ F (X) defines a functor from A to the category
of P-algebras. Thus propositions 3.4.2-3.4.3 imply:

3.4.5 Proposition. We have a one-to-one correspondence between operad
morphisms ∇ : P → EndF and functorial P-actions on the objects F (X),
X ∈ A, such that X 7→ F (X) defines a functor from A to the category
of P-algebras. ut

3.4.6 Remark. The functorial action of EndF on the objects F (X), for
X ∈ A, is represented by operad morphisms

εX : EndF → EndF (X),

where EndF (X) denotes the endomorphism operad of the object F (X) ∈ E .
This collection of operad morphisms is identified with the universal collections
of morphisms associated to the end

EndF (r) =
∫
X∈A

HomC(F (X)⊗r, F (X)).

In the remainder of this section, we examine the functoriality of endomor-
phism operads with respect to morphisms of symmetric monoidal categories.
In the general case of a functor of symmetric monoidal categories ρ : D → E ,
we have:

3.4.7 Proposition. Let ρ : D → E be a functor of symmetric monoidal
categories over C. For every object X ∈ D, we have an operad morphism

ρ∗ : EndX → Endρ(X)

determined by ρ.

Proof. In proposition 1.1.15, we observe that the map f 7→ ρ(f), defined for
morphisms in D, extends to a morphism
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HomD(X,Y )
ρ−→ HomE(ρ(X), ρ(Y )).

In the case of an endomorphism operad, we obtain a morphism

HomD(X⊗r, X)
ρ−→ HomE(ρ(X⊗r), ρ(X)) '−→ HomE(ρ(X)⊗r, ρ(X)),

for any object X ∈ D. One checks readily that this morphism defines an
operad morphism ρ∗ : EndX → EndρX . ut

In light of propositions 3.4.2-3.4.3, the existence of an operad morphism

ρ∗ : EndX → Endρ(X)

is equivalent to the construction of §3.2.14, a P-algebra structure on X, where
P is an operad in C, gives rise to a P-algebra structure on ρX, for all X ∈ E .

In the particular case of the functor S :M→ F , proposition 3.4.7 returns:

3.4.8 Proposition. Consider the functor S :M→ F(E , E), where E is any
symmetric monoidal category over C. For any M ∈ M, we have an operad
morphism

EndM
Θ−→ EndS(M),

natural in E. ut

By proposition 2.3.10, the morphism S : HomM(M,N)→ HomF (S(M),S(N))
is mono for every M,N ∈ M if the category E is equipped with a faithful
functor η : C → E . Hence, the operad morphism Θ is mono as long as E is
equipped with a faithful functor η : C → E .

In the case where the underlying categories E , C are both the category of
modules over a ring k, we obtain further:

3.4.9 Proposition. Assume E = C = k Mod, the category of modules over
a ring k.

The operad morphism

EndM
Θ−→ EndS(M)

is an isomorphism if M is a projective Σ∗-module or if the ground ring is an
infinite field.

Proof. This proposition is an immediate corollary of proposition 2.3.7 and
proposition 2.3.12. ut

In observation 3.2.15, we prove that the structure of a P-algebra on a Σ∗-
object M gives rise to a P-algebra structure at the functor level. The existence
of an operad isomorphism

EndM
Θ−→
'

EndS(M)
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implies further:

3.4.10 Proposition. Assume E = C = k Mod, the category of modules over
a ring k.

If M is a projective Σ∗-module or if the ground ring is an infinite field,
then all functorial P-algebra structures on the objects S(M,A), A ∈ E, are
uniquely determined by a P-algebra structure on the Σ∗-module M . ut

3.4.11 Functoriality in the case of functors. We examine applications
of proposition 3.4.7 in the context of functor categories. Consider the functor
α∗ : F(B, E)→ F(A, E) induced by a functor α : A → B on source categories.

Recall that G 7→ α∗(G) forms a functor of symmetric monoidal categories
over C. Accordingly, for anyG : B → E , we have a morphism of endomorphism
operads

α∗ : EndG → Endα∗G

induced by α∗ : F(B, E) → F(A, E). This morphism can immediately be
identified with the natural morphisms∫

Y ∈B
HomC(G(Y )⊗r, G(Y ))→

∫
X∈A

HomC(G(α(X))⊗r, G(α(X)))

defined by the restriction of ends.



Chapter 4

Miscellaneous structures
associated to algebras over operads

Introduction

In this chapter, we recall the definition of miscellaneous structures associated
to algebras over operads: enveloping operads, which model comma categories
of algebras over operads; enveloping algebras, which are associative algebras
formed from the structure of enveloping operads; representations, which are
nothing but modules over enveloping algebras; and modules of Kähler differ-
entials, which occur in the definition of the homology of algebras over operads.
In §10, we address enveloping objects and modules of Kähler differentials as
examples of functors associated to right modules over operads. For the mo-
ment, we only give the definition of these structures – enveloping operads
in §4.1, representations in §4.2, enveloping algebras in §4.3, Kähler differen-
tials in §4.4 – and we study applications of these operadic constructions for
the usual commutative, associative and Lie operads.

To simplify, we address our examples within the category of k-modules,
for which we can use the point-set formalism (see §0.4). In the sequel, we
use the principle of generalized point-tensors (see §0.5) to apply our results
to commutative (respectively, associative, Lie) algebras in categories of dg-
modules, in categories of Σ∗-objects, and in categories of right modules over
operads (defined next).

4.1 Enveloping operads

Let P be any operad. The enveloping operad of a P-algebra A is introduced
in [17] to represent the category of P-algebras under A. The article [13] gives
another definition according to which the enveloping operad UP(A) is the
universal operad under P such that UP(A)(0) = A.

79
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The purpose of this section is to review these definitions in the context
where the P-algebra A belongs to a symmetric monoidal category E over the
base category C. Though we still assume that the operad P belongs to the
base category C, we have to use the category of operads in E because the
enveloping operad of a P-algebra in E belongs to that category.

4.1.1 The enveloping operad. To begin with, we recall the adjoint defini-
tion of the enveloping operad.

Recall that we use the notation OE to refer to any category of operads in
a symmetric monoidal category E other than the base category C. Form the
comma category P /OE of operad morphisms φ : P → S, where we use the
functor of symmetric monoidal categories η : C → E associated to E to map
P to an operad in E .

The enveloping operad of a P-algebra A is the operad UP(A) ∈ P /OE
defined by the adjunction relation

MorP /OE (UP(A), S) = Mor
PE(A, S(0)).

To justify this definition, recall that B = S(0) defines the initial object in
the category of S-algebras. If S is an operad under P, then B = S(0) forms a
P-algebra by restriction of structures.

The functor S 7→ S(0) preserves limits because limits of operads and al-
gebras over operads are created in the underlying category. The existence of
the enveloping operad follows immediately from this observation.

The main purpose of this section is to give a more effective construction
of the enveloping operad. Before, we check simply that the enveloping op-
erad defined by the adjunction relation of this paragraph fulfils the objective
of [17]:

4.1.2 Proposition (see [13, 17]). Let A any P-algebra. The comma category
of algebras under A, denoted by A/PE, is isomorphic to the category of UP(A)-
algebras. The forgetful functor U : A/PE → PE is represented by the restriction
functor η∗ : UP(A)E → PE, where η : P → UP(A) is the underlying morphism
of the enveloping operad, viewed as an object of the category of operads under
P.

Proof. The UP(A)-algebras form a P-algebra by restriction of structures
through η : P → UP(A). For the endomorphism operad of a P-algebra B,
the adjunction relation reads

MorP /OE (UP(A),EndB) = Mor
PE(A,B)

since we have EndB(0) = B. The proposition follows readily from the bijec-
tion given by this adjunction relation. ut

4.1.3 Toward explicit constructions. In the point-set context, the en-
veloping operad UP(A) can be defined informally as the object spanned by
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formal elements

u(x1, . . . , xm) = p(x1, . . . , xm, a1, . . . , ar),

where x1, . . . , xm are variables, p ∈ P(m + r), and a1, . . . , ar ∈ A, together
with relations of the form

p(x1, . . . , xm, a1, . . . , ae−1, q(ae, . . . , ae+s−1), ae+s, . . . , ar+s−1)
≡ p ◦m+e q(x1, . . . , xm, a1, . . . , ae−1, ae, . . . , ae+s−1, ae+s, . . . , ar+s−1).

The goal of the next paragraphs is to give an effective construction of the
enveloping operad in the context of symmetric monoidal categories. In this
setting, the pointwise relations are replaced by identities of morphisms and we
use colimits to perform the quotient process. To make the construction more
conceptual, we replace the relations of this paragraph by equivalent relations
which involve all composition products of the operad at once. Roughly, we
put relations together to perform the quotient process by a single reflexive
coequalizer.

Technically, we define the enveloping operad on the subcategory of free P-
algebras first and we use that any P-algebra A is a coequalizer of morphisms
of free P-algebras to extend the construction to all P-algebras.

4.1.4 Shifted Σ∗-objects. The enveloping operad of a free P-algebra P(X)
is yielded by a partial evaluation of the functor S(P) : E → E associated to
the operad P. To define this partial evaluation, we use a shift of entries in the
underlying Σ∗-object of P.

For any Σ∗-object M , we form a collection of shifted objects M [m], m ∈ N,
such that M [m](n) = M(m + n), for n ∈ N. The action of Σn on {m +
1, . . . ,m+ n} ⊂ {1, . . . ,m+ n} determines a morphism j : Σn → Σm+n and
an action of Σn on M(m+n) which provides the collection M [m](n), n ∈ N,
with the structure of a Σ∗-object.

The action of Σm on {1, . . . ,m} ⊂ {1, . . . ,m+n} determines a morphism
i : Σm → Σm+n and an action of Σm on M [m](n) = M(m + n). This
Σm-action commutes clearly with the internal Σn-action on M [m](n), for all
n ∈ N, so that the collection M [m], m ∈ N, forms a Σ∗-object in the category
of Σ∗-objects.

For any X ∈ E , the object S(M [m], X) comes equipped with a natural Σm-
action induced by the action of Σm on the Σ∗-objectM [m]. Consequently, the
collection S[M,X](m) = S(M [m], X), m ∈ N, defines a Σ∗-object in E . For
short, we also use the notation M [X] = S[M,X] for the Σ∗-object associated
to X by this partial evaluation process.

By construction, we have the relation S[M,X](0) = S(M,X) so that
S(M,X) represents the constant part of S[M,X].

4.1.5 Shifted operads. For an operad P, the collection P[ · ] = {P[m]}m∈N
forms naturally an operad in the category of Σ∗-objects and the collection
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P[X] = {S(P[m], X)}m∈N, associated to any object X ∈ E , comes equipped
with an induced operad structure. The easiest is to define the composition
morphisms of these operads in May’s form.

For the shifted collection P[m], m ∈ N, the composition morphisms

µ : P[r]⊗ P[m1]⊗ · · · ⊗ P[mr]→ P[m1 + · · ·+mr]

are yielded by composites

P(r + s)⊗ P(m1 + n1)⊗ · · · ⊗ P(mr + nr)

' P(r + s)⊗ P(m1 + n1)⊗ · · · ⊗ P(mr + nr)⊗ 1⊗ · · · ⊗ 1

→ P(r + s)⊗ P(m1 + n1)⊗ · · · ⊗ P(mr + nr)⊗ P(1)⊗ · · · ⊗ P(1)
→ P(m1 + n1 + · · ·+mr + nr + s)

' P(m1 + · · ·+mr + s+ n1 + · · ·+ nr),

with operad units η : 1 → P(1) at positions {r + 1, . . . , r + s} of the com-
position, and where the latter isomorphism involves the action of a block
permutation w(m1, . . . ,mr, n1, . . . , nr, s) equivalent to the natural bijection

{1, . . . ,m1} q {1, . . . , n1} q · · · q {1, . . . ,mr} q {1, . . . , nr} q {1, . . . , s}
↓'

{1, . . . ,m1} q · · · q {1, . . . ,mr} q {1, . . . , s} q {1, . . . , n1} q · · · q {1, . . . , nr}.

Recall that

(P[r]⊗ P[m1]⊗ · · · ⊗ P[mr])(n)

=
⊕
s,n∗

Σn ⊗Σs×Σn∗
{P[r](s)⊗ P[m1](n1)⊗ · · · ⊗ P[mr](nr)}

=
⊕
s,n∗

Σn ⊗Σs×Σn∗
{P(r + s)⊗ P(m1 + n1)⊗ · · · ⊗ P(mr + nr)},

where Σs ×Σn∗ = Σs ×Σn1 × · · · ×Σnr . Our composition morphisms

P(r + s)⊗ P(m1 + n1)⊗ · · · ⊗ P(mr + nr)
µ−→ P(m1 + · · ·+mr + s+ n1 + · · ·+ nr),

commute with Σs×Σn1×· · ·×Σnr -actions and determine morphisms of Σ∗-
objects

µ : P[r]⊗ P[m1]⊗ · · · ⊗ P[mr]→ P[m1 + · · ·+mr]
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as required. One checks readily that these composition morphisms satisfy
May’s axioms and hence provide the collection P[m], m ∈ N, with the struc-
ture of an operad in Σ∗-objects.

Since we observe that S :M→ E defines a functor of symmetric monoidal
categories, we obtain that any collection P[X](m) = S(P[m], X), m ∈ N,
associated to an object X ∈ E , comes equipped with composition morphisms

S(P[r], X)⊗ S(P[m1], X)⊗ · · · ⊗ S(P[mr], X)
' S(P[r]⊗ P[m1]⊗ · · · ⊗ P[mr], X)→ S(P[m1 + · · ·+mr], X),

induced by the composition morphisms of the shifted operad P[ · ], and hence
inherits an operad structure.

Note that P[X] forms an operad in E .

For our needs, we note further:

4.1.6 Observation. The identity P(n) = P[n](0), n ∈ N, gives a morphism
of operads in Σ∗-objects

η : P( · )→ P[ · ],

where we identify the components of the operad P with constant Σ∗-objects.
For an object X ∈ E, the identity of P(n) = P[n](0) with the constant term

of S(P[n], X) gives a morphism of operads in E

η : P→ P[X].

Hence P[X] forms an operad under P.

4.1.7 Observation. We have P[X](0) = P(X), the free P-algebra generated
by X.

Suppose φ : R → S is any morphism of operads under P. Then φ : R(0) →
S(0) defines a morphism of P-algebras. Hence we have a natural map

MorP /OE (R, S)→ Mor
PE(R(0), S(0)).

For the operad R = P[X], we obtain further:

4.1.8 Lemma. The natural map

MorP /OE (P[X], S)→ Mor
PE(P(X), S(0))

is an iso and P[X] satisfies the adjunction relation of the enveloping operad.

Proof. To check this lemma, we use the operad morphism η : P → P[X]
defined in observation 4.1.6 and the natural morphism η[X] : X → P[X](0)
defined by the composite

X = S(I,X)
S(η,X)−−−−→ S(P, X) = P[X](0),
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where η : I → P refers to the unit of the operad P.
Since P(X) is a free P-algebras, we have an isomorphism

Mor
PE(P(X), S(0)) ' MorE(X, S(0))

and we can use the natural map

ρ : MorP /OE (P[X], S)→ MorE(X, S(0))

which associates to any φ : P[X]→ S the composite

X
η[X]−−−→ P[X](0)

φ−→ S(0).

Observe that the canonical morphism

P(m+ n)⊗X⊗n → (P(m+ n)⊗X⊗n)Σn ↪→ S(P[m], X) = P[X](m)

is identified with the composite of the operadic composition product

P[X](m+ n)⊗ P[X](1)⊗m ⊗ P[X](0)⊗n → P[X](m)

with the morphism

P(m+ n)⊗ 1⊗m⊗X⊗n → P[X](m+ n)⊗ P[X](1)⊗m ⊗ P[X](0)⊗n

induced by the operad morphism η : P → P[X], the operad unit η : 1 →
P[X](1) and η[X] : X → P[X](0). Consequently, any morphism φ : P[X]→ S
of operads under P fits a commutative diagram of the form

P(m+ n)⊗X⊗n //

'
��

P[X](m)

φ

��

P(m+ n)⊗ 1⊗m⊗X⊗n

η⊗η⊗m⊗f⊗n

��
S(m+ n)⊗ S(1)⊗m ⊗ S(0)⊗n ν

// S(m)

,

where f = ρ(φ) and ν refers to the composition product of S. Thus we obtain
that φ : P[X]→ S is determined by the associated morphism f = ρ(φ).

If we are given a morphism f : X → S(0), then straightforward verifi-
cations show that the morphisms φ : P[X](m) → S(m) determined by the
diagram define a morphism of operads under P.

Hence we conclude that the map φ 7→ ρ(φ) is one-to-one. ut

In the case S = P[Y ], we obtain that any morphism of P-algebras f :
P(X) → P(Y ) determines a morphism φf : P[X] → P[Y ] in the category of
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operads under P. The definition of the correspondence

MorP /OE (R, S)→ Mor
PE(R(0), S(0))

implies that the map f 7→ φf preserves composites. Hence the map X 7→ P[X]
determines a functor on the full subcategory of PE formed by free P-algebras.
In addition, we obtain:

4.1.9 Lemma. The operad morphism φf : P[X] → P[Y ] associated to a
morphism of free P-algebras f : P(X)→ P(Y ) fits a commutative diagram

MorP /OE (P[X], S) ' //

φf
∗

��

Mor
PE(P(X), S(0))

f∗

��
MorP /OE (P[Y ], S) '

// Mor
PE(P(Y ), S(0))

. ut

To extend the functor UP(P(X)) = P[X] to the whole category of P-
algebras, we use the following assertion:

4.1.10 Fact. Any P-algebra A has a natural presentation by a reflexive co-
equalizer

P(S(P, A))
d0 //

d1

// P(A)

s0

||
ε // A,

where d0, d1 : P(S(P, A)) → P(A) and s0 : P(A) → P(S(P, A)) are morphisms
of free P-algebras.

This statement is proved in [44, Chapter 6] in the context of algebras over
a monad. For the sake of completeness, we recall simply the definition of the
morphisms in this reflexive coequalizer, and we refer to loc. cit. for the proof
that A is the coequalizer of d0, d1.

To define d0, we use the morphism

S(P,S(P, A)) = S(P ◦ P, A)
S(µ,A)−−−−→ S(P, A),

induced by the composition product of the operad µ : P ◦ P→ P, which forms
obviously a morphism of free P-algebras. To define d1, we use the morphism
of free P-algebras

P(S(P, A))
P(λ)−−→ P(P, A)

induced by the evaluation morphism of the P-algebra λ : S(P, A) → A. To
define s0, we use the morphism of free P-algebras

P(A) = P(S(I,A))
P(S(η,A))−−−−−−→ P(S(P, A))
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induced by the operad unit η : I → P. To define ε, we use simply the evalua-
tion morphism of A:

P(A) = S(P, A) λ−→ A.

4.1.11 Proposition. The enveloping operad of a P-algebra A is constructed
by a reflexive coequalizer of the form:

P[S(P, A)]
φd0 //

φd1

// P[A]

φs0

||
// UP(A),

where d0, d1, s0 refer to the morphisms of free P-algebras of fact 4.1.10.

Proof. By lemma 4.1.8, we have an isomorphism

ker
{

MorP /OE
(
P[A], S

) φ∗d0 //
φ∗d1

// MorP /OE
(
P[S(P, A)], S

) }

' ker
{

Mor
PE

(
P(A), S(0)

) d∗0 //
d∗1

// Mor
PE

(
P(S(P, A)), S(0)

) }
,

from which we deduce the relation:

MorP /OE
(
coker{ P[S(P, A)]

φd0 //
φd1

// P[A] }, S
)

' Mor
PE

(
coker{ P(S(P, A))

d0 //
d1

// P(A) }, S(0)
)
' Mor

PE(A, S(0)).

Hence we obtain that

UP(A) = coker
{
P[S(P, A)]

φd0 //
φd1

// P[A]
}

satisfies the adjunction relation of an enveloping operad. ut

4.2 Representations of algebras over operads

In this section we define the category of representations associated to an
algebra over an operad. In the classical examples of algebras over the com-
mutative, associative, and Lie operads, we obtain respectively: the category
of left modules over an algebra, the category of bimodules, and the usual
category of representations of a Lie algebra.
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To handle definitions in the setting of symmetric monoidal categories over a
base, we borrow a conceptual definition of [20]. In the next section, we prove
that representations are left modules over enveloping algebras, associative
algebras formed from the structure of enveloping operads.

4.2.1 Functors on pairs. For the moment, we assume A is any object in a
symmetric monoidal category E over the base category C. For any E ∈ E , we
set

(A;E)⊗n =
n⊕
e=1

A⊗ · · · ⊗ E
e
⊗ · · · ⊗A,

where the sum ranges over tensor products A⊗ · · · ⊗E ⊗ · · · ⊗A with n− 1
copies of A ∈ E and one copy of E ∈ E .

To define the notion of a representation, we use functors S(M,A;−) : E →
E , associated to Σ∗-objects M ∈M, defined by a formula of the form:

S(M,A;E) =
∞⊕
n=0

(
M(n)⊗ (A;E)⊗n

)
Σn
.

For the unit Σ∗-object I, we have an obvious isomorphism

S(I,A;E) = 1⊗E ' E

since I(1) = 1 and I(n) = 0 for n 6= 1. For Σ∗-objects M,N ∈ M, we have
a natural isomorphism

S(M,S(N,A); S(N,A;E)) ' S(M ◦N,A;E)

whose definition extends the usual composition isomorphisms of functors as-
sociated to Σ∗-objects. These isomorphisms satisfy coherence identities like
the usual composition isomorphisms of functors associated to Σ∗-objects.

4.2.2 Representations of algebras over operads. By definition, a repre-
sentation of an algebra A over an operad P is an object E ∈ E equipped with
a morphism µ : S(P, A;E)→ E so that the following diagrams commute

S(I,A;E)
S(η,A;E) //

'
))SSSSSSSSSSSSSSSS

S(P, A;E)

µ

��
E

,

S(P ◦ P, A;E) ' //

S(µ,A)

��

S(P,S(P, A); S(P, A;E))
S(P,λ;µ)// S(P, A;E)

µ

��
S(P, A;E)

µ // A

,
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where λ : S(P, A)→ A refers to the evaluation morphism of the P-algebra A.
The morphism µ : S(P, A;E) → E determines an action of the P-algebra A
on E.

We use the notation RP(A) to refer to the category of representations of a
P-algebra A, where a morphism of representations f : E → F consists obvi-
ously of a morphism in E which commutes with actions on representations.

By definition of the functor S(P, A;E), the structure of a representation
of A is equivalent to a collection of morphisms

µ : P(n)⊗ (A⊗ · · · ⊗ E ⊗ · · · ⊗A)→ E,

similar to the evaluation morphisms of a P-algebra, but where a module
E occurs once in the tensor product of the left-hand side. The unit and
associativity relations of the action µ : S(P, A;E) → E, defined in terms of
commutative diagrams, can be written explicitly in terms of these generalized
evaluation morphisms.

In the point-set context, the image of a tensor p⊗(a1⊗· · ·⊗x⊗· · ·⊗an) ∈
P(n)⊗(A⊗· · ·⊗E⊗· · ·⊗A) under the evaluation morphism of a representation
is denoted by p(a1, . . . , x, . . . , an) ∈ E. The unit relation of the action is
equivalent to the identity 1(x) = x, for the unit operation 1 ∈ P(1), and
any element x ∈ E. In terms of partial composites, the associativity relation
reads:

p(a1, . . . , ae−1, q(ae, . . . , ae+n−1), ae+n, . . . , x, . . . , am+n−1)
= p ◦e q(a1, . . . , ae−1, ae, . . . , ae+n−1, ae+n, . . . , x, . . . , am+n−1),

p(a1, . . . , af−1, q(af , . . . , x, . . . , af+n−1), af+n, . . . , am+n−1)
= p ◦f q(a1, . . . , af−1, af , . . . , x, . . . , af+n−1, af+n, . . . , am+n−1),

for p ∈ P(m), q ∈ P(n), and a1⊗· · ·⊗x⊗· · ·⊗am+n−1 ∈ A⊗· · ·⊗E⊗· · ·⊗A.

4.2.3 Representations of algebras over operads defined by gener-
ators and relations. If P = F(M) is a free operad, then a representation
of a P-algebra A is equivalent to an object E equipped with a collection of
morphisms

µ : M(n)⊗ (A;E)⊗n → E, n ∈ N,

with no relation required outside Σn-equivariance relations. Roughly, the
associativity of actions implies (as in the case of algebras) that the action of
formal composites (· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er

ξr, which spans the free operad
F(M), is determined by the action of the generating operations ξi ∈M(ni).

If P is an operad in k-modules defined by generators and relations P =
F(M)/(R), then the structure of a representation on an object E is deter-
mined by a collection of morphisms

µ : M(n)⊗ (A;E)⊗n → E, n ∈ N,
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such that we have the relations

ρ(a1, . . . , x, . . . , an) = 0, ∀a1 ⊗ · · · ⊗ x⊗ · · · ⊗ an ∈ A⊗ · · · ⊗ E ⊗ · · · ⊗A,

for every generating relation ρ ∈ R.

4.2.4 Examples: the case of classical operads in k-modules. In the
usual examples of operads in k-modules, P = C, L, A, the equivalence of §4.2.3
returns the following assertions:
(a) Let A be any commutative algebra in k-modules. The structure of a
representation of A is determined by morphisms µ : E ⊗ A → E and µ :
A⊗ E → E so that we have the symmetry relation µ(a, x) = µ(x, a), for all
a ∈ A, x ∈ E, and the associativity relations

µ(µ(a, b), x) = µ(a, µ(b, x)), µ(µ(a, x), b) = µ(a, µ(x, b)),
µ(µ(x, a), b) = µ(x, a · b),

for all a, b ∈ A, x ∈ E, where we also use the notation µ(a, b) = a ·b to denote
the product of A. As a consequence, the category of representations RC(A),
where A is any commutative algebra, is isomorphic to the usual category of
left A-modules.
(b) Let A be any associative algebra in k-modules. The structure of a repre-
sentation of A is determined by morphisms µ : E⊗A→ E and µ : A⊗E → E
so that we have the associativity relations

µ(µ(a, b), x) = µ(a, µ(b, x)), µ(µ(a, x), b) = µ(a, µ(x, b)),
µ(µ(x, a), b) = µ(x, µ(a, b)),

for all a, b ∈ A, x ∈ E, where we also use the notation µ(a, b) = a ·b to denote
the product of A. Hence the category of representations RA(A), where A is
any associative algebra, is isomorphic to the usual category of A-bimodules.
(c) Let G be any Lie algebra in k-modules. The structure of a representation
of G is determined by morphisms γ : E ⊗ G → E and γ : G⊗E → E so that
we have the antisymmetry relation γ(g, x) = γ(x, g), for all g ∈ G, x ∈ E,
and the Jacobi relations

γ(γ(g, h), x) + γ(γ(h, x), g) + γ(γ(x, g), h) = 0

for all g, h ∈ G, x ∈ E, where we also use the notation γ(g, h) = [g, h] to denote
the Lie bracket of G. Hence the category of representations RL(G), where G is
any Lie algebra, is isomorphic to the usual category of representations of the
Lie algebra G.
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4.3 Enveloping algebras

The enveloping algebra of a P-algebra A is the term UP(A)(1) of the en-
veloping operad UP(A). The first purpose of this section is to prove that
the category of representations of A is isomorphic to the category of left
UP(A)(1)-modules. Then we determine the enveloping algebra of algebras
over the usual commutative, associative, and Lie operads. In all cases, we
retrieve usual constructions of classical algebra.

4.3.1 Enveloping algebras. By definition, the enveloping algebra of a P-
algebra A is the term UP(A)(1) of the enveloping operad UP(A). The compo-
sition product

µ : UP(A)(1)⊗ UP(A)(1)→ UP(A)(1)

defines a unital associative product on UP(A)(1) so that UP(A)(1) forms a
unitary associative algebra in the category E . Since we use no more enveloping
operads in this section, we can drop the reference to the arity in the notation
of enveloping algebras and, for simplicity, we set UP(A) = UP(A)(1).

In the point-set context, the enveloping algebra UP(A) can be defined in-
formally as the object spanned by formal elements

u = p(x, a1, . . . , an),

where x is a variable, a1, . . . , an ∈ A and p ∈ P(1 + n), divided out by the
relation of §4.1.3:

p(x, a1, . . . , ae−1, q(ae, . . . , ae+n−1), ae+s, . . . , am+n−1)
≡ p ◦1+e q(x, a1, . . . , ae−1, ae, . . . , ae+n−1, ae+n, . . . , am+n−1).

The product of UP(A) is defined by the formula:

p(x, a1, . . . , am) · q(x, b1, . . . , bn) = p ◦1 q(x, b1, . . . , bn, a1, . . . , am).

The enveloping algebra of an algebra over an operad is defined in these terms
in [18] in the context of k-modules.

The first objective of this section is to prove:

4.3.2 Proposition. Let A be a P-algebra in any symmetric monoidal cat-
egory over C. The category of representations RP(A) is isomorphic to the
category of left UP(A)-modules, where UP(A) = UP(A)(1) refers to the en-
veloping algebra of A. ut

In the point-set context, the proposition is an immediate consequence of
this explicit construction of the enveloping algebra and of the explicit defini-
tion of the structure of representations in terms of operations p⊗ (a1⊗ · · · ⊗
x ⊗ · · · ⊗ an) 7→ p(a1, . . . , x, . . . , an). Note that any operation of the form
p(a1, . . . , ai−1, x, ai, . . . , an) is, by equivariance, equivalent to an operation of
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the form wp(x, a1, . . . , ai−1, ai, . . . , an), where x is moved to the first position
of the tensor product.

The proposition holds in any symmetric monoidal category. To check the
generalized statement, we use the explicit construction of the enveloping op-
erad, which generalizes the point-set construction of §4.1.3.

Proof. The construction of proposition 4.1.11 implies that the enveloping
algebra of A is defined by a reflexive coequalizer of the form:

P[S(P, A)](1)
φd0 //

φd1

// P[A](1)

φs0

zz
// UP(A)(1),

For any object E, we have an obvious isomorphism S(P, A;E) ' P[A](1)⊗E
and we obtain

S(P,S(P, A); S(P, A;E)) ' P[S(P, A)](1)⊗ P[A](1)⊗ E.

Thus the evaluation morphism of a representation ρ : S(P, A;E) → E
is equivalent to a morphism ρ : P[A](1) ⊗ E → E. One checks further, by
a straightforward inspection, that ρ : S(P, A;E) → E satisfies the unit and
associativity relation of representations if and only if the equivalent morphism
ρ : P[A](1)⊗E → E equalizes the morphisms d0, d1 : P[S(P, A)](1)→ P[A](1)
and induces a unitary and associative action of UP(A)(1) on E. The conclusion
follows. ut

As a corollary, we obtain:

4.3.3 Proposition. The forgetful functor U : RP(A)→ E has a left adjoint
F : E → RP(A) which associates to any object X ∈ E the free left UP(A)-
module F (X) = UP(A)⊗X. ut

In other words, the object F (X) = UP(A) ⊗X represents the free object
generated by X in the category of representations RP(A).

In the remainder of the section, we determine the operadic enveloping al-
gebras of commutative, associative and Lie algebras. To simplify, we assume
E = C = k Mod and we use the pointwise representation of tensors in proofs.
As explained in the introduction of this chapter, we can use the principle of
generalized point-tensors (see §0.5) to extend our results to commutative (re-
spectively, associative, Lie) algebras in categories of dg-modules, in categories
of Σ∗-objects, and in categories of right modules over operads.

4.3.4 Proposition. Let P = F(M)/(R) be an operad in k-modules defined
by generators and relations. The enveloping algebra of any P-algebra A is
generated by formal elements ξ(x1, a1, . . . , an), where ξ ∈ M(1 + n) ranges
over generating relations of P, together with the relations wρ(x1, a1, . . . , an) ≡
0, where ρ ∈ R(n) and w ∈ Σn+1. ut
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The next propositions are easy consequences of this statement.

4.3.5 Proposition. For a commutative algebra without unit A, the operadic
enveloping algebra UC(A) is isomorphic to A+, the unitary algebra such that
A+ = 1⊕A. ut

The object A+ = 1⊕A represents the image of A under the extension
functor (−)+ : CE → C+E from commutative algebras without unit to com-
mutative algebras with unit. The product of A+ extends the product of A on
A⊗A ⊂ A+⊗A+ and is given by the canonical isomorphisms 1⊗ 1 ' 1 and
A⊗ 1 ' A ' 1⊗A on the other components 1⊗ 1, A⊗ 1, 1⊗A ⊂ A+ ⊗ A+.
This construction can also be applied to associative algebras. The result gives
an associative algebra with unitA+ naturally associated to anyA ∈ AE so that
A+ represents the image of A under the extension functor (−)+ : AE → A+E .
4.3.6 Proposition. For an associative algebra without unit A, the operadic
enveloping algebra UA(A) is isomorphic to the classical enveloping algebra
of A, defined as the tensor product A+ ⊗ Aop+ , where A+ is obtained by the
addition of a unit to A, as in proposition §4.2.4, and Aop+ refers to the opposite
algebra of A+. ut

Recall that the Lie operad L forms a suboperad of the associative operad
A: the operad embedding ι : L → A+ maps the generating operation of the
Lie operad γ = γ(x1, x2) to the commutator ι(γ) = µ − τµ = µ(x1, x2) −
µ(x2, x1). The classical enveloping algebra of a Lie algebra G, usually defined
as the algebra generated by elements Xg, g ∈ G, together with the relations
Xg · Xh − Xh · Xg ≡ X[g,h], represents the image of G under the extension
functor ι! : LE → A+E .
4.3.7 Proposition. For a Lie algebra G, the operadic enveloping algebra
UL(G) is isomorphic to the classical enveloping algebra of G, defined as the
image of G under the extension functor ι! : LE → A+E. ut

4.4 Derivations and Kähler differentials

The modules of Kähler differentials Ω1
P (A) are representations of algebras

over P which appear naturally in the deformation theory of P-algebras and in
the definition of a generalized Quillen homology for P-algebras.

To simplify, we take E = C = k Mod as underlying symmetric monoidal
categories and we use the pointwise representation of tensors in k-modules.
Again, we can use the principle of generalized point-tensors to extend the
results of this section to the category of dg-modules, to the category of Σ∗-
objects, and to categories of right modules over operads.

4.4.1 Derivations and Kähler differentials. A map θ : A→ E, where A
is a P-algebra and E a representation of A, is a derivation if it satisfies the
relation
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θ(p(a1, . . . , an)) =
n∑
i=1

p(a1, . . . , θ(ai), . . . , an),

for all p ∈ P(n), a1, . . . , an ∈ A. The module of Kähler differentials Ω1
P (A) is

a representation of A such that

MorRP(A)(Ω1
P (A), E) = DerP(A,E),

for all E, where DerP(A,E) denotes the k-module of derivations θ : A→ E.
Note simply that the functor DerP(A,−) : E 7→ DerP(A,E) preserves limits

to justify the existence of Ω1
P (A).

In the case of a free P-algebra, we obtain:

4.4.2 Observation. If A = P(X) is a free P-algebra, then any derivation
θ : P(X)→ E is uniquely determined by its restriction to generators. Accord-
ingly, we have an isomorphism

DerP(P(X), E) ' MorE(X,E),

for any representation E ∈ RP(P(X)), and the module of Kähler differen-
tials Ω1

P (P(X)) is isomorphic to the free representation UP(P(X))⊗X, where
UP(P(X)) = UP(P(X))(1) refers to the enveloping algebra of P(X) (recall that
representations of A are equivalent to left UP(P(X))-modules).

4.4.3 Explicit constructions of Kähler differentials. An explicit con-
struction of the module of Kähler differentials Ω1

P (A) can be deduced from
observation 4.4.2: as in §4.1, we observe that UP(P(X))⊗X forms a functor
on the full subcategory of free P-algebras in PE and we use that any P-algebra
A has a presentation by a reflexive coequalizer naturally associated to A.

On the other hand, in the context of k-modules, the module of Kähler
differentials Ω1

P (A) can be defined easily as the k-module spanned by formal
expressions p(a1, . . . , dai, . . . , am), where p ∈ P(m), a1, . . . , am ∈ A, together
with relations of the form:

p(a1, . . . , q(ai, . . . , ai+n−1), . . . , daj , . . . , am+n−1)
≡ p ◦i q(a1, . . . , ai, . . . , ai+n−1, . . . , daj , . . . , am+n−1), for i 6= j,

p(a1, . . . , dq(ai, . . . , ai+n−1), . . . , am+n−1)

≡
∑i+n−1
j=i p ◦i q(a1, . . . , ai, . . . , daj , . . . , ai+n−1, . . . , am+n−1).

The representation structure is given by the formula

p(a1, . . . , ai−1, q(ai, . . . , daj , . . . , ai+n−1), ai+n, . . . , am+n−1)
= p ◦i q(a1, . . . , ai−1, ai, . . . , daj , . . . , ai+n−1, ai+n, . . . , am+n−1),
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for every formal element q(ai, . . . , daj , . . . , ai+n−1) ∈ Ω1
P (A), and where p ∈

P(m), q ∈ P(n), and a1 . . . , am+n−1 ∈ A. The adjunction relation is immediate
from this construction.

In the case of a free P-algebra A = P(X), the natural isomorphism θ :
UP(P(X)) ⊗ X

'−→ Ω1
P (P(X)) identifies a generating element x ∈ X to a

formal differential dx = 1(dx) ∈ Ω1
P (P(X)).

4.4.4 Classical examples. If the operad P is defined by generators and
relations P = F(M)/(R), then a map θ : A → E forms a derivation if and
only if it satisfies the relation

θ(ξ(a1, . . . , an)) =
n∑
i=1

ξ(a1, . . . , θ(ai), . . . , an)

with respect to generating operations ξ ∈ M(n). To prove this assertion,
use again that P is spanned by formal composites of generating operations
ξ ∈M(n) and check the coherence of the derivation relation with respect to
operadic composites.

In the context of associative and commutative algebras, we obtain that a
map θ : A→ E forms a derivation if and only if it satisfies the usual identity

θ(a · b) = θ(a) · b+ a · θ(b)

with respect to the product. In the context of Lie algebras, we obtain that a
map θ : A→ E forms a derivation if and only if it satisfies the identity

θ([a, b]) = [θ(a), b] + [a, θ(b)]

with respect to the Lie bracket. Thus, in all cases, we obtain the standard
notions of derivations.

Since derivations of commutative algebras are derivations in the usual
sense, we obtain:

4.4.5 Proposition. For a commutative algebra A, the module of Kähler
differentials Ω1

C (A) which arises from the theory of operads is isomorphic to
the usual module of Kähler differentials of commutative algebra. ut

In the case of associative algebras, we obtain:

4.4.6 Proposition. For an associative algebra (without unit) A, the module
of Kähler differentials Ω1

A (A) is isomorphic to the tensor product A+ ⊗ A
together with the bimodule structure such that

a · (α⊗ β) = aα⊗ β,
and (α⊗ β) · b = α⊗ βb+ αβ ⊗ b,

for a, b ∈ A, α⊗ β ∈ A+ ⊗A.
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The definition of the module A+ ⊗ A as a non-commutative analogue of
Kähler differential appears in non-commutative geometry (see [8, 34, 40]).
The proposition asserts that the definition of the theory of operads agrees
with the definition of non-commutative geometry. Since the relationship be-
tween A+ ⊗ A and derivations does not seem to occur in the literature, we
give a proof of the proposition.

Proof. We make explicit inverse isomorphisms

Θ : MorRA(A)(A+ ⊗A,E)→ Der(A,E)
and Φ : Der(A,E)→ MorRA(A)(A+ ⊗A,E).

In one direction, for a map φ : A+ ⊗ A→ E, we set Θ(φ)(a) = φ(1⊗ a), for
a ∈ A. It is straightforward to check that Θ(φ) forms a derivation if φ is a
morphism of A-bimodules. In the converse direction, for a map θ : A → E,
we set Φ(θ)(a⊗b) = a ·θ(b), for a⊗b ∈ A+⊗A. It is straightforward to check
that Φ(θ) forms a morphism of A-bimodules if θ is a derivation. In addition
we have clearly Θ(Φ(θ)) = θ, for all maps θ : A → E. Conversely, for any
morphism of A-bimodules φ : A+ ⊗A→ E, we have

Φ(Θ(φ))(a⊗ b) = a · φ(1⊗ b) = φ(a · (1⊗ b)) = φ(a⊗ b).

Hence we obtain ΘΦ = Id and ΦΘ = Id. ut

Recall that the operadic enveloping algebra UL(G) is identified with the
classical enveloping algebra of G, the associative algebra generated by ele-
ments Xg, where g ∈ G, together with the relations XgXh −XhXg = X[g,h],
for g, h ∈ G. Let ŨL(G) be the augmentation ideal of UL(G), the submodule
of UL(G) spanned by products Xg1 · · ·Xgn

of length n > 0.

4.4.7 Proposition. For a Lie algebra G, the module of Kähler differentials
Ω1

L (G) is isomorphic to the augmentation ideal ŨL(G) together with its natural
left UL(G)-module structure.

Proof. We make explicit inverse isomorphisms

Θ : MorRL(G)(ŨL(G), E)→ Der(G, E)

and Φ : Der(G, E)→ MorRL(G)(ŨL(G), E).

In one direction, for a map φ : ŨL(G) → E, we set Θ(φ)(g) = φ(Xg), for
g ∈ G. The derivation relation Θ(φ)([g, h]) = [Θ(φ)(g), h]+[g,Θ(φ)(h)] follows
from the relation X[g,h] = Xg · Xh − Xh · Xg in UL(G) and the assumption
that φ is a morphism of left UL(G)-module. In the converse direction, for
a map θ : G → E, we set Φ(θ)(Xg1 · · ·Xgn

) = Xg1 · · ·Xgn−1 · θ(gn), for
Xg1 · · ·Xgn ∈ ŨL(G). One checks readily that Φ(θ) cancels the ideal generated
by the relations XgXh − XhXg − X[g,h] if θ forms a derivation. Hence the
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map Φ(θ) : ŨL(G)→ E is well defined. It is also immediate from the definition
that Φ(θ) is a morphism of left UL(G)-modules. We have clearly Θ(Φ(θ)) = θ,
for all maps θ : G → E. Conversely, for any morphism of left UL(G)-modules
φ : ŨL(G)→ E, we have

Φ(Θ(φ))(Xg1 · · ·Xgn) = Xg1 · · ·Xgn−1 · φ(Xgn) = φ(Xg1 · · ·Xgn−1 ·Xgn).

Hence we obtain ΘΦ = Id and ΦΘ = Id. ut



Bibliographical comments on part I

We refer to [46] for a comprehensive overview of the history of operads. We
only give brief indications on matters related to our approach on algebras
over operads.

In most applications, authors deal with algebras and operads within a
fixed usual category, like the category of topological spaces, the category
of dg-modules, the category of simplicial sets, or the category of simplicial
modules. Nevertheless, homology theories, and other usual functors which
change the underlying category, are often used in the study of operads.

In the original reference [47], the structure of an operad is defined within
the category of topological spaces as a device to model the structure of it-
erated loop spaces. The definition of operads in the framework of symmetric
monoidal categories occurs explicitly in [17]. But, as far as we know, the
thesis [54] is the first reference which formalizes the naturality of operad
structures with respect to functors of symmetric monoidal categories.

In almost all references, the algebras over an operad are defined within
the same category as the operad. But, in problems of stable homotopy, au-
thors consider naturally spectra acted on by operads in simplicial sets (see
for instance [21]). However, the general axiomatic background of symmetric
monoidal categories over a base, which axiomatizes this relationship, has not
been formalized in the operadic literature yet.

The composition product ◦ is defined in [32] for Σ∗-objects in sets. The
introduction of this operation in the operad literature goes back to [56]. Left
modules over operads appear explicitly in [57] in a realization of the cotriple
construction of [3, 47] at the operad level. The notion of a left module over
operads is studied more thoroughly in [54] and in [14]. The point of view
of [54] is to identify algebras over operads with constant left modules. This
approach is the usual one of the literature.

The converse point of view adopted in this book, according to which left
modules are algebras over operads in a category over the base category, has
not been fully exploited yet. However, the equivalence between left modules
over operads and algebras in Σ∗-objects is made explicit in [38]. Note further
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that the generalization of Morita’s theorem to modules over operads in [33]
uses such an equivalence implicitly.

In the literature, the first examples of left module structures have appeared
as generalized algebras: Lie algebras inΣ∗-objects are introduced in [2] (under
the name twisted Lie algebras) to study total Hopf invariants. The study
of these generalized Lie algebras structures is carried on in [19, 61], and
in [11, 12, 13] and [39] in the language of operads.

Representations and enveloping algebras of algebras over an operads are
defined in [18]. The idea of the enveloping operad goes back to [17]. The
definition adopted in §4.1 is borrowed from [13]. The notion of a Kähler
differential for algebras over an operad is introduced in [26] in a definition of
the cohomology of algebras over operads.



Part II

The category of right modules
over operads and functors





Chapter 5

Definitions and basic constructions

Introduction

In this chapter, we define the functor SR(M) : RE → E associated to a right R-
moduleM . Besides, we study the commutation of the functor SR(M) : RE → E
with colimits.

For our purpose, we assume that right modules, like Σ∗-objects and oper-
ads, belong to the fixed base category C. But, as usual, we consider algebras
in symmetric monoidal categories E over C.

The construction SR(M) : A 7→ SR(M,A) appears explicitly in [54, §2.3.10]
as a particular case of a relative composition product M ◦R N , an opera-
tion between right and left modules over an operad R. In §5.1.5, we observe
conversely that the relative composition product M ◦R N is given by a con-
struction of the form SR(M,N) where N is identified with an R-algebra in
Σ∗-objects.

The category of left R-modules is denoted by RM. We adopt the symmet-
rical notationM R for the category of right R-modules.

In §3.2.15, we introduce the notation F = F(E , E) for the category of
functors F : E → E and the short notation R F = F(E , RE) for the category of
functors F : E → RE . If the category E is clear from the context, then we may
use the symmetric short notation F R = F(RE , E) for the category of functors
F : RE → E . The map SR : M 7→ SR(M) defines a functor SR :M R → F R.

Because of our conventions on categories of functors, we should check that
SR(M) : RE → E preserves filtered colimits. The (straightforward) verification
of this assertion is addressed in section 5.2 devoted to colimits.
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102 5 Definitions and basic constructions

5.1 The functor associated to a right module
over an operad

We recall the definition of a right module over an operad and we define the
functor SR(M) : A 7→ SR(M,A) associated to a right module next.

5.1.1 Right modules over operads. In §3.2.9, we recall that a left R-
module consists of aΣ∗-objectN ∈M equipped with a morphism λ : R ◦N →
N that provides N with a left action of the monoid object in (M, ◦, I) defined
by the operad R (see [14, §2.1.5]). Symmetrically, a right R-module consists
of a Σ∗-object M ∈ M equipped with a morphism ρ : M ◦ R → M that fits
commutative diagrams

M ◦ R
ρ

��

M ◦ I
M◦ηoo

=
zzttttttttt

M

, M ◦ R ◦ R
ρ◦R //

M◦µ
��

M ◦ R
ρ

��
M ◦ R

ρ // M

,

where as usual η : I → R (respectively, µ : R ◦ R → R) refers to the unit
(respectively, product) of the operad R. In short, the morphism ρ : M ◦R→M
provides M with a right action of the monoid object in (M, ◦, I) defined by
the operad R (see [14, §2.1.5]).

Note that the composition product of Σ∗-objects is not symmetric. There-
fore, in general, we can not recover properties of left R-modules by symmetry
with right R-modules.

The category of right R-modules is denoted by M R, a morphism of right
R-modules consists obviously of a morphism of Σ∗-objects f : M → N that
preserves operad actions.

Like an operad structure, the action of an operad R on a right R-module
M is equivalent to composition products

M(r)⊗ R(n1)⊗ · · · ⊗ R(nr)→M(n1 + · · ·+ nr)

that satisfy natural equivariance properties. The unit and associativity rela-
tions of operad actions can be expressed in terms of these composition prod-
ucts by an obvious generalization of May’s axioms. The partial compositions
product of an operad (see §3.1) have an obvious generalization in the context
of right-modules so that a right R-module structure is fully determined by
collections of morphisms

◦i : M(m)⊗ R(n)→M(m+ n− 1), i = 1, . . . ,m,

that satisfy natural equivariance properties, as well as unit and associativity
relations (see [46]).

In the point-set context, the composite of an element ξ ∈ M(r) with
operations q1 ∈ R(n1), . . . , qr ∈ R(nr) is denoted by ξ(q1, . . . , qr) ∈ M(n1 +
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· · ·+nr), like a composite of operad operations. Similarly, we use the notation
ξ ◦e q for the partial composite of ξ ∈M(m) with q ∈ R(n). The definition of
partial composites reads explicitly ξ ◦e q = ξ(1, . . . , q, . . . , 1), where operad
units occur at positions i 6= e in the composite of the right-hand side.

5.1.2 Colimits and limits. Since left R-modules form a category of R-
algebras in a symmetric monoidal category over C, proposition 3.3.1 implies
that the forgetful functor U : RM→M creates filtered colimits and reflexive
coequalizers in RM.

In the case of right R-modules, we obtain that the forgetful functor U :
M R → M creates all colimits in M R, because the composition product
of Σ∗-objects preserves colimits on the left: since we have an isomorphism
(colimi∈IMi) ◦ R

'←− colimi∈I(Mi ◦ R), we can form a composite

(colim
i∈I

Mi) ◦ R
'←− colim

i∈I
(Mi ◦ R)→ colim

i∈I
Mi

to provide every colimit of right R-modules Mi with a natural right R-module
structure and the conclusion follows.

The forgetful functor U : M R → M creates all limits, as in the case
of left R-modules, because we have a natural morphism (limi∈IMi) ◦ R →
limi∈I(Mi ◦ R) in the good direction to provide limi∈IMi with a right R-
module structure.

5.1.3 The functor associated to a right module over an operad. The
purpose of this paragraph is to define the functor SR(M) : RE → E associated
to a right R-module M , where E is any symmetric monoidal category over C.
The image of an R-algebra A ∈ RE under this functor SR(M) : A 7→ SR(M,A)
is defined by a reflexive coequalizer of the form

S(M ◦ R, A)
d0 //

d1

// S(M,A)

s0

zz
// SR(M,A) .

On one hand, the functor S(M) : E → E associated to a right R-module
M is equipped with a natural transformation

S(M ◦ R, A)
S(ρ,A)−−−−→ S(M,A)

induced by the morphism ρ : M ◦ R → M that defines the right R-action
on M . On the other hand, the structure of an R-algebra is determined by
a morphism λ : S(R, A) → A in E . Therefore, for an R-algebra A, we have
another natural morphism

S(M ◦ R, A) = S(M,S(R, A))
S(M,λ)−−−−→ S(M,A)
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induced by the morphism λ : S(R, A)→ A. In the converse direction, we have
a natural morphism

S(M,A) = S(M ◦ I, A)
S(M◦η,A)−−−−−−→ S(M ◦ R, A)

induced by the operad unit η : I → R. The object SR(M,A) ∈ E associated
to A ∈ RE is defined by the coequalizer of d0 = S(ρ,A) and d1 = S(M,λ) in
E together with the reflection s0 = S(M ◦ η,A).

In the point-set context, the object SR(M,A) can be defined intuitively as
the object spanned by tensors x(a1, . . . , ar), where x ∈M(r), a1, . . . , ar ∈ A,
divided out by the coinvariant relations of S(M,A)

σx(a1, . . . , ar) ≡ x(aσ(1), . . . , aσ(r))

and relations

x ◦i p(a1, . . . , ar+s−1) ≡ x(a1, . . . , p(ai, . . . , ai+s−1), . . . , ar+s−1)

yielded by the coequalizer construction.
Clearly, the map SR(M) : A 7→ SR(M,A) defines a functor SR(M) : RE → E ,

from the category of R-algebras in E to the category E , and the map SR : M 7→
SR(M) defines a functor SR :M R → F(RE , E), from the category of right R-
modules to the category of functors F : RE → E . For short, we can adopt the
notation F R for this functor category F R = F(RE , E).

The construction SR : M 7→ SR(M) is also functorial in E . Explicitly, for
any functor ρ : D → E of symmetric monoidal categories over C, the diagram
of functors

RD

SR(M)

��

ρ //
RE

SR(M)

��
D ρ

// E

commutes up to natural isomorphisms.

5.1.4 Constant modules and constant functors. Recall that the base
category C is isomorphic to the full subcategory ofM formed by constant Σ∗-
objects. By proposition 2.1.6, we also have a splitting M = C ×M0, where
M0 is the category of connected Σ∗-objects in C.

Any constant Σ∗-object has an obvious right R-module structure: all par-
tial composites ◦i : M(r)⊗ R(s)→M(r + s− 1) are necessarily trivial if we
assume M(r) = 0 for r > 0. Hence the base category C is also isomorphic
to the full subcategory ofM R formed by constant right R-modules. Observe
that the map SR : M 7→ SR(M) associates constant functors F (A) ≡ C to
constant right R-modules C ∈ C.

In the case of right R-modules, we have a splitting
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M R = C ×M0
R,

where M0
R denotes the full subcategory of M R formed by connected right

R-modules, only if R is a non-unitary operad.

5.1.5 Relative composition products. For a right R-module M and a left
R-module N , we have a relative composition product M ◦R N defined by a
reflexive coequalizer

M ◦ R ◦N
d0 //

d1

// M ◦N //

s0

||
M ◦R N ,

where the morphism d0 = ρ ◦N is induced by the right R-action on M , the
morphism d1 = M ◦λ is induced by the left R-action on N , and s0 = M ◦η◦N
is induced by the operad unit. This general construction makes sense in any
monoidal category in which reflexive coequalizers exist.

Recall that M ◦N is identified with the image of N ∈M under the functor
S(M) : E → E defined by M ∈ M for the category E =M. As a byproduct,
in the case E =M, we have a formal identification of the construction of §5.1
with the relative composition product:

SR(M,N) = M ◦R N.

In §9.1 we observe that the operad R forms a left module over itself. In
this case, we obtain SR(M, R) = M ◦R R 'M . In §9.2.6, we note further that
SR(M, R) = M◦RR forms naturally a right R-module so thatM is isomorphic to
SR(M, R) as a right R-module. In the sequel, we use this observation to recover
the right R-moduleM from the associated collection of functors SR(M) : RE →
E , where E ranges over symmetric monoidal categories over C.

5.1.6 The example of right modules over the commutative operad.
In this paragraph, we examine the structure of right modules over the operad
C+ associated to the category of unitary commutative algebras. Recall that
this operad is given by the trivial representations C+(n) = ∗, for every n ∈ N
(see §3.1.10).

We check that a right C+-module is equivalent to a contravariant functor
F : Finop → C, where Fin refers to the category formed by finite sets and all
maps between them (this observation comes from [33]).

For a Σ∗-object M and a finite set with n elements I, we set

M(I) = Bij ({1, . . . , n}, I)⊗Σn
M(n),

where Bij ({1, . . . , n}, I) refers to the set of bijections i∗ : {1, . . . , n} → I.
The coinvariants make the internal Σn-action on M(n) agree with the action
of Σn by right translations on Bij ({1, . . . , n}, I). In this manner we obtain a
functor I 7→M(I) on the category of finite sets and bijections between them.
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For a composite M ◦ C+, we have an identity of the form:

M ◦ C+(I) =
⊕

I1q···qIr=I

M(r)⊗ C+(I1)⊗ · · · ⊗ C+(Ir)/ ≡,

where the sum ranges over all partitions I1 q · · · q Ir = I and is divided out
by a natural action of the symmetric groups Σr. Since C+(Ik) = k, we also
have

M ◦ C+(I) =
⊕

I1q···qIr=I

M(r)/ ≡,

and we can use the natural correspondence between partitions I1q· · ·qIr = I
and functions f : I → {1, . . . , r}, to obtain an expansion of the form:

M ◦ C+(I) =
⊕
f :I→J

M(J)/ ≡ .

According to this expansion, we obtain readily that a right C+-action ρ :
M ◦ C+ → M determines morphisms f∗ : M(J) → M(I) for every f ∈ Fin,
so that a right C+-module determines a contravariant functor on the category
Fin. For details, we refer to [33].

On the other hand, one checks that the map n 7→ A⊗n, where A is any
commutative algebra in a symmetric monoidal category E extends to a co-
variant functor A⊗− : Fin → E . In the point-set context, the morphism
f∗ : A⊗m → A⊗n associated to a map f : {1, . . . ,m} → {1, . . . , n} is defined
by the formula:

f∗(
m⊗
i=1

ai) =
n⊗
j=1

{ ∏
i∈f−1(j)

ai

}
.

The functor SC+(M) : C+E → E associated to a right C+-module M is also
determined by the coend

SC+(M,A) =
∫ Fin

M(I)⊗A⊗I .

This observation follows from a straightforward inspection of definitions.

5.1.7 The example of right modules over initial unitary operads.
Recall that the initial unitary operad ∗C associated to an object C ∈ C is the
operad such that ∗C(0) = C, ∗C(1) = 1, and ∗C(n) = 0 for n > 0.

In §5.1.1, we mention that the structure of a right module over an operad
R is fully determined by partial composites

◦i : M(m)⊗ R(n)→M(m+ n− 1), i = 1, . . . ,m,

together with natural relations, for which we refer to [46]. In the case of an
initial unitary operad R = ∗C , we obtain that a right ∗C-module structure is
determined by morphisms
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∂i : M(m)⊗ C →M(m− 1), i = 1, . . . ,m,

which represent the partial composites ◦i : M(m) ⊗ ∗C(0) → M(m − 1),
because the term ∗C(n) of the operad is reduced to the unit for n = 1 and
vanishes for n > 1. Finally, the relations of partial composites imply that
he structure of a right ∗C-module is equivalent to a collection of morphisms
∂i : M(m) ⊗ C → M(m − 1), i = 1, . . . ,m, that satisfy the equivariance
relation

∂i · w = w ◦i ∗ · ∂w−1(i),

for every w ∈ Σm, where w ◦i ∗ ∈ Σm−1 refers to a partial composite with a
unitary operation ∗ in the permutation operad (see §3.1.9), and so that we
have commutative diagrams

M(m)⊗ C ⊗ C

∂j

��

M(r)⊗τ// M(m)⊗ C ⊗ C ∂i // M(m− 1)⊗ C

∂j−1

��
M(m− 1)⊗ C

∂i

// M(m− 2)

,

for i < j, where τ : C ⊗ C → C ⊗ C refers to the commutation of tensors.

5.1.8 The example of Λ∗-objects and generalized James’s construc-
tion. In the case of the operad ∗ = ∗1 associated to the unit object C = 1,
a right ∗-module is equipped with morphisms ∂i : M(n) → M(n − 1),
i = 1, . . . , n, since M(n)⊗1 'M(n). Thus we obtain that a right ∗-module is
equivalent to a Σ∗-objectM equipped with operations ∂i : M(n)→M(n−1),
i = 1, . . . , n, so that ∂i ·w = w◦i∗·∂w(i), for every w ∈ Σn, and ∂i∂j = ∂j−1∂i,
for i < j. According to [7], this structure is equivalent to a covariant functor
M : Λop∗ → C, where Λ∗ refers to the category formed by sets {1, . . . , n}, n ∈
N, and injective maps between them. The operation ∂i : M(n) → M(n − 1)
is associated to the injection di : {1, . . . , n − 1} → {1, . . . , n} that avoids
i ∈ {1, . . . , n}. The action of a permutation w : M(n)→ M(n) is associated
to the bijection w−1 : {1, . . . , n} → {1, . . . , n} defined by the inverse of this
permutation.

In the topological context, an algebra over the initial unitary operad ∗
is equivalent to a pointed space X ∈ Top∗ since a morphism ∗ : pt → X
defines a base point ∗ ∈ X. By definition, the functor S∗(M) associated to a
Λ∗-space M is given by the quotient

S∗(M,X) =
∞∐
n=0

(M(n)×X×n)Σn
/ ≡

of the coinvariant modules (M(n)×X×n)Σn
under the relation

ξ(x1, . . . , ∗, . . . , xn) = ξ ◦i ∗(x1, . . . , ∗̂, . . . , xn).
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Equivalently, the map n 7→ Xn determines a covariant functor on the cate-
gory Λ∗ and S∗(M,X) is given by the coend

S∗(M,X) =
∫ Λ∗

M(n)×X×n.

Examples of this construction are the classical James’s model of ΩΣX (see
[31]) and its generalizations to iterated loop spaces ΩnΣnX (see [7, 47]).
Actually, in the original definition of [47, Construction 2.4], motivated by
recognition problems for iterated loop spaces, the monad associated to a
topological operad is defined by a functor of the form S∗(P).

5.2 Colimits

In this section we examine the commutation of our construction with colimits.
On one hand, we obtain readily:

5.2.1 Proposition. The functor SR :M R → F R preserves all colimits.

Proof. The proposition follows from an immediate interchange of colimits.
ut

Recall that the forgetful functor U :M R →M creates all colimits. Recall
also that colimits in functor categories are obtained pointwise. Thus propo-
sition 5.2.1 asserts that, for any R-algebra A, we have the identity:

SR(colim
i

Mi, A) = colim
i

SR(Mi, A).

In contrast, one can observe that the functor SR(M) : A 7→ SR(M,A)
does not preserve colimits in general just because: the functor S(M) : X 7→
S(M,X) does not preserve all colimits, the forgetful functor U : RE → E
does not preserve all colimits. On the other hand: in §2.4 we observe that
the functor S(M) : X 7→ S(M,X) preserves filtered colimits and reflexive
coequalizers; in §3.3 we observe that the forgetful functor U : RE → E creates
filtered colimits and the coequalizers which are reflexive in the underlying
category E . Therefore, we obtain:

5.2.2 Proposition. The functor SR(M) : RE → E associated to a right R-
module M ∈M R preserves filtered colimits and the coequalizers of R-algebras
which are reflexive in the underlying category E.

Proof. Immediate consequence of the results recalled above the proposition.
ut



Chapter 6

Tensor products

Introduction

The goal of this chapter is to generalize the assertions of proposition 2.1.5 to
right modules over an operad:

Theorem 6.A. Let R be an operad in C. The category of right R-modules
M R is equipped with the structure of a symmetric monoidal category over C
so that the map SR : M 7→ SR(M) defines a functor of symmetric monoidal
categories over C

SR : (M R,⊗, 1)→ (F(RE , E),⊗, 1),

functorially in E, for every symmetric monoidal category E over C.

We have further:

Theorem 6.B. Let R be a non-unitary operad in C.
The categoryM0

R of connected right R-modules forms a reduced symmetric
monoidal category over C. The category splittingM R = C ×M0

R is compatible
with symmetric monoidal structures and identifies M R with the symmetric
monoidal category over C associated to the reduced category M0

R.
Moreover, the functor SR : M 7→ SR(M) fits a diagram of symmetric

monoidal categories over C:

M R

SR // F(RE , E)

C ×M0
R

Id× S0
R

//

'

OO

C ×F(RE , E)0

'

OO
.

We prove in [13, §3] that the category of right R-modules inherits a symmet-
ric monoidal structure from Σ∗-objects. We survey this construction in §6.1.
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110 6 Tensor products

We prove that this symmetric monoidal structure fits the claims of theo-
rems 6.A-6.B in §6.2. We record the definition of internal hom-objects for
right modules over an operad in §6.3.

6.1 The symmetric monoidal category
of right modules over an operad

We survey the definition of the symmetric monoidal structure of [13, §3]
for right modules over operad. We use observations of §2.2 to make this
construction more conceptual.

6.1.1 The tensor product of right modules over an operad. To de-
fine the tensor product of right R-modules M,N , we observe that the tensor
product of M,N in the category of Σ∗-objects is equipped with a natural
R-module structure. The right R-action on M ⊗N is given explicitly by the
composite of the distribution isomorphism of §2.2.3

(M ⊗N) ◦ R ' (M ◦ R)⊗ (N ◦ R)

with the morphism

(M ◦ R)⊗ (N ◦ R) ρ⊗ρ−−→M ⊗N

induced by right R-actions on M and N . The external tensor product of a
right R-module N with an object C ∈ C in the category of Σ∗-objects comes
equipped with a similar natural R-module structure.

Thus we have an internal tensor product ⊗ : M R × M R → M R and
an external tensor product ⊗ : C ×M R → M R on the category of right R-
modules. The external tensor product can also be identified with the tensor
product of a right R-module with a constant right R-module.

The associativity and symmetry isomorphisms of the tensor product of Σ∗-
modules define morphisms of right R-modules. This assertion follows from a
straightforward inspection. The unit object 1 is equipped with a trivial right
R-module structure, like any constant Σ∗-module, and defines a unit with
respect to the tensor product of right R-modules as well. Hence we conclude
that the category of right R-modules inherits a symmetric monoidal structure,
as asserted in theorem 6.A.

In [13] we prove that the category of right R-modules comes also equipped
with an internal hom HOMR(M,N) such that

MorM R
(L⊗M,N) = MorM R

(L,HOMR(M,N)),

but we do not use this structure in this book.
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6.1.2 The tensor product of connected right modules over an op-
erad. The tensor product of connected right R-modules forms obviously a
connected right R-module, and similarly as regards the tensor product of a
connected right R-module with a constant right R-module. Thus the category
of connected right R-modules M0

R is preserved by the symmetric monoidal
structure ofM and forms a reduced symmetric monoidal category over C.

Suppose R is a connected operad. The isomorphism σ : C ×M0
R
'−→ M R

maps a pair (C,M) ∈ C ×M0
R to the direct sum C⊕M ∈M R. The canonical

functor η : C → M R defines tautologically a functor of symmetric monoidal
categories

η : (C,⊗, 1)→ (M R,⊗, 1)

since we provide M R with the structure of a symmetric monoidal category
over C. As the tensor product is assumed to preserve colimits, we conclude
that σ defines an equivalence of symmetric monoidal categories over C so
thatM R is equivalent to the canonical symmetric monoidal category over C
associated to the reduced categoryM0

R. Thus we obtain the first assertion of
theorem 6.B.

6.1.3 The pointwise representation of tensors in right R-modules.
The tensor product of R-modules inherits an obvious pointwise representation
from Σ∗-objects. By construction, the underlying Σ∗-object of M⊗N is given
by the tensor product of M,N in the category of Σ∗-objects. Naturally, we
take the tensors of §2.1.9

x⊗ y ∈M(p)⊗N(q)

to span the tensor product of M,N in right R-modules. The pointwise ex-
pression of the right R-action on a generating tensor x⊗ y ∈M(p)⊗N(q) is
given by the formula:

(x⊗ y)(ρ1, . . . , ρr) = x(ρ1, . . . , ρp)⊗ y(ρp+1, . . . , ρr),

for every ρ1 ∈ R(n1), . . . , ρr ∈ R(nr), where r = p+ q.
Recall that (M⊗N)(r) is spanned as a C-object by tensors w ·x⊗y, where

w ∈ Σr. By equivariance, the action of R on w · x⊗ y reads:

(w · x⊗ y)(ρ1, . . . , ρr)
= w(n1, . . . , nr) · x(ρw(1), . . . , ρw(p))⊗ y(ρw(p+1), . . . , ρw(r)).

In [13], the right R-action on M ⊗N is defined by this pointwise formula.
By fact §2.1.10, a morphism of Σ∗-objects f : M ⊗ N → T is equivalent

to a collection of Σp × Σq-equivariant morphisms f : M(p) ⊗N(q) → T (r).
Clearly, a morphism of right R-modules f : M ⊗ N → T is equivalent to a
collection of Σp × Σq-equivariant morphisms f : M(p) ⊗ N(q) → T (r) such
that:

f(x⊗ y)(ρ1, . . . , ρr) = f(x(ρ1, . . . , ρp)⊗ y(ρp+1, . . . , ρr))
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for every generating tensors x⊗y ∈M(p)⊗N(q), and every ρ1 ∈ R(n1), . . . , ρr ∈
R(nr).

6.2 Tensor products of modules and functors

We achieve the proof of theorems 6.A-6.B in this chapter. We have essentially
to check:

6.2.1 Lemma. For right R-modules M,N , we have a natural functor iso-
morphism SR(M ⊗ N) ' SR(M) ⊗ SR(N) which commutes with the unit,
associativity and symmetry isomorphisms of tensor products.

Proof. In the construction of §5.1, we observe that

S(M ◦ R, A)
d0 //
d1

// S(M,A) // SR(M,A)

forms a reflexive coequalizer. Accordingly, by proposition 1.2.1, the tensor
product SR(M,A) ⊗ SR(N,A) can be identified with the coequalizer of the
tensor product

S(M ◦ R, A)⊗ S(N ◦ R, A)
d0⊗d0 //
d1⊗d1

// S(M,A)⊗ S(N,A) .

The statements of §§2.2.4-2.2.5 imply the existence of a natural isomorphism
of coequalizer diagrams

S((M ⊗N) ◦ R, A) // //

'
��

S(M ⊗N,A)

'
��

// SR(M ⊗N,A)

��
S(M ◦ R, A)⊗ S(N ◦ R, A) //// S(M,A)⊗ S(N,A) // SR(M,A)⊗ SR(N,A)

from which we deduce the required isomorphism SR(M⊗N,A) ' SR(M,A)⊗
SR(N,A).

This isomorphism inherits the commutation with the unit, associativity
and symmetry isomorphism of tensor products from the isomorphism S(M ⊗
N,X) ' S(M,X) ⊗ S(N,X) of the symmetric monoidal functor S : M 7→
S(M).

Note that the isomorphism SR(M ⊗N) ' SR(M)⊗ SR(N) is natural with
respect to the underlying category E . ut

Then we obtain:

6.2.2 Proposition. The map SR : M 7→ SR(M) defines a symmetric
monoidal functor



6.3 On enriched category structures 113

SR : (M R,⊗, 1)→ (F R,⊗, 1),

functorially in E, where F R = F(RE , E), and we have a commutative triangle
of symmetric monoidal categories

(C,⊗, 1)
η

xxqqqqqqqqqq
η

&&MMMMMMMMMM

(M R,⊗, 1)
SR

// (F R,⊗, 1)

.

Proof. Lemma 6.2.1 gives the first assertion of the proposition. The commu-
tativity of the triangle is checked by an immediate inspection. ut

The claims of theorems 6.A-theorem 6.B are immediate consequences of
this proposition. ut

6.3 On enriched category structures

If C is a closed symmetric monoidal category, then we obtain further that the
category of right modules over an operad R inherits a hom-bifunctor

HomM R
(−,−) : (M R)op × (M R)→ C

from the category of Σ∗-objects.
Formally, the hom-object HomM R

(M,N), for M,N ∈ M R, is defined by
a reflexive equalizer of the form

HomM R
(M,N) // HomM(M,N)

d0 //

d1
// HomM(M ◦ R, N)

s0

ww
.

The morphism

HomM(M,N)
HomM(ρ,N)−−−−−−−−→ HomM(M ◦ R, N)

induced by the R-action on M defines d0. Since we observe in §2.2.3 that the
map M 7→M ◦ R defines a functor of symmetric monoidal categories over C

− ◦ R :M→M,

we have a natural morphism on hom-objects

HomM(M,N) −◦R−−→ HomM(M ◦ R, N ◦ R).
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The composite of this morphism with the morphism

HomM(M ◦ R, N ◦ R) HomM(M◦R,ρ)−−−−−−−−−−→ HomM(M ◦ R, N)

induced by the R-action on N defines d1. The reflection s0 is defined by the
morphism

HomM(M ◦ R, N)
HomM(M◦η,N)−−−−−−−−−−→ HomM(M ◦ I,N) = HomM(M,N)

induced by the operad unit η : I → R.
The morphism set MorM R

(M,N) can be defined by the same equalizer

MorM R
(M,N) // MorM(M,N)

d0 //

d1
// MorM(M ◦ R, N)

s0

ww
,

because for a morphism φ : M → N the commutation with operad actions is
formally equivalent to the equation d0(φ) = d1(φ). The adjunction relation

MorM R
(C ⊗M,N) = MorC(C,HomM R

(M,N)),

is an immediate consequence of this observation and of the adjunction relation
at the Σ∗-object level.



Chapter 7

Universal constructions
on right modules over operads

Introduction

The usual constructions of module categories (namely free objects, extension
and restriction of structures) make sense in the context of right modules
over operads. In this chapter we check that these constructions correspond
to natural operations on functors.

In §7.1, we determine the functor associated to free objects in right modules
over operads. Besides, we observe that the category of right modules over an
operad R is equipped with small projective generators defined by the free
objects associated to the generating Σ∗-objects Fr = I⊗r, r ∈ N, and we
determine the associated functors on R-algebras.

In §7.2, we define the extension and restriction functors for right modules
over operads and we make explicit the corresponding operations on functors.

7.1 Free objects and generators

In §3.2.13, we recall that the free left R-module generated by L ∈ M is
represented by the composite Σ∗-object N = R ◦L equipped with the left
R-action defined by the morphism µ◦L : R ◦ R ◦L→ R ◦L, where µ : R ◦ R→ R
denotes the composition product of R. Symmetrically, the free right R-module
generated by L ∈ M is defined by the composite Σ∗-object M = L ◦ R
equipped with the right R-action defined by the morphism L ◦ µ : L ◦ R ◦ R→
L ◦ R.

At the functor level, the free object functor − ◦ R : M → M R and the
forgetful functor U :M R →M have the following interpretation:

7.1.1 Theorem.

(a) For a free right R-module M = L ◦ R, the diagram

115
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E

S(L) ��>
>>

>>
>>

RE

SR(L◦R)��~~
~~

~~
~

Uoo

E

,

in which U : RE → E denotes the forgetful functor, commutes up to a natural
isomorphism of functors.
(b) For any right R-module M ∈M R, the diagram

E

S(M) ��>
>>

>>
>>

R(−) //
RE

SR(M)��~~
~~

~~
~

E

,

in which R(−) : E → RE denotes the free R-algebra functor, commutes up to a
natural isomorphism of functors.

In other words, we have functor isomorphisms SR(L ◦ R) ' S(L) ◦ U , for
all free right R-modules M = L ◦ R, and S(M) ' SR(M) ◦ R(−), for all
right R-modules M ∈M R. The isomorphisms that give the functor relations
of theorem 7.1.1 are also natural with respect to the symmetric monoidal
category E on which functors are defined.

This theorem occurs as the particular case of an operad unit η : I → R in
theorem 7.2.2 proved next. Note that we prove directly the general case of
theorem 7.2.2 and our arguments do not rely on theorem 7.1.1. Therefore we
can refer to theorem 7.2.2 for the proof of this proposition.

7.1.2 Generating objects in right modules over operads. Consider the
free right R-modules Fr ◦ R, r ∈ N, associated to the generators Fr, r ∈ N of
the category of Σ∗-objects.

As Fr = I⊗r, we have F1 ◦R = I ◦R ' R, the operad R considered as a right
module over itself, and, for all r ∈ N, we obtain Fr ◦ R = (I⊗r) ◦ R ' R⊗r, the
rth tensor power of R in the category of right R-modules.

Since S(Fr) ' Id⊗r, the rth tensor power of the identity functor Id : E →
E , theorem 7.1.1 returns:

7.1.3 Proposition. We have SR(F1 ◦ R) = SR(R) = U , the forgetful functor
U : RE → E, and SR(Fr ◦ R) = SR(R)⊗r = U⊗r, the rth tensor power of the
forgetful functor U : RE → E. ut

The next proposition is an immediate consequence of proposition 2.1.13
and of the adjunction relation HomM R

(L ◦ R,M) ' HomM(L,M).

7.1.4 Proposition. We have a natural isomorphism

ωr(M) : M(r) '−→ HomM R
(Fr ◦ R,M)

for every M ∈M R. ut
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This proposition and the discussion of §7.1.2 imply further:

7.1.5 Proposition. The objects Fr ◦ R, r ∈ N define small projective gener-
ators of M R in the sense of enriched categories. Explicitly, the functors

M 7→ HomM R
(Fr ◦ R,M)

preserve filtered colimits and coequalizers and the canonical morphism

∞⊕
r=0

HomM R
(Fr ◦ R,M)⊗ Fr ◦ R→M

is a regular epi, for every M ∈M R. ut

This proposition is stated for the sake of completeness. Therefore we do
not give more details on these assertions.

7.2 Extension and restriction of structures

Let ψ : R → S be an operad morphism. In §3.3.5, we recall the definition of
extension and restriction functors ψ! : RE � SE : ψ∗. In the case E = M,
we obtain extension and restriction functors on left modules over operads
ψ! : RM� SM : ψ∗.

Symmetrically, we have extension and restriction functors on right module
categories

ψ! :M R �M S : ψ∗.

In this section, we recall the definition of these operations and we prove that
they reflect natural operations on functors.

7.2.1 Extension and restriction of right-modules over operads. The
operad R operates on any right S-module N through the morphism ψ : R→ S.
This R-action defines the right R-module ψ∗N associated to N by restriction
of structures. In the converse direction, the right S-module ψ!M obtained by
extension of structures from a right R-module M is defined by the relative
composition product ψ!M = M ◦R S.

To justify the definition of ψ!M , recall that the relative composition prod-
uct ψ!M = M ◦R S is defined by a reflexive coequalizer of the form:

M ◦ R ◦ S
d0 //

d1

// M ◦ S

s0

}}
// ψ!M .

(This reflexive coequalizer is symmetric to the reflexive coequalizer of §3.3.6.)
One observes that d0, d1 are morphisms of free right S-modules, so that
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ψ!M inherits a natural S-module structure, and an immediate inspection
of definitions proves that M 7→ ψ!M is left adjoint to the restriction functor
N 7→ ψ∗N . The adjunction unit ηM : M → ψ∗ψ!M is identified with the
morphism ηM : M →M ◦R S induced by

M = M ◦ I M◦η−−−→M ◦ S

where η : I → S denotes the unit of the operad S. The adjunction augmen-
tation εN : ψ!ψ

∗N → N is identified with the morphism εN : N ◦R S → N
induced by the right S-action on N :

N ◦ S ρ−→ N.

For the unit morphism η : I → R of an operad R, we have M I =M, the
restriction functor M 7→ η∗M represents the forgetful functor U :M R →M
and the extension functor L 7→ η!L is isomorphic to the free object functor
L 7→ L ◦ R. Thus in this case we obtain the adjunction between the forgetful
and free object functors.

7.2.2 Theorem. Let ψ : R→ S be any operad morphism.
(a) For any right R-module M , the diagram of functors

RE

SR(M) ��@
@@

@@
@@

SE

SS(ψ!M)��~~
~~

~~
~

ψ∗oo

E

commutes up to a natural functor isomorphism.
(b) For any right S-module N , the diagram of functors

RE

SR(ψ
∗N) ��@

@@
@@

@@
ψ! //

SE

SS(N)��~~
~~

~~
~

E

commutes up to a natural functor isomorphism.

The isomorphisms that give these functor relations are also natural with
respect to the symmetric monoidal category E on which functors are defined.

Proof. In the case of a right R-module M and an S-algebra B, we obtain that
the morphism

S(M,B) = S(M ◦ I,A)
S(M◦η,A)−−−−−−→ S(M ◦ S, A)

induced by the operad unit η : I → S and the morphism
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S(M ◦ S, B) = S(M,S(S, B))
S(M,λ)−−−−→ S(M,B)

induced by the operad action on B induce inverse natural isomorphisms be-
tween SR(M,ψ∗B) and SS(ψ!M,B).

In the case of a right S-module N and an R-algebra A, we obtain that the
morphism

S(N,A)
S(N◦η,A)−−−−−−→ S(N ◦ S, A)

induced by the operad unit η : I → S and the morphism

S(N,S(A)) = S(N ◦ S, A)
S(ρ,A)−−−−→ S(N,A)

induced by the right operad action on N induce inverse natural isomorphisms
between SS(N,ψ!A) and SR(ψ∗N,A). ut

7.2.3 Extension and restriction of functors on the right. The composi-
tion on the right with a functor α : A → B induces a functor α∗ : F(B,X )→
F(A,X ). In this section, we study compositions with adjoint functors

α! : A� B : α∗,

for instance the extension and restriction functors ψ! : RE � SE : ψ∗ associ-
ated to an operad morphism ψ : R→ S. In this situation, we define extension
and restriction functors (on the right) on functor categories

α! : F(A,X ) � F(B,X ) : α∗

by α!F (B) = F (α∗B), for B ∈ B, respectively α∗G(A) = G(α!A), for A ∈ A.

7.2.4 Proposition. The extension and restriction functors

α! : F(A,X ) � F(B,X ) : α∗

define adjoint functors, for any target category X .

Proof. Observe simply that the natural transformations F (ηA) : F (A) →
F (α∗α!A) and G(εB) : G(α!α

∗B) → G(B) induced by the adjunction unit
and the adjunction augmentation of α! : A � B : α∗ define an adjunction
unit and an adjunction augmentation at the functor level. ut

Theorem 7.2.2 asserts that we have natural functor isomorphisms SS(ψ!M) '
ψ! SR(M), for every M ∈M R, and SR(ψ∗N) ' ψ∗ SS(N), for every N ∈M S.
By a direct and straightforward inspection, we obtain further:

7.2.5 Observation. The isomorphisms SS(ψ!M) ' ψ! SR(M) and SR(ψ∗N) '
ψ∗ SS(N) commute with adjunction units and adjunction augmentations. ut

And, as a byproduct, we obtain:
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7.2.6 Proposition. The diagram

HomM S
(ψ!M,N)

SS

��

' // HomM R
(M,ψ∗N)

SR

��
HomF S

(SS(ψ!M),SS(N))

'
��@

@@
@@

@@
HomF R

(SR(M), ψ∗ SS(N))

'
��~~

~~
~~

~

HomF S
(ψ! SR(M),SS(N)) '

// HomF R
(SR(M),SR(ψ∗N))

commutes, for every M ∈M R and N ∈M S. ut

This proposition asserts roughly that the functor SR : M 7→ SR(M) pre-
serves the adjunction relation of the extension and restriction of structures
up to functor isomorphisms.

To complete the results of this section, we inspect the commutation of
extension and restriction functors with tensor structures. At the module level,
we obtain:

7.2.7 Proposition. Let ψ : R → S be an operad morphism. The extension
functor ψ! : M R → M S and the restriction functor ψ∗ : M S → M R are
functors of symmetric monoidal categories over C and define an adjunction
relation in the 2-category of symmetric monoidal categories over C.

Proof. For the restriction functor, we have obviously an identity ψ∗(M⊗N) =
ψ∗(M) ⊗ ψ∗(N) and ψ∗ : M S → M R forms clearly a functor of symmetric
monoidal categories.

Concerning the extension functor, since we have identifications ψ!(M) =
M ◦R S = SR(M, S), lemma 6.2.1 gives a natural isomorphism of Σ∗-objects
ψ!(M⊗N) ' ψ!(M)⊗ψ!(N). One checks easily that this isomorphism defines
a morphism in the category of right R-modules. Hence we conclude that ψ! :
M R →M S forms a functor of symmetric monoidal categories as well.

One checks further that the adjunction unit ηM : M → ψ∗ψ!M and the
adjunction augmentation εN : ψ!ψ

∗N → N , made explicit in §7.2.1, are
natural transformations of symmetric monoidal categories. Hence we obtain
finally that ψ! : M R → M S and ψ∗ : M R � M S define an adjunction of
symmetric monoidal categories over C. ut

At the functor level, we obtain:

7.2.8 Proposition. Let α! : A → B : α∗ be adjoint functors. The associated
extension and restriction functors

α! : F(A, E) � F(B, E) : α∗,
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where E is a symmetric monoidal category over C, are functors of symmetric
monoidal categories over C and define an adjunction relation in the 2-category
of symmetric monoidal categories over C.

Proof. In §3.2.16, we already observe that functors of the form F 7→ α!F and
G 7→ α∗G are functors of symmetric monoidal categories over C. One checks
by an immediate inspection that the adjunction unit ηF : F → α∗α!F and
the adjunction augmentation εG : α!α

∗G → G are natural transformations
of symmetric monoidal categories over C. ut

By a direct and straightforward inspection, we obtain:

7.2.9 Observation. The isomorphisms SS(ψ!M) ' ψ! SR(M) and SR(ψ∗N) '
ψ∗ SS(N) are natural equivalences of symmetric monoidal categories over C.

ut

To summarize:

7.2.10 Proposition. Let ψ : R→ S be an operad morphism. The diagram

M R

ψ! //

SR

��

M S

SS

��

ψ∗
oo

F R

ψ! // F S
ψ∗
oo

commutes up to natural equivalences of symmetric monoidal categories over C.
ut





Chapter 8

Adjunction and embedding properties

Introduction

Let R be an operad in C. In this chapter, we generalize results of §2.3 to the
functor SR :M R → F R from the category of right R-modules to the category
of functors F : RE → E , where E is a fixed symmetric monoidal category over
C.

Again, since we observe in §5.2 that the functor SR :M R → F R preserves
colimits, we obtain that this functor has a right adjoint ΓR : F R → M R.
In §8.1, we generalize the construction of §2.3.4 to give an explicit definition
of this functor ΓR : G 7→ ΓR(G).

In §8.2, we prove that the functor SR :M R 7→ F R is faithful in an enriched
sense (like S :M 7→ F) if the category E is equipped with a faithful functor
η : C → E . Equivalently, we obtain that the adjunction unit η(M) : M →
ΓR(SR(M)) forms a monomorphism.

In the case E = C = k Mod, we observe that the unit η(M) : M → Γ(S(M))
of the adjunction S :M� F : Γ forms an isomorphism if M is a projective
Σ∗-module or if the ground ring is an infinite field. In §8.3, we extend these
results to the context of right R-modules:

Theorem 8.A. In the case E = C = k Mod, the adjunction unit ηR(M) :
M → ΓR(SR(M)) defines an isomorphism if M is a projective Σ∗-module or
if the ground ring is an infinite field.

As a corollary, we obtain that the functor SR : M R → F R is full and
faithful in the case E = C = k Mod, where k is an infinite field.

To prove this theorem, we observe that the underlying Σ∗-object of ΓR(G),
for a functor G : RE → E , is identified with the Σ∗-object Γ(G ◦ R(−))
associated to the composite of G : RE → E with the free R-algebra functor
R(−) : E → RE . Then we use the relation SR(M) ◦ R(−) ' S(M), for a functor
of the form G = SR(M), to deduce theorem 8.A from the corresponding
assertions about the unit of the adjunction S :M� F : Γ.

123
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The results of this chapter are not used elsewhere in this book and we give
an account of these results essentially for the sake of completeness.

8.1 The explicit construction of the adjoint functor
ΓR : F R → M R

The explicit construction of the adjoint functor ΓR : F R → M R is parallel
to the construction of §2.3 for the functor Γ : F → M to the category of
Σ∗-objectsM. First, we prove the existence of a pointwise adjunction relation

MorE(SR(M,A), X) ' MorM R
(M,EndA,X),

for fixed objects A ∈ RE , X ∈ E , where EndA,X is the endomorphism module
defined in §2.3.1. For this aim, we observe that the endomorphism module
EndA,X is equipped with a right R-module structure if A is an R-algebra and
we have essentially to check that the adjunction relation of §2.3.2

MorE(S(M,A), X) ' MorM(M,EndA,X),

makes correspond morphisms of right R-modules g : M → EndA,X to mor-
phisms f : SR(M,A)→ X.

Then, we apply this pointwise adjunction relation to a category of functors
E = F R to define the right adjoint ΓR : F R →M R of SR :M R → F R.

8.1.1 On endomorphism modules and endomorphism operads. Re-
call that the endomorphism module of a pair objects X,Y ∈ E is defined by
the collection

EndX,Y (r) = HomE(X⊗r, Y )

on which symmetric groups act by tensor permutations on the source. In the
case X = Y , we obtain EndX,Y = EndX , the endomorphism operad of X,
defined in §3.4.

We have natural composition products

◦i : HomE(X⊗r, Y )⊗HomE(X⊗s, X)→ HomE(X⊗r+s−1, Y )

which generalize the composition products of the endomorphism operad
EndX and which provide EndX,Y with the structure of a right module over
this endomorphism operad EndX .

Recall that the structure of an R-algebra A is equivalent to an operad
morphism ∇ : R → EndA. Hence, in the case where X = A is an R-algebra,
we obtain that EndA,Y forms naturally a right R-module by restriction of
structures.

Our first goal is to check:

8.1.2 Proposition. We have a natural adjunction relation
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MorE(SR(M,A), Y ) ' MorM R
(M,EndA,Y )

for every M ∈M R, A ∈ RE and Y ∈ E.

Proof. By definition, the object SR(M,A) is defined by a reflexive coequalizer

S(M ◦ R, A)
d0 //

d1

// S(M,A)

s0

zz
// SR(M,A) ,

where d0 is induced by the right R-action on M and d1 is induced by the
left R-action on A. As a consequence, we obtain that the morphism set
MorE(SR(M,A), Y ) is determined by an equalizer of the form

MorE(SR(M,A), Y ) // MorE(S(M,A), Y )
d0 //

d1
// MorE(S(M ◦ R, A), Y ) .

By proposition 2.3.2, we have adjunction relations

MorE(S(M,A), Y ) ' MorM(M,EndA,Y )
and MorE(S(M ◦ R, A), Y ) ' MorM(M ◦ R,EndA,Y )

that transport this equalizer to an isomorphic equalizer of the form:

ker(d0, d1) // MorM(M,EndA,Y )
d0 //

d1
// MorM(M ◦ R,EndA,Y ) .

By functoriality, we obtain that the map d0 in this equalizer is induced
by the morphism ρ : M ◦ R → M that determines the right R-action on M .
Thus we have d0(f) = f · ρ, for all f : M → EndA,Y , where ρ denotes the
right R-action on M . On the other hand, by going through the construction of
proposition 2.3.2, we check readily that d1(f) = ρ ·f ◦R, where in this formula
ρ denotes the right R-action on EndA,Y . Hence we have f ∈ ker(d0, d1) if and
only if f : M → EndA,Y forms a morphism of right R-modules.

To conclude, we obtain that the adjunction relation of proposition 2.3.2
restricts to an isomorphism

MorE(SR(M,A), Y ) ' MorM R
(M,EndA,Y )

and this achieves the proof of proposition 8.1.2. ut

8.1.3 Remark. In §2.3.3, we mention that the endomorphism module
EndX,Y forms also a left module over EndY , the endomorphism operad of
Y . Explicitly, we have natural composition products
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HomE(Y ⊗r, Y )⊗HomE(X⊗n1 , Y )⊗ · · · ⊗HomE(X⊗nr , Y )

→ HomE(X⊗n1+···+nr , Y )

which generalize the composition products of the endomorphism operad
EndY and which provide EndX,Y with the structure of a left module over
this endomorphism operad EndY .

Obviously, the left EndY -action commutes with the right EndX -action
on EndX,Y so that EndX,Y forms a EndY -EndX -bimodule (see §9.1 for this
notion). As a corollary, if X = A is an algebra over an operad R and Y = B
is an algebra over an operad P, then we obtain that EndA,B forms a P-R-
bimodule by restriction of structures on the left and on the right (see §9.3).

Next (see §9.2) we observe that the map SR(N) : A 7→ SR(N,A) defines
a functor SR(N) : RE → PE when N is equipped with the structure of a
P-R-bimodule. In this context, we have an adjunction relation

Mor
PE(SR(N,A), B) ' Mor

PM R
(N,EndA,B)

for all N ∈ PM R, A ∈ RE and B ∈ PE , where PM R refers to the category of
P-R-bimodules.

8.1.4 Definition of the adjoint functor ΓR : F R → M R. To define the
functor ΓR : F R →M R, we apply the pointwise adjunction relation of propo-
sition 8.1.2 to the category of functors F R.

Observe that the forgetful functor U : RE → E can be equipped with
the structure an R-algebra in the category of functors F R = F(RE , E). This
assertion is tautological since we observe in §3.2.8 that R-algebras in categories
of functors F R = F(X , E) are equivalent to functors F : X → RE . The
forgetful functor U : RE → E together with its R-algebra structure corresponds
to the identity functor Id : RE → RE .

Equivalently, the evaluation products R(r)⊗A⊗r → A, where A ranges over
the category of R-algebras, are equivalent to functor morphisms R(r)⊗U⊗r →
U that provide the forgetful functor U : RE → E with the structure of an R-
algebra in F R.

We have a tautological identity SR(M,U(A)) = SR(M,A) from which we
deduce the functor relation SR(M,U) = SR(M). As a consequence, if we set
ΓR(G) = EndU,G for G ∈ F R, then proposition 8.1.2 returns:

8.1.5 Proposition. The functor ΓR : F R → M R defined by the map G 7→
EndU,G is right adjoint to SR :M R → F R. ut

By proposition 1.1.16, we have as well:

8.1.6 Proposition. The functors SR :M R � F R : ΓR satisfies an enriched
adjunction relation

HomM R
(SR(M), G) ' HomF R

(M,ΓR(G)),

where we replace morphism sets by hom-objects over C. ut
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8.2 On adjunction units
and enriched embedding properties

The unit of the adjunction SR :M R → F R : ΓR is denoted by ηR(N) : N →
ΓR(SR(N)).

By proposition 1.1.15, the map SR : M 7→ SR(M) defines a functor SR :
M R → F R in the sense of C-enriched categories. In this section, we extend
the observations of §§2.3.7-2.3.11 to the morphism on hom-objects

SR : HomM R
(M,N)→ HomF (SR(M),SR(N))

induced by the functor SR : M R → F R and to the adjunction unit ηR(N) :
N → ΓR(SR(N)).

By proposition 1.1.16, we have:

8.2.1 Observation. We have a commutative diagram:

HomM R
(M,N)

SR //

ηR(N)∗ ))TTTTTTTTTTTTTTT
HomF R

(SR(M),SR(N))

HomM R
(M,ΓR(SR(N)))

'

44iiiiiiiiiiiiiiiii

.

In addition:

8.2.2 Proposition. The component ηR(N) : N(r) → HomF R
(U⊗r,SR(N))

of the adjunction unit ηR(N) : N → ΓR(SR(N)) coincides with the morphism

N(r) '−→ HomM R
(Fr ◦ R, N) SR−→ HomF R

(SR(Fr ◦ R),SR(N))
'−→ HomF R

(U⊗r,SR(N))

formed by the composite of the isomorphism ωr(N) : N(r) '−→ HomM R
(Fr ◦

R, N) of proposition 7.1.4, the morphism induced by the functor SR :M R →
F R on hom-objects, and the isomorphism induced by the relation SR(Fr ◦R) '
U⊗r.

Proof. Similar to proposition 2.3.8. ut

The next assertion is a generalization of proposition 2.3.10:

8.2.3 Proposition. The functor SR : M R → F(RE , E) is faithful for every
symmetric monoidal category over C equipped with a faithful functor η : C →
E.

If E is also enriched over C, then the functor SR : M R → F(RE , E) is
faithful in an enriched sense. Explicitly, the morphism induced by SR on hom-
objects

HomM R
(M,N) SR−→ HomF (SR(M),SR(N))



128 8 Adjunction and embedding properties

is mono in C, for every M,N ∈M R.

Proof. To prove this result, we use the diagram of functors

M R

SR //

U

��

F(RE , E)

−◦R(−)

��
M S // F(E , E)

where U :M R →M denotes the forgetful functor and G 7→ G ◦ R(−) maps
a functor G : RE → E to the composite of G with the free R-algebra functor
R(−) : E → RE .

In theorem 7.1.1, we observe that this diagram commutes up to a natural
isomorphism. Accordingly, for M,N ∈M R, we have a commutative diagram

MorM R
(M,N)

SR //

U

��

MorF(RE,E)(SR(M),SR(N))

��
MorM(M,N)

S
// MorF(E,E)(S(M),S(N))

.

By proposition 2.3.10, the functor S : M → F is faithful and induces
an injective map on morphism sets. Since the map U : MorM R

(M,N) →
MorM(M,N) is tautologically injective, we can conclude that S induces an
injective map on morphism sets as well and hence defines a faithful functor.

These arguments extend immediately to the enriched category setting. ut

By propositions 8.2.1-8.2.2, we have equivalently:

8.2.4 Proposition. The adjunction unit ηR(N) : N → ΓR(SR(N)) is mono
in M R, for every N ∈M R. ut

8.3 Comparison of adjunctions and application

In general, we do not have more than the results of propositions 8.2.3-8.2.4,
but, in the introduction of this chapter, we announce that, in the case E = C =
k Mod, the adjunction unit ηR(N) : N → ΓR(SR(N)) forms an isomorphism
if N a projective Σ∗-module or if the ground ring k is an infinite field. The
purpose of this section is to prove this claim.

For this aim, we compare the adjunction units of SR :M R � F R : ΓR and
S :M � F : Γ. Our comparison result holds for every symmetric monoidal
category over a base category C and not necessarily for the category of k-
modules. Observe first:



8.3 Comparison of adjunctions and application 129

8.3.1 Lemma. For any functor G : RE → E, the underlying Σ∗-object of
ΓR(G) is isomorphic to Γ(G◦R(−)), the Σ∗-object associated to the composite
of G : RE → E with the free R-algebra functor R(−) : E → RE.

Proof. The adjunction relation of proposition 7.2.4 gives isomorphisms

HomF R
(U⊗r, G) ' HomF (Id⊗r, G ◦ R(−)),

for all r ∈ N. The lemma follows. ut

In the case G = SR(M), we have an isomorphism SR(M) ◦ R(−) ' S(M)
by theorem 7.1.1. Hence, in this case, we obtain:

8.3.2 Observation. For any right R-module M , we have a natural isomor-
phism ΓR(SR(M)) ' Γ(S(M)) in M.

We check further:

8.3.3 Lemma. The units of the adjunctions

S :M� F : Γ and SR :M R � F R : ΓR

fit a commutative diagram

N
ηR(N)

~~}}
}}

}}
}} η(N)

  A
AA

AA
AA

A

ΓR(SR(N)) ' // Γ(S(N))

,

for every N ∈M R.

Proof. We apply proposition 7.2.6 to the unit morphism η : I → R of the
operad R. Recall that IE = E and the extension and restriction functors
η! : IE � RE : η∗ are identified with the free object and forgetful functors
R(−) : E � RE : U . Similarly, we have M I = M and the extension and
restriction functors η! : M I � M R : η∗ are identified with the free object
and forgetful functors for right R-modules. Accordingly, by proposition 7.2.6,
we have a commutative hexagon:

HomM R
(L ◦ R, N)

SR

��

' // HomM(L,N)

S

��
HomF R

(SR(L ◦ R),SR(N))

'
��@

@@
@@

@@
HomF (S(L),S(N))

'
��~~

~~
~~

~

HomF R
(S(L) ◦ U,SR(N)) '

// HomF (S(L),SR(N) ◦ R(−))

,

for every free object M = L ◦ R and all right R-modules N .
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We apply this result to the generating objects M = Fr ◦R = R⊗r. We form
a commutative diagram:

N

'

ttjjjjjjjjjjjjjjjjjj
'

**TTTTTTTTTTTTTTTTTT

HomM R
(Fr ◦ R, N)

SR

��

' // HomM(Fr, N)

S

��

HomF R
(SR(Fr ◦ R),SR(N))

'
��

HomF R
(S(Fr) ◦ U,SR(N))

'

""F
FF

FF
FF

FF
FF

'

��

HomF (S(Fr),S(N))

'

��

'

||xx
xx

xx
xx

xx
x

HomF (S(Fr),SR(N) ◦ R(−))

'

��

HomF R
(U⊗r,SR(N))

'

##F
FFFFFFFFFF HomF (Id⊗r,S(N))

'

{{xxxxxxxxxxx

HomF (Id⊗r,SR(N) ◦ R(−))

.

By proposition 8.2.2, the left-hand side composite represents the adjunc-
tion unit ηR(N) : N(r) → ΓR(SR(N)). By proposition 2.3.8, the right-hand
side composite represents the adjunction unit η(N) : N(r) → Γ(S(N)). The
bottom isomorphisms represent the isomorphisms ΓR(SR(N)) ' Γ(SR(N) ◦
R(−)) ' Γ(S(N)) of lemma 8.3.1 and observation 8.3.2. Hence the commuta-
tivity of the diagram implies lemma 8.3.3. ut

The conclusion of theorem 8.A is an immediate consequence of this lemma
and of proposition 2.3.12. ut



Chapter 9

Algebras
in right modules over operads

Introduction

The purpose of this chapter is to survey applications of the general statements
of §3 to the category of right modules over an operad R.

In §2, we prove that the functor S : M 7→ S(M) defines a functor of
symmetric monoidal categories over C

S : (M,⊗, 1)→ (F ,⊗, 1)

and we use this statement in §3.2 in order to model functors F : E → PE ,
where P is an operad in C, by P-algebras in the category of Σ∗-objects. In a
similar way, we can use that the functor SR : M 7→ SR(M) defines a functor
of symmetric monoidal categories over C

SR : (M R,⊗, 1)→ (F R,⊗, 1),

to model functors F : RE → PE by P-algebras in the category of right R-
modules.

In this chapter, we also check that the structure of a P-algebra in right R-
modules, for P an operad in C, is equivalent to the structure of a P-R-bimodule,
an object equipped with both a left P-action and a right R-action in the
monoidal category (M, ◦, I), and we give an analogue of our constructions in
the bimodule formalism. In the sequel, we aim to extend results of the theory
of algebras over operads. For that reason we use the language of algebras in
symmetric monoidal categories rather than the bimodule language.

131
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9.1 Algebras in right modules over operads
and bimodules

Formally, a bimodule over operads P and R (in the sense of [14, §2.1] and [54,
§2.1.19]) consists of a Σ∗-object N equipped with both a left P-action λ :
P ◦N → N and a right R-action λ : N ◦ R→ R such that the diagram

P ◦N ◦ R

λ◦R
��

P ◦ρ // P ◦N

λ

��
N ◦ R ρ

// N

commutes. (This notion of a bimodule is also used in [25] for another purpose,
namely to model A∞-morphisms.) The category of P-R-bimodules is denoted
by PM R.

In §§3.2.9-3.2.10, we observe that the structure of a P-algebra in the cate-
gory of Σ∗-objects, where P is any operad in C, is equivalent to the structure
of a left P-module. In this section, we extend this equivalence to obtain that a
P-algebra in right R-modules is equivalent to a P-R-bimodule. Because of this
observation, the notation PM R for the category of P-R-bimodules is coherent
with our conventions for categories of algebras over operads.

In §2.2, we observe that the functor N 7→ S(M,N), where N ranges over
E =M, is identified with the composition product of Σ∗-objects: S(M,N) =
M ◦N . In the case E =M R, we obtain readily:

9.1.1 Observation. Let M ∈M. The image of a right R-module N ∈M R,
under the functor S(M) : E → E defined by a Σ∗-object M ∈M for E =M R

is identified with the composite Σ∗-object S(M,N) = M ◦ N equipped with
the right R-action M ◦ ρ : M ◦N ◦ R→ M ◦N induced by the right R-action
of N .

In the case E = M, we observe that the structure of a P-algebra in Σ∗-
object is determined by a morphism of Σ∗-objects

S(P, N) = P ◦N λ−→ N.

In the case of right R-modules E =M R, we assume simply that λ : P ◦N → N
defines a morphism in the category of right R-modules. Clearly, this assertion
holds if and only if the morphism λ : P ◦N → N defines a left P-action on N
that commutes with the right R-action. As a consequence, we obtain:

9.1.2 Proposition. The structure of a P-algebra in right R-modules is equiv-
alent to the structure of a P-R-bimodule.

Thus we have a category identity P(M R) = PM R.
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Since an operad P forms a bimodule over itself in an obvious way, propo-
sition 9.1.2 returns immediately:

9.1.3 Observation. Any operad forms naturally an algebra over itself in the
category of right modules over itself.

9.1.4 Free objects. In the case E = M, the free P-algebra generated by
a Σ∗-object M is identified with the composite P(M) = S(P,M) = P ◦M
equipped with the left P-action defined by the morphism

P ◦ P ◦M µ◦M−−−→ P ◦M

induced by the operad composition product µ : P ◦ P → P. In the context of
right R-modules E =M R, the free P-algebra P(M) = S(P,M) = P ◦M comes
also equipped with the right R-action induced by the right R-action on M .

9.2 Algebras in right modules over operads and functors

In §3.2.15, we use the notation F for the category of functors F : E → E and
the notation P F for the category of functors F : E → PE , which correspond to
left modules over operads. In parallel, we use the notation F R for the category
of functors F : RE → E , which correspond to right modules over operads, and
we may use the notation P F R for the category of functors F : RE → PE . Again,
recall that a P-algebra in the category of functors F : RE → E is equivalent
to a functor F : RE → PE . Therefore, this notation P F R is coherent with our
conventions for categories of algebras over operads.

Since we prove that the functor SR : M 7→ SR(M) defines a functor of
symmetric monoidal categories over C

SR : (M R,⊗, 1)→ (F R,⊗, 1),

we obtain by constructions of §3.2.14 that the functor SR :M R → F R restricts
to a functor

SR : PM R → P F R.

This construction is functorial with respect to the symmetric monoidal cate-
gory E . Explicitly, if ρ : D → E is a functor of symmetric monoidal categories
over C, then the diagram

RD
ρ //

SR(N)

��

RE

SR(N)

��
PD ρ

//
PE
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commutes up to natural functor isomorphisms, for everyN ∈ PM R. Moreover
we have:

9.2.1 Proposition.

(a) For a free P-algebra N = P(M), where M ∈M R, we have

SR(P(M), A) = P(SR(M,A)),

for all A ∈ RE, where on the right-hand side we consider the free P-algebra in
E generated by the object SR(M,A) ∈ E associated to A ∈ RE by the functor
SR(M) : RE → E.
(b) For a diagram i 7→ Ni of P-algebras in M R, we have

SR(colim
i

Ni, A) = colim
i

SR(Ni, A),

for all A ∈ RE, where on the right-hand side we consider the colimit of the
diagram of P-algebras associated to A ∈ RE by the functors SR(Ni) : RE →
PE. ut

This proposition is also a corollary of the adjunction relation of §8.1.3.

For the P-algebra in right P-modules defined by the operad itself, we obtain:

9.2.2 Proposition. The functor SP(P) : PE → PE is the identity functor of
the category of P-algebras. ut

9.2.3 Functors on algebras in Σ∗-objects and right modules over
operads. Let Q be an operad in C. Since E =M and E =M Q form symmetric
monoidal categories over C, we can apply the constructions SR : M R →
F(RE , E) and SR : PM R → F(RE , PE) to these categories E =M and E =M Q:

– In the caseM ∈M R and N ∈ RM Q, we obtain an object SR(M,N) ∈M Q.
– In the case M ∈ PM R and N ∈ RM, we have SR(M,N) ∈ PM.
– In the case M ∈ PM R and N ∈ RM Q, we have SR(M,N) ∈ PM Q.

In §5.1.5, we observe that the functor N 7→ SR(M,N), for M ∈ M R and
N ∈ RM is identified with the relative composition product SR(M,N) = M◦R
N . In the examples E =M and E =M Q, the structure of SR(M,N) = M ◦RN
can also be deduced from:

9.2.4 Observation. Let M ∈M R and N ∈ RM.

– If M ∈ PM R, then the morphism λ ◦ N : P ◦M ◦ N → M ◦ N induces a
left P-action on M ◦R N so that M ◦R N forms a left P-module.

– If N ∈ RM Q, then the morphism M ◦ ρ : M ◦ N ◦ Q → M ◦ N induces a
right Q-action on M ◦R N so that M ◦R N forms a right Q-module

– If M ∈ PM R and N ∈ RM Q, then we obtain that M ◦R N forms a P-Q-
bimodule.
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These observations are standard for a relative tensor product in a monoidal
category whose tensor product preserves reflexive coequalizers. For the sake
of completeness, we give an interpretation of the operation (M,N) 7→M ◦RN
at the functor level:

9.2.5 Proposition (cf. [54, Proposition 2.3.13]). Let M ∈ PM R and N ∈
RM Q. The diagram of functors

QE
SQ(M◦RN) //

SQ(N)   @
@@

@@
@@

PE

RE
SR(M)

>>~~~~~~~~

commutes up to a natural functor isomorphism.

Proof. For an R-Q-bimodule N , the reflexive coequalizer of 5.1.3

S(N ◦ Q, A)
d0 //

d1

// S(N,A)

s0

zz
// SQ(N,A) .

defines a coequalizer in the category of R-algebras, reflexive in the underlying
category E . By proposition 5.2.2, this coequalizer is preserved by the functor
SR(M) : RE → E . As a consequence, we obtain that the image of a Q-algebra A
under the composite functor SR(M)◦SQ(N) is given by a reflexive coequalizer
of the form

SR(M,S(N ◦ Q, A))
d0 //

d1

// SR(M,S(N,A))

s0

ww
// SR(M,SQ(N,A)) .

On the other hand, the image of A under the functor SQ(M ◦RN) associated
to the relative composite M ◦R N is defined by a reflexive coequalizer of the
form

S((M ◦R N) ◦ Q, A))
d0 //

d1

// S(M ◦R N,A)

s0

ww
// SQ(M ◦R N,A) .

The relation SQ(M ◦RN,A) ' SR(M,SQ(N,A)) is deduced from these iden-
tifications by an interchange of colimits in a multidiagram of the form
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S(M ◦ R ◦N ◦ Q, A) //
//

����

S(M ◦ R ◦N,A)

����
S(M ◦N ◦ Q, A) //

// S(M ◦N,A)

.

If we perform horizontal colimits first, then we obtain coequalizer (1). If we
perform vertical colimits first, then we obtain coequalizer (2).

Use also that the forgetful functor U : PE → E creates reflexive coequalizers
to prove that SR(M,SQ(N,A)) and SQ(M ◦R N,A) are naturally isomorphic
as P-algebras. ut

9.2.6 How to recover a right module over an operad R from the
associated functors SR(M) : RE → E. In the case N = R, we have a
natural isomorphism SR(M, R) = M ◦R R ' M . To prove this, one can apply
theorem 7.1.1 and use that N = R represents the free R-algebra on the unit
object I in RM. Then check directly that SR(M, R) = M ◦R R 'M defines an
isomorphism of right R-modules (respectively, of P-R-bimodules if M is so). In
the sequel, we use this observation (rather than the results of §8) to recover
the object M from the associated collection of functors SR(M) : RE → E
where E ranges over symmetric monoidal categories over C.

In fact, for any collection of functors G : RE → E we can form a right
R-module by applying the functor G : RE → E for E =M R to the R-algebra
inM R formed by the operad itself.

9.3 Extension and restriction functors

In §3.3.6, we recall that an operad morphism φ : P→ Q yields extension and
restriction functors on left module categories

φ! : PM� QM : φ∗

and we have an identification φ!N = Q ◦PN , for every N ∈ PM. In §7.2.1,
we recall symmetrically that an operad morphism ψ : R→ S yields extension
and restriction functors on right module categories

ψ! :M R �M S : ψ∗

and we have an identification ψ!M = M ◦R S, for every M ∈M R.
In the case of bimodules over operads, we obtain functors of extension and

restriction of structures on the left φ! : PM R � QM R : φ∗ and on the right
ψ! : PM R � PM S : ψ∗. In addition, extensions and restrictions on the left
commute with extensions and restrictions on the right up to coherent functor
isomorphisms. In the bimodule formalism, the structure of the relative com-
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position product φ!N = Q ◦PN , respectively ψ!M = M ◦R S, can be deduced
from observation 9.2.4.

To obtain an interpretation at the functor level of the extension and re-
striction of structures on the left, we apply proposition 3.3.8. Indeed, in the
case of the functor

SR : (M R,⊗, 1)→ (F R,⊗, 1),

this proposition returns:

9.3.1 Proposition. Let φ : P → Q be an operad morphism. Let R be an
operad.
(a) For any P-algebra A in right R-modules, the diagram of functors

RE
SR(A)

~~~~
~~

~~
~~ SR(φ!A)

  @
@@

@@
@@

PE
φ!

//
QE

,

where φ!A is obtained from A by extension of structures on the left, commutes
up to a natural functor isomorphism.
(b) For any Q-algebra B in right R-modules, the diagram of functors

RE
SR(φ

∗B)

~~~~
~~

~~
~~ SR(B)

  @
@@

@@
@@

PE QE
φ∗

oo

,

where φ∗B is obtained from B by extension of structures on the left, commutes
up to a natural functor isomorphism. ut

Symmetrically, for extension and restriction of structures on the right we
obtain:

9.3.2 Proposition. Let P be an operad. Let ψ : R → S be an operad mor-
phism.
(a) For any P-algebra A in right R-modules, the diagram of functors

RE

SR(A)   A
AA

AA
AA

SE

SS(ψ!A)~~}}
}}

}}
}

ψ∗oo

PE

,

where ψ!A is obtained from A by extension of structures on the right, com-
mutes up to a natural functor isomorphism.
(b) For any P-algebra B in right S-modules, the diagram of functors
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RE

SR(ψ
∗B)   A

AA
AA

AA
ψ! //

SE

SS(B)~~}}
}}

}}
}

PE

,

where ψ∗B is obtained from B by restriction of structures on the right, com-
mutes up to a natural functor isomorphism.

Proof. In theorem 7.2.2 we prove the existence of an isomorphism ψ! SR(A) '
SS(ψ!A), respectively ψ∗ SS(B) = SR(ψ∗B), in the functor category F S =
F(SE , E), respectively F R = F(RE , E).

Check simply that these functor isomorphisms commute with the left P-
action and the proposition follows. This assertion is a formal consequence of
the commutation requirement between left and right operad actions. ut

Recall that an operad Q forms an algebra over itself in the category of right
modules over itself. Propositions 9.1.3, 9.3.1 and 9.3.2 give as a corollary:

9.3.3 Proposition. Let φ : P→ Q be an operad morphism.
(a) The functor of restriction of structures φ∗ : QE → PE is identified with the
functor SQ(Q) : QE → PE associated to A = Q, the P-algebra in right Q-modules
obtained from Q by restriction of structures on the left.
(b) The functor of extension of structures φ! : PE → QE is identified with the
functor SP(Q) : PE → QE associated to B = Q, the Q-algebra in right P-modules
obtained from Q by restriction of structures on the right. ut

9.4 Endomorphism operads

In §9.2, we observe that the structure of a P-algebra on a right R-module M
gives rise to a natural P-algebra structure on the associated functor SR(M) :
A 7→ SR(M,A). In this section we use general constructions of §3.4 to review
this correspondence of structures in light of endomorphism operads.

In §6, we prove that the map SR : M 7→ SR(M) defines a functor of sym-
metric monoidal categories SR : (M R,⊗, 1) → (F R,⊗, 1). Accordingly, by
proposition 3.4.7, we obtain:

9.4.1 Proposition. For a right R-module M ∈M R and the associated func-
tor SR(M) ∈ F(RE , E), where E is any symmetric monoidal category over C,
we have an operad morphism

EndM
ΘR−−→ EndSR(M),

natural in E. ut
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By proposition 8.2.3, the morphism SR : HomM R
(M,N)→ HomF R

(SR(M),SR(N))
is mono for all M,N ∈M R as long as the category E is equipped with a faith-
ful functor η : C → E . As a corollary, we obtain that ΘR is a monomorphism
as well under this assumption.

In the case where the underlying categories E and C are both the category
of modules over a ring k, we obtain further:

9.4.2 Proposition. Assume E = C = k Mod, the category of modules over
a ring k.

The operad morphism

EndM
ΘR−−→ EndSR(M)

is an isomorphism if the right R-module M forms a projective Σ∗-module or
if the ground ring is an infinite field. ut

The existence of an operad morphism ΘR : EndM → EndSR(M) is equiv-
alent to the construction of §9.2: an R-algebra structure on M gives rise to
a functorial R-algebra structure on the objects SR(M,A), for A ∈ RE . The
existence of an operad isomorphism ΘR : EndM

'−→ EndSR(M) implies that
this construction defines a one-to-one correspondence. Hence, the assertion
of proposition 9.4.2 implies further:

9.4.3 Theorem. Assume E = C = k Mod, the category of modules over a
ring k.

If a right R-module M forms a projective Σ∗-module or if the ground
ring is an infinite field, then all functorial P-algebra structures on the ob-
jects SR(M,A), A ∈ RE, are uniquely determined by a P-algebra structure
on M . ut

To conclude this chapter, we check that the morphism ΘR satisfies a functo-
riality statement with respect to operad changes. To be explicit, let ψ : R→ S
be an operad morphism. In §7.2, we observe that the extension and restric-
tion of structures of right modules over operads define functors of symmetric
monoidal categories ψ! :M R �M S : ψ∗. Accordingly, by proposition 3.4.7,
we obtain:

9.4.4 Proposition. Let ψ : R→ S be an operad morphism.
(a) For any right R-module M , we have a natural operad morphism

ψ! : EndM → Endψ!M

yielded by the extension functor ψ! :M R →M S.
(b) For any right S-module M , we have a natural operad morphism

ψ∗ : EndN → Endψ∗N

yielded by the restriction functor ψ∗ :M S →M R.
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At the functor level, we have extension and restriction functors ψ! : F R →
F S : ψ∗ defined by the composition with extension and restriction functors
on the source. By §3.4.11, these functors yield natural operad morphisms

ψ! : EndF → Endψ!F and ψ∗ : EndF → Endψ∗F .

In §7.2.10, we record that

M R

ψ! //

SR

��

M S

SS

��

ψ∗
oo

F R

ψ! // F S
ψ∗
oo

forms a diagram of functors of symmetric monoidal categories over C that
commutes up to a natural equivalence of symmetric monoidal categories over
C. As a consequence, by naturality of our constructions, we obtain:

9.4.5 Proposition. Let ψ : R→ S be an operad morphism.
(a) The diagram

EndM
ΘR //

ψ!

��

EndSR(M)

ψ!

��
Endψ!M

ΘS // EndSS(ψ!M)
' // Endψ! SR(M)

.

commutes, for every right R-module M .
(b) The diagram

EndN
ΘS //

ψ∗

��

EndSS(N)

ψ∗

��
Endψ∗N

ΘR // EndSR(ψ∗N)
' // Endψ∗ SS(N)

.

commutes, for every right S-module N . ut



Chapter 10

Miscellaneous examples

Introduction

Many usual functors are defined by right modules over operads. In this chap-
ter we study the universal constructions of §4: enveloping operads (§10.1),
enveloping algebras (§10.2), and Kähler differentials (§10.3).

In §§10.2-10.3, we apply the principle of generalized point-tensors to ex-
tend constructions of §4 in order to obtain structure results on the modules
which represent the enveloping algebra and Kähler differential functors. The
examples of these sections are intended as illustrations of our constructions.

In §17, we study other constructions which occur in the homotopy the-
ory of algebras over operads: cofibrant replacements, simplicial resolutions,
and cotangent complexes. New instances of functors associated to right mod-
ules over operads can be derived from these examples by using categorical
operations of §6, §7 and §9.

10.1 Enveloping operads and algebras

Recall that the enveloping operad of an algebra A over an operad R is the
object UR(A) of the category of operads under R defined by the adjunction
relation

MorR /O(UR(A), S) = Mor
RE(A, S(0)).

The goal of this section is to prove that the functor A 7→ UR(A) is associ-
ated to an operad in right R-modules, the shifted operad R[ · ] introduced in
the construction of §4.1.

In §4.1, we only prove that R[ · ] forms an operad in Σ∗-objects. First, we
review the definition of the shifted operad R[ · ] to check that the components
R[m], m ∈ N, come equipped with the structure of a right R-module so that
R[ · ] forms an operad in that category. Then we observe that the construction

141
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of §4.1 identifies the enveloping operad UR(A) with the functor SR(R[ · ], A)
associated to the shifted operad R[ · ].

10.1.1 Shifted operads. Recall that the shifted operad R[ · ] consists of the
collection of objects R[m](n) = R(m+ n), m,n ∈ N.

In §4.1.4, we use the action of Σn on {m+1, . . . ,m+n} ⊂ {1, . . . ,m+n}
to define an action of Σn on R(m + n), for every n ∈ N, and to give to the
collection R[m](n), n ∈ N, the structure of a Σ∗-object. In the case of an
operad, the composites at last positions

R(r + s)⊗ R(n1)⊗ · · · ⊗ R(ns)→ R(r + n1 + · · ·+ ns)

(insert operad units η : 1 → R(1) at positions 1, . . . , r) provide each object
R[r], r ∈ N, with the additional structure of a right R-module.

In §4.1.5, we also observe that the collection {R[r]}r∈N is equipped with
the structure of an operad: the action of Σm on {1, . . . ,m} ⊂ {1, . . . ,m+n}
determines an action of Σm on R[m](n) = R(m+ n), for every m,n ∈ N, and
we use operadic composites at first positions

R(r + s)⊗ R(m1 + n1)⊗ · · · ⊗ R(mr + nr)→ R(m1 + n1 + · · ·+mr + nr + s)

together with the action of appropriate bloc permutations

R(m1 + n1 + · · ·+mr + nr + s) '−→ R(m1 + · · ·+mr + n1 + · · ·+ nr + s)

to define composition products:

R[r]⊗ R[m1]⊗ · · · ⊗ R[mr]→ R[m1 + · · ·+mr].

The axioms of operads (in May’s form) imply immediately that the action of
permutations w ∈ Σm preserves the internal right R-module structure of R[m]
and similarly regarding the composition products of R[ · ]. Finally, we obtain
that the collection {R[r]}r∈N forms an operad in the symmetric monoidal
category of right R-modules.

The morphism of §4.1.6
η : R→ R[ · ],

which identifies R(m) with the constant part of R[m], forms a morphism of
operads in right R-modules.

In the sequel, we use the notation OR to refer to the category of operads
in right R-modules, and the notation R /OR to refer to the comma category
of objects under R ∈ O, where we identify the objects P(m) underlying an
operad P ∈ O with constant right R-modules to form a functor O → OR. Our
definition makes the operad R[ · ] an object of this category R /OR.

10.1.2 Functors on operads. In §4.1.5, we use that S : M 7→ S(M) defines
a functor of symmetric monoidal categories S : M → F to obtain that the
collection {S(R[r], X)}r∈N, associated to any object X ∈ E , forms an operad
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in E . We obtain similarly that the collection {SR(R[r], A)}r∈N, associated to
any R-algebra A ∈ RE , forms an operad in E .

Furthermore, the morphism η : R→ R[ · ] induces a morphism of operads

η : R→ SR(R[ · ], A)

so that SR(R[ · ], A) forms an operad under R. As a conclusion, we obtain that
the map SR(R[ · ]) : A 7→ SR(R[ · ], A) defines a functor SR(R[ · ]) : RE → R /OE .

Our goal, announced in the introduction, is to prove:

10.1.3 Theorem. For every R-algebra A ∈ RE, the enveloping operad UR(A)
is isomorphic to the operad SR(R[ · ], A) ∈ R /OE associated to A by the functor
SR(R[ · ]) : RE → R /OE .

Proof. By lemma 4.1.11, the enveloping operad of an R-algebra A is realized
by a reflexive coequalizer of the form:

R[S(R, A)]
φd0 //

φd1

// R[A]

φs0

||
// UR(A),

where we use the notation R[X] = S(R[ · ], X). To define the morphisms
φd0 , φd1 , φs0 we use that R[X] represents the enveloping operad of the free
R-algebra A = R(X) and we apply the adjunction relation of enveloping op-
erads (see §§4.1.8-4.1.11). But a straightforward inspection of constructions
shows that these morphisms are identified with the morphisms

S(R[ · ],S(R, A))
d0 //

d1

// S(R[ · ], A)

s0

xx

which occur in the definition of the functor S(R[ · ], A) associated to the right
R-module R[ · ]. Therefore we have an identity UR(A) = SR(R[ · ], A), for every
A ∈ RE . ut

10.1.4 Remark. In the point-set context, the relation UR(A) = SR(R[ · ], A)
asserts that UR(A) is spanned by elements of the form

u(x1, . . . , xm) = p(x1, . . . , xm, a1, . . . , an),

where x1, . . . , xm are variables and a1, . . . , an ∈ A, together with the relations

p(x1, . . . , xm, a1, . . . , ae−1, q(ae, . . . , ae+s−1), ae+s, . . . , an+s−1)
≡ p ◦m+e q(x1, . . . , xm, a1, . . . , ae−1, ae, . . . , ae+s−1, ae+s, . . . , an+s−1).

Thus we recover the pointwise construction of §4.1.3.
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10.1.5 Functoriality of enveloping operads. To complete this section,
we study the functoriality of enveloping operads.

Let ψ : R → S be any operad morphism. For an S-algebra B, we have a
natural morphism of operads

ψ[ : UR(ψ∗B)→ US(B)

that corresponds to the morphism of R-algebras ψ∗B → US(B)(0) = B de-
fined by the identity of B. In the converse direction, for an R-algebra A, we
have a natural morphism of operads

ψ] : UR(A)→ US(ψ!A)

that corresponds to the morphism of R-algebras A → US(ψ!A)(0) = ψ∗ψ!A
defined by the unit of the adjunction between extension and restriction func-
tors ψ! : RE � SE : ψ∗.

These natural transformations are realized by morphisms of operads of the
form ψ[ : ψ! R[ · ] → S[ · ] and ψ] : R[ · ] → ψ∗ S[ · ]. To explain this assertion,
recall that, by proposition 7.2.7, the extension and restriction functors

ψ! :M R �M S : ψ∗

are functors of symmetric monoidal categories. As a consequence, if P is an
operad in right R-modules, then ψ! P forms an operad in right S-modules, if Q
is an operad in right S-modules, then ψ∗ Q forms an operad in right R-modules.
Furthermore, these extension and restriction functors on operads

ψ! : OR � O S : ψ∗

are adjoint to each other. The obvious morphism ψ : R[ · ]→ S[ · ] induced by
ψ defines a morphisms

ψ] : R[ · ]→ ψ∗ S[ · ]

in OR. Let
ψ[ : ψ! R[ · ]→ S[ · ]

be the associated adjoint morphism. By theorem 7.2.2, we have SS(ψ! R[ · ], B) =
SR(R[ · ], ψ∗B) = UR(ψ∗B) and SR(ψ∗ S[ · ], A) = SS(R[ · ], ψ!A) = US(ψ!A).

It is straightforward to check that ψ[ : ψ! R[ · ] → S[ · ] is the morphism
that represents ψ[ : UR(ψ∗B)→ US(B) for the algebra in right S-modules B
formed by the operad itself B = S. As a byproduct, we obtain further that
ψ[ : UR(ψ∗B)→ US(B) is identified with the morphism of functors

SS(ψ[, B) : SS(ψ! R[ · ], B)→ SS(S[ · ], B),

for all B ∈ SE . We check similarly that ψ] : UR(A) → US(ψ!A) is identified
with the morphism of functors
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SR(ψ], A) : SR(R[ · ], A)→ SR(ψ∗ S[ · ], A),

for all A ∈ RE .

10.2 Enveloping algebras

Recall that the enveloping algebra of an algebra A over an operad R is the
term UR(A)(1) of its enveloping operad UR(A). Theorem 10.1.3 implies that
A 7→ UR(A)(1) is the functor associated to an associative algebra in right
R-modules formed by the shifted object R[1].

In this section, we study the right R-module R[1] associated to the classical
operads R = C, A, L, of commutative algebras, associative algebras, and Lie
algebras. Since we use no more enveloping operads in this section, we can
drop the reference to the term in the notation of enveloping algebras and, for
simplicity, we set UR(A) = UR(A)(1).

To determine the structure of the right R-modules R[1], where R = C, A, L,
we use the identity R[1] = UR(R), deduced from the principle of §9.2.6, and the
results of §4.3 about enveloping algebras over classical operads. The principle
of generalized pointwise tensors of §0.5 is applied to extend these results to
the category of right R-modules.

Regarding commutative algebras, proposition 4.3.5 gives an isomorphism
UC(A) ' A+, where A+ represents the unitary algebra A+ = 1⊕A. The next
lemma reflects this relation:

10.2.1 Lemma. For the commutative operad C, we have an isomorphism of
associative algebras in right C-modules C[1] ' C+.

Proof. Apply the isomorphism UC(A) ' A+ to the commutative algebra in
right C-modules formed by the commutative operad itself. ut

This lemma implies immediately:

10.2.2 Proposition. In the case of the commutative operad C, the object
C[1] forms a free right C-module.

Proof. The direct sum C+ = 1⊕ C forms obviously a free right C-modules
since we have the relation C+ = 1 ◦ C⊕I ◦ C = (1⊕I) ◦ C. (Observe that
1 ◦M = 1, for every Σ∗-object M .) ut

Regarding associative algebras, proposition 4.3.6 gives an isomorphism
UA(A) ' A+ ⊗Aop+ , The next lemma reflects this relation:

10.2.3 Lemma. For the associative operad A, we have an isomorphism of
associative algebras in right A-modules A[1] ' A+⊗ Aop+ .
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Proof. Apply the isomorphism UA(A) ' A+ ⊗Aop+ to the associative algebra
in right A-modules A formed by the associative operad itself A = A. ut

As a byproduct, we obtain:

10.2.4 Proposition. In the case of the associative operad A, the object A[1]
forms a free right A-module.

Proof. The object Aop+ has the same underlying right A-module as the operad
A+. Hence we obtain isomorphisms of right A-modules:

A+[1] ' A+⊗ Aop+ ' A+⊗ A+ ' 1⊕ A⊕ A⊕ A⊗ A ' (1⊕I ⊕ I ⊕ I ⊗ I) ◦ A

from which we conclude that A[1] forms a free object in the category of right
A-modules. ut

Recall that the operadic enveloping algebra UL(G) of a Lie algebra G can
be identified with the classical enveloping algebra of G, defined as the image
of G under the extension functor ι! : LE → A+E , from Lie algebras to unitary
associative algebras. At the module level, the relation UL(G) ' ι! G is reflected
by:

10.2.5 Lemma. For the Lie operad L, we have an isomorphism L[1] ' ι∗ A+,
where ι∗ A+ is the associative algebra in right L-modules obtained by restric-
tion of structures on the right from the unitary associative operad A+.

Proof. Again, apply the isomorphism UL+(G) ' ι! G to the Lie algebra in right
L-modules G formed by the Lie operad itself G = L. In this case, we have a
canonical isomorphism ι! L ' A+. To check this assertion, observe first that
the operad morphism ι : L → A+ defines a morphism ι] : L → ι∗ A+ in the
category of Lie algebras in right L-modules, where ι∗ A+ refers to the two-
sided restriction of structures of As+. By adjunction, we have a morphism
ι[ : ι! L → ι∗ A+ in the category of unitary associative algebras in right L-
modules, where ι! L is the unitary associative algebra obtained by extension
of structures on the left from L and ι∗ A+ is the unitary associative algebras
in right L-modules obtained by restriction of structures on the right from A+.
If we forget module structures, then we obtain readily that ι[ : ι! L → ι∗ A+

forms an isomorphism, because the Lie operad L defines a free Lie algebra in
the category of Σ∗-objects. The conclusion follows. ut

The classical Poincaré-Birkhoff-Witt theorem asserts that UL(G) is nat-
urally isomorphic to the module of symmetric tensors S(G) as long as the
ground ring is a field of characteristic 0. We also have S(X) = S(C+, X),
where C+ is the Σ∗-object, underlying the operad of unitary commutative
algebras, defined by the trivial representations of the symmetric group. Ac-
cordingly, by theorem 7.1.1, we have S(G) = SL(C+ ◦ L, G) for all Lie algebras
G. At the module level, the relation UL(G) ' S(G) is reflected by:
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10.2.6 Lemma. In characteristic 0, we have an isomorphism of right L-
modules A+ ' C+ ◦ L.

Proof. Apply the Poincaré-Birkhoff-Witt theorem to the Lie algebra in right
L-modules defined by the operad itself. ut

As a corollary, we obtain:

10.2.7 Proposition. In the case of the Lie operad L, the object L[1] forms
a free right L-module as long as the ground ring is a field of characteristic
0. ut

In positive characteristic, the Poincaré-Birkhoff-Witt theorem gives only
isomorphisms grn UL(G) ' Sn(G), for subquotients of a natural filtration on
the enveloping algebra UL(G). Thus, in positive characteristic, we have only
an isomorphism of the form gr A+ ' C+ ◦ L.

10.3 Kähler differentials

In this section, we prove that the module of Kähler differentials Ω1
R (A), de-

fined in §4.4 for any algebra A over an operad R, is a functor associated to a
certain right module Ω1

R over the operad R.
For simplicity, we take E = C = k Mod as underlying symmetric monoidal

categories. Again, we can apply the principle of generalized pointwise tensors
to extend the definition of Ω1

R in the context of dg-modules and so. The
relationΩ1

R (A) ' SR(Ω1
R , A) holds for R-algebras in dg-modules, inΣ∗-objects,

or in any category of right modules over an operad S.

Recall that the module of Kähler differentials Ω1
R (A) is the k-module

spanned by formal expressions p(a1, . . . , dai, . . . , am), where p ∈ R(m),
a1, . . . , am ∈ A, together with relations of the form:

p(a1, . . . , q(ai, . . . , ai+n−1), . . . , daj , . . . , am+n−1)
≡ p ◦i q(a1, . . . , ai, . . . , ai+n−1, . . . , daj , . . . , am+n−1), for i 6= j,

p(a1, . . . , dq(ai, . . . , ai+n−1), . . . , am+n−1)

≡
∑i+n−1
j=i p ◦i q(a1, . . . , ai, . . . , daj , . . . , ai+n−1, . . . , am+n−1).

From this definition, we deduce immediately:

10.3.1 Proposition. We have Ω1
R (A) = SR(Ω1

R , A) for the right R-module
Ω1

R spanned by formal expressions p(x1, . . . , dxi, . . . , xm), p ∈ R(m), where
(x1, . . . , xm) are variables, together with the right R-action such that:
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p(x1, . . . , dxi, . . . , xm) ◦k q

=


p ◦k q(x1, . . . , xk, . . . , xk+n−1, . . . , dxi+n−1, . . . , xm+n−1), for k < i,∑k+n−1
j=k p ◦i q(x1, . . . , xk, . . . , dxj , . . . , xk+n−1, . . . , xm+n−1), for k = i,

p ◦k q(x1, . . . , dxi, . . . , xk, . . . , dxk+n−1, . . . , xm+n−1), for k > i,

for all q ∈ R(n). ut

According to this proposition, we have Ω1
R (n) = Σn ⊗Σn−1 R[1](n − 1) if

we forget the right R-action on Ω1
R . The object Ω1

R comes equipped with the
structure of a left R[1]-module that reflects the definition of Ω1

R (A) as a left
module over the enveloping algebra UR(A) = SR(R[1], A).

In the next statements, we study the structure of the modules of Kähler
differentials Ω1

R associated to the classical operads R = A, L. The case of the
commutative operad R = C is more complicated and is addressed only in a
remark.

In the associative case, proposition 4.4.6 gives an isomorphism Ω1
A (A) =

A+ ⊗A. The next lemma reflects this relation:

10.3.2 Lemma. For the associative operad A, we have an isomorphism of
right A-modules Ω1

A ' A+⊗ A.

Proof. Apply the isomorphism Ω1
A (A) = A+ ⊗ A to the associative algebra

in right A-modules A formed by the associative operad itself A = A. ut

As a byproduct, we obtain:

10.3.3 Proposition. For R = A, the operad of associative algebras, the object
Ω1

A forms a free right A-module.

Proof. We have isomorphisms of right A-modules

Ω1
A ' A+⊗ A ' 1⊕ A⊕ A⊗ A ' (1⊕I ⊕ I ⊗ I) ◦ A

from which the conclusion follows. ut

In the next paragraphs, we study the module of Kähler differentials Ω1
L

associated to the Lie operad L. Recall that the operadic enveloping algebra
UL(G) is identified with the classical enveloping algebra of G, defined by the
image of G under the extension functor ι! : LE → A+E from Lie algebras to
unitary associative algebras. By proposition 4.4.7, we have a natural isomor-
phism ŨL(G) ' Ω1

L (G), where ŨL(G) denotes the augmentation ideal of UL(G).
At the module level, we obtain:

10.3.4 Lemma. For R = L, the operad of Lie algebras, we have an isomor-
phism of right L-modules A ' Ω1

L , where the Lie operad L acts on A through
the morphism ι : L→ A.
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Proof. Apply the isomorphism Θ : ŨL(G) ' Ω1
L (G) to the Lie algebra in right

L-modules defined by the operad itself. By lemma 10.2.5, we have UL(L) ' A+

and hence ŨL(L) ' A. The lemma follows. ut

As a byproduct, we obtain:

10.3.5 Proposition. For R = L, the operad of Lie algebras, the object Ω1
L

forms a free right L-module as long as the ground ring is a field of character-
istic 0.

Proof. By lemma 10.2.6, we have an identity A+ = C+ ◦ L. If we remove units,
then we obtain Ω1

L = A = C ◦ L and the conclusion follows. ut

In positive characteristic, we have only an isomorphism of the form grΩ1
L '

C ◦ L.

10.3.6 Remark. The module of Kähler differentials Ω1
C (A) associated to

the commutative operad C does not form a projective right C-module. This
negative result follows from theorem 15.1.A, according to which the functor
SR(M) : A 7→ SR(M,A) associated to a projective right R-module M pre-
serves all weak-equivalences of differential graded R-algebras. The functor of
commutative Kähler differentials Ω1

C (A) does not preserve weak-equivalences
between differential graded commutative algebras. For more details, we refer
to §17.3 where we address applications of the results of §15 to the homology
of algebras over operads.





Bibliographical comments on part II

The notion of a right module over an operad is introduced in Smirnov’s
papers [56, 57] as a left coefficient for the operadic version of the cotriple
construction of Beck [3] and May [47]. But, as far as we know, the first
thorough studies of categories of modules over operads appear in [11] and [54].
The connection between modules over operads and other classical structures,
like Γ -objects, appears in [33].

The objective of the work [11], published in [12, 13], is to prove struc-
ture and classification results for formal groups over operads. The symmetric
monoidal category of right modules over operads is introduced as a back-
ground for the operadic generalization of the Hopf algebra of differential
operators of a formal group.

In [54], the operadic cotriple construction occurs as a tool to compute the
homotopy of moduli spaces of R-algebra structures, for a given operad R.

The relative composition product ◦R is also introduced in the papers [56,
57]. The functor SR(M) associated to a right module over an operad R is de-
fined in [54] as a particular case of the relative composition product M ◦RN .
The relative composition product M ◦RN is used in [33], together with endo-
morphism operads of right R-modules, in order to define generalized Morita
equivalences in the context of operads.

In §5, §6, §7 and §9, we essentially unify results of the literature. The only
original idea is to identify the relative composition product M ◦R N with a
particular case of a functor of the form SR(M,N) rather than the contrary.
The statements of §8 and §10 are new.
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Chapter 11

Symmetric monoidal model categories
for operads

Introduction

Our next purpose is to study the homotopy of functors associated to modules
over operads. To deal with homotopy problems in a general setting, we use
the language of model categories.

The aim of this part is to recall applications of model categories to operads
and algebras over operads. In this chapter, we review the definition of a model
category in the context of symmetric monoidal categories over a base and we
study the homotopy properties of functors S(M) : E → E associated to Σ∗-
objects.

To begin with, in §11.1, we recall briefly basic definitions of model cate-
gories (we refer to [27, 28] for a modern and comprehensive account of the
theory). For our needs, we also recall the notion of a cofibrantly generated
model category, the structure used to define model categories by adjunctions
(the model categories defined in this book are obtained as such). In §11.2 we
survey basic examples of model categories in dg-modules. In the sequel, we
illustrate our results by constructions taken in these model categories.

In §11.3 we review the axioms of monoidal model categories. We use these
axioms in the relative context of symmetric monoidal model categories over a
base. In §11.4, we prove that the category of Σ∗-objects inherits the structure
of a cofibrantly generated monoidal model category from the base category.

In §11.5 we use the model structure of Σ∗-objects to study the homo-
topy of functors S(M) : E → E . Essentially, we observe that the bifunctor
(M,X) 7→ S(M,X) satisfies a pushout-product axiom, like the tensor prod-
uct of a symmetric monoidal model category. Usual homotopy invariance
properties are consequences of this axiom. For instance, we check that the
functor S(M) : E → E preserves weak-equivalences between cofibrant objects
as long as M is cofibrant in the category of Σ∗-object.
¶ In many usual examples, the functor S(M) : E → E preserves weak-

equivalences for a larger class of Σ∗-objects. Therefore we introduce an ax-
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iomatic setting, the notion of a symmetric monoidal category with regular
tensor powers, to handle finer homotopy invariance properties. These refine-
ments are addressed in §11.6. Usual model categories of spectra give examples
of categories in which the homotopy invariance of functors S(M) : E → E can
be refined.

The pushout-product property of the bifunctor (M,X) 7→ S(M,X) is the
base of many subsequent constructions. In the sequel, the possible improve-
ments which hold for categories with regular tensor powers and spectra are
deferred to remarks (marked by the symbol ¶).

11.1 Recollections: the language of model categories

In this section, we recall the definition of a model category and the notion
of a cofibrantly generated model category with the aim to address homotopy
problems in the context of operads.

11.1.1 Basic notions. Model categories help to handle categories of frac-
tions in which a class of morphisms, usually called weak-equivalences, is for-
mally inverted to yield actual isomorphisms. In the context of a model cat-
egory A, the category of fractions is realized by a homotopy category HoA
and its morphisms are represented by homotopy classes of morphisms of A,
a natural notion of homotopy being associated to A. Since we do not use
explicitly homotopy categories in this book, we refer to the literature for this
motivating application of model categories. For our needs we recall only the
axioms of model categories.

The core idea of model categories is to characterize classes of morphisms
by lifting properties which occur naturally in homotopy. For the moment,
recall simply that a morphism i : A → B has the left lifting property with
respect to p : X → Y , and p : X → Y has the right lifting property with
respect to i : A→ B, if every solid diagram of the form

A

i

��

// X

p

��
B //

>>

Y

can be filled out by a dotted morphism, the lifting. Recall that a morphism
f is a retract of g if we have morphisms

A

f

��

i // C

g

��

r // A

f

��
B

j
// D s

// B



11.1 Recollections: the language of model categories 157

which make the whole diagram commutes and so that ri = id and sj = id.
The retract f inherits every left lifting property satisfied by g, and similarly
as regards right lifting properties.

11.1.2 The axioms of model categories. The structure of a model cate-
gory consists of a category A equipped with three classes of morphisms, called
weak-equivalences (denoted by ∼−→), cofibrations (denoted �) and fibrations
(denoted �), so that the following axioms M1-5 hold:

M1 (completeness axiom): Limits and colimits exist in A.
M2 (two-out-of-three axiom): Let f and g be composable morphisms. If any

two among f , g and fg are weak-equivalences, then so is the third.
M3 (retract axiom): Suppose f is a retract of g. If g is a weak-equivalence

(respectively a cofibration, a fibration), then so is f .
M4 (lifting axioms):

i. The cofibrations have the left lifting property with respect to acyclic
fibrations, where an acyclic fibration refers to a morphism which is both
a weak-equivalence and a fibration.

ii. The fibrations have the right lifting property with respect to acyclic
cofibrations, where an acyclic cofibration refers to a morphism which is
both a weak-equivalence and a cofibration.

M5 (factorization axioms):

i. Any morphism has a factorization f = pi such that i is a cofibration
and p is an acyclic fibration.

ii. Any morphism has a factorization f = pj such that j is an acyclic
cofibration and q is a fibration.

By convention, an object X in a model category A is cofibrant if the initial
morphism 0→ X is a cofibration, fibrant if the terminal morphism X → ∗ is
a fibration.

Axiom M5.i implies that, for every object X ∈ A, we can pick a cofibrant
object 0 � A together with a weak-equivalence A ∼−→ X. Any such object is
called a cofibrant replacement of X. Axiom M5.ii implies symmetrically that,
for every object X ∈ A, we can pick a fibrant object A � ∗ together with a
weak-equivalence X ∼−→ A. Any such object is called a fibrant replacement of
X.

11.1.3 Pushouts, pullbacks, and proper model categories. The ax-
ioms imply that the class of fibrations (respectively, acyclic fibrations) in a
model category is completely characterized by the right lifting property with
respect to acyclic cofibrations (respectively, cofibrations). Similarly, the class
of cofibrations (respectively, acyclic cofibrations) is completely characterized
by the left lifting property with respect to acyclic fibrations (respectively,
fibrations).

These observations imply further that the class of fibrations (respectively,
acyclic fibrations) is stable under pullbacks, the class of cofibrations (respec-



158 11 Symmetric monoidal model categories for operads

tively, acyclic cofibrations) is stable under pushouts. The model category A
is called left (respectively, right) proper if we have further:

P1 (left properness axiom): The class of weak-equivalences is stable under
pushouts along cofibrations.

P2 (right properness axiom): The class of weak-equivalences is stable under
pullbacks along fibrations.

The category A is proper if both axioms are satisfied. In this book, we only
use axiom P1 of left properness.

Not all categories are left (or right) proper. But:

11.1.4 Proposition (see [27, Proposition 13.1.2]). The following assertion
holds in every model category A:

P1’. The pushout of a weak-equivalence along a cofibration

A // //

∼
��

C

��
B // D

gives a weak-equivalence C ∼−→ D provided that A and B are cofibrant in
A.

Proof. See [27, Proposition 13.1.2]. ut

The dual weak right properness property holds in every model category
too.

Basic examples of model categories include the category of dg-modules
over a ring, the category of topological spaces, and the category of simplicial
sets. Before recalling the definition of these basic model categories, we still
review the notion of a cofibrantly generated model category which applies
to these examples. The categories of spectra in stable homotopy give other
important instances of cofibrantly generated model categories. This example
is studied briefly in §§11.6.8-11.6.11 as an instance of a symmetric monoidal
model category with regular tensor powers.

For our purpose, the importance of cofibrantly generated model categories
comes from the definition of new model categories by adjunction from a
cofibrantly generated model structure. In this book, we apply the construction
of adjoint model structures to the category of Σ∗-objects (see §11.4), the
categories of right modules over operads (see §14), the category of operads
itself (see §12.2), and categories of algebras over operads (see §12.3).

The core idea of a cofibrantly generated model category is to realize the
factorizations of axiom M5 by successive cell attachments of reference cofi-
brations (respectively, acyclic cofibrations) which are also used to determine
the class of acyclic fibrations (respectively, fibrations).
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11.1.5 Cofibrantly generated model categories. Formally, a cofibrantly
generated model category consists of a model category A equipped with a set
of generating cofibrations I and a set of generating acyclic cofibrations J ,
for which the small object argument holds (see short recollections next and
[27, 28] for further details), and so that:

G1. The fibrations are characterized by the right lifting property with respect
to acyclic generating cofibrations j ∈ J .

G2. The acyclic fibrations are characterized by the right lifting property with
respect to generating cofibrations i ∈ I.

Since the class of cofibrations (respectively, acyclic cofibrations) is also char-
acterized by the left lifting property with respect to acyclic fibrations (respec-
tively, fibrations), the structure of a cofibrantly generated model category is
completely determined by its class of weak-equivalences, the set of generating
cofibrations I and the set of generating acyclic cofibrations J .

11.1.6 Relative cell complexes. Let K be any set of morphisms in a
category A with colimits. We call K-cell attachment any morphism j : K → L
obtained by a pushout ⊕

α Cα
//

��

K

j

��⊕
αDα

// L

in which the right hand side consists of a sum of morphisms of K. We call
relative K-cell complex any morphism j : K → L obtained by a (possibly
transfinite) composite

K = L0 → · · · → Lλ−1
jλ−→ Lλ → · · · → colim

λ<µ
Lλ = L,

over an ordinal µ, of K-cell attachments jλ : Lλ−1 → Lλ. We refer to the
ordinal µ as the length of the relative K-cell complex j : K → L. We call
K-cell complex any object L so that the initial morphism 0→ L is equipped
with the structure of a relative K-cell complex.

11.1.7 The small object argument and cellular approximations. The
small object argument (whenever it holds) associates to any morphism f a
natural factorization f = pi so that i is a relative K-complex and p has the
right lifting property with respect to morphisms of K (we refer to [27, §10.5]
and [28, §2.1.2] for a detailed account of this construction). The small object
argument holds for a set of morphisms K if the domain A of every morphism
of K is small with respect to relative K-cell complexes of length µ ≥ ω, for
some fixed ordinal ω: any morphism f : A→ L, where L = colimλ<µ Lλ is a
relative K-cell complexes of length µ ≥ ω, admits a factorization
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Lλ

��
A

99

f
// colimλ<µ Lµ

for some λ < µ.

11.1.8 Relative cell complexes and (acyclic) cofibrations in cofi-
brantly generated model categories. In the context of a cofibrantly gen-
erated model category, the small object argument returns:

– a factorization f = pi such that i is a relative I-cell complex and p has
the right lifting property with respect to generating cofibrations,

– and a factorization f = qj such that j is a relative J -cell complex and q has
the right lifting property with respect to generating acyclic cofibrations.

Every relative I-cell (respectively, J -cell) complex forms a cofibration (re-
spectively, acyclic cofibration) because relative I-cell (respectively, J -cell)
complexes inherits the left lifting properties of generating cofibrations (re-
spectively, acyclic cofibrations). Thus we obtain the factorizations required
by axiom M5 of model categories

If we assume that f is a cofibration, then we can deduce from the left lifting
property that f forms a retract of the relative I-cell complex i which occurs
in the factorization f = pi. Similarly, if f is an acyclic cofibration, then we
obtain that f forms a retract of the relative J -cell complex j which occurs in
the factorization f = qj. Hence the cofibrations (respectively, acyclic cofibra-
tions) in a cofibrantly generated model category are the retracts of relative
I-cell (respectively, J -cell) complexes.

In usual examples of model categories, we call cofibrant cell objects the cell
complexes built from a natural set of generating cofibrations of the model
category, and we use a similar convention for relative cell complexes.

11.1.9 Example: dg-modules. The category of dg-modules dg k Mod is
equipped with a proper model structure so that a morphism f : A→ B is a
weak-equivalence if it induces an isomorphism in homology, a fibration if it
is degreewise surjective, a cofibration if it has the left lifting property with
respect to acyclic fibrations (see [28] for proofs).

Let Ed be the dg-module freely spanned by an element e = ed in degree
d and an element b = bd−1 in degree d − 1 so that δ(ed) = bd−1. Let Bd−1

be the submodule of Ed spanned by bd−1. The embeddings i : Bd−1 → Ed

define a set of generating cofibrations of the category of dg-modules, and the
null morphisms j : 0→ Ed define a set of generating acyclic cofibrations, so
that dg k Mod forms a cofibrantly generated model category (we refer to [28]
for details).

The structure of cofibrations in dg-modules is studied more thoroughly
in §11.2.
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11.1.10 Example: topological spaces. The category of topological spaces
Top is equipped with a proper model structure so that (see [28]):

– A map f : X → Y is a weak-equivalence if π0(f) : π0(X) → π0(Y ) is
bijective and πn(f) : πn(X, ∗) → πn(Y, ∗) is a group isomorphism for all
n > 0 and for every choice of base points;

– The fibrations are the Serre fibrations, the maps which have the homotopy
lifting property with respect to cell complexes;

– The cofibrations are the maps which have the left lifting property with
respect to acyclic fibrations.

Let ∆n be the standard model of the n-simplex in the category of sim-
plicial sets, defined by the morphism sets ∆n = Mor∆(−, n) in the sim-
plicial category. Form the subobjects ∂∆n =

⋃n
i=1 di(∆

n) ⊂ ∆n and
Λnk =

⋃
i 6=k di(∆

n) ⊂ ∆n, 0 ≤ k ≤ n. The category of topological spaces
has a set of generating cofibrations defined by the geometric realization of
the embeddings i : ∂∆n → ∆n, a set of generating acyclic cofibrations de-
fined by the geometric realization of the embeddings j : Λnk → ∆n, so that
Top forms a cofibrantly generated category.

11.1.11 Example: simplicial sets. The category of simplicial sets S is
equipped with a proper model structure so that a map f : X → Y is a weak-
equivalence if its geometric realization |f | : |X| → |Y | is a weak-equivalence
of topological spaces, a fibration if f is a fibration in Kan’s sense, a cofibration
if f is dimensionwise injective (as usual, we refer to [28]).

The category of simplicial sets S is also cofibrantly generated by the em-
beddings i : ∂∆n → ∆n as generating cofibrations and the embeddings
j : Λnk → ∆n as generating acyclic cofibrations. The definition of a Kan
fibration is actually equivalent to a map f : X → Y which has the right
lifting property with respect to the embeddings j : Λnk → ∆n.

11.1.12 Model structures and adjunctions. Our motivation to use cofi-
brantly generated model categories is to derive new model structures by ad-
junction from a well-defined model category.

Say that a functor U : A → X between model categories creates weak-
equivalence if the weak-equivalences of A are exactly the morphisms f such
that U(f) forms a weak-equivalence in X , and adopt similar conventions
with respect to other classes of morphisms. In many usual examples, we
have a natural adjunction relation F : X � A : U , where X is a reference
model category, and a model structure on A is specified by assuming that
the functor U : A → X creates weak-equivalences and fibrations. The class
of cofibrations of A is determined by the left lifting property with respect to
acyclic fibrations. The difficulty is to check the axioms of model categories
to conclude that this definition returns an actual model structure on A.

In the context of cofibrantly generated model categories, the verifications
can be reduced to simple conditions:
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11.1.13 Theorem (see [27, Theorem 11.3.2]). Suppose we have an adjunc-
tion F : X � A : U , where A is any category with limits and colimits and
X is a cofibrantly generated model category. Let I, respectively J , be the set
of generating (acyclic) cofibrations of X and set FI = {F (i), i ∈ I}, respec-
tively F J = {F (j), j ∈ J }. Under assumptions (1-2) below, the category A
inherits a cofibrantly generated model structure with FI (respectively, F J )
as generating (acyclic) cofibrations and so that the functor U : A→ X creates
weak-equivalences. The functor U : A → X creates the class of fibrations as
well.

(1) The small object argument holds for FI and F J .
(2) Any relative F J -cell complex g : A→ B forms a weak-equivalence in A.

In §12.1 we extend this theorem to semi-model structures. For this reason,
we review the proof of this classical statement, which can also be found in [27].

Proof. The statement supposes that the weak-equivalences of A are the mor-
phisms f such that U(f) is a weak-equivalence in X . Define the class of fi-
brations by the right lifting property with respect to morphisms F (j), j ∈ J ,
the class of cofibrations by the left lifting property with respect to morphisms
which are both fibrations and weak-equivalences. By adjunction, we obtain
that p forms a fibration in A if and only if U(p) has the right lifting property
with respect to morphisms j ∈ J and hence forms a fibration in X . Thus
the functor U : A → X creates both fibrations and weak-equivalences. As a
byproduct we obtain that the functor U : A → X creates the class of acyclic
fibrations as well.

The category A satisfies axiom M1 by assumption and inherits trivially
axioms M2-M3 from the model category X . Axiom M4.i is tautologically
satisfied. We use the small object argument to check the factorization axioms
M5.i-ii and we prove the other lifting axiom M4.ii afterwards.

The small object argument applied to FI returns a factorization f = pi,
where i is a relative FI-complex and p has the right lifting property with
respect to morphisms of FI. By adjunction, we obtain that U(p) has the right
lifting property with respect to morphisms of I, and hence forms an acyclic
fibration in X , from which we conclude that p forms an acyclic fibration.
Thus the small object argument applied to FI gives the factorization f = pi
required by axiom M5.i of model categories.

The small object argument applied to F J returns a factorization f = qj,
where j is a relative F J -complex and q has the right lifting property with
respect to morphisms of F J . The morphism q is a fibration by definition of
fibrations in A. Relative F J -complexes are weak-equivalences by assump-
tion and inherit the left lifting property with respect to fibrations from the
morphisms of F J . Thus we obtain that any relative F J -complex forms an
acyclic cofibration. Thus the small object argument applied to F J gives the
factorization f = qj required by axiom M5.ii of model categories. Note fur-
ther that the acyclic cofibration which occurs in this factorization is ensured
to have the left lifting property with respect to fibrations.



11.1 Recollections: the language of model categories 163

If we assume further that f is an acyclic cofibration, then the fibration
q is also acyclic by the two-out-of-three axiom. By axiom M4.i, which is
tautologically satisfied in A, we have a morphism s so that sf = j and
ps = id, from which we deduce that f is a retract of j. Since retracts inherit
left lifting properties, we obtain that f has the left lifting property with
respect to fibrations as well. This argument proves that the lifting axiom
M4.ii is also satisfied in A and achieves the proof of the theorem. ut

In our constructions, we use the following proposition to check the condi-
tions of theorem 11.1.13:

11.1.14 Proposition. The conditions of theorem 11.1.13 are satisfied under
the sufficient assumptions that:

(1) The functor U : A → X preserves colimits over non-empty ordinals;
(2) For any pushout

F (C) //

F (i)

��

A

f

��
F (D) // B

,

the morphism U(f) forms a cofibration, respectively an acyclic cofibration,
in X if i is so.

In this situation, the functor U : A → X preserves cofibrations in addition to
create weak-equivalences and fibrations.

Proof. Let j : A → B be a relative FI-cell (respectively, F J -cell) complex
in A. The assumptions imply that the morphism U(j) splits into a colimit

U(A) = U(B0)→ · · · → U(Bλ−1)
U(jλ)−−−−→ U(Bλ)→ · · · → colim

λ<µ
U(Bλ) = U(B)

so that U(jλ) forms a cofibration (respectively, an acyclic cofibration) in X .
Condition (2) of theorem 11.1.13 follows immediately from this decomposi-
tion.

To check condition (1), we construct a sequence of relative I-cell (respec-
tively, J -cell) complexes so that we have retracts:

L0
//

=

��

· · · // Lλ−1
//

qλ−1

��

Lλ //

qλ

��

· · ·

U(B0) //

=

OO

· · · // U(Bλ−1) //

sλ−1

OO

U(Bλ) //

sλ

OO

· · ·

.

Suppose we have achieved the construction of the retracts U(Bλ)
sλ

// Lλ
qλoo

till an ordinal λ. Pick a factorization



164 11 Symmetric monoidal model categories for operads

Lλ
kλ //

qλ

��

Lλ+1

qλ+1

��
U(Bλ)

U(jλ)
// U(Bλ+1)

,

where kλ is a relative I-cell (respectively, J -cell) complex and qλ+1 is an
acyclic fibration (respectively, a fibration) in X . Observe that qλ+1 · kλ · sλ =
U(jλ) · qλ · sλ = U(jλ) so that the solid frame commutes in the diagram:

U(Bλ)
sλ //

U(jλ)

��

Lλ
kλ // Lλ+1

qλ+1

��
U(Bλ+1) =

//

55

U(Bλ+1)

.

Use the lifting axiom in X to pick a fill-in morphism sλ+1, which satisfies
qλ+1 · sλ+1 = id and sλ+1 ·U(jλ) = kλ · sλ by construction. The definition of
sλ+1 achieves the construction of the retracts till the ordinal λ + 1 and the
construction can be carried on by induction.

Suppose we have a morphism K → colimλ<µ U(Bλ), where K ∈ X is
small with respect to relative I-cell (respectively, J -cell) complexes of length
µ ≥ ω. The sequence of relative I-cell (respectively, J -cell) complexes

L0 → · · · → Lλ−1
kλ−→ Lλ → · · · → colim

λ<µ
Lλ

can be refined into a relative I-cell complex of length ≥ µ. From this obser-
vation, we deduce that the composite

K → colim
λ<µ

U(Bλ)→ colim
λ<µ

Lλ

factors through some stage Lλ of the colimit. By using the retraction, we ob-
tain readily that the initial morphism K → colimλ<µ U(Bλ) factors through
some U(Bλ).

By adjunction, we obtain immediately that any morphism F (K) →
colimλ<µBλ, where K is small with respect to relative I-cell (respectively,
J -cell) complexes of length µ, admits a factorization:

Bλ

��
F (K)

88

f
// colimλ<µBµ
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for some λ. As a conclusion, we obtain that F (K) is small with respect to
relative FI-cell (respectively, F J -cell) complexes of length µ. Thus the small
object argument holds for FI (respectively, F J ) and this achieves the proof
of condition (1) of theorem 11.1.13.

Our first observation implies that the functor U : A → X maps relative
FI-cell complexes to cofibrations. As a byproduct, we obtain readily that
U : A → X preserves cofibrations since cofibrations are retracts of relative
FI-cell complexes. ut

11.1.15 Recollections on Quillen’s adjunctions. Now we suppose given
an adjunction F : X � A : U between well-defined model categories A and
X . In accordance with usual conventions, we say that the functors (F,U)
define a Quillen adjunction if any one of the following equivalent condition
holds (we refer to [27, §8.5] and [28, §1.3]):

A1. The functor F preserves cofibrations and acyclic cofibrations.
A2. The functor U preserves fibrations and acyclic fibrations.
A3. The functor F preserves cofibrations and U preserves fibrations.

The functors (F,U) define a Quillen equivalence if we have further:

E1. For every cofibrant object X ∈ X , the composite

X
ηX−−→ UF (X)→ U(B)

forms a weak-equivalence in X , where ηX refers to the adjunction unit
and B is any fibrant replacement of F (X).

E2. For every fibrant object A ∈ A, the composite

F (Y )→ FU(A) εA−−→ A

forms a weak-equivalence in A, where εA refers to the adjunction augmen-
tation and Y is any cofibrant replacement of U(A).

The notion of a Quillen adjunction gives usual conditions to define adjoint
derived functors on homotopy categories. The notion of a Quillen equivalence
gives a usual condition to obtain adjoint equivalences of homotopy categories.
In this book, we define examples of Quillen adjunctions (respectively, equiv-
alences), but we do not address applications to the construction of derived
functors for which we refer to the literature.

We use essentially:
(a) In a Quillen adjunction, the left adjoint F : X → A preserves weak-
equivalences between cofibrant objects. This assertion is a consequence of
the so-called Brown’s lemma, recalled next in a generalized context.
(b) In a Quillen equivalence, the adjunction relation maps a weak-equivalence
φ : X ∼−→ U(B) so that X is cofibrant and B is fibrant to a weak-equivalence
φ] : F (X) ∼−→ B.
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11.1.16 Enlarged classes of cofibrations. In certain constructions, we
have functors F : A → X which preserve more (acyclic) cofibrations than the
genuine (acyclic) cofibrations of A. To formalize the assumptions needed in
applications, we introduce the notion of an enlarged class of cofibrations.

In general, we are given a class of B-cofibrations, to refer to some class
of morphisms in B, and we define the class of acyclic B-cofibrations by the
morphisms which are both B-cofibrations and weak-equivalences in A. As
usual, we say also that an object X ∈ A is B-cofibrant if the initial morphism
0→ X is a B-cofibration.

The class of B-cofibrations defines an enlarged class of cofibrations in A if
the following axioms hold:

C0. The class of B-cofibrations includes the cofibrations of A.
C1. Any morphism i : C → D which splits into a sum⊕

α

iα :
⊕
α

Cα →
⊕
α

Dα,

where the morphisms iα are B-cofibrations (respectively, acyclic B-cofibrations)
forms itself a B-cofibration (respectively, an acyclic B-cofibration).

C2. For any pushout
C

i

��

// S

j

��
D // D ⊕C S

,

where i : C → D is a B-cofibration (respectively, an acyclic B-cofibration),
the morphism j forms itself a B-cofibration (respectively, an acyclic B-
cofibration).

C3. Any morphism i : C → D which splits into (possibly transfinite) composite
of B-cofibrations (respectively, acyclic B-cofibrations)

C = D0 → · · · → Dλ−1
jλ−→ Dλ → · · · → colim

λ
Dλ = D,

forms itself a B-cofibration (respectively, an acyclic B-cofibration).
C4. If i : C → D is a retract of a B-cofibration (respectively, of an acyclic
B-cofibration), then i is also a B-cofibration (respectively, an acyclic B-
cofibration).

11.1.17 Enlarged class of cofibrations created by functors. Through-
out this book, we use model categories A equipped with an obvious forgetful
functor U : A → B, where B is another model category. In our constructions,
the model structure of A is usually defined by applying theorem 11.1.13 and
proposition 11.1.14. Note that the conditions of proposition 11.1.14 imply
that the forgetful functor U : A → B preserves cofibrations and acyclic cofi-
brations, in addition to create weak-equivalences and fibrations in B.
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In this situation, we call B-cofibrations the class of cofibrations created by
the forgetful functor U : A → B. If the forgetful functor U : A → B preserves
colimits in addition to cofibrations and acyclic cofibrations, then the class of
B-cofibrations defines an enlarged class of cofibrations in B.

In the sequel, we may use classes of B-cofibrations created by forgetful
functors U : A → B in cases where the B-cofibrations do not form an enlarged
class of cofibrations. In principle, we adopt the convention of §11.1.16 that an
object A ∈ A is B-cofibrant if the initial morphism 0→ A is a B-cofibration.
In certain cases, the functor U : A → B does not preserves initial objects,
but U(0) forms a cofibrant object since we assume that U : A → B preserves
cofibrations. Consequently, the object U(A) is cofibrant if A is B-cofibrant,
but the converse implication does not hold.

The following statement gives the generalization of Brown’s lemma to
enlarged classes of cofibrations:

11.1.18 Proposition (Brown’s lemma). Let F : A → X be a functor, where
A is a model category and X is a category equipped with a class of weak-
equivalences that satisfies the two-out-of-three axiom. Suppose we have an
enlarged class of B-cofibrations in A. If F maps acyclic B-cofibrations between
B-cofibrant objects to weak-equivalences, then F maps all weak-equivalences
between B-cofibrant objects to weak-equivalences.

Proof. The generalization is proved along the same lines as the standard
Brown’s lemma, for which we refer to [27, §7.7] and [28, Lemma 1.1.12]. ut

11.2 Examples of model categories in the dg-context

In the sequel, we illustrate our constructions by examples in dg-modules. For
this reason, we study this instance of a cofibrantly generated model category
more thoroughly.

The first purpose of the next paragraphs is to give a manageable repre-
sentation of cofibrant objects in dg-modules, starting from the definition of
a relative cell complex. For simplicity, we use the convention of §11.1.8 to
call cofibrant cell dg-modules the cell complexes in dg-modules built from
the generating cofibrations of §11.1.9, and similarly as regards relative cell
complexes.

Then we study the model category of modules over an associative dg-
algebra as an example of a model structure defined by adjunction from a
basic model category. We also prove that the usual extension and restriction of
structures of modules over dg-algebras give examples of Quillen adjunctions.
We extend these classical results to modules over operads in the next part.

11.2.1 Twisting cochains and quasi-free dg-modules. In general, we as-
sume that a dg-module C is equipped with an internal differential δ : C → C,
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fixed once and for all. But in certain constructions, the natural differential
of a given dg-module C is twisted by a cochain ∂ ∈ Homdg k Mod(C,C) of de-
gree −1 to produce a new dg-module, which has the same underlying graded
module as C, but whose differential is given by the sum δ + ∂ : C → C.
By convention, the pair (C, ∂), where C is a dg-module and ∂ is a twisting
cochain, will refer to this new dg-module structure, obtained by the addition
of the twisting cochain ∂ to the internal differential of C.

Note that the map δ+∂ satisfies the equation of a differential (δ+∂)2 = 0
if and only if the twisting cochain ∂ verifies the equation δ(∂) + ∂2 = 0 in
Homdg k Mod(C,C).

As an example, recall that a dg-module D is quasi-free if it is free as a
graded k-module as long as we forget differentials. Clearly, this definition
implies that a quasi-free dg-module D is equivalent to a twisted dg-module
D = (C, ∂) so that C =

⊕
α k edα

is a free graded module equipped with a
trivial differential.

We use twisted dg-modules to determine the structure of cofibrations in
dg-modules. Our results follow from the following easy observation:

11.2.2 Observation. The cell attachments of generating cofibrations in dg-
modules ⊕

αB
dα−1 f //

idα

��

K

j

��⊕
αE

dα // L

are equivalent to twisted direct sums L = (K ⊕ E, ∂), so that E is a free
graded k-module E =

⊕
α k edα (equipped with a trivial differential) and the

twisting cochain ∂ is reduced to a component ∂ : E → K.
The twisting cochain is determined from the attaching map f :

⊕
αB

dα−1 →
K by the relation ∂(edα

) = f(bdα−1).

This observation gives immediately:

11.2.3 Proposition. In dg-modules, the relative cofibrant cell objects are
equivalent to composites

K = L0 → · · · → Lλ−1
jλ−→ Lλ → · · · → colim

λ
Lλ = L,

whose terms Lλ are defined by twisted direct sums of the form of observa-
tion 11.2.2

Lλ = (Lλ−1 ⊕ Eλ, ∂).

As a corollary:

11.2.4 Proposition. A cofibrant cell dg-module is equivalent to a quasi-free
dg-module L = (

⊕
α k edα , ∂), where the free graded k-module K =

⊕
α k edα

is equipped with a basis filtration Kλ =
⊕

α<λ k edα so that ∂(Kλ) ⊂ Kλ−1.
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In the sequel, we use the representation of cofibrations and cofibrant ob-
jects in dg-modules yielded by proposition 11.2.3 and proposition 11.2.4. Dif-
ferent characterizations of cofibrations in dg-modules occur in the literature
(see for instance [28, §2.3]).

11.2.5 Modules over a dg-algebra. The categories of modules over an as-
sociative dg-algebra give a first example of an application of theorem 11.1.13
and proposition 11.1.14. The model categories of modules over dg-algebras
are also used in §13 and in §17.3, where we study the (co)homology of al-
gebras over operads. The result has an easy generalization in the setting of
monoidal model categories (whose axioms are recalled in the next section).

Let R be an associative algebra in dg-modules. By definition, a left module
over R consists of a dg-module E together with a left R-action defined by
a morphism of dg-modules λ : R ⊗ E → E that satisfies the standard unit
and associativity relations with respect to the unit and the product of R.
The definition of a right R-module is symmetric. For these usual module
categories, we adopt the standard notation RMod and ModR.

The category of left R-modules comes equipped with an obvious forgetful
functor U : RMod → dg k Mod. The forgetful functor has a left adjoint
R⊗− : dg k Mod→ RMod which maps a dg-module C to the tensor product
R⊗ C equipped the natural left R-action

R⊗ (R⊗ C) = R⊗R⊗ C µ⊗C−−−→ R⊗ C,

in which µ : R⊗R→ R refers to the product of R. The forgetful functor cre-
ates all limits and all colimits in the category of left R-modules. As usual, we
can use the natural morphism R⊗limi∈I(Ei)→ limi∈I(R⊗Ei) to provide any
limit of left R-modules Ei with an R-module structure. On the other hand,
the existence of a natural isomorphism R⊗colimi∈I(Ei)

'←− colimi∈I(R⊗Ei)
implies that a colimit of left R-modules Ei inherits an R-module structure.
The conclusion follows. Symmetric observations hold for the category of right
R-modules ModR.

Recall that the notion of a left (respectively, right) module over an operad
comes from a generalization of the definition of a left (respectively, right)
module over an associative algebra, where the tensor product is replaced by
the composition product of Σ∗-objects. But left modules over operads do not
satisfy usual properties of left modules over algebras, because the composition
product does not preserves all colimits on the right. (As an example, we
observe in §3.3 that the forgetful functor from left modules over operads to
Σ∗-objects does not preserve all colimits, unlike the forgetful functor on left
modules over algebras.)

The application of proposition 11.1.14 to the adjunction

R⊗− : dg k Mod � RMod : U

returns:
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11.2.6 Proposition. Suppose R is cofibrant as a dg-module.
The category of left R-modules inherits a cofibrantly generated model struc-

ture so that the forgetful functor U : RMod → dg k Mod creates weak-
equivalences and where the generating cofibrations (respectively, acyclic cofi-
brations) are the morphisms of free left R-modules R ⊗ i : R ⊗ C → R ⊗D
induced by generating cofibrations (respectively, acyclic cofibrations) of dg-
modules.

The forgetful functor U : RMod→ dg k Mod creates fibrations as well and
preserves cofibrations.

Symmetric assertions hold for the category of right R-modules.

If R is not cofibrant as a dg-module, then the conditions of proposi-
tion 11.1.14 are not satisfied. Nevertheless, the assumptions of theorem 11.1.13
can be checked directly without using the assumption of proposition 11.2.6.
Thus the category of left (respectively, right) R-modules has still a cofibrantly
generated model structure if R is not cofibrant as a dg-module, but the for-
getful functor U : RMod→ dg k Mod does not preserve cofibrations.

Proof. Condition (1) of proposition 11.1.14 is satisfied since the forgetful
functor U : RMod→ dg k Mod creates all colimits. Condition (2) is implied
by the next observation, because the forgetful functor U : RMod→ dg k Mod
creates all colimits (including pushouts) and cofibrations (respectively, acyclic
cofibrations) are stable under pushouts in dg-modules. ut

11.2.7 Fact. Let K be any cofibrant dg-module. If i is a cofibration (respec-
tively, an acyclic cofibration) in the category of dg-modules, then so is the
tensor product K ⊗ i : K ⊗ C → K ⊗D.

This fact holds in the context of monoidal model categories as a con-
sequence of the pushout-product axiom, recalled next. But, in the context
of dg-modules, we can also use the explicit form of cofibrations yielded by
proposition 11.2.3 to check fact 11.2.7 directly.

11.2.8 Twisting cochains and quasi-free modules over dg-algebras.
The constructions and results of §§11.2.1-11.2.4 have obvious generalizations
in the context of modules over dg-algebras. For a left R-module E, we assume
that a twisting cochain ∂ : E → E commutes with the R-action to ensure
that the map δ + ∂ : E → E defines a differential of R-modules. Naturally,
we say that a left R-module E is quasi-free if we have E = (R ⊗ C, ∂),
where ∂ : R ⊗ C → R ⊗ C is a twisting cochain of left R-modules. In this
case, the commutation with the R-action implies that the twisting cochain
∂ : R⊗ C → R⊗ C is determined by a homogeneous map ∂ : C → R⊗ C.

The extension of proposition 11.2.9 to modules over dg-algebras reads:

11.2.9 Proposition. A cofibrant cell object in left R-modules is equivalent
to a quasi-free R-module L = (R⊗K, ∂), where K is a free graded k-module
K =

⊕
α k edα

equipped with a basis filtration Kλ =
⊕

α<λ k edα
so that

∂(Kλ) ∈ R⊗Kλ−1.
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The cofibrant cell objects in right R-modules have a symmetric represen-
tation. ut

Again, a cofibrant cell object in left R-modules (respectively, right R-
modules) refers by convention to a cell complex built from the generating
cofibrations of RMod (respectively, ModR).

Recall that any morphism of associative dg-algebras ψ : R → S gives
adjoint extension and restriction functors on module categories:

ψ! : RMod � SMod : ψ∗.

The left R-module ψ∗N obtained by restriction of structures from a left S-
modules N is defined by the dg-module ψ∗N = N underlying N on which the
dg-algebra R acts through the morphism ψ : R → S. The extension functor
is given by the relative tensor product ψ!M = S ⊗RM .

The extension and restriction of left (respectively, right) modules over
operads are generalizations of this construction.

The extension and restriction functors give examples of Quillen adjunction:

11.2.10 Proposition. The extension and restriction functors

ψ! : RMod � SMod : ψ∗

form a Quillen pair of adjoint functors, a Quillen equivalence if ψ : R → S
is also a weak-equivalence.

Symmetric results hold for extensions and restrictions of right modules
over dg-algebras. ut

We sketch only the proof of this standard proposition. We assume again
that R and S are cofibrant as dg-modules, but the proposition holds without
this assumption.

In §16 we prove an analogous statement in the context of left (respectively,
right) modules over operads and we give more detailed arguments in this case.
The plan of the proof is the same. The proof of the Quillen equivalence is
simply more difficult in the case of left modules over operads, because the
forgetful functor does not preserve colimits.

Proof. Fibrations and acyclic fibrations are created by forgetful functors in
categories of left module over dg-algebras. Since the restriction functor re-
duces to the identity if we forget algebra actions, we obtain immediately that
ψ∗ preserves fibrations and acyclic fibrations. Hence we conclude readily that
the pair (ψ!, ψ

∗) forms a Quillen adjunction.
If the morphism ψ is a weak-equivalence in dg-modules, then the adjunc-

tion unit
E

η(E)−−−→ ψ∗ψ!(E) = S ⊗R E

defines a weak-equivalence for any cofibrant R-module E. This assertion is
immediate for a free R-module E = R⊗C, because we have S⊗R (R⊗C) =
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S⊗C and η(R⊗C) is identified with the morphism ψ⊗C : R⊗C → S⊗C.
The assertion can easily be generalized to cofibrant cell R-modules (by using
an induction on the cell decomposition), because the functors U : RMod→
dg k Mod and U(ψ∗ψ!−) : RMod → dg k Mod map cell attachments in R-
modules to pushouts in dg-modules. Use that any cofibrant R-module is a
retract of a cofibrant cell R-module to conclude.

Let F be any left S-module. Let E ∼−→ ψ∗F be a cofibrant replacement of
ψ∗F in the category of left R-modules. Use the commutative diagram

E

η(E)

��

∼ // ψ∗(F )

η(ψ∗(F ))

��
id

yy

ψ∗ψ!(E) // ψ∗ψ!ψ
∗(F )

ψ∗(ε(F ))

��
ψ∗(F )

to prove that the composite

ψ!(E)→ ψ!ψ
∗(F )

ε(F )−−−→ F

is a weak-equivalence if η(E) : E → ψ∗ψ!(E) is so (see 16.1).
From these verifications, we conclude that the pair (ψ!, ψ

∗) forms a Quillen
equivalence if ψ is a weak-equivalence. ut

11.3 Symmetric monoidal model categories over a base

In the context of operads, we use model categories equipped with a symmetric
monoidal structure. With a view to applications in homotopy theory, we
have to put appropriate conditions on the tensor product and to introduce
a suitable notion of a symmetric monoidal model category. Good axioms are
formalized in [28, §§4.1-4.2]. The purpose of this section is to review these
axioms in the relative context of symmetric monoidal categories over a base
and to specify which axioms are really necessary for our needs.

11.3.1 The pushout-product. The pushout-product gives a way to assem-
ble tensor products of (acyclic) cofibrations in symmetric monoidal model
categories. The definition of the pushout-product makes sense for any bifunc-
tor T : A×B → X where X is a category with colimits. The pushout-product
of morphisms f : A→ B and g : C → D is just the morphism

(f∗, g∗) : T (A,D)
⊕

T (A,C)

T (B,C)→ T (B,D)
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which arises from the commutative diagram

T (A,C)

T (A,j)

��

T (i,C) // T (B,C)

��
T (B,j)

��

T (A,D)

T (i,D) 00

// T (A,D)
⊕

T (A,C) T (B,C)
(i∗,j∗)

))
T (B,D)

.

We apply this construction to the tensor product of a symmetric monoidal
category, to the internal and external tensor products of a symmetric monoidal
category over a base category, and next, to the bifunctors (M,X) 7→ S(M,X)
and (M,A) 7→ SR(M,A). We also use a dual construction in the context of
enriched categories.

The word “product” in the expression “pushout-product” refers to a tensor
product, to which the construction of the pushout-product is usually applied,
but we keep using this expression “pushout-product” for any bifunctor T :
A×B → X .

In applications, a main task consists in proving that pushout-products of
morphisms (i, j) form (acyclic) cofibrations. The next lemma simplifies the
verification of this property:

11.3.2 Lemma. Let f : F → G be a natural transformation of functors
F,G : A → X where X is a model category. Let K be a set of morphisms in
A. Suppose that F,G preserves colimits. If the pushout-product

(i∗, f∗) : G(A)
⊕
F (A)

F (B)→ G(B)

forms a cofibration (respectively, an acyclic cofibration) for every i ∈ K, then
so does every pushout-product (i∗, f∗) such that i is a retract of a relative
K-complex. ut

This lemma can be applied to the functors F (−) = T (−, C) and G(−) =
T (−, D), and to the natural transformation f = T (−, j), for any morphism
j : C → D, provided that T : A×B → X is a bifunctor which preserves
colimits in the first variable. The argument is classical in the context of
symmetric monoidal categories (we refer to [28, §4.2]).

Proof. The lemma follows from an immediate generalization of the arguments
of [28, §4.2]. ut
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11.3.3 Symmetric monoidal model categories. The next axioms are
introduced in [28, §4.2] for symmetric monoidal categories equipped with a
model structure:

MM0 (unit axiom): The unit object 1 is cofibrant in C.
MM1 (pushout-product axiom): The natural morphism

(i∗, j∗) : A⊗D
⊕
A⊗C

B ⊗ C → B ⊗D

induced by cofibrations i : A � B and j : C � D forms a cofibration,
respectively an acyclic cofibration if i or j is also acyclic.

In certain arguments, we use MM0 and MM1. Therefore we take the con-
vention that a symmetric monoidal model category is a symmetric monoidal
category equipped with a model structure such that both axioms MM0-MM1
hold. The base symmetric monoidal category C is supposed to satisfy these
requirements whenever it is equipped with a model structure.

The model categories of dg-modules, topological spaces, and simplicial
sets fit our requirements. ¶ But certain stable model categories of spectra
(examined next) do not satisfy the unit axiom MM0. However some of our
results can be applied (with care) in the context of spectra. These possible
generalizations are deferred to the note apparatus.

Naturally, we say that a symmetric monoidal category E over a base sym-
metric monoidal model category C forms a symmetric monoidal model cat-
egory over C if axiom MM1 holds for the internal tensor product of E and
for the external tensor product ⊗ : C ×E → E . Again, we assume that axiom
MM0 holds in E . These axioms imply that the canonical functor η : C → E
preserves (acyclic) cofibrations since we have by definition η(C) = C ⊗ 1.

Of course, any symmetric monoidal model category forms a symmetric
monoidal model category over itself. In the sequel, we prove that the category
Σ∗-objects in a symmetric monoidal model category inherits the structure
of a symmetric monoidal category over the base category, and similarly as
regards modules over operads.
¶ Standard categories of spectra (for instance the symmetric spectra

of [30]) form naturally a symmetric monoidal category over simplicial sets.
In applications of operads, categories of spectra are often used as such. The
canonical functor from simplicial sets to spectra is identified with the functor
Σ∞(−)+ which maps a simplicial set K to the suspension spectrum of K
with a base point added. This functor Σ∞(−)+ does not preserves cofibra-
tions as axiom MM0 fails in spectra, but the pushout-product axiom MM1
also holds for the external tensor product of spectra over simplicial sets.

11.3.4 Enriched categories. The pushout-product axiom applied to the
external tensor product ⊗ : C ×E → E implies that the adjoint hom-bifunctor
HomE(−,−) : Eop × E → C satisfies an analogue of axiom SM7 of simplicial
model categories. Namely:
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MM1’. The morphism

(i∗, p∗) : HomE(B,X)→ HomE(A,X)×HomE(A,Y ) HomE(B, Y )

induced by a cofibration i : A � B and a fibration p : X � Y forms a
fibration in C, an acyclic fibration if i is also an acyclic cofibration or p is
also an acyclic fibration.

In fact, we have an equivalence MM1 ⇔ MM1’. To check this assertion, use
that the lifting axioms M4.i-ii characterize cofibrations, acyclic cofibrations,
fibrations, and acyclic fibrations and apply the adjunction relation to obtain
an equivalence of lifting problems:

A⊗D
⊕

A⊗C B ⊗ C //

��

X

��
B ⊗D //

77

Y

⇔ C //

��

HomE(B,X)

��
D //

55

HomE(A,X)×HomE(A,Y ) HomE(B, Y )

.

See [28, Lemma 4.2.2] for details.

11.4 The model category of Σ∗-objects

In this book, we use the standard cofibrantly generated model structure of
the category of Σ∗-objects in which a morphism f : M → N is a weak-
equivalence (respectively a fibration) if the underlying collection of mor-
phisms f : M(n) → N(n) consists of weak-equivalences (respectively fibra-
tions) in C. This model structure is an instance of the cofibrantly generated
model structures defined in [27, §11.6] for categories of diagrams.

The model structure of Σ∗-objects can be deduced from the discussion
of §§11.1.12-11.1.14. Consider the category CN formed by collections of ob-
jects {K(n) ∈ C}n∈N together with the obvious model structure of a product
of model categories: a collection of morphisms {f : K(n)→ L(n)}n∈N defines
a weak-equivalence (respectively, a cofibration, a fibration) in CN if every
component f : K(n) → L(n) forms a weak-equivalence (respectively, a cofi-
bration, a fibration) in C. This model category has a set generating (acyclic)
cofibrations inherited componentwise from the base category C. The forgetful
functor U :M→ CN has a left-adjoint F : CN →M which maps a collection
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K to the Σ∗-object such that (Σ∗ ⊗K)(n) = Σn ⊗K(n). The assumptions
of proposition 11.1.14 are satisfied and we obtain readily:

Proposition 11.4.A. The category of Σ∗-objects M inherits the structure
of a cofibrantly generated model category from the base category C so that the
forgetful functor U :M→ CN creates weak-equivalences and fibrations inM.
The generating (acyclic) cofibrations of M are given by tensor products

i⊗ Fr : C ⊗ Fr → D ⊗ Fr,

where i : C → D ranges over generating (acyclic) cofibrations of the base cat-
egory C and Fr ranges over the generators, defined in §2.1.12, of the category
of Σ∗-objects.

If the base model category C is left (respectively, right) proper, then so is
the model category of Σ∗-objects. ut

The main purpose of this section is to prove further:

Proposition 11.4.B. The category of Σ∗-object M forms a symmetric
monoidal model category over C in our sense:
(a) If the unit object 1 ∈ C is cofibrant in C, then so is the equivalent constant
Σ∗-object 1 ∈M. Hence the unit axiom MM0 holds in M.
(b) The internal and external tensor products of Σ∗-objects satisfy the
pushout-product axiom MM1.

¶ Remark. Of course, if C satisfies only the pushout-product axiom
MM1, then M satisfies only the pushout-product axiom MM1 and forms a
symmetric monoidal model category in the weak sense.

Before checking propositions 11.4.A-11.4.B, we recall terminologies about
enlarged classes of cofibrations in the context of collections and Σ∗-objects.
Usually, we say that a morphism in a model category A is a B-cofibration if
its image under an obvious forgetful functor U : A → B forms a cofibration
in A (see §11.1.17). Similarly, we say that an object X ∈ A is B-cofibrant if
the initial morphism 0→ X forms a B-cofibration.

In the case where B is the category M of Σ∗-objects, the usage is to call
Σ∗-cofibrations theM-cofibrations and Σ∗-cofibrant objects theM-cofibrant
objects. In the case where B is the category CN of collections of C-objects, we
call for simplicity C-cofibrations the CN-cofibrations and C-cofibrant objects
the CN-cofibrant objects. Accordingly, a morphism of Σ∗-objects f : M → N
defines a C-cofibration if every morphism f : M(n) → N(n), n ∈ N, defines
a cofibration in C.

Observe that:

11.4.1 Proposition. The C-cofibrations in the category of Σ∗-objects satisfy
the axioms of an enlarged class of cofibrations.
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Proof. Immediate because colimits in the category of Σ∗-objects are cre-
ated in CN, as well as weak-equivalences. Observe further that the generat-
ing (acyclic) cofibrations of M are (acyclic) C-cofibrations to prove that all
(acyclic) cofibrations ofM are (acyclic) C-cofibrations. ut

The next statements are devoted to the verification of proposition 11.4.B.

11.4.2 Lemma. The functor C 7→ C ⊗Fr, from C to M, preserve (acyclic)
cofibrations.

Proof. By standard categorical arguments (see [28, §4.2.5]), the assertion in
the general case of an (acyclic) cofibration i : C → D follows from the case
of generating (acyclic) cofibrations, asserted by proposition 11.4.A. ut

11.4.3 Lemma. The pushout-product axiom MM1 holds for the internal
tensor product of Σ∗-objects: the natural morphism

(i∗, j∗) : K ⊗N
⊕
K⊗M

L⊗M → L⊗N

induced by cofibrations i : K � L and j : M � N of the category of Σ∗-
objects forms a cofibration, an acyclic cofibration if i or j is also acyclic.

Proof. By lemma 11.3.2 (or [28, §4.2.5]), we can reduce the verification of
the claim to the case of generating (acyclic) cofibrations. Thus we consider
(acyclic) cofibrations of the form

A⊗ Fr
i⊗Fr−−−→ B ⊗ Fr and C ⊗ Fs

j⊗Fs−−−→ D ⊗ Fs,

where i : A→ B, respectively j : C → D, is a generating (acyclic) cofibration
of C.

Recall that Fr = I⊗r. Accordingly, we have Fr ⊗ Fs ' Fr+s. For all
C,D ∈ C, we obtain

(C ⊗ Fr)⊗ (D ⊗ Fs) ' (C ⊗D)⊗ (Fr ⊗ Fs) ' (C ⊗D)⊗ Fr+s

and, as a byproduct, the pushout of the morphisms

(A⊗ Fr)⊗ (C ⊗ Fs)
(i⊗Fr)⊗(C⊗Fs)

**TTTTTTTTTTTTTTTT
(A⊗Fr)⊗(j⊗Fs)

ttjjjjjjjjjjjjjjjj

(A⊗ Fr)⊗ (D ⊗ Fs) (B ⊗ Fr)⊗ (C ⊗ Fs)

is isomorphic to (A ⊗ D
⊕

A⊗C B ⊗ C) ⊗ Fr+s. Accordingly, to prove our
claim, we check the class of the morphism

(i∗, j∗)⊗ Fr+s : (A⊗D
⊕
A⊗C

B ⊗ C)⊗ Fr+s → (B ⊗D)⊗ Fr+s
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induced by generating (acyclic) cofibrations i : A � B and j : C � D of C.
At this stage, we can use axiom MM1 in the base category and lemma 11.4.2
to conclude. ut

11.4.4 Lemma. The canonical functor η : C → M which associates a con-
stant Σ∗-object to any C ∈ C preserve cofibrations and acyclic cofibrations.

In particular, if the monoid unit 1 forms a cofibrant object in C, then so
does the equivalent constant Σ∗-object in M.

Proof. This lemma is an immediate corollary of lemma 11.4.2 since we have
identities ηC = C ⊗ 1 = C ⊗ F0. ut

11.4.5 Lemma. The cofibration axiom MM1 holds for the external tensor
product of Σ∗-objects: the natural morphism

(i∗, j∗) : C ⊗N
⊕
C⊗M

D ⊗N → D ⊗N

induced by a cofibration i : C � D in C and a cofibration j : M � N in M
forms a cofibration in M, and an acyclic cofibration if i or j is also acyclic.

Proof. This lemma is an immediate consequence of lemma 11.4.3 and lemma 11.4.4
since we have the identity C ⊗M = η(C)⊗M , which connects the external
tensor product to the internal tensor product in any symmetric monoidal
category over C. ut

This lemma achieves the proof of proposition 11.4.B. ut

The next assertions are used repeatedly in §14:

11.4.6 Lemma.

(a) If M is a cofibrant object in M, then so is M⊗r, for all r > 0.
(b) If M is C-cofibrant, then so is M⊗r, for all r > 0.

Proof. Assertion (a) is a direct consequence of the axioms of a symmetric
monoidal model category for Σ∗-objects.

By §2.1.8, we have

M⊗r(n) =
⊕

n1+···+nr=n

Σn ⊗Σn1×···×Σnr
M(n1)⊗ · · · ⊗M(nr)

Accordingly, the object M⊗r(n) splits as a sum in the category C

M⊗r(n) '
⊕

n1+···+nr=n

Σn/Σn1 × · · · ×Σnr
⊗M(n1)⊗ · · · ⊗M(nr)

'
⊕

n1+···+nr=n
w∈Σn/Σn1×···×Σnr

M(n1)⊗ · · · ⊗M(nr).
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Assertion (b) follows immediately. ut

11.5 The pushout-product property
for symmetric tensors

In this section, we study the homotopy invariance of the bifunctor (M,X)→
S(M,X), where M ranges over the category of Σ∗-objects M and X ranges
over any symmetric monoidal category E over the base category C. The result,
stated in proposition 11.5.3, is classical. But, for our needs, we prove an
analogue of the pushout-product axiom of symmetric monoidal category, from
which the usual homotopy invariance properties follow. Namely:

11.5.1 Lemma. Suppose i : M � N is a cofibration in M and j : X � Y
is a cofibration in E. Suppose that the object X is also cofibrant in E. Then
the pushout-product

(i∗, j∗) : S(M,Y )
⊕

S(M,X)

S(N,X)→ S(N,Y )

forms a cofibration. If i or j is also acyclic, then the pushout-product (i∗, j∗)
forms an acyclic cofibration.

Note the additional assumption about the object X ∈ E . This statement
is also proved in [22] in the case E = M (for the composition product of
Σ∗-objects).

Proof. Since the functor (M,X) 7→ S(M,X) preserves colimits in M , we can
apply lemma 11.3.2 to reduce the claim to the case where i : M → N is a
generating (acyclic) cofibration:

u⊗ Fr : C ⊗ Fr → D ⊗ Fr.

For modules of the form M = C ⊗ Fr, we have S(M,X) = S(C ⊗ Fr, X) =
C ⊗X⊗r. As a byproduct, we obtain that the morphism

(i∗, j∗) : S(C ⊗ Fr, Y )
⊕

S(C⊗Fr,X)

S(D ⊗ Fr, X)→ S(D ⊗ Fr, Y )

is identified with the pushout-product

(u∗, j⊗r∗ ) : C ⊗ Y ⊗r
⊕

C⊗X⊗r

D ⊗X⊗r → D ⊗ Y ⊗r

of u : C → D and j⊗r : X⊗r → Y ⊗r. Hence our claim reduces to an
immediate consequence of axioms of symmetric monoidal model categories
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for the category E . Note that j⊗r : X⊗r → Y ⊗r forms a cofibration because
X is supposed to be cofibrant. ut

Lemma 11.5.1 gives as a corollary:

11.5.2 Lemma.

(a) If M is a cofibrant object inM, then the functor X 7→ S(M,X) preserves
cofibrations and acyclic cofibrations with a cofibrant domain.
(b) If X is a cofibrant object in E, then the functor M 7→ S(M,X) preserves
cofibrations and acyclic cofibrations. ut

And the classical Brown lemma implies:

11.5.3 Proposition.

(a) The morphism

S(M,f) : S(M,X)→ S(M,Y )

induced by a weak-equivalence f : X ∼−→ Y between cofibrant objects X,Y ∈ E
is a weak-equivalence as long as M ∈M is cofibrant.
(b) The morphism

S(f,X) : S(M,X)→ S(N,X)

induced by a weak-equivalence f : M ∼−→ N between cofibrant objects M,N ∈
M is a weak-equivalence as long as X ∈ E is cofibrant. ut

This proposition can also be deduced from the pointwise adjunction of §2.3:

MorE(S(M,X), Y ) ' MorM(M,EndX,Y ).

Assertion (b) of proposition 11.5.3 has a converse:

11.5.4 Proposition. Assume E = C.
Let f : M → N be a morphism between cofibrant objects M,N ∈ M.

If the morphism S(f,X) : S(M,X) → S(N,X) induced by f forms a weak-
equivalence in C for every cofibrant object X ∈ C, then f is a weak-equivalence
as well.

If C is pointed, then this implication holds without the assumption that
M,N ∈M are cofibrant.

Recall that a category C is pointed if its initial object 0 ∈ C is also a final
object (and hence defines a null object).

Proof. In general in a model category A, a sum of morphisms f ⊕ g : A0 ⊕
B0 → A1 ⊕ B1, between cofibrant objects A0, A1, B0, B1 defines a weak-
equivalence if and only if f and g are both weak-equivalences. To check this
claim, use simply that the morphism induced by f ⊕ g on homotopy classes
is identified with the cartesian product
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f∗ × g∗ : [A1, X]× [B1, X]→ [A0, X]× [B0, X]

as long as X is a fibrant object of C.
In the context of a pointed model category, the existence of a null object

implies that the canonical morphisms of a sum A
i−→ A ⊕ B

j←− B admit
natural retractions A r←− A⊕B s−→ B. As a corollary, we obtain that f and g
are retracts of f ⊕ g. Hence, in the context of a pointed model category, our
observation holds without the assumption that A0, A1, B0, B1 are cofibrant.

In light of these observations, the proposition is a consequence of the func-
torial splitting of proposition 2.3.9 for objects of the form X = 1⊕r. ut

11.6 ¶ Symmetric monoidal categories
with regular tensor powers

For certain (possibly reduced) categories E , the assertions of proposition 11.5.4
hold not only for cofibrant Σ∗-objects, but for C-cofibrant Σ∗-objects as well.

The purpose of this section is to make explicit a sufficient condition, the
axiom of regular tensor powers, which implies this property. To simplify we
assume E = C. The axiom of regular tensor powers is used to improve ap-
plications of lemma 11.5.1. These refinements are addressed in remarks and
proofs are usually omitted.

11.6.1 Iterated pushout-products. To state the axiom, we use iterated
pushout-products of morphisms. These higher pushout-products are also used
in §18.2 to study pushout-products of functors on algebras over operads. For
the moment, we give only the definition of the nfold pushout-product of a
morphism f : X → Y .

Let T0 = X, T1 = Y . The tensor products Tε1⊗· · ·⊗Tεn and the morphisms

Tε1 ⊗ · · · ⊗ T0 ⊗ · · · ⊗ Tεn
Tε1⊗···⊗i⊗···⊗Tεn−−−−−−−−−−−−→ Tε1 ⊗ · · · ⊗ T1 ⊗ · · · ⊗ Tεn

are vertices and edges of an n-dimensional cubical diagram. The tensor power
Tn(Y/X) = Y ⊗n = T1⊗· · ·⊗T1 is put at the terminal vertex of the cube. The
n-fold pushout-product of f is the canonical morphism λ(f) : Ln(Y/X) →
Tn(Y/X) associated to the colimit

Ln(Y/X) = colim
(ε1,...,εn)<(1,...,1)

Tε1 ⊗ · · · ⊗ Tεn .

11.6.2 The axiom of regular tensor powers. The symmetric group Σn
acts on Ln(Y/X) and Tn(Y/X). Moreover the n-fold pushout product

λ(f) : Ln(Y/X)→ Tn(Y/X)
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is a Σn-equivariant morphism. For a Σ∗-object M , we set

TnM(Y/X) = M(n)⊗Σn Tn(Y/X) = M(n)⊗Σn Y
⊗n,

LnM(Y/X) = M(n)⊗Σn Ln(Y/X)

and we consider the morphism

λM(f) : LnM(Y/X)→ TnM(Y/X)

induced by λ(f) : Ln(Y/X)→ Tn(Y/X).
We say that E has regular tensor powers with respect to an enlarged class

of B-cofibrations if the following axiom holds:

R1. The pushout-product

(i∗, λM(f)∗) : TnM(Y/X)
⊕

LnM(Y/X)

LnN(Y/X)→ TnN(Y/X)

forms a B-cofibration if i is a B-cofibration and j is a B-cofibration, an
acyclic B-cofibration if i or j is also acyclic.

Of course, a morphism of Σ∗-objects i : M → N is a B-cofibration if its
components i : M(n)→ N(n) are B-cofibrations.

The axiom of regular tensor powers implies:

11.6.3 Lemma. Let i : M → N be a morphism of Σ∗-objects in E. Let
j : X → Y be a morphism in E.

If E has regular tensor powers with respect to an enlarged class of B-
cofibrations, then the pushout-product

(i∗, j∗) : S(M,Y )
⊕

S(M,X)

S(N,X)→ S(N,Y )

forms a B-cofibration whenever i is a B-cofibration and j is a B-cofibration
with a B-cofibrant domain, an acyclic B-cofibration if i or j is also acyclic.

Proof (sketch). We give only the idea of the proof of the implication “Axiom
R1 ⇒ Lemma 11.6.3”. An analogous implication is proved in §19 for the
bifunctor (M,A) 7→ SR(M,A) associated to an operad and the arguments are
similar, but less complicated in the context of lemma 11.6.3.

The idea is to extend the pushout-product property to the shifted functors
M [X] = S[M,X] defined in §4.1.4. The morphism λM(f) = LnM(Y/X) →
TnM(Y/X) has an obvious generalization in the context of shifted func-
tors since the shifted functor M [X] = S[M,X] is nothing but the functor
S(M [ · ], X) associated to a shifted Σ∗-object M [ · ].

For a B-cofibrant object X, the morphism

S[i,X] : S[M,X]→ S[N,X]
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forms a B-cofibration (respectively, an acyclic B-cofibration) in Σ∗-objects
if i is so. This assertion is an immediate consequence of axiom R1 since
LnM [X/0] = 0 and S[M,X] =

⊕∞
n=0 TnM [X/0] for the initial morphism

0→ X.
For a Σ∗-objectM and a morphism j : X → Y , observe that the morphism

S[M, j] : S[M,X]→ S[M,Y ] has a natural decomposition

S[M,X] = S[M,Y ]0 → . . .

· · · → S[M,Y ]n−1
jn−→ S[M,Y ]n → . . .

· · · → colim
n

S[M,Y ]n = S[M,Y ]

so that each morphism fits a pushout

S[LnM [Y/X], X]

S[λM [j],X]

��

// S[M,Y ]n−1

jn

��
S[TnM [Y/X], X] // S[M,Y ]n

(take R = I in the construction of §18.2).
Study the pushout-products

(i∗, jn∗) : S[M,Y ]n
⊕

S[M,Y ]n−1

S[N,Y ]n−1 → S[N,Y ]n

and use patching techniques to prove that the pushout-product

(i∗, j∗) : S[M,Y ]
⊕

S[M,X]

S[N,X]→ S[N,Y ]

forms a B-cofibration (respectively, an acyclic B-cofibration) under the as-
sumption of the lemma (see arguments of §19.2). ut

The improved pushout-product lemma implies:

11.6.4 Proposition. Assume E has regular tensor powers with respect to a
class of B-cofibrations.
(a) The morphism

S(M,f) : S(M,X)→ S(M,Y )

induced by a weak-equivalence f : X ∼−→ Y between B-cofibrant objects X,Y ∈
E is a weak-equivalence as long as M ∈M is B-cofibrant.
(b) The morphism

S(f,X) : S(M,X)→ S(N,X)
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induced by a weak-equivalence f : M ∼−→ N is a weak-equivalence as long as
X ∈ E is B-cofibrant and the Σ∗-objects M,N are B-cofibrant.

Proof. Similar to proposition 11.5.3. ut

In usual cases, we use the next observation to prove that a category E has
regular tensor powers:

11.6.5 Observation. Suppose the class of B-cofibrations is created by a
forgetful functor U : E → B which preserves colimits, cofibrations, and weak-
equivalences.

The category E has regular tensor powers with respect to B-cofibrations
if, for every n ∈ N, the nfold pushout-product λ(i) : Ln(Y/X) → Tn(Y/X)
defines a cofibration (respectively, an acyclic cofibration) in the projective
model category of Σn-objects in B whenever i is a B-cofibration (respectively,
an acyclic B-cofibration) in E.

The examples of reduced categories with regular tensor powers introduced
in this book arise from:

11.6.6 Proposition. The category of connected Σ∗-objects M0 has regular
tensor powers with respect to C-cofibrations.

Proof. Let M ∈M0. In [14, §1.3.7-1.3.9] we observe that the object M⊗r(n)
expands as a sum of tensor productsM⊗r(n) =

⊕
(I1,...,Ir)M(I1)⊗· · ·⊗M(Ir)

where (I1, . . . , Ir) ranges over partitions I1 q · · · q Ir = {1, . . . , n} so that
Ik 6= ∅, for every k ∈ {1, . . . , r}. The symmetric groupΣr operates onM⊗r(n)
by permuting the factors of the tensor product N(I1)⊗ · · · ⊗N(Ir) and the
summands of the expansion. The assumption Ik 6= ∅ implies that Σr acts
freely on partitions (I1, . . . , Ir). As a corollary, we have an isomorphism of
Σr-objects

M⊗r(n) ' Σr ⊗
{ ⊕

(I1,...,Ir)′

M(I1)⊗ · · · ⊗M(Ir)
}

where the sum ranges of representative of the coset of partitions (I1, . . . , Ir)
under the action of Σr (see loc. cit. for details).

From this assertion, we deduce readily that the category of connected Σ∗-
objectsM0 satisfies the assumption of observation 11.6.5. Hence we conclude
that M0 has regular tensor powers with respect to C-cofibrations. ut

11.6.7 Remark: the example of simplicial modules. Proposition 11.5.3
can also be improved in the context of simplicial modules*.

According to [9], the natural extension of any functor F : k Mod→ k Mod
to the category of simplicial k-modules maps a weak-equivalence between

* Observe however that the category of simplicial sets does not satisfy the axiom of regular
tensor powers.
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cofibrant objects to a weak-equivalence. From this result, it is easy to deduce
that assertion (a) of proposition 11.5.3 holds for every Σ∗-object in simplicial
k-modules M and not only for cofibrant Σ∗-objects.

11.6.8 The example of model categories of spectra. Models of stable
homotopy (S-modules [10], symmetric spectra [30], orthogonal spectra [48])
give examples of symmetric monoidal model categories for which proposi-
tion 11.5.3 can be improved (see for instance lemma 15.5 in [42]). Unfortu-
nately, this refinement supposes to deal with a symmetric monoidal model
structure such that the monoidal unit is not a cofibrant object. Nevertheless,
some of our results can partly be applied to spectra and we address these
refinements in remarks. Proofs are always omitted.

In our applications, we use the positive stable flat model category of sym-
metric spectra. The stable flat cofibrations of symmetric spectra are intro-
duced in [30] (where they are called S-cofibrations). The axioms of the stable
flat model category are verified in [55]. The reader is referred to these articles
and to the book [59] for the background of symmetric spectra. In the sequel,
we also refer to [23, 24] for applications of the stable flat model category of
symmetric spectra in the context of operads.

We adopt the usual notation SpΣ to refer to the category of symmetric
spectra. We have:

11.6.9 Proposition. Let i : M → N be a morphism of Σ∗-object in sym-
metric spectra. Let f : X → Y be a morphism of symmetric spectra. If the
morphisms i : M(n) → N(n) define positive flat cofibrations in SpΣ, the
morphism f : X → Y is a positive flat cofibration and X is cofibrant with
respect to the positive flat model structure, then the pushout-product

(i∗, λM(f)∗) : TnM(Y/X)
⊕

LnM(Y/X)

LnN(Y/X)→ TnN(Y/X)

forms a positive flat cofibration as well. If i is also a positive stable weak-
equivalence, then so is (i∗, λM(f)∗). ut

The arguments of proposition 11.6.6 can easily be adapted to obtain this
proposition (flat cofibrations are related to the C-cofibrations of Σ∗-objects).
This proposition is stated for the needs of remarks and we omit to give more
than this idea of the proof.

We only have one half of the axiom of regular tensor powers. But this
partial result is sufficient for applications.

First, proposition 11.6.9 is sufficient to obtain the homotopy invariance of
the bifunctor (M,E) 7→ S(M,E) on the left-hand side:

11.6.10 Proposition. Let f : M ∼−→ N be a positive stable weak-equivalence
between Σ∗-objects in spectra such that every M(n) (respectively, N(n)) forms
a cofibrant object in SpΣ with respect to the positive flat model structure. Let
X ∈ SpΣ. Suppose X is also cofibrant with respect to the positive flat model
structure. Then the morphism
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S(f,X) : S(M,X)→ S(N,X)

forms a positive stable equivalence in SpΣ.

Proof. Adapt the arguments of proposition 11.6.4. ut

But, our results are also sufficient to obtain the homotopy invariance of
the bifunctor (M,X) 7→ S(M,X) on the right-hand side:

11.6.11 Proposition. Let M be a Σ∗-object in spectra such that every M(n)
forms a cofibrant object in SpΣ with respect to the positive flat model struc-
ture. Let f : X ∼−→ Y be a positive stable equivalence of spectra such that X,Y
are cofibrant with respect to the positive flat model structure. The morphism

S(M,f) : S(M,X)→ S(M,Y )

forms a positive stable equivalence.

Proof. Pick a cofibrant replacement 0 � P
∼−→ M in the model category of

Σ∗-objects. We have a commutative diagram

S(P,X)
S(P,f) //

∼
��

S(P, Y )

∼
��

S(M,X)
S(M,f)

// S(M,Y )

.

in which vertical morphisms are stable equivalences by proposition 11.6.10.
The morphism S(P, f) forms a stable equivalence as well by proposition 11.5.3.
The conclusion follows from the two-out-of-three axiom. ut

11.6.12 Symmetric spectra as a symmetric monoidal category over
simplicial sets. The category of symmetric spectra forms naturally a sym-
metric monoidal category over simplicial sets and is often used as such in
applications of the theory of operads. The canonical functor from simplicial
sets to symmetric spectra is identified with a functor Σ∞(−)+ : S → SpΣ

which maps a simplicial set K to the suspension spectrum of K with a base
point added. The external tensor product ⊗ : S ×SpΣ → SpΣ satisfies the
pushout-product axiom MM1, but the functor Σ∞(−)+ : S → SpΣ does not
preserves cofibrations if SpΣ is equipped with the positive stable flat model
structure. The proof of proposition 11.6.10 and 11.6.11 can be adapted to
Σ∗-objects in simplicial sets (which are no more cofibrant in SpΣ). In partic-
ular, we obtain that the symmetric functors X 7→ (X∧n)Σn preserves weak-
equivalences (see lemma 15.5 in [10]).



Chapter 12

The homotopy of algebras over operads

Introduction

In this chapter we apply the adjoint construction of model structures to the
category of operads and to categories algebras over operads. For this purpose,
we use the adjunction F : M � O : U between operads and Σ∗-objects,
respectively the adjunction P(−) : E � PE : U between P-algebras and their
underlying category E .

The construction of these adjoint model structures is studied in [26] in
the dg-context and in [4, 58] in a more general setting. The difficulty is to
check condition (2) in proposition 11.1.14. Indeed, in many usual cases, this
condition is not satisfied unless we restrict ourself to cellular objects. For this
reason, we have to use semi-model categories, structures introduced in [29]
to enlarge the applications of theorem 11.1.13. The rough idea is to restrict
the lifting and factorization axioms of model categories to morphisms with a
cofibrant domain. By [58], the category of operads inherits such a semi-model
structure, and so do the categories of algebras over a Σ∗-cofibrant operads.

The main purpose of this chapter is to review the definition of these semi-
model categories. First of all, in §12.1, we recall the definition of a semi-model
category, borrowed from [29], and we review the construction of adjoint model
structures in this setting. In §12.2, we survey briefly the definition of semi-
model structures on categories of operads. In §12.3, we address the definition
of semi-model structures on categories of algebras over operads.

In this book, the semi-model category of operads only occurs in examples
of applications of the main results. For this reason, we only sketch the proof of
the axioms for this semi-model category. But we give comprehensive proofs of
the axioms of semi-model categories for categories of algebras over operads,
because we use this structure in the next part. The main verification is a
particular case of statements about modules over operads used in the next
part of the book and deferred to an appendix.

187
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In §12.4, we study the semi-model categories of algebras over a cofibrant
operad, for which the lifting and factorization axioms of semi-model cate-
gories hold in wider situations. In §12.5, we survey results about the homo-
topy of extension and restriction functors φ! : PE � QE : φ∗ associated to an
operad morphism φ : P→ Q.

The statements of §§12.4-12.5 are proved in the next part of the book as
applications of our results on the homotopy of modules over operads.

12.1 Semi-model categories

The rough idea of semi-model categories is to assume all axioms of model
categories, including the lifting axiom M4 and the factorization axiom M5,
but only for morphisms f : X → Y whose domain X is a cofibrant object.
This restriction allows us to relax condition (2) of proposition 11.1.14 in the
definition of model categories by adjunction and to enlarge the applications
of this construction.

12.1.1 The axioms of semi-model categories. Explicitly, the structure
of a semi-model category consists of a category A equipped with classes of
weak-equivalences, cofibrations and fibrations so that axioms M1, M2, M3 of
model categories hold, but where the lifting axiom M4 and the factorization
axiom M5 are replaced by the weaker requirements:

M4’. i. The fibrations have the right lifting property with respect to the acyclic
cofibrations i : A→ B whose domain A is cofibrant.

ii. The acyclic fibrations have the right lifting property with respect to the
cofibrations i : A→ B whose domain A is cofibrant.

M5’. i. Any morphism f : A → B such that A is cofibrant has a factorization
f = pi, where i is a cofibration and p is an acyclic fibration.

ii. Any morphism f : A → B such that A is cofibrant has a factorization
f = qj, where j is an acyclic cofibration and q is a fibration.

Besides, a semi-model category is assumed to satisfy:

M0’ (initial object axiom): The initial object of A is cofibrant.

In the context of semi-model categories, the lifting axiom M4’ and the fac-
torization axiom M5’ are not sufficient to imply that the initial object is
cofibrant. Therefore we add this assertion as an axiom.

In a semi-model category, the class of (acyclic) cofibrations is not fully
characterized by the left lifting axioms M4’, and similarly as regards the class
of (acyclic) fibrations. As a byproduct, the class of (acyclic) cofibrations is
not stable under the composition of morphisms, and similarly as regards the
class of acyclic fibrations. The axioms imply only that a (possibly transfinite)
composite of (acyclic) cofibrations with a cofibrant domain forms still an
(acyclic) cofibration.
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Similarly, not all (acyclic) cofibrations are stable under pushouts, not all
(acyclic) fibrations are stable under pullbacks. The axioms imply only that
(acyclic) cofibrations are stable under pushouts over cofibrant domains.

On the other hand, since usual semi-model categories are defined by ad-
junction from a cofibrantly generated model category (see next), the class of
(acyclic) fibrations is stable under composites and pullbacks in applications.
Besides, these properties are used to generalize the construction of the ho-
motopy category of model categories. For these reasons, the next assertions
are taken as additional axioms of semi-model categories:

M6’ (fibration axioms):

i. The class of (acyclic) fibrations is stable under (possibly transfinite)
composites.

ii. The class of (acyclic) fibrations is stable under pullbacks.

But we do not use these properties in this book.

The result of proposition 11.1.4 can be generalized in the context of semi-
model categories:

12.1.2 Proposition. The following assertion holds in every semi-model
category A:

P1’. The pushout of a weak-equivalence along a cofibration

A // //

∼
��

C

��
B // D

gives a weak-equivalence C ∼−→ D provided that A and B are cofibrant in
A.

Proof. Careful inspection of the proof of proposition 11.1.4 in [27, Proposition
13.1.2]. ut

The properness axiom P1 does not make sense in the context of semi-model
categories because only cofibrations with a cofibrant domain are characterized
by the axioms.

12.1.3 Cofibrantly generated semi-model categories. The notion of
a cofibrantly generated model category has a natural generalization in the
context of semi-model categories. Again, a cofibrantly generated semi-model
category consists of a semi-model category A equipped with a set of gener-
ating cofibrations I, respectively a set of generating acyclic cofibrations J ,
so that:

G1. The fibrations are characterized by the right lifting property with respect
to acyclic generating cofibrations j ∈ J .
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G2. The acyclic fibrations are characterized by the right lifting property with
respect to generating cofibrations i ∈ I.

The small object argument is also supposed to hold for the set of generating
cofibrations I (respectively, generating acyclic cofibrations J ) but we can
relax the smallness assumption. Namely, we may assume:

S1’. The domain A of every generating cofibration (respectively, generating
acyclic cofibration) is small with respect to relative I-cell (respectively,
J -cell) complexes

K = L0 → · · · → Lλ−1
jλ−→ Lλ → · · · → colim

λ<µ
Lλ = L

such that K is a cofibrant object.

In a cofibrantly generated semi-model category, the axioms imply only
that:

K1’. The relative I-cell (respectively, J -cell) complexes with a cofibrant domain
are cofibrations (respectively, acyclic cofibrations).

K2’. The cofibrations (respectively, acyclic cofibrations) with a cofibrant do-
main are retracts of relative I-cell (respectively, J -cell) complexes.

Our motivation to use semi-model categories comes from the following
proposition which weaken the conditions of proposition 11.1.14 to define semi-
model structures by adjunction:

12.1.4 Theorem. Suppose we have an adjunction F : X � A : U , where A
is any category with limits and colimits and X is a cofibrantly generated model
category. Let I, respectively J , be the set of generating (acyclic) cofibrations
of X and set FI = {F (i), i ∈ I}, respectively F J = {F (j), j ∈ J }.
Consider also the set F X c = {F (i), i cofibration in X}.

Under assumptions (1-3) below, the category A inherits a cofibrantly gener-
ated semi-model structure with FI (respectively, F J ) as generating (acyclic)
cofibrations and so that the functor U : A→ X creates weak-equivalences.

(1) The functor U : A → X preserves colimits over non-empty ordinals.
(2) For any pushout

F (K) //

F (i)

��

A

f

��
F (L) // B

such that A is an X -cofibrant F X c-cell complex, the morphism U(f) forms
a cofibration (respectively an acyclic cofibration) in X whenever i is a
cofibration (respectively an acyclic cofibration) with a cofibrant domain.

(3) The object UF (0) is cofibrant.
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The functor U : A → X creates the class of fibrations too and preserves
cofibrations with a cofibrant domain.

In accordance with the conventions of §11.1.17, we say that an object
A ∈ A is X -cofibrant if the functor U : A → X maps the initial morphism
F (0)→ A to a cofibration.

Proof. This theorem follows from a careful inspection of the arguments of
theorem 11.1.13 and proposition 11.1.14. Use the next lemma to apply con-
dition (2) in the case where the domain of generating (acyclic) cofibrations
is not cofibrant. ut

12.1.5 Lemma. Suppose we have a pushout

F (K) //

F (i)

��

A

f

��
F (L) // B

such that U(A) is cofibrant and i : K → L is a cofibration (respectively, an
acyclic cofibration), but where K is not necessarily cofibrant. Then we can
form a new pushout

F (M) //

F (j)

��

A

f

��
F (N) // B

such that j : M → N is still a cofibration (respectively, an acyclic cofibration),
but where M is now cofibrant.

Proof. Set M = U(A) and consider the pushout

K //

i

��

U(A) =: M

j

��
L // L⊕K U(A) =: N

where K → U(A) is the adjoint morphism of F (K)→ A. By straightforward
categorical constructions, we can form a new pushout

F (U(A)) //

F (j)

��

A

f

��
F (L⊕K U(A)) // B

in which j is substituted to i.
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The object M = U(A) is cofibrant by assumption. The morphism j forms
a cofibration (respectively, an acyclic cofibration) if i is so. Hence all our
requirements are satisfied. ut

For our needs, we record that Brown’s lemma is also valid in the context
of semi-model categories:

12.1.6 Proposition (Brown’s lemma). Let F : A → X be a functor, where
A is a semi-model category and X is a category equipped with a class of
weak-equivalences that satisfies the two-out-of-three axiom. If F maps acyclic
cofibrations between cofibrant objects to weak-equivalences, then F maps all
weak-equivalences between cofibrant objects to weak-equivalences.

Proof. The proposition follows from a straightforward generalization of the
proof of the standard Brown’s lemma. ut

¶ The dual version of this statement, in which cofibrations are replaced
by fibrations, holds only under a weaker form:

12.1.7 ¶ Proposition (Brown’s lemma). Let U : A → X be a functor,
where A is a semi-model category and X is a category equipped with a class of
weak-equivalences that satisfies the two-out-of-three axiom. If F maps acyclic
fibrations between fibrant objects to weak-equivalences, then F maps to weak-
equivalences the weak-equivalences f : X → Y so that X is both cofibrant and
fibrant and Y is fibrant. ut

The proof of this statement uses axiom M6’.

12.1.8 Quillen adjunctions between semi-model categories. Some care
is necessary to generalize the notion of a Quillen adjunction in the context of
semi-model categories: as the lifting axiom M4’ is not sufficient to characterize
the class of (acyclic) cofibrations and the class of (acyclic) fibrations, the usual
equivalent conditions of the definition of a Quillen adjunction are no more
equivalent.

Therefore, we say that adjoint functors F : A � X : U between semi-
model categories A and X define a Quillen adjunction if every one of the
following conditions hold:

A1’. The functor F preserves cofibrations and acyclic cofibrations between cofi-
brant objects.

A2’. Same as A2: The functor U preserves fibrations and acyclic fibrations.

Observe however that A2’ implies (but is not equivalent to) A1’. Thus, in ap-
plications, we only check condition A2’. These properties imply that the pair
(F,U) yields an adjunction between homotopy categories, as in the context
of model categories.

Say that the functors (F,U) define a Quillen equivalence if we have further:
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E1’. For every cofibrant object X ∈ X , the composite

X
ηX−−→ UF (X)

U(i)−−−→ U(B)

forms a weak-equivalence in X , where ηX refers to the adjunction unit
and i arises from a factorization F (X)

∼
�B � ∗ of the terminal morphism

F (X)→ ∗.
E2’. Same as E2: For every fibrant object A ∈ A, the composite

F (Y )→ FU(A) εA−−→ A

forms a weak-equivalence in A, where εA refers to the adjunction augmen-
tation and Y is any cofibrant replacement of U(A).

The derived functors of a Quillen equivalence of semi-model categories de-
fine adjoint equivalences of homotopy categories, as in the context of model
categories.

12.1.9 Relative semi-model structures. In certain semi-model categories,
the lifting and factorization axioms hold under weaker assumptions on the
domain of morphisms. These properties are formalized in a relative notion
of a semi-model structure. Next we explain that operads and algebras over
cofibrant operads inherit such improved lifting and factorization axioms. But
we do not really use these improved semi-model structures that we recall for
the sake of completeness only.

Suppose we have an adjunction F : X � A : U , where A is a category
with limits and colimits and X is a model category. Suppose A is equipped
with a semi-model structure so that:

– The functor U : A → X creates weak-equivalences, creates fibrations, and
maps the cofibrations i : A→ B so that A is X -cofibrant to cofibrations.

Again, we say that an object A ∈ A is X -cofibrant if the functor U : A → X
maps the initial morphism F (0)→ A to a cofibration.

In this situation, it makes sense to require the following lifting and factor-
ization axioms:

M4”. i. The fibrations have the right lifting property with respect to the acyclic
cofibrations i : A→ B such that A is X -cofibrant.

ii. The acyclic fibrations have the right lifting property with respect to the
cofibrations i : A→ B such that A is X -cofibrant.

M5”. i. Any morphism f : A → B has a factorization f = pi, where i is a
cofibration and p is an acyclic fibration, provided that A is X -cofibrant.

ii. Any morphism f : A → B has a factorization f = qj, where j is an
acyclic cofibration and q is a fibration, provided that A is X -cofibrant.

If these properties are satisfied, then we say that A forms a semi-model cat-
egory over X .
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The initial object of A is supposed to be cofibrant by axiom M0’ of semi-
model categories. As a byproduct, the assumption on the functor U : A →
X implies that U(A) is cofibrant if A is cofibrant in A. Accordingly, the
lifting and factorization axioms M4”-M5” are stronger than the lifting and
factorization axioms M4’-M5’ of semi-model categories.

Suppose now we have an adjunction F : X � A : U , where A is any
category with limits and colimits and X is a cofibrantly generated model
category. Suppose we have:

(1) Same as assumption (1) of theorem 12.1.4: “The functor U : A → X
preserves colimits over non-empty ordinals.”

(2) Drop the condition that A is an F X c-cell complex in assumption (2) of
theorem 12.1.4: “For any pushout

F (K) //

F (i)

��

A

f

��
F (L) // B

such that A is X -cofibrant, the morphism U(f) forms a cofibration (respec-
tively an acyclic cofibration) in X whenever i is a cofibration (respectively
an acyclic cofibration) with a cofibrant domain.”

(3) Same as assumption (3) of theorem 12.1.4: “The object UF (0) is cofibrant.”

Then A inherits an adjoint semi-model structure from X since the require-
ments of theorem 12.1.4 are fulfilled.

But we have better:

12.1.10 Proposition. Under these assumptions (1-3) the category A forms
a semi-model category over X .

Proof. This proposition, like theorem 12.1.4, follows from a careful inspection
of the arguments of theorem 11.1.13 and proposition 11.1.14. ut

12.1.11 Relative properness axioms. In the case of a semi-model category
A over a model category X , it makes sense to improve the properness property
of proposition 12.1.2 to cofibrations i : A→ B such that A is X -cofibrant. If
the next axiom holds, then we say that A forms a (left) proper semi-model
category over X :

P1”. The pushout of a weak-equivalence along a cofibration

A // //

∼
��

C

��
B // D



12.2 The semi-model category of operads 195

gives a weak-equivalence C ∼−→ D provided that A and B are X -cofibrant.

12.2 The semi-model category of operads

In this section, we survey briefly the application of model structures to cat-
egories of operads. For this purpose, we assume that the base category C
is equipped with a model structure and forms a cofibrantly generated sym-
metric monoidal category. Recall that C is supposed to satisfy the pushout
product axiom MM1, as well as the unit axiom MM0.

In this book, the semi-model structure of the category of operads is only
used in §17.4, where we study applications of the homotopy theory of modules
over operads to categories of algebras over cofibrant dg-operads. Usually, we
only deal with the underlying model category of Σ∗-objects and we only use
Σ∗-cofibrations of operads and Σ∗-cofibrant operads. Recall that, according
to our convention, a Σ∗-cofibration refers to a morphism of operads φ : P→
Q which forms a cofibration in the underlying category of Σ∗-objects and
an operad P is Σ∗-cofibrant if the unit morphism η : I → P forms a Σ∗-
cofibration.

For our needs, we only recall the statement of the result, for which we
refer to [4, 26, 58], and we make explicit the structure of cofibrant operads
in dg-modules.

Proposition 12.1.10 can be applied to the adjunction

F :M� O : U

between operads and Σ∗-objects and returns the following statement:

Theorem 12.2.A (see [26, 58]). The category of operads O forms a semi-
model category over the category of Σ∗-objects, so that:

– The forgetful functor U : O → M creates weak-equivalences, creates fi-
brations, and maps the cofibrations of operads i : P → Q such that P is
Σ∗-cofibrant to cofibrations.

– The morphisms of free operads F(i) : F(M) → F(N), where i : M → N
ranges over generating (acyclic) cofibrations of Σ∗-objects, form generating
(acyclic) cofibrations of the category of operads.

– The lifting axiom M4” holds for the (acyclic) cofibrations of operads i :
P→ Q such that P is Σ∗-cofibrant.

– The factorization axiom M5” holds for the operad morphisms φ : P → Q
such that P is Σ∗-cofibrant.

ut
Thus an operad morphism φ : P → Q forms a weak-equivalence, respec-

tively a fibration, if its components φ : P(n) → Q(n) are weak-equivalences,
respectively fibrations, in the base model category C.
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One has to study the structure of free operads and coproducts to check that
assumptions (1-3) of proposition 12.1.10. are fulfilled. This task is achieved
in [26] in the context of dg-modules and in [58] in a wider context to return
the result of theorem 12.2.A.

By [58], we also have:

Theorem 12.2.B (see [58]). The semi-model category of operads satisfies
the axiom of relative properness:

P1”. The pushout of a weak-equivalence along a cofibration

P // //

∼
��

R

��
Q // S

gives a weak-equivalence R
∼−→ S provided that P and Q are Σ∗-cofibrant.

The authors of [4] observe that the proof of theorem 12.2.A can be sim-
plified in certain usual situations to give a better result:

Theorem 12.2.C (see [4]). Under assumptions (1-3) below, the adjunction

F :M� O : U

creates a full model structure on the category of non-unitary operads O0.

(1) There is a fixed ordinal µ, such that the domains of generating (acyclic)
cofibrations are small with respect to all colimits

C = D0 → · · · → Dλ−1
jλ−→ Dλ → · · · → colim

λ<µ
Dλ = D.

(2) There is a functor of symmetric monoidal model categories R : C → C
which associates a fibrant replacement to any object C ∈ C.

(3) The category C is equipped with a commutative Hopf interval (we refer to
loc. cit. for the definition of this notion). ut

Recall that an operad P is non-unitary if we have P(0) = 0.

The assumptions hold for the category of dg-modules, for the category of
simplicial sets, but assumption (1) fails for the category of topological spaces
(see [28, §2.4]).

The Hopf interval is used to associate a canonical path object to any
operad. An argument of Quillen permits to turn round the study of relative
cell complexes of operads to prove directly condition (2) of theorem 12.1.4
by using the existence of such path objects (see loc. cit. for details).

In the remainder of this section, we take C = dg k Mod and we study the
semi-model category of operads in dg-modules. Our purpose is to review the
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explicit structure of cofibrant cell dg-operads obtained in [26]. The result is
used in applications of §17.4.

In summary, we check that cofibrant cell dg-operads are equivalent to cer-
tain quasi-free objects in operads, just like we prove in §11.2 that cofibrant
cell dg-modules are equivalent to quasi-free objects equipped with an appro-
priate filtration.

12.2.1 Quasi-free operads in dg-modules. To begin with, we recall the
definition of a twisting cochain and of a quasi-free object in the context of
operads. For more background, we refer to [14, 17, 26].

First, a twisting cochain of operads consists of a collection of twisting
cochains of dg-modules ∂ ∈ HomC(P(n), P(n)) that commute with the action
of symmetric groups and satisfy the derivation relation

∂(p ◦e q) = ∂(p) ◦e q +±p ◦e ∂(q)

with respect to operadic composites. These assumptions ensure that the col-
lection of twisted dg-modules (P(n), ∂) forms still a dg-operad with respect
to the operad structure of P.

An operad P is quasi-free (as an operad) if we have P = (F(M), ∂), for a
certain twisting cochain of operads ∂ : F(M) → F(M), where F(M) is a free
operad. Note that ∂ : F(M) → P(M) is determined by its restriction to the
generating Σ∗-object M ⊂ F(M) since we have the derivation relation

∂((· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er
ξr) = (· · · ((∂ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er

ξr

+ (· · · ((ξ1 ◦e2 ∂ξ2) ◦e3 · · · ) ◦er
ξr

+ · · ·+ (· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er
∂ξr

for any formal composite (· · · ((ξ1 ◦e2 ξ2) ◦e3 · · · ) ◦er ξr ∈ F(M), where
ξ1, . . . , ξr ∈M .

By construction, the generating cofibrations of dg-operads are the mor-
phism of free operads F(i ⊗ Fr) : F(C ⊗ Fr) → F(D ⊗ Fr), where i : C → D
ranges over the generating cofibrations of dg-modules and Fr is a free Σ∗-
object. Recall that the generating cofibrations of dg-modules are inclusions
i : Bd−1 → Ed where Ed is spanned by an element ed of degree d, by an
element bd−1 of degree d− 1, together with the differential δ(ed) = bd−1, and
Bd−1 is the submodule of Ed spanned by bd−1.

We use the convention of §11.1.8 to call cofibrant cell operads the cell com-
plexes in operads built from generating cofibrations. We prove that cofibrant
cell operads are quasi-free operads equipped with a suitable filtration. To
obtain this result, we examine the structure of cell attachments:

12.2.2 Lemma. For a quasi-free operad P = (F(M), ∂), a cell attachment of
generating cofibrations
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F(
⊕

αB
dα−1 ⊗ Frα)

f //

F(idα⊗Frα )

��

P

j

��
F(

⊕
αE

dα ⊗ Frα) // Q

returns a quasi-free operad such that Q = (F(M ⊕ E), ∂), where E is a free
Σ∗-object in graded k-modules E =

⊕
α k edα

⊗ Frα
(together with a trivial

differential).
The twisting cochain ∂ : F(M ⊕ E) → F(M ⊕ E) is given by the twisting

cochain of P on the summand M ⊂ F(M ⊕ E) and is determined on the
summand E =

⊕
α k edα

⊗Frα
⊂ F(M⊕E) by the relation ∂(edα

) = f(bdα−1),
where f :

⊕
α k bdα−1 ⊗ Frα

→ P represents the attaching map.

Proof. Straightforward verification. ut

By induction, we obtain immediately:

12.2.3 Proposition. A cofibrant cell operad is equivalent to a quasi-free
operad P = (F(L), ∂) where L is a free Σ∗-object in graded k-modules L =⊕

α k edα
⊗ Frα

equipped with a basis filtration Lλ =
⊕

α<λ k edα
⊗ Frα

such
that ∂(Lλ) ⊂ F(Lλ−1). ut

12.3 The semi-model categories of algebras over operads

The purpose of this section is to define the semi-model structure of the cat-
egory of algebras over an operad. For this aim, we apply theorem 12.1.4 to
the adjunction

P(−) : E � PE : U

between the category of P-algebras and the underlying category E . As usual,
we assume that E is any symmetric monoidal category over the base category
C in which the operad is defined. For the needs of this section, we assume
as well that E is equipped with a model structure and forms a cofibrantly
generated symmetric monoidal category over C. Recall that E is supposed to
satisfy the pushout product axiom MM1, as well as the unit axiom MM0,
like the base category C.

The main result reads:

Theorem 12.3.A. If P is a Σ∗-cofibrant operad, then the category of P-
algebras inherits a cofibrantly generated semi-model structure so that the
forgetful functor U : PE → E creates weak-equivalences and fibrations.
The generating (acyclic) cofibrations are the morphisms of free P-algebras
P(i) : P(K)→ P(L) such that i : K → L is a generating (acyclic) cofibrations
of the underlying category E.
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¶ In the context where the category E has regular tensor powers, we obtain
further:

¶ Theorem. If E is a (reduced) symmetric monoidal category with regular
tensor powers, then the definition of theorem 12.3.A returns a semi-model
structure as long as the operad P is C-cofibrant.

This theorem gives as a corollary:

¶ Proposition. Let P be a reduced operad. The category of P-algebras in
connected Σ∗-objects PM0 forms a semi-model category as long as the operad
P is C-cofibrant. ut

¶ The positive stable model category of symmetric spectra SpΣ does not
satisfy axiom MM0, but this difficulty can be turned round. Moreover, a
better result holds: according to [23], the category of P-algebras in the pos-
itive stable flat model category of symmetric spectra inherits a full model
structure, for every operad P in SpΣ (not necessarily cofibrant in any sense).
Note however that the forgetful functor U : P SpΣ → SpΣ does not preserves
cofibrations in general.

In many usual situations, the operad P is the image of an operad in sim-
plicial sets under the functor Σ∞(−)+ : S → SpΣ . In our sense, we use the
category of simplicial sets C = S as a base model category and the category
of spectra E = SpΣ as a symmetric monoidal category over S. The forget-
ful functor U : P SpΣ → SpΣ seems to preserve cofibrations for an operad
in simplicial sets though P does no form an SpΣ-cofibrant object in spectra
(see for instance the case of the commutative operad in [55]). For a cofi-
brant P-algebra in spectra A, this property implies that the initial morphism
η : P(0) → A is a cofibration, but A does not form a cofibrant object in the
underlying category of spectra unless we assume P(0) = pt.

The proof of theorem 12.3.A (and theorem 12.3) is outlined in the next
paragraph. The technical verifications are achieved in the appendix, §20.1.

Under the assumption of theorem 12.3.A, the pushout-product property
of proposition 11.5.1 implies that the functor S(P) : E → E preserves cofibra-
tions, respectively acyclic cofibrations, with a cofibrant domain. In §2.4, we
observe that the functor S(P) : E → E preserves all filtered colimits as well.
Thus condition (1) of theorem 12.1.4 is easily seen to be satisfied (and simi-
larly in the context of theorem 12.3). The difficulty is to check condition (2):

12.3.1 Lemma. Under the assumption of theorem 12.3.A, for any pushout

P(X)

P(i)

��

// A

f

��
P(Y ) // B
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such that A is an E-cofibrant P(Ec)-cell complex, the morphism f forms a
cofibration (respectively, an acyclic cofibration) in the underlying category E
if i : X → Y is so.

The same result holds in the context of theorem 12.3. The technical veri-
fication of this lemma is postponed to §20.1.

As usual, we call E-cofibrations the morphisms of P-algebras i : A → B
which form a cofibration in the underlying category E , we call E-cofibrant
objects the P-algebras A such that the initial morphism η : P(0) → A is an
E-cofibration.

The verification of lemma 12.3.1 includes a proof that:

12.3.2 Proposition. The cofibrations of P-algebras i : A → B such that
A is a cofibrant P-algebra are E-cofibrations. Any cofibrant P-algebra A is
E-cofibrant.

The definition of the semi-model structure in theorem 12.3.A is natural
with respect to the underlying category E in the following sense:

12.3.3 Proposition. Let P be any Σ∗-cofibrant operad. Let ρ! : D � E : ρ∗

be a Quillen adjunction of symmetric monoidal model categories over C. The
functors

ρ! : PD � PE : ρ∗

induced by ρ! and ρ∗ define a Quillen adjunction of semi-model categories.

Proof. Fibrations and acyclic fibrations are created by forgetful functors in
the semi-model categories of P-algebras. For this reason we obtain immedi-
ately that ρ∗ preserves fibrations and acyclic fibrations. Since the functor ρ!

maps (acyclic) cofibrations to (acyclic) cofibrations and preserves free objects
by proposition 3.2.14, we obtain that ρ! maps generating (acyclic) cofibrations
of PD to (acyclic) cofibrations in PE . Since the functor ρ! preserves colimits
and retracts, we obtain further that ρ! maps all (acyclic) cofibrations of PD
to (acyclic) cofibrations in PE . ut

We have further:

12.3.4 Proposition. If ρ! : D � E : ρ∗ is a Quillen equivalence, then
ρ! : PD � PE : ρ∗ defines a Quillen equivalence as well.

Proof. Suppose A is a cofibrant object in PD. By proposition 12.3.2, the
morphism η : P(0) → A forms a cofibration in D. Since P is supposed to be
Σ∗-cofibrant in D, the P-algebra A forms a cofibrant object in D as well. Since
the forgetful functor U : PE → E creates fibrations, any fibrant replacement
of ρ!A in PE defines a fibrant replacement of ρ!A in the underlying category.
From these observations, we conclude that the composite

A
ηA−−→ ρ∗ρ!A→ ρ∗B,



12.3 The semi-model categories of algebras over operads 201

where ηA refers to the adjunction unit and B is any fibrant replacement of
ρ!A in PE , forms a weak-equivalence in D and hence forms a weak-equivalence
of P-algebras in D.

Suppose B is a fibrant object in PE . Pick a cofibrant replacement P(0) �
A

∼−→ ρ∗B of ρ∗B in PD. Use again that the forgetful functor U : PE →
E creates fibrations and that the forgetful functor U : PD → D preserves
cofibrations to conclude that the composite

ρ!A→ ρ!ρ
∗B

ε−→ B,

where εB refers to the adjunction augmentation, forms a weak-equivalence
in E and hence forms a weak-equivalence of P-algebras in E . ut

12.3.5 ¶ Remark. If ρ! : D0 � E0 : ρ∗ is a Quillen adjunction, respec-
tively a Quillen equivalence, between (reduced) categories with regular ten-
sor powers, then propositions 12.3.3-12.3.4 holds as long as P is a C-cofibrant
(non-unitary) operad.

12.3.6 Quasi-free algebras over operads in dg-modules. In the re-
mainder of this section, we take C = dg k Mod and we study the structure
of cofibrant algebras over a Σ∗-cofibrant dg-operad P. To simplify, we also
take E = dg k Mod but we can use the principle of generalized point-tensors
to extend our results to P-algebras in Σ∗-objects and to P-algebras in right
modules over operads.

As usual, we prove that cofibrant cell P-algebras in dg-modules are equiv-
alent to quasi-free P-algebras equipped with an appropriate filtration. The
plan of our constructions parallels the case of operads, addressed in §§12.2.1-
12.2.3.

First, we review the definition of a twisting cochain and of a quasi-free
object in the category of P-algebras.

A twisting cochain of dg-modules ∂ ∈ HomC(A,A) defines a twisting
cochain of P-algebras if ∂ : A→ A satisfies the derivation relation

∂(p(a1, . . . , an)) =
n∑
i=1

±p(a1, . . . , ∂(ai), . . . , an),

for every p ∈ P(n), a1, . . . , an ∈ A. This assumption ensures that the twisted
dg-module (A, ∂) inherits the structure of a P-algebra in dg-modules.

A P-algebra A is quasi-free if we have A = (P(C), ∂) for a certain twisting
cochain of P-algebras ∂ : P(C) → P(C). Note that ∂ : P(C) → P(C) is
determined by its restriction to the generating dg-module C ⊂ P(C) of the
free P-algebra P(C) since we have the relation

∂(p(x1, . . . , xn)) =
n∑
i=1

±p(x1, . . . , ∂(xi), . . . , xn),
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for every element p(x1, . . . , xn) ∈ P(C).

Recall that the generating cofibrations of P-algebras in dg-modules are
the morphism of free P-algebras P(i) : P(C) → P(D) induced by generating
cofibrations of dg-modules. Recall that the generating cofibrations of dg-
modules are inclusions i : Bd−1 → Ed where Ed is spanned by an element ed
of degree d, by an element bd−1 of degree d− 1, together with the differential
δ(ed) = bd−1, and Bd−1 is the submodule of Ed spanned by bd−1.

We use the convention of §11.1.8 to call cofibrant cell P-algebras the cell
complexes in P-algebras obtained by successive attachments of generating
cofibrations of the category of P-algebras. We prove that cofibrant cell P-
algebras are quasi-free P-algebras equipped with a suitable filtration. To ob-
tain this result, we examine the structure of cell attachments on quasi-free
P-algebras:

12.3.7 Lemma. For a quasi-free P-algebra A = (P(C), ∂), a cell attachment
of generating cofibrations

P(
⊕

αB
dα−1)

f //

P((idα ))

��

A

j

��
P(

⊕
αE

dα) // B

returns a quasi-free P-algebra such that B = (P(C ⊕E), ∂), where E is a free
graded k-module E =

⊕
α k edα (equipped with a trivial differential).

The twisting cochain ∂ : P(C ⊕ E) → P(C ⊕ E) is given by the twisting
cochain of A on the summand C ⊂ P(C ⊕ E) and is determined by the
relation ∂(edα

) = f(bdα−1) on the summand E =
⊕

α k edα
⊂ P(C ⊕ E),

where f :
⊕

α k bdα−1 → A represents the attaching map.

Proof. Straightforward verification. ut

By induction, we obtain immediately:

12.3.8 Proposition. A cofibrant cell P-algebra is equivalent to a quasi-free
P-algebra A = (P(C), ∂) where C is a free graded k-module C =

⊕
α k edα

equipped with a basis filtration Cλ =
⊕

α<λ k edα
such that ∂(Cλ) ⊂ P(Cλ−1).

ut

12.4 Addendum:
The homotopy of algebras over cofibrant operads

The result of theorem 12.3.A can be improved if we assume that P is a cofi-
brant operad:
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Theorem 12.4.A (see [58]). If P is a cofibrant operad, then the category of
P-algebras in E forms a semi-model category over E, so that:

– The forgetful functor U : PE → E creates weak-equivalences, creates fibra-
tions, and maps the cofibrations of P-algebras i : A → B such that A is
E-cofibrant to cofibrations.

– The lifting axiom M4” holds for the (acyclic) cofibrations of P-algebras
i : A→ B such that A is E-cofibrant.

– The factorization axiom M5” holds for the morphisms of P-algebras f :
A→ B such that A is E-cofibrant.

Besides:

Theorem 12.4.B (see [58]). The semi-model category of algebras over a
cofibrant operad P satisfies the axiom of relative properness:

P1”. The pushout of a weak-equivalence along a cofibration

A // //

∼
��

C

��
B // D

gives a weak-equivalence C ∼−→ D provided that A and B are E-cofibrant.

We refer to [58] for the proof of these theorems. We do not use these
results, which are only mentioned for the sake of completeness.

12.5 The homotopy of extension and restriction functors
– objectives for the next part

By §3.3.5, any morphism of operads φ : P→ Q gives rise to adjoint extension
and restriction functors:

φ! : PE � QE : φ∗.

In §16, we use the homotopy of modules over operads to prove:

Theorem 12.5.A. Suppose P (respectively, Q) is a Σ∗-cofibrant operad so
that the category of P-algebras (respectively, Q-algebras) comes equipped with
a semi-model structure.

The extension and restriction functors

φ! : PE � QE : φ∗.

define a Quillen adjunction, a Quillen equivalence if φ is a weak-equivalence.
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¶ In the context of a (reduced) symmetric monoidal category with regular
tensor powers, this statement holds whenever the operads P and Q are C-
cofibrant.

Property A2’ (the right adjoint preserves fibrations and acyclic fibrations)
of a Quillen adjunction is immediate to check, because fibrations and acyclic
fibrations are created by forgetful functors and the restriction functor φ∗ :
QE → PE reduces to the identity if we forget algebra structures.

In §16, we use the representation of the functors φ! : PE � QE : φ∗ by
modules over operads and the results of §15 to prove properties E1’-E2’ of a
Quillen equivalence when φ : P→ Q is a weak-equivalence of operads.

We refer to this chapter for full details on the proof of theorem 12.5.A.



Chapter 13

The (co)homology of algebras
over operads
– some objectives for the next part

Introduction

The cohomology H∗
P (A,E) of an algebra A over an operad P with coefficients

in a representation E is defined by the homology of the derived functor of
derivations B 7→ DerP(B,E) on the homotopy category of P-algebras over
A. There is also a homology theory HP

∗(A,E) defined by the homology of the
derived functor of B 7→ E⊗UP(B)Ω

1
P (B), where UP(B) refers to the enveloping

algebra of B, the coefficient E is a right UP(A)-module, and Ω1
P (B) is the

module of Kähler differentials of B. The first purpose of this chapter, carried
out in §13.1, is to survey the definition of these derived functors for algebras
and operads in dg-modules.

There are universal coefficients spectral sequences which connect the coho-
mology H∗

P (A,E), respectively the homology HP
∗(A,E), to standard derived

functors of homological algebra. The construction of these spectral sequences
is reviewed in §13.2. The universal coefficients spectral sequences degener-
ate in the case of the associative operad A and the Lie operad L, but not
in the case of the commutative operad C. This observation implies that the
cohomology (respectively, homology) of associative and Lie algebras is deter-
mined by an Ext-functor (respectively, a Tor-functor). In the next part we
use that the functor of Kähler differentials is represented by a right module
over an operad, the theorems of §15, and the homotopy theory of modules
over operads to give a new interpretation of this result.

The cotriple construction gives an alternative definition of a (co)homology
theory for algebras over operads. In §13.3 we review the definition of the
cotriple construction in the dg-context and we prove that the associated
(co)homology theory agrees with the derived functor construction of §13.1.

The proofs of the main theorems of this chapter are only completed in §17
as applications of the homotopy theory of modules over operads. In this sense
this chapter gives first objectives for the next part of the book. Nevertheless,
the results of this chapter are not completely new: the (co)homology with

205



206 13 The (co)homology of algebras over operads

coefficients for algebras in dg-modules is already defined in [26] by methods
of homotopical algebra, the universal coefficient spectral sequences are defined
in [1] for algebras in dg-modules (in the case of non-negatively graded dg-
modules).

Throughout this chapter, we use the short notation UP(A) = UP(A)(1) to
refer to the enveloping algebra of P-algebras.

13.1 The construction

The definition of the cohomology and homology of algebras over operads
makes sense for operads and algebras in simplicial modules, or in dg-modules.
In this section, we give a summary of the constructions in the dg-module
setting. We take C = dg k Mod as a base category and E = dg k Mod as an
underlying category of algebras. The principle of generalized point-tensors
can be used to extend the construction to algebras in Σ∗-objects, and to
algebras in right modules over operads.

We fix an operad P. We require that P is Σ∗-cofibrant to ensure that P-
algebras form a semi-model category.

13.1.1 Derivations and cohomology. Recall that a map θ : A→ E, where
A is a P-algebra and E is a representation of A, forms a derivation if we have
the derivation relation

θ(p(a1, . . . , an)) =
n∑
i=1

p(a1, . . . , θ(ai), . . . , an)

for all operations p ∈ P(n) and all a1, . . . , an ∈ A. In the dg-context, we
extend this definition to homogeneous maps θ : A→ E to obtain a dg-module
of derivations.

The cohomology of A with coefficients in E is defined by:

H∗
P (A,E) = H∗(DerP(QA, E)),

where QA is any cofibrant replacement of A in the category of P-algebras. In
this definition, we use the augmentation of the cofibrant replacement QA

∼−→
A to equip E with the structure of a representation of QA.

More generally, for any P-algebra B over A, we can use the restriction of
structures through the augmentation ε : B → A to equip E with the structure
of a representation of B. Accordingly, we have a well-defined functor from
the category of P-algebras over A to the category of dg-modules defined by
the map DerP(−, E) : B 7→ DerP(B,E).

The next proposition ensures that the definition of the cohomology makes
sense:
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13.1.2 Proposition (see [26]). The functor B 7→ DerP(B,E) preserves weak-
equivalences between cofibrant objects in the category of P-algebras over A.

The proof of this proposition is postponed to the end of this section, as-
suming a general result, proved in the next part, on the homotopy invariance
of functors associated to right modules over operads.

13.1.3 Kähler differentials and homology. To define the homology of P-
algebras, we use the module of Kähler differentials Ω1

P (A) and the coefficients
consist of right modules over the enveloping algebra UP(A). These objects
are defined in §4 for operads and algebras in k-modules. The principle of
generalized point tensors can be used to extend the construction to the dg-
context. Then the definition returns a dg-algebra UP(A) and a dg-module
Ω1

P (A) so that we have an isomorphism

DerP(A,E) ' HomUP(A) Mod(Ω1
P (A), E)

in the category of dg-modules.
The homology of A with coefficients in a right UP(A)-module E is defined

by:
HP
∗(A,E) = H∗(E ⊗UP(QA) Ω

1
P (QA)),

where, again, QA is any cofibrant replacement of A in the category of P-
algebras. The next proposition ensures, as in the context of the cohomology,
that this definition makes sense:

13.1.4 Proposition (see [26]). The functor B 7→ E⊗UP(B)Ω
1
P (B) preserves

weak-equivalences between cofibrant objects in the category of P-algebras over
A.

The proof of this lemma is also postponed to the end of this section.

13.1.5 Classical examples. The definition of the cohomology H∗
P (A,E),

respectively homology HP
∗(A,E), can be applied to the usual operads P =

A, L, C, provided that the ground ring k has characteristic 0 in the case P = L, C
(since these operads are not Σ∗-cofibrant in positive characteristic). The co-
homology H∗

P (A,E), respectively homology HP
∗(A,E), defined by the theory

of operads agrees with:

– the classical Hochschild cohomology, respectively homology, in the case of
the associative operad P = A,

– the Chevalley-Eilenberg cohomology, respectively homology, in the case of
the Lie operad P = L,

– the Harrison cohomology, respectively homology, in the commutative op-
erad P = C.

These assertions are consequences of results of [17, 18] (see [46]). The idea is to
use particular cofibrant replacements, the Koszul resolution, and to identify
the dg-module DerP(QA, E), respectively E ⊗UP(QA) Ω

1(QA), associated to



208 13 The (co)homology of algebras over operads

this resolution with the usual Hochschild (respectively, Chevalley-Eilenberg,
Harrison) complex.

The Hochschild cohomology and the Chevalley-Eilenberg cohomology (re-
spectively, homology) can also be defined by an Ext-functor (respectively, a
Tor-functor). This result has an interpretation in terms of a general universal
coefficient spectral sequence, defined in the next section, which relates any
cohomology (respectively, homology) associated to an operad to Ext-functors
(respectively, Tor-functors).

13.1.6 ¶ Remark. If we use simplicial k-modules rather than dg-modules,
then the definition of the cohomology H∗

P (A,E), respectively homology
HP
∗(A,E), makes sense for any simplicial operad P which is cofibrant in

simplicial k-modules, and not only for Σ∗-cofibrant operads. In particular,
we can use P-algebras in simplicial k-modules to associate a well-defined
(co)homology theory to the Lie, respectively commutative, operad in posi-
tive characteristic. In the case of the Lie operad, this simplicial (co)homology
agrees again with the Chevalley-Eilenberg (co)homology. In the case of the
commutative operad, this simplicial (co)homology agrees with André-Quillen’
(co)homology.

13.1.7 Universal coefficients. The remainder of the section is devoted
to the proof of proposition 13.1.2 and proposition 13.1.4, the homotopy in-
variance of the dg-modules DerP(QA, E) and E ⊗UP(QA) Ω

1
P (QA), for QA a

cofibrant replacement of A.
For this aim, we use the representation

T 1
P (QA) = UP(A)⊗UP(QA) Ω

1
P (QA)

which determines the homology of A with coefficients in the enveloping alge-
bra UP(A). The enveloping algebra UP(A) gives universal coefficients for the
homology of A since we have identities

DerP(QA, E) = HomUP(QA) Mod(Ω1
P (QA), E)

= HomUP(A) Mod(T 1
P (QA), E)

and E ⊗UP(QA) Ω
1
P (QA) = E ⊗UP(A) T

1
P (QA).

The idea is to prove that the functor QA 7→ T 1
P (QA) maps cofibrant

P-algebras over A to cofibrant left UP(A)-modules and preserves weak-
equivalences between cofibrant P-algebras. Then we apply the classical ho-
motopy theory of modules over dg-algebras to conclude that the func-
tors QA 7→ HomUP(A) Mod(T 1

P (QA), E) and QA 7→ E ⊗UP(A) T
1
P (QA) preserve

weak-equivalences between cofibrant P-algebras over A.
In our verifications, we use repeatedly that the extension and restriction

functors
φ! : RMod � SMod : φ∗
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associated to a morphism of associative dg-algebras φ : R → S form (by
proposition §11.2.10) a Quillen pair and a Quillen equivalence if φ is also a
weak-equivalence. Accordingly, the extension functor φ!M = S ⊗R M pre-
serves cofibrant objects, weak-equivalences between cofibrant objects, and the
adjoint morphism of a weak-equivalence f : M ∼−→ N , where M is a cofibrant
right R-module, defines a weak-equivalence f] : S ⊗RM

∼−→ N if φ is also a
weak-equivalence.

In our constructions, the cofibrancy requirements are derived from the
following lemma, proved by a direct verification:

13.1.8 Lemma. If Q a cofibrant cell P-algebra, then Ω1
P (Q) forms a cofibrant

cell UP(Q)-module.

Proof. For a free P-algebra Q = P(C), we have an isomorphism of left
UP(P(C))-modules

UP(P(C))⊗ C '−→ Ω1(Q)

which identifies the generating elements x ∈ C to the formal differentials
dx ∈ Ω1(P(C)) (see §§4.4.2-4.4.3). For a quasi-free P-algebra Q = (P(C), ∂),
we obtain that Ω1(Q) forms a quasi-free left UP(Q)-module

Ω1(Q) = (UP(P(C))⊗ C, ∂)

so that the differential of dx in Ω1(Q) is deduced from the differential of x
in P(C) and the derivation relation dp(x1, . . . , xn) =

∑
i p(x1, . . . , dxi, . . . , xn).

Suppose Q = (P(C), ∂) forms a cofibrant cell P-algebra. Thus the generat-
ing module C is a free graded k-module equipped with a basis filtration

0 = C0 ⊂ · · · ⊂ Cλ ⊂ · · · ⊂ colim
λ

Cλ = C

and the twisting cochain satisfies ∂(Cλ) ⊂ P(Cλ−1). For a differential dx ∈
Ω1

P (Q), where x ∈ Cλ, we obtain the relation

∂(dx) ∈ UP(P(Cλ−1))⊗ Cλ−1 ⊂ UP(Q)⊗ Cλ−1.

Hence we conclude that Ω1(Q) = (UP(P(C)) ⊗ C, ∂) forms a cofibrant cell
UP(Q)-module. ut

Lemma 13.1.8 implies:

13.1.9 Lemma. If QA is a cofibrant P-algebra, then Ω1
P (QA) forms a cofi-

brant UP(QA)-module.

Proof. According to §12.3, any cofibrant P-algebra QA is a retract of a cofi-
brant cell P-algebra Q. The existence of morphisms of P-algebras i : QA �
Q : r so that ri = id implies by an easy inspection that Ω1

P (QA) forms
a retract of UP(QA) ⊗UP(Q) Ω

1
P (Q) in the category of left UP(QA)-modules,

where we use the augmentation r : Q → QA to determine the morphism
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UP(r) : UP(Q)→ UP(QA). According to recollections of §13.1.7, the extension
and restriction functors

r! : UP(Q) Mod � UP(QA) Mod : r∗

define a Quillen pair so that r! = UP(QA)⊗UP(Q)− preserves cofibrant objects.
Therefore, the object UP(QA) ⊗UP(Q) Ω

1
P (Q) is cofibrant in the category of

left UP(QA)-modules, as well as Ω1
P (QA) since the class of cofibrations is

stable under retracts. ut

And:

13.1.10 Lemma. If QA is a cofibrant P-algebra over A, then T 1
P (QA) =

UP(A)⊗UP(QA) Ω
1
P (QA) forms a cofibrant UP(A)-module.

Proof. Immediate consequence of recollections of §13.1.7. ut

To prove the homotopy invariance of T 1
P (QA) we use the following lemma

which is a consequence of the general theorems of the next part, about func-
tors associated to modules over operads:

13.1.11 Lemma. The morphism UP(f) : UP(QA) → UP(QB), respectively
Ω1

P (f) : Ω1
P (QA) → Ω1

P (QB), induced by a weak-equivalence of P-algebras
f : QA

∼−→ QB forms a weak-equivalence if QA and QB are cofibrant.

Assuming this lemma, we have:

13.1.12 Lemma. The morphism

T 1
P (f) : T 1

P (QA)→ T 1
P (QB)

induced by a weak-equivalence of P-algebras over A

f : QA
∼−→ QB

forms a weak-equivalence of left UP(A)-modules if QA and QB are cofibrant.

Proof. By lemma 13.1.9 and lemma 13.1.11, we have a weak-equivalence of
left UP(QA)-modules

Ω1
P (f) : Ω1

P (QA)→ Ω1
P (QB)

such that Ω1
P (QA) is cofibrant. By lemma 13.1.11, the morphism UP(f) :

UP(QA) → UP(QB) defines a weak-equivalence of dg-algebras. Accordingly,
the extension and restriction functors

UP(f)! : UP(QA)Mod � UP(QB) Mod : UP(f)∗

define a Quillen equivalence, from which we deduce that the morphism

Ω1
P (f)] : UP(QB)⊗UP(QA) Ω

1
P (QA)→ Ω1

P (QB),
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adjoint to Ω1
P (f) forms a weak-equivalence between cofibrant left UP(QB)-

modules. By Quillen adjunction, we conclude that the morphism

T 1
P (f) = UP(A)⊗UP(QB) ⊗Ω1

P (f)]

forms a weak-equivalence too. ut

The objects T 1
P (QA) and T 1

P (QB) are also cofibrant left UP(A)-modules
by lemma 13.1.10. Therefore, according to the standard homotopy theory of
modules over dg-algebras, we obtain:

13.1.13 Lemma. Let f : QA
∼−→ QB be a weak-equivalence of P-algebras

over A. If QA and QB are cofibrant, then:
(a) The morphism

f∗ : HomUP(A) Mod(T 1
P (QB), E)→ HomUP(A) Mod(T 1

P (QB), E)

induced by f forms a weak-equivalence, for every left UP(A)-module E.
(b) The morphism

f∗ : E ⊗UP(A) T
1
P (QA)→ E ⊗UP(A) T

1
P (QB)

induced by f forms a weak-equivalence, for every right UP(A)-module E. ut

Assuming lemma 13.1.11, this statement achieves the proof of proposi-
tion 13.1.2 and proposition 13.1.4. ut

13.2 Universal coefficient spectral sequences

In general, the cohomology H∗
P (A,E), respectively the homology HP

∗(A,E),
associated to an algebra A over an operad P can not be reduced to a derived
functor on the category of left (respectively, right) UP(A)-modules. Never-
theless, we have universal coefficient spectral sequences which connect the
cohomology H∗

P (A,E), respectively the homology HP
∗(A,E), to standard de-

rived functors of homological algebra. The purpose of this section is to give
the definition of these spectral sequences.

To simplify, we assume that P is an operad in k-modules and A is a P-
algebra in k-modules. To define the homology of A, we use that A is equivalent
to a dg-object concentrated in degree 0, and similarly as regards the operad
P.

13.2.1 Construction. Fix a cofibrant replacement P(0) � QA
∼−→ A. The

definition of the universal coefficients spectral sequences arises from the iden-
tities of §13.1.7:
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DerP(QA, E) = HomUP(QA) Mod(Ω1
P (QA), E) = HomUP(A) Mod(T 1

P (QA), E)

and E ⊗UP(QA) Ω
1
P (QA) = E ⊗UP(A) T

1
P (QA),

where T 1
P (QA) = UP(A)⊗UP(QA) Ω

1
P (QA).

The idea is to apply the standard hypercohomology spectral sequence

Est2 = ExtsUP(A)(Ht(T 1
P (QA)), E),

respectively the standard hyperhomology spectral sequence

E2
st = TorUP(A)

s (E,Ht(T 1
P (QA))),

associated to this dg-hom, respectively tensor product, over the enveloping
algebra UP(A).

The object T 1
P (QA) forms a cofibrant left UP(A)-module by lemma 13.1.10.

As a consequence, the hypercohomology spectral sequence abuts to the co-
homology H∗(HomUP(A) Mod(T 1

P (QA), E)), the hyperhomology spectral se-
quence abuts to the homologyH∗(E⊗UP(A)T

1
P (QA)). By definition of T 1

P (QA),
we also have Ht(T 1

P (QA)) = HP
t (A,UP(A)). Thus we obtain finally:

13.2.2 Proposition (compare with [1, Propositions 5.3.2-5.3.3]). We have
universal coefficient spectral sequences

E2
s,t = TorUP(A)

s (E,HP
t (A,UP(A)))⇒ HP

s+t(A,E)

and Es,t2 = ExtsUP(A)(H
P
t (A,UP(A)), E)⇒ Hs−t

P (A,E). ut

As a byproduct:

13.2.3 Proposition (compare with [1, Remark 5.3.4] and [64]). If the ho-
mology HP

∗(A,UP(A)) vanishes in degree ∗ > 0, then we have

HP
∗(A,E) = TorUP(A)

∗ (E,Ω1
P (A)) and H∗

P (A,E) = Ext∗UP(A)(Ω
1
P (A), E).

Proof. The condition implies that the universal coefficients spectral sequences
degenerate and the identities of the proposition follow. ut

Conversely, if the homology HP
∗(A,E) is given by a Tor-functor over the

enveloping algebra UP(A), then we have necessarily HP
∗(A,UP(A)) = 0, for

∗ > 0, since TorUP(A)
∗ (UP(A), F ) vanishes in degree ∗ > 0 for every left UP(A)-

module F .

13.2.4 Classical examples. The identities of proposition 13.2.3 are known
to hold for the Hochschild (co)homology (case of the associative operad P =
A) and for the Chevalley-Eilenberg (co)homology (case of the Lie operad
P = L). The reader is referred to his favorite textbook. In §17.3, we prove
that the assertion about Hochschild (co)homology is implied by the deeper
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property, checked in §10.3, that the module Ω1
A forms a free right A-module,

and similarly as regards the Chevalley (co)homology.
In the case P = C, we have UC(A) = A. But the homology HC

∗(A,A) does
not vanish in general. This negative result is verified for the k-algebra of an
hypersurface (or a complete intersection) with isolated singularities. Thus
the result of proposition 13.2.3 fails in the case P = C. The non-vanishing
of HC

∗(A,A) implies that Ω1
C does not form a projective right C-module and

gives an obstruction for this property.

13.3 The operadic cotriple construction

In this section, we review a usual construction of the theory of operads, the
cotriple construction, which associates a kind of simplicial resolution to any
algebra over an operad.

The original cotriple construction, defined in [3], is a simplicial object
B∆(F, T,A) associated an algebra A over a monad T , with coefficients in a
functor F equipped with a right action of the monad T . This construction is
applied in [47] to the monad T = S(P) associated to a topological operad P.
If we take F = S(P), then the construction returns a simplicial P-algebra
B∆(P, P, A) whose realization is homotopy equivalent to A.

The definition of the simplicial object B∆(P, P, A) makes sense for any
operad P in a symmetric monoidal category C and for any P-algebra A in a
symmetric monoidal category E over C. The construction returns a simplicial
P-algebra B∆(P, P, A) together with an augmentation ε : B∆(P, P, A)→ A. In
the sequel, we apply the construction B∆(P, P, A) to operads in the category
of dg-modules C = dg k Mod and we review the definition of B∆(P, P, A) in
this context. Throughout this section, we assume to simplify that A is also
a P-algebra in the category of dg-modules E = dg k Mod. but again we can
extend the construction to P-algebras in Σ∗-objects E =M, respectively in
right modules over operads E = M R, by using the principle of generalized
point-tensors. These generalizations are studied in §17.2.

In the context of simplicial sets or simplicial k-modules, the construction
B∆(P, P, A) forms a bisimplicial object and the diagonal of this bisimplicial
object gives a cofibrant replacement of A in the category of P-algebras. In
the dg-context, we take the normalized complex of B∆(P, P, A) to recover
a P-algebra in the original category of dg-objects E . The augmentation of
B∆(P, P, A) induces a weak-equivalence ε : N∗(B∆(P, P, A)) → A, but the
object N∗(B∆(P, P, A)) forms no more a cofibrant P-algebra. However, we
shall observe that the simplicial object B∆(P, P, A) can be used to determine
the cohomology H∗

P (A,E) and the homology HP
∗(A,E).

The normalized complex plays the role of geometric realization in the
dg-context. Every cofibrantly generated model category has a good realiza-
tion functor, but the author ignores if the realization of B∆(P, P, A) gives
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a P-algebra equivalent to A in general. This result is proved for topological
operads in May’s original monograph [47, §9], by using explicit homotopies,
and for operads in spectra in [24].

Throughout this section, we use the notation A∆ to refer to the category
of simplicial objects in any category A. For the category of algebras over a
discrete operad P, we have an identity (PE)∆ = P(E∆), where we consider the
category of P-algebras in E∆ on the right-hand side.

13.3.1 The simplicial cotriple resolution. The simplicial objectB∆(P, P, A)
is given in dimension n by the composite

B∆(P, P, A)n = S(P)◦n+1(A) = S(P)
0

◦S(P)
1

◦ · · · ◦ S(P)
n

(A),

where we consider the functor S(P) : E → E associated to the operad P. The
face di : B∆(P, P, A)n → B∆(P, P, A)n−1, i = 0, . . . , n − 1, is the morphism
induced by the operad composition product

S(P) ◦ S(P) = S(P ◦ P) S(µ)−−−→ S(P)

on factors (i, i+1) of the composite S(P)◦n+1(A). The face dn : B∆(P, P, A)n →
B∆(P, P, A)n−1 is yielded by the evaluation product of the P-algebra

S(P)(A) = S(P, A) λ−→ A

on the last factor of S(P)◦n+1(A). The degeneracy sj : B∆(P, P, A)n →
B∆(P, P, A)n+1, j = 0, . . . , n, is given by the insertion of an operad unit

Id = S(I)
S(η)−−−→ S(P)

between factors (j, j + 1) of S(P)◦n+1(A). The relations of faces and degen-
eracies are straightforward consequences of associativity and unit properties
of operad composition products and operad actions.

The construction of this simplicial object B∆(P, P, A) makes sense for
any operad P in a symmetric monoidal category C, and for any P-algebra
A in a symmetric monoidal category E over C. Each object B∆(P, P, A)n =
S(P)◦n+1(A) forms a free P-algebra since we have an identity P(−) = S(P,−).
Observe further that the faces and degeneracies of B∆(P, P, A) are morphisms
of P-algebras. Thus the construction B∆(P, P, A) returns a simplicial object
in the category of P-algebras in E .

The evaluation product S(P)(A) = S(P, A) λ−→ A also gives a morphism of
P-algebras ε : B∆(P, P, A)0 → A so that εd0 = εd1. Equivalently, we have a
morphism of simplicial P-algebras ε : B∆(P, P, A)→ A, where A is identified
to a constant simplicial object in the category of P-algebras.

13.3.2 Normalized complexes. In the context of dg-modules E = C =
dg k Mod, we apply a normalized complex functor to recover a genuine P-
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algebra in E from the simplicial P-algebra B∆(P, P, A). In §17.2, we observe
that this construction can be extended to P-algebras in the category of Σ∗-
objects E =M, or in categories of right modules over an operad E =M R. For
the moment, we recall only the definition of the normalized complex functor
in the context of dg-modules E = dg k Mod.

For any simplicial dg-module C, we form the quotient object:

Nm(C) = Cm/s0Cm−1 + · · ·+ sm−1Cm−1.

Each object Nm(C) has a grading Nm(C) =
⊕
∗Nm(C)∗ given by the in-

ternal grading of the dg-module Cm and comes equipped with a differential
δ : Nm(C)∗ → Nm(C)∗−1 induced by the internal differential of Cm. The
alternate sum of faces ∂ =

∑m
i=0±di yields a differential ∂ : Nm(C)∗ →

Nm−1(C)∗ so that ∂δ + δ∂ = 0. Thus the bigraded collection Nm(C)∗ forms
a bicomplex. Define the normalized complex N∗(C) as the total complex of
this bicomplex. There is a dual definition of a conormalized complex N∗(D)
in the context of cosimplicial dg-modules.

The normalized complex functor N∗(−) : E∆ → E does not define a functor
of symmetric monoidal categories in the strong sense, but we have a natural
weak-equivalence

∇ : N∗(C)⊗N∗(D) ∼−→ N∗(C ⊗D),

the Eilenberg-Mac Lane morphism, which preserves symmetric monoidal
structures like the structure isomorphism of a functor of symmetric monoidal
categories. If C is a (discrete) dg-module, then we have N∗(C) = C and the
Eilenberg-Mac Lane morphism reduces to an obvious isomorphism

∇ : C ⊗N∗(D) '−→ N∗(C ⊗D),

for every simplicial dg-module D ∈ E∆.
The normalized complex of any simplicial P-algebra in dg-modules B∆

inherits a natural P-algebra structure defined by the evaluation morphism

P(r)⊗N∗(B∆)⊗r ∇−→ N∗(P(r)⊗B⊗r∆ )
N∗(λ)−−−−→ N∗(B∆).

In particular, we obtain that the normalized complex of the simplicial bar
construction B∆ = B∆(P, P, A) forms a P-algebra in dg-modules.

The augmentation morphism ε : B∆(P, P, A) → A induces a morphism of
P-algebras in dg-modules

N∗(B∆(P, P, A))
N∗(ε)−−−→ N∗(A) = A.

We have further:

13.3.3 Lemma. The morphism ε : N∗(B∆(P, P, A)) → A induced by the
augmentation ε : B∆(P, P, A)→ A forms a weak-equivalence in PE.
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Proof. The augmentation ε : B∆(P, P, A) → A has a natural section η :
A → B∆(P, P, A) in the underlying category E . This section is given by the
morphism

A = S(I,A)
S(η,A)−−−−→ S(P, A) = B∆(P, P, A)0

induced by the operad unit η : I → P. Since εη = id, we haveN∗(ε)·N∗(η) = id
at the chain level.

The object B∆(P, P, A) comes also equipped with an extra degeneracy

s−1 : B∆(P, P, A)n−1 → B∆(P, P, A)n

given by the insertion of an operad unit

S(P ◦ P◦n−1, A)
S(η◦P◦n,A)−−−−−−−→ S(P ◦ P◦n, A)

at position 0 of the composite S(P) ◦ · · · ◦ S(P)(A) = S(P ◦ P◦n, A). This extra
degeneracy determines a morphisms

N∗(B∆(P, P, A))⊗N∗(∆1) h−→ N∗(B∆(P, P, A))

which gives a chain homotopy N∗(η) · N∗(ε) ' id. Hence we conclude that
N∗(ε) forms a weak-equivalence and this achieves the proof of the lemma. ut

This lemma also holds for the generalization of the constructionN∗(B∆(P, P, A))
to P-algebras in Σ∗-objects, respectively in right modules over an operad.

Theoretically, we have to apply the functor Ω1
P (−) to a cofibrant re-

placement of A to determine the cohomology H∗
P (A,E) and the homology

H∗
P (A,E). The simplicial P-algebra B∆(P, P, A) is cofibrant in some natu-

ral sense (equip the category E∆ with the Reedy model structure), but the
associated P-algebra in dg-modules N∗(B∆(P, P, A)), for which we have a
weak-equivalence ε : N∗(B∆(P, P, A)) ∼−→ A, does not form a cofibrant object
in PE . Nevertheless:

13.3.4 Theorem (compare with [1, Theorem 7.7]). We have

H∗
P (A,E) = H∗N∗(DerP(B∆(P, P, A), E)

)
and HP

∗(A,E) = H∗N∗
(
E ⊗UP(A) Ω

1
P (B∆(P, P, A))

)
,

where on the right hand side we use a dimensionwise evaluation of functors
to form a cosimplicial (respectively, simplicial) object in dg-modules and we
take the cohomology (respectively, homology) of the associated conormalized
(respectively, normalized) chain complex.

This theorem is proved in §17.3 as an application of the homotopy theory
of functors associated to modules over operads.



Bibliographical comments on part III

First applications of model categories in algebra occur in Quillen’s origi-
nal monograph [50] for certain categories of simplicial algebras, including
monoids, commutative algebras, . . . (see also the article [52]).

The (semi-)model category of algebras over an operad is studied in sev-
eral references in various contexts: the case of algebras in differential graded
modules is addressed in [17, 26]; the case of algebras in simplicial sets and
simplicial modules in [54]; the case of algebras in spectra in [21, 23, 36]. The
articles [4] and [58] handle the definition of the (semi-)model structure in a
general axiomatic setting. In the reference [58], the axioms of (semi-)model
categories are proved by a technical study of pushouts in categories of al-
gebras over operads. In [4], it is observed that verifications of [58] can be
simplified for certain operads, including cofibrant operads, if the underlying
category has a monoidal fibrant replacement functor and comes equipped
with a good interval object (see loc. cit. for precise requirements).

The paper [22] includes another general construction of model structures
for algebras and left modules over non-symmetric operads.

The definition of the (semi-)model category of operads occur in [26] for
operads in dg-modules, and in [4, 58] in a more general setting. Note however
that the homotopy theory of dg-operads was studied before by methods of
differential graded algebra. In particular, the paper [45] gives a generalization
to operads of the minimal models of rational homotopy. The Koszul duality
of [18] has an interpretation in terms of these minimal models.

The notion of a semi-model category arises from [29] and gives the basis
of the theory of [58]. Note however that our axioms differ slightly from these
original references. The article [41] uses the semi-model structures of [29, 58],
but most authors still prefer to deal with full model structures.

The definition of the homology with trivial coefficients occurs in [17, 18] for
algebras over operads in dg-modules. The (co)homology with non-trivial coef-
ficients is defined in [1]. In all these references, the authors deal with algebras
in non-negatively graded dg-modules. The generalization of the (co)homology
to algebras in unbounded dg-modules occurs in [26]. Universal coefficients
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spectral sequences are defined in [1] (for algebras in non-negatively graded
dg-modules) by using the cotriple construction.

The work [20, 21, 62, 63] tackles applications of the cohomology of algebras
over operads to realization problems in stable homotopy. In this setting, it
is more appropriate to deal with simplicial objects and simplicial algebras
rather than differential graded algebras, but this does not change much the
definition of the (co)homology of algebras over operads.

The definition of the cotriple construction goes back to [3] and [47]. The
idea to represent the cotriple construction of functors at the operad level oc-
curs in [56, 57] and in [54]. The two-sided version of the cotriple construction
is also studied in [14] in the differential graded context and is related to other
complexes of the theory of operads, notably the Koszul complex of [18]. The
recent preprint [24] focuses on applications of the operadic cotriple construc-
tion in the context of spectra.
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Chapter 14

The model category of right modules
over an operad

Introduction

In this part, we aim to prove that right R-module structures give convenient
models for the homotopy of associated functors.

First of all, we check in this chapter that the category of right R-modules
inherits a convenient model structure. This verification is carried out in §14.1.

In §14.2, we make explicit the structure of cell complexes of right R-modules
in the case where C = dg k Mod is the category of dg-modules over a ring k.

In §14.3, we apply the general results of §11.1 to the symmetric monoidal
model category of right R-modules. To summarize, we obtain that the cat-
egory of P-algebras in right R-modules, where P a Σ∗-cofibrant operad,
is equipped with a natural semi model structure, inherited from right R-
modules. In the case of a non-unitary operad R, we obtain that the category
of P-algebras in connected right R-modules is equipped with a semi model
structure as long as the operad P is C-cofibrant.

14.1 The symmetric monoidal model category
of right modules over an operad

In this section, we check the definition of the symmetric monoidal model
structure on the category of right modules over an operad R. For this purpose,
we apply the general result of theorem 11.1.13 to the composite adjunction

CN
Σ∗⊗− //M
U
oo

−◦R //M R
U

oo

221
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between the category of collections {K(n) ∈ C}n∈N and the category of right
R-modules. Recall that CN is equipped with the obvious model structure of a
product of model categories. The result reads:

Proposition 14.1.A. Let R be an operad. Assume that R is C-cofibrant.
The category of right R-modules M R is equipped with the structure of a

cofibrantly generated model category so that a morphism f : M → N is a
weak-equivalence (respectively, a fibration) if the morphisms f : M(n) →
N(n) define weak-equivalences (respectively, fibrations) in the base category
C. The generating (acyclic) cofibrations of M R are the tensor products

i⊗ Fr ◦ R : C ⊗ Fr ◦ R→ D ⊗ Fr ◦ R,

where i : C → D ranges over the generating (acyclic) cofibrations of the
base category C and Fr ranges over the generators, defined in §2.1.12, of the
category of Σ∗-objects.

Recall that an operad R is C-cofibrant if the underlying collection {R(n)}n∈N
consists of cofibrant objects in C.

In the case where C is the category of simplicial sets C = S and the category
of simplicial k-modules C = k Mod∆, a different (but Quillen equivalent)
model structure is used in [54, §3.3.8], namely the adjoint of the equivariant
model structure of Σ∗-objects.

The forgetful functors

M R
U−→M U−→ CN

creates all colimits. For this reason, condition (1) of proposition 11.1.14 is triv-
ially satisfied and the proof of the sufficient conditions of proposition 11.1.14
reduces to:

Claim. Under the assumption that R is C-cofibrant, the tensor product i ⊗
Fr ◦ R : C ⊗ Fr ◦ R → D ⊗ Fr ◦ R defines a C-cofibration (respectively, an
acyclic C-cofibration) if i : C → D is a cofibration (respectively, an acyclic
cofibration) in C.

Proof. Lemma 11.4.6 implies that Fr ◦ R = R⊗r is C-cofibrant if the operad R
is so. As a consequence, we obtain that the tensor products −⊗ (Fr ◦ R(n)) :
C → C, n ∈ N, preserve (acyclic) cofibrations and this proves our claim. ut

This claim achieves the proof of proposition 14.1.A. ut

Observe further:

Proposition 14.1.B. The category of right R-modulesMR forms a symmet-
ric monoidal model category over C in our sense:
(a) If the unit object 1 ∈ C is cofibrant in C, then so is the equivalent constant
right R-module 1 ∈MR so that axiom MM0 holds in MR;
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(b) The internal and external tensor products of right R-modules satisfy the
pushout-product axiom MM1.

Proof. The verifications are similar to the case of Σ∗-objects handled in §11.4.
Replace simply the objects Fr = I⊗r by the right R-modules Fr◦R = I⊗r◦R =
R⊗r. ut

In the remainder of this section, we prove additional properties of the
model category of right R-modules.

14.1.1 Proposition.

(a) If the operad R is Σ∗-cofibrant, then the forgetful functor U :M R →M
preserves cofibrations.
(b) If the operad R is just C-cofibrant, then the image of a cofibration f :
M → N under the forgetful functor U :M R →M is only a C-cofibration.

Note that proposition 11.1.14, which is applied to define the model struc-
ture ofM R, gives assertion (b).

Proof. It is sufficient to check that the generating cofibrations

i⊗ Fr ◦ R : C ⊗ Fr ◦ R→ D ⊗ Fr ◦ R

define cofibrations inM, respectively C-cofibrations inM. In lemma 11.4.6,
we observe that Fr ◦ R = R⊗r forms a cofibrant object in M if R is Σ∗-
cofibrant, respectively a C-cofibrant object inM if R is just C-cofibrant. The
claim follows immediately. ut

Proposition 14.1.1 has the following easy consequences:

14.1.2 Proposition.

(a) If the operad R is Σ∗-cofibrant, then the Σ∗-cofibrations form an enlarged
class of cofibrations in M R.
(b) If the operad R is just C-cofibrant, then the C-cofibrations form an en-
larged class of cofibrations in M R.

Proof. Use that the forgetful functors

M R
U−→M U−→ CN

creates colimits to check axioms C1-4 of an enlarged class of cofibrations.
Proposition 14.1.1 gives axiom C0. ut

14.1.3 Proposition. If C is a proper model category and the operad R is
C-cofibrant, then M R is proper as well.
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Proof. By definition of model structures, the forgetful functors

M R →M→ CN

create fibrations and weak-equivalences in M and in M R. In proposi-
tion 14.1.1, we observe that the forgetful functor U : M R → CN preserves
cofibrations as well as long as R is C-cofibrant. Recall that U : M R → CN

creates colimits and limits.
The claim thatM R inherits a proper model structure if C forms a proper

model category is an immediate consequence of these observations. ut

14.2 Relative cell complexes
in right modules over operads

In this section, we study the structure of cofibrant cell complexes of right
R-modules in the case where C = dg k Mod. As usual, we use the conven-
tion of §11.1.8 to call cofibrant cell objects the cell complexes build from
generating cofibrations.

We generalize the construction of §11.2 to give an explicit representation
of cofibrant cell complexes of right R-modules. Since the construction are
strictly parallel, we only make explicit the definition of a twisting cochain
and of a quasi-free object in the context of right R-modules before giving the
result.

The notion of a quasi-free module over an operad is used extensively in [14].
We refer to this article for a detailed study of this structure.

14.2.1 Twisting cochains and quasi-free modules over dg-operads.
A twisting cochain of right R-modules ∂ : M → M consists of a collection
of twisting cochains of dg-modules ∂ ∈ HomC(M(n),M(n)) that commutes
with the action of symmetric groups and with the operad action. Equivalently,
we assume that the collection ∂ ∈ HomC(M(n),M(n)) defines an element
of HomMR

(M,M), the dg-hom of the category of right R-modules, and the
equation of twisting cochains δ(∂) + ∂2 = 0 holds in HomMR

(M,M).
A right R-module M is quasi-free if we have M = (K ◦ R, ∂), for a free

right R-module K ◦ R, where ∂ : K ◦ R→ K ◦ R is a twisting cochain of right
R-modules. In the case of a quasi-free object, the commutation with the R-
action implies that the twisting cochain ∂ : K ◦ R→ K ◦ R is determined by
a homomorphism of Σ∗-objects ∂ : K → K ◦ R.

The extension of propositions 11.2.9-11.2.9 to modules over operads reads:

14.2.2 Proposition. A cofibrant cell object in right R-modules is equivalent
to a quasi-free right R-module M = (K ◦ R, ∂), where K is a free Σ∗-object
in graded k-modules K =

⊕
α k edα

⊗ Frα
, together with a trivial differential

and a basis filtration Kλ =
⊕

α<λ k edα
⊗ Frα

so that ∂(Kλ) ∈ Kλ−1 ◦ R. ut
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14.3 Model categories of algebras in right modules
over an operad

In this section, we record applications of general results of §12.3 to algebras in
right modules over an operad R. Since we prove that the category of right R-
modules forms a symmetric monoidal model category over C, proposition 12.3
returns:

14.3.1 Proposition. Let R be any C-cofibrant operad. If P is a Σ∗-cofibrant
operad, then the P-algebras in right R-modules form a cofibrantly generated
semi-model category so that the forgetful functor U : PM R → M R creates
weak-equivalences and fibrations.

The generating (acyclic) cofibrations are the morphisms of free P-algebras

P(i⊗ Fr ◦ R) : P(C ⊗ Fr ◦ R)→ P(D ⊗ Fr ◦ R),

where i : C → D ranges over the generating (acyclic) cofibrations of C.

Recall that P-algebras in right R-modules are equivalent to P-R-bimodules.

¶ In §5.1.4, we observe that the category of connected right R-modules
M0

R, where R is a non-unitary operad, forms a reduced symmetric monoidal
category. For this reduced symmetric monoidal category, we obtain further:

14.3.2 ¶ Lemma. The category of connected right R-modulesM0
R has regular

tensor powers with respect to the class of C-cofibrations in the category of Σ∗-
objects and to the class of C-cofibrations in the category of right R-modules.

Note that the C-cofibrations form an enlarged class of cofibrations inM0
R,

like the Σ∗-cofibrations, just because the forgetful functorsM R →M→ CN

create colimits.

Proof. This property is inherited from the category of Σ∗-objects (for which
we refer to proposition 11.6.6) because, on one hand, weak-equivalences of
right R-modules are created in the category of Σ∗-objects and, on the other
hand, the tensor product of right R-modules is created in the category of
Σ∗-objects. ut

As a byproduct, we obtain:

14.3.3 ¶ Proposition. Let R be a C-cofibrant non-unitary operad. Let P be
a non-unitary operad. The category of connected P-R-bimodules PM0

R forms a
semi-model category as long as P is C-cofibrant. ut





Chapter 15

Modules
and homotopy invariance of functors

Introduction

In this chapter, we study the homotopy invariance of the functors SR(M) :
RE → E associated to right modules over an operad R. In summary, we aim
to prove that:

– A weak-equivalence of R-algebras f : A ∼−→ B induces a weak-equivalence
SR(M,f) : SR(M,A) ∼−→ SR(N,B) under reasonable assumptions on M , A
and B,

– A weak-equivalence of right R-modules f : M ∼−→ N induces a pointwise
weak-equivalence of functors SR(f,A) : SR(M,A) ∼−→ SR(N,A), under rea-
sonable assumptions on M , N and A.

In §15.1, we assume that the right R-modules are cofibrant. In this context,
the homotopy invariance properties hold under very mild assumptions on the
R-algebras.

In §15.2, we address the case where M and N are only cofibrant in the
category of Σ∗-objects. In this context, we have to assume that the R-algebras
are cofibrant to obtain our homotopy invariance properties.

In §15.3, we study the homotopy invariance of the relative composition
product of modules over operads. Results can be deduced from theorems
of §15.1-15.2, applied to R-algebras in Σ∗-objects. We study the homotopy
invariance of the relative composition product for connected R-algebras in Σ∗-
objects. We prove that the general result can be improved in this context.

15.1 Cofibrant modules
and homotopy invariance of functors

The purpose of this section is to prove:

227
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Theorem 15.1.A. Let R be a C-cofibrant operad.
(a) The morphism

SR(f,A) : SR(M,A)→ SR(N,A)

induced by a weak-equivalence of cofibrant right R-modules f : M ∼−→ N is a
weak-equivalence for every R-algebra A ∈ RE which is E-cofibrant.
(b) If M is a cofibrant right R-module, then the morphism

SR(M,f) : SR(M,A)→ SR(M,B)

induced by a weak-equivalence of R-algebras f : A ∼−→ B is a weak-equivalence
as long as A,B are E-cofibrant.

Recall that an R-algebra A is E-cofibrant if the initial morphism η : R(0)→
A is a cofibration in E . Since the functor η : C → E is supposed to preserve
cofibrations and the operad R is cofibrant in the underlying category, we
obtain that any E-cofibrant R-algebra A forms cofibrant object in E .

This observation is used in the proof of theorem 15.1.A. Besides, we use
that the forgetful functor U : RE → E preserves cofibrations.

¶ Remark. Theorem 15.1.A holds in the context symmetric spectra
E = SpΣ and for an operad in simplicial sets R provided that R(0) = ∅ and
we can ensure that the forgetful functor U : RE → E preserves cofibrations.
The assumption R(0) = ∅ is necessary for an operad in simplicial sets since
the functor η : C → E does not preserve cofibrations in the case E = SpΣ and
C = S (see §11.6.12).

The remainder of this section is devoted to the proof of theorem 15.1.A.
Our argument is based on the following statement:

15.1.1 Lemma. The pushout-product

(i∗, f∗) : SR(M,B)
⊕

SR(M,A)

SR(N,A)→ SR(N,B)

induced by i : M → N , morphism of right R-modules, and f : A → B,
morphism of R-algebras, is a cofibration as long as i is a cofibration in M R,
the morphism f forms an E-cofibration, and A is E-cofibrant. The pushout-
product (i∗, f∗) is an acyclic cofibration if i or f is also acyclic.

Proof. By lemma 11.3.2, we can reduce the claim to the case where i : M →
N is a generating (acyclic) cofibration

j ⊗ Fr ◦ R : C ⊗ Fr ◦ R→ D ⊗ Fr ◦ R

since the functor (M,A) 7→ SR(M,A) preserves colimits in M .
Consider the more general case of a morphism of free right R-modules
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k ◦ R : K ◦ R→ L ◦ R

induced by a cofibration (an acyclic cofibration) of Σ∗-objects k : K → L. In
the case of a right R-module of the form M = K ◦ R, we have

SR(M,A) = SR(K ◦ R, A) = S(K,A)

by theorem 7.1.1. Therefore we obtain that the pushout-product

(i∗, f∗) : SR(M,B)
⊕

SR(M,A)

SR(N,A)→ SR(N,B)

is identified with the pushout-product

(k∗, f∗) : S(K,B)
⊕

S(K,A)

S(L,A)→ S(L,B)

of lemma 11.5.1. Thus we can deduce lemma 15.1.1 from the assertion of
lemma 11.5.1. ut

As a corollary, we obtain:

15.1.2 Lemma.

(a) Let M be a cofibrant object inM R. If a morphism of R-algebras f : A→
B, where A is E-cofibrant, forms a E-cofibration (respectively, an acyclic E-
cofibration), then the induced morphism SR(M,f) : SR(M,A) → SR(M,B)
defines a cofibration (respectively, an acyclic cofibration) in E.
(b) Let A be an E-cofibrant R-algebra. The morphism SR(i, A) : SR(M,A)→
SR(N,A) induced by a cofibration (respectively, an acyclic cofibration) of right
R-modules i : M → N forms a cofibration (respectively, an acyclic cofibration)
in E. ut

And the claim of theorem 15.1.A follows immediately from Brown’s lemma.
ut

15.2 Homotopy invariance of functors
for cofibrant algebras

In this chapter, we study the homotopy invariance of the functors SR(M) :
RE → E associated to right R-modules M which are not cofibrant. Our main
result reads:

Theorem 15.2.A. Let R be an operad. Suppose that R is Σ∗-cofibrant so that
the category of R-algebras is equipped with a semi-model structure.
(a) If A is cofibrant in the category of R-algebras, then the morphism
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SR(f,A) : SR(M,A)→ SR(N,A)

induced by a weak-equivalence of right R-modules f : M ∼−→ N forms a weak-
equivalence as long as M,N are Σ∗-cofibrant.
(b) Let M be a Σ∗-cofibrant right R-module. The morphism

SR(M,f) : SR(M,A)→ SR(M,B)

induced by a weak-equivalence of R-algebras f : A ∼−→ B forms a weak-
equivalence if A and B are cofibrant in the category of R-algebras.

¶ Remark. In the context of a (reduced) symmetric monoidal category
with regular tensor powers, we assume that R is a C-cofibrant non-unitary
operad. Assertion (a) holds for any weak-equivalence of connected right R-
modules f : M ∼−→ N such that M,N are C-cofibrant. Assertion (b) holds for
all connected right R-modules M which are C-cofibrant.

¶ Remark. Suppose E = C = SpΣ is the category of symmetric spec-
tra together with the stable positive model structure. Let R be an operad
in simplicial sets. If we can ensure that the forgetful functor U : RE → E
preserves cofibrations, then our arguments work for right R-modules which
are cofibrant in the category of spectra. Hence:

– assertion (a) of theorem 15.2.A holds for any weak-equivalence of right
R-modules in spectra f : M ∼−→ N such that M,N are SpΣ-cofibrant;

– assertion (b) of theorem 15.2.A holds for all right R-modules in spectra M
which are SpΣ-cofibrant.

Observe that assertion (a) of theorem 15.2.A has a converse:

Proposition 15.2.B. Assume E = C.
Let f : M → N be a morphism of right R-modules, where M,N are Σ∗-

cofibrant. If the morphism SR(f,A) : SR(M,A) → SR(N,A) induced by f
forms a weak-equivalence in C for every cofibrant R-algebra A ∈ RE, then f is
a weak-equivalence as well.

If C is pointed, then this implication holds without the assumption that the
modules M,N are Σ∗-cofibrant.

Proof. In proposition 11.5.4, we prove a similar assertion for the bifunctor
(M,X) 7→ S(M,X), where M ∈M and X ∈ C. Proposition 15.2.B is an im-
mediate corollary of this result because the free R-algebras A = R(X), where
X is a cofibrant object in C, are cofibrant R-algebras and, by theorem 7.1.1,
we have SR(M, R(X)) ' S(M,X) for a free R-algebra A = R(X). ut

Theorem 15.2.A is again a routine consequence of a pushout-product
lemma:
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Lemma 15.2.C. The pushout-product

(i∗, f∗) : SR(M,B)
⊕

SR(M,A)

SR(N,A)→ SR(N,B)

induced by i : M → N , morphism of right R-modules, and f : A → B, mor-
phism of R-algebras, forms a cofibration as long as i defines a Σ∗-cofibration,
the morphism f is a cofibration of R-algebras, and A is a cofibrant R-algebra.
The pushout-product (i∗, f∗) is an acyclic cofibration if i or f is also acyclic.

The technical proof of this lemma is postponed to the appendix, §§18-
20. The arguments of lemma 15.1.1 can not be carried out in the context of
lemma 15.2.C, because we address the image of cofibrations f : A→ B under
functors SR(M) : RE → E which do not preserve colimits.

In the remainder of this section, we survey examples of applications of
theorem 15.2.A.

In §16, we prove that the unit morphism η(A) : A → ψ∗ψ!(A) of the
adjunction relation defined by extension and restriction functors

ψ! : RE � SE : ψ∗

preserve weak-equivalences. For this purpose, we apply theorem 15.2.A to
right R-modules defined by the operads M = R and N = S themselves and
we observe that the adjunction unit η(A) : A→ ψ∗ψ!(A) is identified with a
morphism of the form

SR(ψ,A) : SR(R, A)→ SR(S, A).

The homotopy invariance of generalized James’s constructions give other
instances of applications of theorem 15.2.A. In §5.1.8, we recall that the
generalized James construction J(M,X) defined in the literature for a Λ∗-
object M is the instance of a functor of the form S∗(M,X), where ∗ is an
initial operad in Top∗, the category of pointed topological spaces.

An object X ∈ ∗E is cofibrant in ∗E simply if the unit morphism
∗ : pt→ X forms a cofibration in the underlying model category of topolog-
ical spaces. Thus the cofibrant algebras over the initial unitary operad are
the well-pointed topological spaces and theorem 15.2.A asserts that a weak-
equivalence of Σ∗-cofibrant Λ∗-objects, the cofibrant objects for the Reedy
model structure of [16], induces a weak-equivalence S∗(f,X) : S∗(M,X) ∼−→
S∗(N,X) for all well-pointed spaces X. In this context, we retrieve a result
of [7]. In fact, in this particular example, the space S∗(M,X) can be identi-
fied with a coend over the generalized Reedy category Λ∗, considered in [16],
and the homotopy invariance of the functor M 7→ S∗(M,X) can be deduced
from general homotopy invariance properties of coends (see [7, Lemma 2.7]).
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15.3 ¶ Refinements for the homotopy invariance
of relative composition products

In §§3.2.9-3.2.10, we identify the category of left R-modules RM with the cat-
egory of R-algebras in Σ∗-objects. Furthermore, we observe in §5.1.5 that the
functor SR(M) : RM → M defined by a right R-module on this category is
identified with the relative composite N 7→M ◦RN . As a consequence, theo-
rem 15.1.A and theorem 15.2.A imply that the relative composition products
(M,N) 7→M ◦R N satisfy natural homotopy invariance properties.

In this chapter, we prove that stronger homotopy invariance properties
hold if we assume that N is a connected left R-module.

Recall that the model category of connected right R-modules is cofibrantly
generated for a collection of generating cofibrations of the form

I = {i ◦ R : K ◦ R→ L ◦ R, where i : K → L runs over cofibrations inM0 }.

As a consequence, every cofibration of M0
R is a retract of a relative I-cell

complex. Symmetrically, the semi-model category of connected left R-modules
is cofibrantly generated for a collection of generating cofibrations of the form

J = {R ◦i : R ◦K → R ◦L, where i : K → L runs over cofibrations inM0 }.

To identify this set of generating cofibrations, use that the composite R ◦K
represents the free R-algebra R ◦K = R(K) and go back to the general defini-
tion of the semi-model category of R-algebras in §12.3. As a byproduct, every
cofibration of RM0 with a cofibrant domain is a retract of a relative J -cell
complex.

For our purpose, we consider the collection of morphisms

K = {i◦R : K◦R→ L◦R, where i : K → L runs over the C-cofibrations inM0 }

in the category of right R-modules and the associated class of relative K-cell
complexes. Symmetrically, we consider the collection of morphisms

L = {R ◦i : R ◦K → R ◦L, where i : K → L runs over the C-cofibrations inM0 }

in the category of left R-modules and the associated class of relative L-cell
complexes. It is not clear that the collection K (respectively, L) defines the
generating cofibrations of a model structure on M0

R (respectively, RM0) in
general.

In the case of a relative composition product SR(M,N) = M ◦RN , we can
improve on theorem 15.1.A and theorem 15.2.A to obtain:

Theorem 15.3.A. Let R be a C-cofibrant non-unitary operad.
(a) The morphism

f ◦R A : M ◦R A→ N ◦R A
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induced by a weak-equivalence of connected right R-modules f : M ∼−→ N
forms a weak-equivalence as long as M,N are retracts of K-cell complexes,
for every C-cofibrant object A ∈ RM0.
(b) If a connected right R-module M is a retract of a K-cell complex, then
the morphism

M ◦R g : M ◦R A→M ◦R B

induced by a weak-equivalence of connected left R-modules g : A ∼−→ B forms
a weak-equivalence as long as A,B are C-cofibrant.

Theorem 15.3.B. Let R be a C-cofibrant non-unitary operad.
(a) If a connected left R-module A is a retract of an L-cell complex, then the
morphism

f ◦R A : M ◦R A→ N ◦R A

induced by a weak-equivalence of connected right R-modules f : M ∼−→ N
forms a weak-equivalence as long as M,N are C-cofibrant.
(b) The morphism

M ◦R g : M ◦R A→M ◦R B

induced by a weak-equivalence of connected left R-modules g : A ∼−→ B forms
a weak-equivalence as long as A,B are retracts of L-cell complexes, for every
C-cofibrant object M ∈M0

R.

One can observe further that theorem 15.3.A holds for any category of
algebras in a reduced category with regular tensor powers, and not only for
connected left R-modules, equivalent to algebras in the category of connected
Σ∗-objects.

We mention these results as remarks and we give simply a sketch of the
proof of theorem 15.3.A and theorem 15.3.B. In the case C = dg k Mod,
the category of dg-modules over a ring k, another proof can be obtained by
spectral sequence techniques (see the comparison theorems in [14, §2]).

The proof of theorem 15.3.A and theorem 15.3.B is based on the following
lemma:

15.3.1 Lemma.

(a) Let i : M → N be a relative K-cell complex in the category of connected
right R-modules. Let f : A→ B be any morphism of connected left R-modules.
Suppose A is C-cofibrant. If f is an (acyclic) C-cofibration, then so is the
pushout-product

(i∗, f∗) : M ◦R B
⊕
M◦RA

N ◦R A→ N ◦R B

associated to i and f .
(b) Let i : M → N be any morphism of connected right R-modules. Let
f : A → B be a relative L-cell complex in the category of connected left R-
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modules. Suppose A is an L-cell complex. If i is an (acyclic) C-cofibration,
then so is the pushout-product

(i∗, f∗) : M ◦R B
⊕
M◦RA

N ◦R A→ N ◦R B

induced by i.

Proof. These assertions improve on results of §§15.1-15.2 in the case where
we consider R-algebras in the category of connected Σ∗-objects M0

R. Asser-
tion (a) corresponds to the case where i is a cofibration and f is an (acyclic)
C-cofibration in lemma 15.1.1 and is proved in by the same argument. Asser-
tion (b) arises from the extension of lemma 15.2.C to reduced categories with
regular tensor powers, in the case where i is an (acyclic) C-cofibration and
f is a cofibration between cofibrant objects. To prove this latter assertion,
check indications given in §15.2. ut

As a corollary, we obtain:

15.3.2 Lemma.

(a) If M is a K-cell complex in the category of connected right R-modules,
then the functor M ◦R − maps (acyclic) C-cofibrations between C-cofibrant
objects in the category of connected left R-modules to weak-equivalences.
(b) If A is an L-cell complex in the category of connected left R-modules, then
the functor −◦R A maps (acyclic) C-cofibrations in the category of connected
right R-modules to weak-equivalences. ut

And Brown’s lemma implies again:

15.3.3 Lemma.

(a) If M is a K-cell complex in the category of connected right R-modules,
then the functor M ◦R − maps weak-equivalences between C-cofibrant objects
in RM0 to weak-equivalences.
(b) If A is an L-cell complex in the category of connected left R-modules, then
the functor −◦RA maps weak-equivalences between C-cofibrant objects inM0

R

to weak-equivalences. ut

Observe simply that K-cell (respectively, L-cell) complexes are C-cofibrant
and check the argument of [28, Lemma 1.1.12].

Obviously, we can extend this lemma to the case where M (respectively,
A) is a retract of a K-cell complex (respectively, of an L-cell complex).

Thus lemma 15.3.3 implies assertion (b) of theorem 15.3.A and asser-
tion (a) of theorem 15.3.B.

To achieve the proof of theorem 15.3.A and theorem 15.3.B, we observe:
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Claim.

(c) In theorem 15.3.A, assertion (b) implies assertion (a).
(d) In theorem 15.3.B, assertion (a) implies assertion (b).

Proof. Let f : M ∼−→ N be a weak-equivalence between retracts of K-cell
complexes inM0

R. Let A be a C-cofibrant object of RM0.
Let g : QA

∼−→ A be a cofibrant replacement of A in RM0. The object QA
is Σ∗-cofibrant by proposition 12.3.2, and hence is C-cofibrant, and forms a
(retract of) a K-cell complex as well.

We have a commutative diagram

M ◦R A
f◦RA // N ◦R A

M ◦R QA
f◦RA
∼ //

M◦Rg ∼

OO

N ◦R QA

N◦Rg∼

OO

in which vertical morphisms are weak-equivalences by assertion (b) of the-
orem 15.3.A. Since QA is assumed to be cofibrant, theorem 15.2.A (use the
suitable generalization in the context of reduced categories with regular ten-
sor powers – see remarks below the statement of theorem 15.2.A) implies that
the lower horizontal morphism is also a weak-equivalence.

We conclude that
f ◦R A : M ◦R A→ N ◦R A

defines a weak-equivalence as well and this proves assertion (c) of the claim.
We prove assertion (c) by symmetric arguments. ut

This verification achieves the proof of theorem 15.3.A and theorem 15.3.B.
ut





Chapter 16

Extension and restriction functors
and model structures

Introduction

In §3.3.5, we recall that an operad morphism φ : P → Q induces adjoint
extension and restriction functors

φ! : PE � QE : φ∗

In §7.2, we observe that an operad morphism ψ : R → S induces similar
adjoint extension and restriction functors on module categories:

ψ! :M R �M S : ψ∗

In this chapter, we study the functors on model categories defined by these
extension and restriction functors. Our goal is to prove:

Theorem 16.A. Let φ : P→ Q be an operad morphism. Suppose that the op-
erad P (respectively, Q) is Σ∗-cofibrant and use proposition 12.3.A to equip the
category of P-algebras (respectively, Q-algebras) with a semi model structure.

The extension and restriction functors

φ! : PE � QE : φ∗

define Quillen adjoint functors. If φ : P→ Q is a weak-equivalence, then these
functors define Quillen adjoint equivalences.

Theorem 16.B. Let ψ : R → S be an operad morphism. Assume that the
operad R (respectively, S) is C-cofibrant and use proposition 14.1.A to equip
the category of right R-modules (respectively, right S-modules) with a model
structure.

The extension and restriction functors

ψ! :M R �M S : ψ∗

237
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define Quillen adjoint functors. If ψ : R→ S is a weak-equivalence, then these
functors define Quillen adjoint equivalences.

¶ Remark. In the context of a reduced category with regular tensor
powers, theorem 16.A holds for all C-cofibrant non-unitary operads. In the
context of symmetric spectra, theorem 16.A holds for all operads by [23] (see
also [21, Theorem 1.2.4]).

The claim of theorem 16.A about the existence of a Quillen equivalence
is proved in [4] in the case where the underlying category E forms a proper
model category.

The crux of the proof is to check that the adjunction unit ηA : A→ ψ∗ψ!A
defines a weak-equivalence for all cofibrant P-algebras A. In our proof, we use
the relation ψ!A = SP(Q, A) and we apply the homotopy invariance theorems
of §§15.1-15.2 to check this property for all cofibrantly generated symmetric
monoidal model categories E . The remainder of the proof does not change.

In the next section, we give a detailed proof of theorem 16.A. The proof
of theorem 16.B is strictly parallel and we give only a few indications.

In §16.2, we survey applications of our results to categories of bimodules
over operads, or equivalently algebras in right modules over operads.

16.1 Proofs

Throughout this section, we suppose given an operad morphism φ : P → Q,
where P, Q are Σ∗-cofibrant operads (as assumed in theorem 16.A), and we
study the extension and restriction functors

φ! : PE � QE : φ∗

determined by φ : P→ Q.
By definition, the restriction functor φ∗ : QE → PE reduces to the identity

functor φ∗(B) = B if we forget operad actions. On the other hand, by def-
inition of the semi-model category of algebras over an operad, the forgetful
functor creates fibrations and weak-equivalences. Accordingly, we have:

16.1.1 Fact. The restriction functor φ∗ : QE → PE preserves fibrations and
acyclic fibrations.

And we obtain immediately:

16.1.2 Proposition (first part of theorem 16.A). The extension and restric-
tion functors

φ! : PE � QE : φ∗

define Quillen adjoint functors. ut
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In the remainder of this chapter, we check that these functors define
Quillen adjoint equivalences if φ : P → Q is a weak-equivalence of operads.
First, we have:

16.1.3 Lemma. If φ : P→ Q is a weak-equivalence of Σ∗-cofibrant operads,
then, for any cofibrant P-algebra A, the adjunction unit η(A) : A→ φ∗φ!(A)
is a weak-equivalence.

Proof. This assertion is a corollary of the next observation and of theo-
rem 15.2.A. ut

16.1.4 Lemma. Recall that Q forms an algebra over itself in the category of
right modules over itself and a P-algebra in right P-modules by restriction on
the left and on the right.

We have φ∗φ!(A) = SP(Q, A), the image of A under the functor SP(Q) :
PE → PE associated to Q, and the adjunction unit is identified with the mor-
phism

A = SP(P, A)
SP(φ,A)−−−−−→ SP(Q, A)

induced by φ.

Proof. The identification φ∗φ!(A) = SP(Q, A) is a corollary of proposi-
tions 9.3.1 and 9.3.3. It is straightforward to check that SP(φ,A) represents
the adjunction unit. ut

To achieve the proof of theorem 16.A, we use the same arguments as the
authors of [4].

Note that lemma 16.1.3 implies condition E1’ of Quillen equivalences
(see §12.1.8), because φ∗ preserves all weak-equivalences. Thus it remains
to check condition E2’ of §12.1.8.

Previously, we observe that the restriction functor φ∗ : QE → PE preserves
fibrations and acyclic fibrations, because, on one hand, the restriction functor
reduces to the identity functor if we forget operad actions, and, on the other
hand, the forgetful functors creates fibrations and weak-equivalences. In fact,
these observations show that the restriction functor φ∗ : QE → PE creates
fibrations and weak-equivalences. As a corollary:

16.1.5 Fact. The restriction functor φ∗ : QE → PE reflects weak-equivalences.

This assertion together with lemma 16.1.3 suffices to obtain:

Claim. Let φ : P → Q be a weak-equivalence of Σ∗-cofibrant operads. Let B
be any Q-algebra. Let A be any cofibrant replacement of φ∗B in the category
of P-algebras. The composite

φ!(A)→ φ!φ
∗(B)→ B

is a weak-equivalence.
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Proof. In the commutative diagram

A

η(A)

��

∼ // φ∗(B)

η(φ∗(B))

��
φ∗φ!(A) // φ∗φ!φ

∗(B)

φ∗(ε(B))

��
φ∗(B)

the left-hand side vertical morphism is a weak-equivalence by lemma 16.1.3
and the right-hand side composite is the identity by adjunction. By the two
out of three axiom, we obtain that the image of the composite

φ!(A)→ φ!φ
∗(B)→ B

under the restriction functor φ∗ forms a weak-equivalence. Therefore, by the
assertion of §16.1.5, this morphism forms a weak-equivalence itself. ut

This claim achieves the proof of:

16.1.6 Proposition (Second part of theorem 16.A). If φ : P → Q is a
weak-equivalence of Σ∗-cofibrant operads, then the extension and restriction
functors

φ! : PE � QE : φ∗

define Quillen adjoint equivalences. ut
We prove theorem 16.B about the extension and restriction of right mod-

ules
ψ! :M R �M S : ψ∗

along the same lines of arguments. To prove the analogue of lemma 16.1.3,
use the next observation, symmetric to the observation of lemma 16.1.4, and
use theorem 15.1.A in place of theorem 15.2.A.

16.1.7 Observation. Recall that S forms an algebra over itself in the cat-
egory of right modules over itself and an R-algebra in right R-modules by
restriction of structures on the left and on the right.

For a right R-module M , we have ψ∗ψ!(M) = SR(M, S), the image of S
under the functor SR(M) : RM R → M R determined by M ∈ M R, and the
adjunction unit η(M) : M → ψ∗ψ!(M) is identified with the morphism

M = SR(M, R)
SR(M,ψ)−−−−−→ SR(M, S)

induced by ψ.

Formally, the identification ψ∗ψ!(M) = SR(M, S) is a corollary of propo-
sition 9.3.2 and of the functoriality of SR(M) : ER → E with respect to the
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functor of symmetric monoidal categories ψ∗ :M S →M R. Equivalently, use
the identifications ψ∗ψ!(M) = M ◦R S (see §7.2.1) and SR(M, S) = M ◦R S
(see §5.1.5).

16.2 ¶ Applications to bimodules over operads

In this section, we apply theorem 16.A and theorem 16.B to bimodules over
operads. Recall that, in the context of a bimodule category PM R, where
P, R are operads, we have extension and restriction functors on the left φ! :
PM R � QM S : φ∗ and on the right ψ! : PM R � PM S : ψ∗. Recall further
that the category PM R of P-R-bimodules, is isomorphic to the category of
P-algebras in right R-modules. Therefore, we use theorems 16.A and 16.B to
obtain that these extension and restriction functors define Quillen adjunctions
and Quillen equivalences in the case of operad equivalences.

To obtain better results, we can restrict ourself to non-unitary operads and
to the subcategory PM0

R formed by connected P-R-bimodules, or equivalent
by P-algebras in connected right R-modules. In this context, we obtain:

Theorem 16.2.A.

(a) Let φ : P → Q be an operad morphism, where P, Q are C-cofibrant non-
unitary operads. Let R be any C-cofibrant non-unitary operad.

The extension and restriction functors

φ! : PM0
R � QM0

R : φ∗

define Quillen adjoint functors. If φ : P→ Q is a weak-equivalence, then these
functors define Quillen adjoint equivalences as well.
(b) Let P be a C-cofibrant non-unitary operad. Let ψ : R → S be an operad
morphism, where R, S are C-cofibrant non-unitary operads.

The extension and restriction functors

ψ! : PM0
R � PM0

S : ψ∗

define Quillen adjoint functors. If ψ : R→ S is a weak-equivalence, then these
functors define Quillen adjoint equivalences as well.

Proof. To obtain assertion (a), apply a generalization of theorem 16.A for
reduced categories with regular tensor powers to E0 =M0

R.
To obtain assertion (b), apply theorem 16.B to obtain a Quillen adjunction

(respectively, a Quillen equivalence) at the module level ψ! : M0
R � M0

S :
ψ∗. Then apply to this adjunction a generalization of proposition 12.3.3 for
reduced categories with regular tensor powers. ut





Chapter 17

Miscellaneous applications

Introduction

To conclude the book, we sketch applications of theorems of §15 to the ho-
motopy theory of algebras over operads.

Usual constructions in the semi model category of algebras over an op-
erad R can be realized in the category of right R-modules.

In §17.1 we prove that the functor SR(N) : RE → RE associated to a cofi-
brant replacement of the operad R in the category of R-algebras in right R-
modules yields functorial cofibrant replacements in the category of R-algebras.
The usual cofibrant replacements of the theory of operads (operadic bar con-
structions, Koszul constructions) are associated to particular cofibrant re-
placements of R.

In §17.2 we study the cotriple construction as an example of a functor
associated to a right R-module.

In §17.3 we study applications of the theorems of §15 to the homology of
algebras over operads. In §13 we recall that any category of algebras over an
operad R has a natural homology theory derived from the functor of Kähler
differentials A 7→ Ω1

R (A). Since we observe in §10.3 that Ω1
R (A) is the functor

associated to a right R-module Ω1
R , we can use theorems of §15 to obtain

significant results for the homology of R-algebras. To illustrate this principle,
we prove that the homology of R-algebras is defined by a Tor-functor (and
the cohomology by an Ext-functor) if Ω1

R and the shifted object R[1] form
projective right R-modules (when R is an operad in k-modules).

As examples, we address the case of the operad A of non-unitary associa-
tive algebras, the case of the operad L of Lie algebras, and the case of the
operad C of commutative algebras. In §10.3, we proved that Ω1

R is free (or
close to be free) as a right R-module for R = A, L. In these cases, we retrieve
that the classical Hochschild homology of associative algebras and the clas-
sical Chevalley-Eilenberg homology of Lie algebras are given by Tor-functors
(respectively, Ext-functors for the cohomology). On the other hand, one can
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check that the Harrison homology of commutative algebras (respectively, the
André-Quillen homology in positive characteristic) is not given by a Tor-
functor (respectively, an Ext-functor). This observation reflects the fact that
Ω1

C is not projective as a right C-module.
In §10 we observed that universal operads UR(A) are associated to right

modules over operads A. In §17.4, we use this representation to obtain ho-
motopy invariance results for enveloping operads in the case where R is a
cofibrant operad.

17.1 Functorial cofibrant replacements
for algebras over operads

In §12.3 we recall that the category of P-algebras forms a cofibrantly generated
semi model category if P is a Σ∗-cofibrant operad. Accordingly, for any P-
algebra A, there exists a cofibrant P-algebra QA (naturally associated to A)
together with a weak-equivalence QA

∼−→ A. Constructions of the theory of
operads (for instance, operadic bar constructions, Koszul constructions in the
dg-context) aim to return explicit cofibrant replacements for all P-algebras A,
or at least for all P-algebras A which are cofibrant in the underlying category.
These particular functorial cofibrant replacements are all functors associated
to P-algebras in right P-modules. This observation illustrates the following
general proposition:

17.1.1 Proposition. Assume P is a Σ∗-cofibrant operad so that the category
of P-algebras forms a model category.

If N forms a cofibrant replacement of P in PM P, then the functor SP(N) :
PE → PE associates to every E-cofibrant P-algebra A ∈ PE a cofibrant replace-
ment of A in the category of P-algebras PE.

Proof. By definition N is a cofibrant object in PM P together with a weak-
equivalence ε : N ∼−→ P. Observe that the operad itself P forms a cofibrant
object in the categoryM P of right P-modules (but P is not cofibrant as a P-
algebra in right P-modules). Thus, by theorem 15.1.A, and since the forgetful
functor creates weak-equivalences in the category of P-algebras, we obtain
that the morphism ε : N ∼−→ P induces a weak-equivalence of P-algebras

SP(N,A) ∼−→ SP(P, A) = A

as long as A is E-cofibrant.
The next lemma implies that SP(N,A) forms a cofibrant P-algebra. Thus

we conclude that SP(N,A) defines a cofibrant replacement of A in PE . ut

17.1.2 Lemma. Let P be a Σ∗-cofibrant operad. Let R be any C-cofibrant
operad. Let A be any R-algebra in a category E over C. If A is E-cofibrant,
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then the functor SR(−, A) : PM R → PE preserves cofibrations (respectively,
acyclic cofibrations) between cofibrant objects.

Proof. Let I (respectively, J ) denote the class of generating cofibrations
(respectively, acyclic cofibrations) in E . Let K (respectively, L) denote the
class of generating cofibrations (respectively, acyclic cofibrations) inM R. To
prove the lemma, we check that the functor SR(−, A) maps retracts of relative
P(K)-cell (respectively, P(L)-cell) complexes to retracts of relative P(I)-cell
(respectively, P(J )-cell) complexes. Then the conclusion follows from the def-
inition of (acyclic) cofibrations in categories of P-algebras.

By lemma 15.1.2, the morphism SR(i, A) : SR(K,A) → SR(L,A) induced
by a cofibration (respectively, an acyclic cofibration) of right R-modules
i : K � L forms a cofibration in E provided that A is E-cofibrant. As a
consequence, the morphism SR(i, A) : SR(K,A)→ SR(L,A) forms a retract of
a relative I-cell (respectively, J -cell) complex in E . By proposition 9.2.1, the
morphism SR(P(i), A) : SR(P(K), A)→ SR(P(L), A) induced by the morphism
of free P-algebras in right R-modules P(i) : P(K)→ P(L) is identified with the
morphism of free P-algebras

P(SR(i, A)) : P(SR(K,A))→ P(SR(L,A)).

Since the free P-algebra P(−) preserves colimits, we obtain that R(SR(i, A))
forms a retract of a relative P(I)-cell (respectively, P(J )-cell) complex if
SR(i, A) forms itself a retract of a relative I-cell (respectively, J -cell) complex
in E .

Since the functor SR : RM R → R F R preserves colimits too, we deduce eas-
ily from these observations that SR(−, A) maps P(K)-cell (respectively, P(L)-
cell) complexes to retracts of P(I)-cell (respectively, P(J )-cell) complexes and
the conclusion follows immediately. ut

17.1.3 The operadic bar and Koszul constructions in the dg-context.
In [14] we use a two-sided operadic bar construction B(M, R, N) defined for
an operad R in dg-modules C = dg k Mod with coefficients in a right R-module
M and in a left R-module N . For M = N = R, the object B(R, R, R) forms
a cofibrant replacement of R in RM R as long as R is a Σ∗-cofibrant operad.
For a right R-module M , we have B(M, R, R) = M ◦R B(R, R, R), and for an
R-algebra A, we have B(M, R, A) = SR(B(M, R, R), A). The object B(R, R, A)
defines a cofibrant replacement of A in the category of R-algebras provided
that A is cofibrant in the underlying category.

For certain operads, the Koszul operads, we have a small subcomplex
K(M, R, N) ⊂ B(M, R, N), the Koszul construction, so that the embedding
i : K(M, R, N) ↪→ B(M, R, N) defines a weak-equivalence when M, R, N are
connected and cofibrant in dg-modules (see [14, §5]). In particular, for M =
N = R, we obtain weak-equivalences K(R, R, R) ∼−→ B(R, R, R) ∼−→ R in RM R.
For this construction, we also have identitiesK(M, R, R) = M◦RK(R, R, R) and
K(M, R, A) = SR(K(M, R, R), A). But in positive characteristic the Koszul
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construction is applied to operads R which are usually not Σ∗-cofibrant,
like the commutative or the Lie operad. Nevertheless one can observe that
K(M, R, R) (respectively, K(R, R, N)) forms a K-cell complex (respectively, an
L-cell complex) in the sense of the definition of §15.3 ifM, R, N are connected.
Therefore, by theorems 15.3.A-15.3.B, we have at least a weak-equivalence
i : K(M, R, N) ∼−→ B(M, R, N) for connected objects M, R, N . In [14] we prove
this assertion by a spectral sequence argument.

17.2 The operadic cotriple construction

The cotriple construction B∆(P, P, A), whose definition is recalled in §13.3.1,
forms a simplicial resolution of A in the sense that the normalized complex
of this simplicial P-algebra comes equipped with a weak-equivalence

ε : N∗(B∆(P, P, A)) ∼−→ A.

In §13.3 we recall the definition of B∆(P, P, A) and of the associated nor-
malized complex N∗(B∆(P, P, A)) in the basic case where A is a P-algebra in
dg-modules, but the construction makes sense for a P-algebra in Σ∗-objects,
respectively for a P-algebra in right modules over an operad R. In particular,
we can apply the construction to the P-algebra in right P-modules formed
by the operad itself to obtain a simplicial resolution of P in the category of
P-algebras in right P-modules. The first purpose of this section is to observe
that B∆(P, P, A) is identified with the functor associated to this universal
simplicial resolution:

B∆(P, P, A) = SP(B∆(P, P, P), A),

and similarly as regards the normalized complex N∗(B∆(P, P, A)).
In addition, we review the definition of a cotriple construction with coeffi-

cients in a right P-module on a left hand side. The cotriple construction with
coefficients satisfies formal identities:

B∆(M, P, A) = SP(B∆(M, P, P), A) = SP(M,B∆(P, P, A))
and N∗(B∆(M, P, A)) = SP(N∗(B∆(M, P, P)), A),

but SP(M,N∗(B∆(P, P, A))) differs fromN∗(B∆(M, P, A)) = N∗(SP(M,B∆(P, P, A)))
because the functor SP(M,−) does not preserves colimits. Nevertheless, we
observe that N∗(B∆(M, P, A)) determines the evaluation of SP(M,−) on a
cofibrant replacement of A, under the assumption that the operad P and
the right P-module M are Σ∗-cofibrant objects. For this purpose, we prove
that N∗(B∆(M, P, P)) represents a cofibrant replacement of M in the cate-
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gory of right P-modules and we use the theorems of §15 about the homotopy
invariance of functors associated to modules over operads.

17.2.1 Cotriple constructions with coefficients. The simplicial cotriple
construction B∆(P, P, A) of §13.3.1 is defined for an operad P in any base
category C and for a P-algebra A in any category E over C. To form a simplicial
cotriple construction with coefficients in a right P-module M , we replace
simply the first factor S(P) in the definition of §13.3.1 by the functor S(M)
associated to M

B∆(M, P, A)n = S(M) ◦ S(P)
1

◦ · · · ◦ S(P)
n

(A)

and we use the morphism

S(M) ◦ S(P) = S(M ◦ P) ρ−→ S(M)

induced by the right P-action on M to define the face d0 : B∆(M, P, A)n →
B∆(M, P, A)n−1. The construction returns a simplicial object in E , the un-
derlying category of the P-algebra A.

The construction can be applied to a P-algebra N in the category of Σ∗-
objects E =M, respectively in the category of right modules over an operad
E =MR. In this context, we have an identity

B∆(M, P, N)n = M ◦ P◦n ◦N

since the bifunctor (M,N) 7→ S(M,N) is identified with the composition
product of Σ∗-objects. In the case of a P-algebra in right R-modules, the
right R-action on B∆(M, P, N)n is identified with the obvious morphism

M ◦ P◦n ◦N ◦ R M◦P◦n ◦ρ−−−−−−→M ◦ P◦n ◦N,

where ρ : N ◦ R→ N defines the right R-action on N .
In the case P = R = N , the right R-action ρ : M ◦ R → M determines

a morphism of right R-modules ε : B∆(M, R, R)0 → M so that εd0 = εd1.
Accordingly, the simplicial right R-module B∆(M, R, R) comes equipped with
a natural augmentation

ε : B∆(M, R, R)→M,

where M is identified with a constant simplicial object.
If we also have M = R, then the construction returns a simplicial R-

algebra in right R-modules B∆(R, R, R) together with an augmentation ε :
B∆(R, R, R) → R in the category of R-algebras in right R-modules. In this
case, we retrieve the construction of §13.3.1 applied to the R-algebra in right
R-modules formed by the operad itself A = R.
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In the remainder of this section, we assume that the base category is
the category of dg-modules C = dg k Mod. In this setting, we can use nor-
malized complexes to produce a resolution of M from the simplicial object
B∆(M, R, R). First of all, we check that the normalized complex functor has
a natural generalization in the context of Σ∗-objects and right modules over
an operad.

17.2.2 Normalized complexes in Σ∗-objects and right modules over
operads. In §13.3.2, we define the normalized complex of a simplicial dg-
module C as the total complex of a bicomplex N∗(C) such that

Nm(C) = Cm/s0Cm−1 + · · ·+ sm−1Cm−1.

For a simplicial Σ∗-object in dg-modules M , the collection N∗(M) =
{N∗(M(n))}n∈N defines clearly a Σ∗-object in dg-modules associated to M ,
the normalized complex of the Σ∗-object M .

The functor N∗ : M∆ → M does not preserves the composition struc-
ture (and the symmetric monoidal structure) of the category Σ∗-objects,
just like the normalized complex of simplicial dg-modules does not preserves
symmetric monoidal structures. But the Eilenberg-Mac Lane equivalence
∇ : N∗(C)⊗N∗(D) ∼−→ N∗(C ⊗D) gives rise to a natural transformation

∇ : N∗(K) ◦N∗(L)→ N∗(K ◦ L),

for any K,L ∈M∆. In the case L ∈M, this natural transformation gives an
isomorphism ∇ : N∗(K) ◦ L '−→ N∗(K ◦ L). If we assume symmetrically K ∈
M, then we have still a natural transformation ∇ : K ◦N∗(L)→ N∗(K ◦ L)
only, because the composite K ◦ L involve tensor products of copies of L.

If M is a simplicial right R-module, where R is any operad in dg-modules,
then the object N∗(M) inherits a natural right R-action

N∗(M) ◦ R '−→ N∗(M ◦ R)
N∗(ρ)−−−−→ N∗(M),

so that N∗(M) forms a right R-module. If M is a simplicial P-algebra in Σ∗-
objects, where P is any operad in dg-modules, then the object N∗(M) inherits
a natural left P-action

P ◦N∗(M) ∇−→ N∗(P ◦M)
N∗(λ)−−−−→ N∗(M),

so that N∗(M) forms a P-algebra in Σ∗-objects. If M is a simplicial P-algebra
in right R-modules, then the normalized complex N∗(M) returns a P-algebra
in right R-modules.

In the particular example of the cotriple construction, we obtain that
N∗(B∆(M, R, R)) forms a right R-module and N∗(B∆(R, R, R)) forms an R-
algebra in right R-modules.
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The next assertion is symmetric to the result of lemma 13.3.3 about the
cotriple resolution of a P-algebra:

17.2.3 Lemma. The augmentation B∆(M, R, R) → M induces a weak-
equivalence

ε : N∗(B∆(M, R, R)) ∼−→M

in M R.

Proof. The arguments are symmetrical to the case of the cotriple resolution
B∆(P, P, A) of an algebra A over an operad P.

The augmentation ε : B∆(M, R, R) → M has a section η : M →
B∆(M, R, R) in the underlying category of Σ∗-objects. This section is given
by the morphism

M = M ◦ I M◦η−−−→M ◦ R = B∆(M, R, R)0

induced by the operad unit η : I → R. Since εη = id, we haveN∗(ε)·N∗(η) = id
at the realization level.

The object B∆(M, R, R) comes also equipped with an extra degeneracy

sn+1 : B∆(M, R, R)n−1 → B∆(M, R, R)n

given by the insertion of an operad unit

M ◦ R◦n−1 ◦ R M◦R◦n ◦η−−−−−−→M ◦ R◦n ◦ R .

This extra degeneracy determines a morphisms

N∗(B∆(M, R, R))⊗N∗(∆1) h−→ N∗(B∆(M, R, R))

which gives a chain homotopy N∗(η) · N∗(ε) ' id. Hence we conclude that
N∗(ε) forms a weak-equivalence and this achieves the proof of the lemma. ut

The normalized complex functor does not preserves tensor products and
free algebras over operads. As a byproduct, the cotriple resolution of a P-
algebra does not return a cofibrant P-algebra in dg-modules thoughB∆(P, P, A)
forms a cofibrant object in the category of simplicial P-algebras under mild
assumptions on A. In contrast, for right modules over operads, we obtain:

17.2.4 Lemma. Suppose R is a C-cofibrant operad. If the right R-module M
is Σ∗-cofibrant, then N∗(B∆(M, R, R)) is cofibrant as a right R-module.

Proof. The normalized complex of a simplicial object C has a natural filtra-
tion

0 = N∗≤−1(C) ⊂ · · · ⊂ N∗≤n(C) ⊂ · · · ⊂ colim
n

N∗≤n(C) = N∗(C),
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where N∗≤n(C) consists of components Nm(C)∗ so that m ≤ n. Furthermore,
the embedding jn : N∗≤n−1(C) ↪→ N∗≤n(C) fits a pushout

Bn−1 ⊗ Cn
f //

in⊗Cn

��

N∗≤n−1(C)

��
En ⊗ Cn g

// N∗≤n−1(C)

where in : Bn−1 → En is the generating cofibration in degree n of the
category of dg-modules. Recall that En is spanned by a homogeneous element
e = en in degree n and a homogeneous element b = bn−1 in degree n − 1,
together with the differential such that δ(e) = b. The dg-module Bn−1 is the
submodule of En spanned by b. The morphism f : Bn−1⊗Cn → N∗≤n−1(C)
is yielded by the homogeneous map

Cn
∂−→ Cn−1 → Nn−1(C)

where ∂ =
∑
i±di. The morphism g : En ⊗ Cn → N∗≤n−1(C) is given by f

on the summand k b⊗Cn and by the canonical projection of π : Cn → Nn(C)
on the summand k e⊗ Cn.

In the case C = B∆(M, R, R), we have Cn = M ◦ R◦n ◦ R and in ⊗ Cn is
identified with the morphism of free right R-modules:

(in ⊗M ◦ R◦n) ◦ R : (Bn−1 ⊗M ◦ R◦n) ◦ R→ (En ⊗M ◦ R◦n) ◦ R .

The assumptions imply that M ◦ Rn forms a Σ∗-cofibrant object, from which
we deduce that (in⊗M ◦R◦n)◦R defines a cofibration in the category of right
R-modules. The lemma follows readily. ut

Lemmas 17.2.3-17.2.4 imply:

17.2.5 Theorem. Let R be a C-cofibrant operad. Let M be a right R-module.
If M is Σ∗-cofibrant, then N∗(B∆(M, R, R)) defines a natural cofibrant re-
placement of M in the category of right R-modules. ut

The next observation, announced in the introduction of this section, is an
easy consequence of the definition of the cotriple construction:

17.2.6 Observation. We have:

B∆(M, R, A) = SR(B∆(M, R, R), A) = SR(M,B∆(R, R, A))
and N∗(B∆(M, R, A)) = SR(N∗(B∆(M, R, R)), A).

The relation B∆(M, R, A) = SR(B∆(M, R, R), A) of the observation is a
consequence of identities

SR(B∆(M, R, R)n, A) = SR(M ◦ R◦n ◦ R, A) = S(M ◦ R◦n, A) = B∆(M, R, A)n
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deduced from assertion (a) of theorem 7.1.1. From this relation, we deduce
an identity of normalized complexes

SR(N∗(B∆(M, R, R)), A) = N∗(B(M, R, A)),

because the functor SR(−, A) preserves all colimits. The relationB∆(M, R, A) =
SR(M,B∆(R, R, A)) arise from symmetric identities

SR(M,B∆(R, R, A)n) = SR(M, R(S(R◦n, A))) = S(M,S(R◦n, A)) = B∆(M, R, A)n,

deduced from assertion (b) of theorem 7.1.1. Since the functor SR(M,−) does
not preserves all colimits, we can not deduce an identity of normalized com-
plexes from these relations. Nevertheless:

17.2.7 Theorem. Let R be any operad in dg-modules. Let M be any right
R-module. Let A be any R-algebra in a category E over dg-modules.

Suppose that the operad R is Σ∗-cofibrant so that the category of R-algebras
in E forms a semi model category. If M is Σ∗-cofibrant and A is E-cofibrant,
then we have weak-equivalences

N∗(B∆(M, R, A)) ∼←− · ∼−→ SR(M,QA),

where QA is any cofibrant replacement of A in the category of R-algebras.

Proof. By theorem 15.2.A, the augmentation ε : N∗(B∆(M, R, R)) ∼−→ M
induces a weak-equivalence

SR(N∗(B∆(M, R, R)), QA) ∼−→ SR(M,QA),

since the R-algebra QA is a cofibrant by assumption, the cofibrant right R-
module N∗(B∆(M, R, R)) is Σ∗-cofibrant by proposition 14.1.1, and the right
R-module M is Σ∗-cofibrant by assumption. By theorem 15.2.A, the augmen-
tation ε : QA

∼−→ A induces a weak-equivalence

SR(N∗(B∆(M, R, R)), QA) ∼−→ SR(N∗(B∆(M, R, R)), A),

since the right R-module N∗(B∆(M, R, R)) is cofibrant, the cofibrant R-algebra
QA is cofibrant in the underlying category E , and the R-algebra A is also
E-cofibrant by assumption. The conclusion follows since we have an iden-
tity N∗(B∆(M, R, A)) = SR(N∗(B∆(M, R, R)), A) according to the observation
above the theorem. ut
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17.3 The (co)homology of algebras over operads
revisited

Throughout this section, we assume that P is any Σ∗-cofibrant operad in
dg-modules. The purpose of this section is to revisit the definition of the
(co)homology of algebras over operads, and to prove the statements which
have been put off in §13.1. Throughout this section, we use the short no-
tation UP(A) = UP(A)(1) to refer to the enveloping algebra of a P-algebra
A.

In §13.1, we define the cohomology of a P-algebra A with coefficients in a
representation E by a formula of the form

H∗
P (A,E) = H∗(DerP(QA, E)),

where QA refers to a cofibrant replacement of A in the category of P-algebras.
Recall that representations of A are equivalent to left modules the enveloping
algebra UP(A). Dually to the cohomology, we define the homology of A with
coefficients in a right UP(A)-module E by the formula

HP
∗(A,E) = H∗(E ⊗UP(QA) Ω

1(QA)),

where Ω1
P (−) refers to the functor of Kähler differentials on the category of

P-algebras.
To distinguish the role of coefficients, we have introduced the object

T 1
P (QA) = UP(A)⊗UP(QA) Ω

1(QA)),

which determines the homology of A with coefficients in the enveloping alge-
bra E = UP(A). We can use the formula

H∗
P (A,E) = H∗(HomUP(A)(T 1(QA), E),

respectively HP
∗(A,E) = H∗(E ⊗UP(A) T

1(QA)),

to determine the cohomology H∗
P (A,E), respectively the homology HP

∗(A,E).
To give a sense to these definitions, we have to prove that the cohomol-

ogy H∗
P (A,E), respectively the homology HP

∗(A,E), does not depend on the
choice of the cofibrant replacement QA. In §13.1, we prove that this homotopy
invariance assertion reduces to the next statement:

17.3.1 Lemma. The morphism UP(f) : UP(QA) → UP(QB), induced by a
weak-equivalence of P-algebras f : QA

∼−→ QB forms a weak-equivalence if
QA and QB are cofibrant, and similarly as regards the morphism Ω1

P (f) :
Ω1

P (QA)→ Ω1
P (QB),

In §§10.1-10.2, we observed that UP(−) is the instance of a functor as-
sociated to a right module over the operad P, namely the shifted object
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P[1]. Observe that P[1] is Σ∗-cofibrant if the operad P is so. Accordingly,
theorem 15.2.A implies immediately that the morphism UP(f) : UP(QA) →
UP(QB) induced by a weak-equivalence of P-algebras f : QA

∼−→ QB forms a
weak-equivalence if QA and QB are cofibrant.

In §10.3, we observe that Ω1
P (−) is also a functor associated to a right

module over the operad P, the module of Kähler differentials Ω1
P . Moreover,

we have Ω1
P (n) = Σn ⊗Σn−1 P[1](n − 1) if we forget the right P-action. Con-

sequently, the right P-module Ω1
P is Σ∗-cofibrant if the operad P is so and we

conclude again that the morphism Ω1
P (f) : Ω1

P (QA) → Ω1
P (QB) induced by

a weak-equivalence of P-algebras f : QA
∼−→ QB forms a weak-equivalence if

QA and QB are cofibrant.
These observations complete the arguments of §13.1 to prove that the

cohomology H∗
P (A,E), respectively the homology HP

∗(A,E), does not depend
on the choice of the cofibrant replacement QA. ut

In the next paragraphs, we exploit the representations

UP(−) = SP(P[1],−) and Ω1
P (−) = SP(Ω1

P ,−)

further to prove that the cohomology of P-algebras is defined by an Ext-
functor (and the homology by a Tor-functor) in good cases. Theorem 15.1
implies:

17.3.2 Lemma. If P[1], respectively Ω1
P , forms a cofibrant object in the cat-

egory of right P-modules, then the morphism UP(f) : UP(QA) → UP(QB),
respectively Ω1

P (f) : Ω1
P (QA) → Ω1

P (QB), induced by a weak-equivalence of
P-algebras f : QA

∼−→ QB forms a weak-equivalence as long as the P-algebras
QA and QB are E-cofibrant. ut

Recall that a P-algebra is E-cofibrant if the initial morphism η : P(0)→ QA
defines a cofibration in the underlying category.

In the situation of lemma 17.3.2 the arguments of lemma 13.1.12 give the
following result:

17.3.3 Lemma. Let A be any E-cofibrant P-algebra. If P[1] and Ω1
P form

cofibrant object in the category of right P-modules, then the object

T 1(QA) = UP(A)⊗UP(QA) Ω
1(QA)

associated to a cofibrant replacement of A in the category of P-algebras forms
a cofibrant replacement of Ω1(A) in the category of left UP(A)-modules.

Proof. By lemma 17.3.2, we have a weak-equivalence of dg-algebras UP(ε) :
UP(QA) ∼−→ UP(A), and a weak-equivalence of left UP(QA)-modules Ω1

P (f) :
Ω1

P (QA) ∼−→ Ω1
P (A). By lemma 13.1.9, the object Ω1

P (QA) forms a cofibrant
UP(QA)-modules, whenever QA is a cofibrant algebra. By Quillen equivalence
(as in the proof of lemma 13.1.12), we deduce from these assertions that the
morphism
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Ω1
P (f)] : UP(A)⊗UP(QA) Ω

1
P (QA) ∼−→ Ω1

P (A),

adjoint to Ω1
P (f), defines a weak-equivalence of left UP(A)-modules. Moreover,

the object T 1(QA) = UP(A)⊗UP(QA)Ω
1(QA) is also cofibrant as a left UP(A)-

module. ut

This lemma gives immediately:

17.3.4 Theorem. Let P be any Σ∗-cofibrant operad in dg-modules. If Ω1
P

and P[1] form cofibrant right P-modules, then we have

H∗
P (A,E) = Ext∗UP(A)(Ω

1
P (A), E),

respectively HP
∗(A,E) = TorUP(A)

∗ (E,Ω1
P (A)),

for every E-cofibrant P-algebra A ∈ PE and every E ∈ UP(A) Mod, respectively
E ∈ ModUP(A). ut

If the operad P has a trivial differential, then the objects Ω1
P and P[1]

have a trivial differential as well. In this context, the right P-modules Ω1
P and

P[1] are cofibrant objects if and only if they are projective (retracts of free
objects) in the category of right P-modules. By immediate applications of the
five lemma, we can extend theorem §17.3.4 to operads P such that the module
of Kähler differentials Ω1

P is equipped with a filtration whose subquotients
consist of projective right P-modules.

17.3.5 Classical examples. In §13.1.5, we recall that the (co)homology
associated to the usual operads P = A, L, C agrees with:

– the Hochschild (co)homology in the case of the associative operad P = A,
– the Chevalley-Eilenberg (co)homology in the case of Lie operad P = L,
– the Harrison (co)homology in the case of the commutative operad P = C.

Classical theorems assert that Hochschild and Chevalley-Eilenberg cohomol-
ogy (respectively, homology) are given by Ext-functors (respectively, Tor-
functors). According to theorem 17.3.4, these assertions are implied by the
deeper property, checked in §10.3, that the module Ω1

P forms a free right
P-module for P = A, L. In the case P = C, the non-vanishing of HC

∗(A,A)
for non-smooth algebras (recall that UC(A) = A for commutative operads)
implies that Ω1

C does not form a projective right C-module and gives an ob-
struction for this property.

17.3.6 Remark. In positive characteristic, one has to use simplicial objects
to address the case of commutative algebras and Lie algebras because the
commutative and Lie operads are not Σ∗-cofibrant. In this context, the op-
eradic (co)homology agrees with the Chevalley-Eilenberg (co)homology for
the Lie operad R = L, with the André-Quillen (co)homology for the commu-
tative operad R = C,

For the Lie operad L, both objects Ω1
L and L[1] are not projective as right L-

modules, but have only a filtration by subquotients of the form M ◦ L, where
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M ∈ M. This property is sufficient to obtain that the functors UL(G) =
SL(L[1], G) and Ω1

L (G) = SL(Ω1
L , G) preserve weak-equivalences between all Lie

algebras which are cofibrant in the underlying category.

In the remainder of this section, we use theorems of §17.2 to compare
the cohomology HP

∗(A,E), respectively homology H∗
P (A,E), with the coho-

mology, respectively homology, of cotriple constructions. For short, we set
B∆(QA) = B∆(P, P, QA), for any P-algebra QA.

In the case M = P[1], respectively M = Ω1
P , theorem 17.2.7 returns:

17.3.7 Lemma. Suppose A is an E-cofibrant P-algebra. Let QA be any cofi-
brant replacement of A in the category of P-algebras. The natural morphisms

N∗(UP(B∆(A)))← N∗(UP(B∆(QA)))→ UP(QA)

and N∗(Ω1
P (B∆(A)))← N∗(Ω1

P (B∆(QA)))→ Ω1
P (QA)

are weak-equivalences.

The Eilenberg-Mac Lane morphism implies that N∗(UP(B∆(QA)) forms a
dg-algebra, for any P-algebra QA, and N∗(Ω1

P (B∆(QA)) forms a module over
this dg-algebra N∗(UP(B∆(QA)). The natural morphisms

N∗(UP(B∆(A))← N∗(UP(B∆(QA))→ UP(QA)

are morphisms of dg-algebras and

N∗(Ω1
P (B∆(A))← N∗(Ω1

P (B∆(QA))→ Ω1
P (QA)

are morphism of N∗(UP(B∆(QA))-modules. Our idea is to adapt the argu-
ments of §§13.1.7-13.1.13 to deduce from the equivalences of lemma 17.3.7
that HP

∗(A,E), respectively H∗
P (A,E), can be determined by the cohomology,

respectively homology, of a cotriple construction.
Lemma 13.1.9 asserts that Ω1

P (QA) forms a cofibrant UP(QA)-module. Sim-
ilarly:

17.3.8 Lemma. The simplicial object Ω1
P (B∆(A)), respectively Ω1

P (B∆(QA)),
forms dimensionwise a free module over the simplicial dg-algebra UP(B∆(A)),
respectively UP(B∆(QA)). ut

To adapt the arguments of §§13.1.7-13.1.13 in the simplicial context, we
use the bar construction of algebras B(E,R, F ), defined for a dg-algebra
R, with coefficients in a right R-module E and a left R-module F . The
definition of B(E,R, F ) makes sense for simplicial objects. In any situa-
tion, we have a right-half-plane homological spectral sequence (E0, d0) ⇒
H∗(B(E,R, F )) such that d0 is determined by internal differentials. If we
can assume the existence of a Künneth isomorphism, then we have E1 =
B(H∗(E),H∗(R),H∗(F )), where we set H∗(−) = H∗(N∗(−)). In any case, a
weak-equivalence on E,R, F yields a weak-equivalence at the E1-level when R
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and F (or R and E) are cofibrant in the underlying category of simplicial dg-
modules. Dually, we have a left-half-plane cohomological spectral sequence
(E0, d0) ⇒ H∗(HomRMod(B(R,R, F ), T )) to compute the cohomology of
Hom-objects.

By routine applications of spectral sequences, we obtain:

17.3.9 Lemma. Let φ : R → S be a morphism of simplicial dg-algebras so
that N∗(φ) : N∗(R) → N∗(S) forms a weak-equivalence of dg-algebras. Let
f : E → F be a morphism of simplicial dg-modules, so that N∗(f) : N∗(E)→
N∗(F ) forms a weak-equivalence. Suppose E is a left R-module, the object F
is a left S-module and the morphism f is a morphism of R-modules.

Then:
(a) For any right S-module T , the morphism

N∗(B(T,R,E))
N∗(φ,φ,f)∗−−−−−−−→ N∗(B(T, S, F ))

forms a weak-equivalence.
(b) For any left S-module T , the morphism

N∗(HomSMod(B(S, S, F ), T ))
N∗(φ,φ,f)∗−−−−−−−→ N∗(HomRMod(B(R,R,E), T ))

forms a weak-equivalence. ut

Moreover:

17.3.10 Lemma. Let R be a simplicial dg-algebra. Let E be a right R-
module. Suppose E is dimensionwise cofibrant over R. Then:
(a) For any right R-module T , the natural morphism

N∗(B(T,R,E))→ N∗(T ⊗R E)

forms a weak-equivalence.
(b) For any left R-module T , the natural morphism

N∗(HomRMod(E, T ))→ N∗(HomRMod(B(R,R,E), T ))

forms a weak-equivalence.

Proof. Use that B(T,R,E) → T ⊗R E defines a weak-equivalence di-
mensionwise, and similarly as regards the morphism HomRMod(E, T ) →
HomRMod(B(R,R,E), T ). ut

These general lemmas imply immediately:

17.3.11 Theorem. We have
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H∗
P (A,E) = H∗N∗(HomUP(A)(T 1

P (B∆(P, P, A)), E)
)

and HP
∗(A,E) = H∗N∗

(
E ⊗UP(A) T

1
P (B∆(P, P, A))

)
,

where on the right hand side we use a dimensionwise evaluation of functors
to form a cosimplicial (respectively, simplicial) object in dg-modules and we
take the cohomology (respectively, homology) of the associated conormalized
(respectively, normalized) chain complex. ut

Thus we obtain the result announced by theorem 13.3.4.

17.4 Homotopy invariance of enveloping operads
and enveloping algebras

In this section we study applications of the homotopy invariance results
of §§15.1-15.2 to enveloping operads.

For this purpose, we use that the enveloping operad UR(A) of an R-
algebra A is identified with the functor associated to the shifted object R[ · ].
By §10.1.5, an operad morphism ψ : R → S gives rise to a morphism of
operads in right S-modules ψ[ : ψ! R[ · ] → S[ · ], which, at the functor level,
represents a natural transformation ψ[ : UR(ψ∗B) → US(B) on enveloping
operads.

The shifted Σ∗-objects M [r] associated to any cofibrant Σ∗-object M are
clearly cofibrant. Hence, theorem 15.1.A, implies immediately:

Theorem 17.4.A.

(a) Let ψ : R ∼−→ S be a weak-equivalence between Σ∗-cofibrant operads. The
morphism ψ[ : UR(ψ∗B)→ US(B) induced by ψ defines a weak-equivalence if
B is a cofibrant S-algebra.
(b) Suppose R is a Σ∗-cofibrant operad. The morphism UR(f) : UR(A) →
UR(B) induced by a weak-equivalence of R-algebras f : A ∼−→ B is a weak-
equivalence if A and B are cofibrant R-algebras. ut

See also [5] for another proof of this proposition.

The main purpose of this section is to prove that better results hold if we
deal with cofibrant operads:

Theorem 17.4.B.

(a) If ψ : R → S is a weak-equivalence between cofibrant operads, then
ψ[ : UR(ψ∗B) → US(B) defines a weak-equivalence for every S-algebra B
which is E-cofibrant.
(b) Suppose R is a cofibrant operad. The morphism UR(f) : UR(A)→ UR(B)
induced by a weak-equivalence of R-algebras f : A ∼−→ B defines a weak-
equivalence as long as A and B are E-cofibrant.
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By theorem 15.1.A, this result is a corollary of the following theorem:

Theorem 17.4.C.

(a) If R is a cofibrant operad, then R[ · ] forms a cofibrant right R-module.
(b) If ψ : R → S is a weak-equivalence between cofibrant operads, then the
morphism ψ[ : ψ! R[ · ] → S[ · ] defines a weak-equivalence between cofibrant
right S-modules.

The proof of proposition 17.4.C is deferred to a series of lemma. The result
holds in any cofibrantly generated symmetric monoidal model category C, but
we assume for simplicity that C is the category of dg-modules. We determine
the structure of the shifted object R[ · ] associated to a free operad R = F(M)
and we use that cofibrant cell operads are represented by quasi-free objects
to deduce our result.

By definition, the shifted object M [ · ] of a Σ∗-object M forms a Σ∗-object
in Σ∗-objects, and hence comes equipped with an internal grading M [ · ] =
M [ · ](−). To distinguish the role of gradings, we call external (respectively,
internal) grading the first (respectively, second) grading of any Σ∗-object in
Σ∗-objects T ( · ,−) = {T (m,n)}m,n∈N and we use always dots · (respectively,
hyphens −) to refer to external (respectively, internal) gradings. Recall that
the shifted operad R[ · ] forms an operad in right R-modules. The external
grading gives the operadic grading of R[ · ](−). The internal grading gives the
right R-module grading.

By definition, we have R[m](n) = R(m + n). To have an intuitive repre-
sentation of the shifted operad R[ · ], we identified the elements of R[m](n) =
R(m+ n) with operations p ∈ R(m+ n) in two distinguished sets of variables
p = p(x1, . . . , xm, y1, . . . , yn), referred to as the external and internal vari-
ables (or inputs) of p. The operad structure is given by operadic composites
on external variables xi, i = 1, . . . ,m. The right R-module structure is given
by operadic composites on internal variables yj , j = 1, . . . , n.

The next lemma can easily be deduced from this intuitive representation:

17.4.1 Lemma. For a free operad R = F(M), we have the identity of right
F(M)(−)-modules

F(M)[ · ](−) = F(M)(−)⊕ F(T ( · ,−)) ◦ F(M)(−),

where F(T ( · ,−)) is a free operad in Σ∗-objects generated by the Σ∗-object in
Σ∗-objects T ( · ,−) such that

T (m,n) =

{
0, if m = 0,
M [m](n) = M(m+ n), otherwise.

The composition product ◦ on the right-hand side is applied to the internal
grading −.
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For a quasi-free operad R = (F(M), ∂), the shifted object R[ · ] forms a
quasi-free right R(−)-module such that

R[ · ](−) = R(−)⊕ (F(T ( · ,−)) ◦ R(−), ∂). ut

The twisting cochain ∂ : F(T ( · ,−))→ F(T ( · ,−))◦F(M)(−) is determined
as follows. Let p ∈ F(T )(m,n). Forget external and internal labeling of vari-
ables to identify p with an element of F(M) and take the image of p under
the twisting cochain of R = (F(M), ∂). The inputs of ∂p ∈ F(M)(m+ n) are
naturally in bijection with inputs of p ∈ F(T )(m,n), and hence correspond
either to external or internal variables. Thus we can distinguish external and
internal variables in inputs of ∂p.

The operation ∂p ∈ F(M)(m + n) is identified with a formal composite
of elements ξv ∈ M , whose inputs are either connected to inputs of ∂p, or
to other factors ξw ∈ M . The inputs of ξv ∈ M which are connected to
internal variables of ∂p are identified with internal variables attached to the
factor ξv. The inputs of ξv ∈ M which are connected to external variables
of ∂p and to other factors ξw ∈ M are identified with external variables. In
this way, we identify ∂p with a composite of elements ξv ∈ M [rv](sv). The
factors ξv ∈M [rv](sv) such that rv = 0 can be moved outside the composite
so that we can identify ∂p with an element of F(T ( · ,−)) ◦ F(M)(−).

The next lemma is a straightforward consequence of this explicit descrip-
tion of the twisting cochain:

17.4.2 Lemma. If R is a cofibrant cell operad, then the shifted objects R[m],
m ∈ N, forms a cofibrant cell right R(−)-module.

Proof. Recall that a cofibrant cell operad is equivalent to a quasi-free operad
R = (F(L), ∂) where L is a freeΣ∗-object in graded k-modules L =

⊕
α k edα⊗

Frα together with a basis filtration Lλ =
⊕

α<λ k edα⊗Frα such that ∂(Lλ) ⊂
F(Lλ).

From our description of R[m] = (F(L)[m], ∂), we obtain readily that R[m]
has a filtration by subobjects

Rλ[m](−) = R(−)⊕Kλ ◦ R(−), ∂)

so that ∂(Kλ) ⊂ Kλ−1 ⊂ Kλ ◦ R(−): take the Σ∗-object

Tλ(m,n) =

{
0, if m = 0,
Lλ(m+ n), otherwise,

and set Kλ(−) = F(Tλ)(m,−). Check that Kλ form free Σ∗-objects in graded
k-modules to conclude. ut

Since the cofibrant objects in a cofibrantly generated (semi-)model cate-
gory are retracts of cofibrant cell complexes, we conclude:



260 17 Miscellaneous applications

17.4.3 Lemma. If R is a cofibrant operad, then the shifted objects R[m],
m ∈ N, form cofibrant right R(−)-modules. ut

This lemma achieves the proof of assertion (a) of theorem 17.4.C. To prove
the other assertion of theorem 17.4.C, we observe further:

17.4.4 Lemma. If ψ : R → S is a weak-equivalence and R is a cofibrant
operad, then the morphism ψ[ : ψ! R[ · ] → S[ · ] forms a weak-equivalence as
well. Moreover the object ψ! R[ · ] is cofibrant as a right S-module.

Proof. By theorem 16.B, the extension and restriction functors ψ! : MR �
MS : ψ∗ define Quillen adjoint equivalences if ψ : R→ S is a weak-equivalence
of cofibrant (and hence C-cofibrant) operads.

The morphism ψ : R → S defines obviously a weak-equivalence of right
S-modules ψ] : R[m] → ψ∗ S[m], for every m ∈ N, and the object R[m] is
cofibrant as a right R-module by lemma 17.4.3. By Quillen equivalence, we
conclude that the morphism ψ[ : ψ! R[ · ]→ S[ · ] adjoint to ψ] is also a weak-
equivalence and ψ! R[ · ] is cofibrant as a right S-module. ut

This lemma achieves the proof of theorem 17.4.C and theorem 17.4.B. ut

We give a another example of applications of the realization of the en-
veloping operad UR(A) by a right module over an operad. We study rather
the enveloping algebra UR(A) = UR(A)(1).

Recall that an E∞-operad is a Σ∗-cofibrant operad E equipped with an
acyclic fibration ε : E → C where C refers to the operad of commutative
algebras. An A∞-operad is a Σ∗-cofibrant operad K equipped with an acyclic
fibration ε : K → A where A refers to the operad of associative algebras. An
E∞-algebra is an algebra over some E∞-operad. An A∞-algebra is an algebra
over some A∞-operad.

We have an operad morphism ε : A → C so that the restriction functor
ε∗ : CE → AE represent the obvious category embedding from commutative
algebras to associative algebras. We can take a cofibrant A∞-operad K and
pick a lifting

K //

∼
����

E

∼
����

A // C

to equip every E-algebra A with an A∞-algebra structure.
The morphism φ] : E[ · ] → φ∗ C[ · ] forms clearly a weak-equivalence. We

use this equivalence to transport properties of the enveloping algebra of com-
mutative algebras to algebras over E∞-operads.

For a commutative algebra A, we have UC(A) = A. For algebras over
E∞-operads, we obtain:

17.4.5 Theorem. Let E be a cofibrant E∞-operad. Pick a lifting
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K //

∼
����

E

∼
����

A // C

to equip every E-algebra A with the structure of an algebra over some cofibrant
A∞-operad K.

If A is an E-cofibrant E-algebra, then we have functorial weak-equivalences
of K-algebras

UE(A) ∼←− · ∼−→ A

that connect the enveloping algebra of A to the A∞-algebra underlying A.

Proof. By theorem 17.4.C, the object E[1] forms a cofibrant right E-module.
For the commutative operad C, we have an isomorphism of associative

algebras in right C-modules C[1] ' C that reflects the relation UC(A) ' A
for commutative algebras. The operad morphism φ : E → C defines a weak-
equivalence of associative algebras in right E-modules φ] : E[1]→ φ∗ C[1].

The operad E forms an K-algebra in right E-modules and the morphism
φ : E → C defines a weak-equivalence of K-algebras in right E-modules φ] :
E→ φ∗ C.

Finally we have weak-equivalences of K-algebras in right E-modules

E[1] ∼−→ φ∗ C[1] ' φ∗ C ∼←− E

from which we deduce the existence of weak-equivalences

E[1] ∼←− · ∼−→ E,

where the middle term consists of a cofibrant K-algebra in right E-modules.
Since cofibrant K-algebras in right E-modules are cofibrant in the underly-
ing category, we deduce from theorem §15.1.A that these weak-equivalences
yield weak-equivalences at the functor level. Hence we obtain functorial weak-
equivalences of K-algebras

UE(A) ∼←− · ∼−→ A

as stated. ut





Bibliographical comments on part IV

This part gives the first systematic and comprehensive study of the relation-
ship between the homotopy of modules over operads and functors. Neverthe-
less, we note that another model structure for right modules and bimodules
over operads is defined in [54] in the context of simplicial sets and simpli-
cial modules. A version of theorem 15.1.A also occurs in [54], but the other
unifying homotopy invariance result, theorem 15.2.A, is completely new for
modules over operads. Recall however that theorem 15.2.A has already been
proved for certain very particular instances of modules (see §15.2). The ho-
motopy invariance of the relative composition product is proved in the dg-
context in [14] by using spectral sequence arguments, and in the context of
spectra in [23].

The homotopy of extension and restriction functor has already been stud-
ied in various situations: in the context of simplicial sets and simplicial mod-
ules, [54, §3.6]; for certain operads in differential graded modules, [26]; in the
context of spectra, [21, Theorem 1.2.4] and [23]; under the assumption that
the underlying model category is left proper, [4].

The ideas of §17 are original, though certain results already occur in the
literature. In particular, theorem 17.4.A, the homotopy invariance of envelop-
ing operads (algebras) on cofibrant algebras, is proved in [26] and [5] by other
methods. On the other hand, the parallel case of cofibrant operads, stated in
theorem 17.4.B, is completely new.
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Part V

Appendix: technical verifications
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Foreword

The goal of this part is to achieve technical verifications of §12.3 and §15.2:

– we check condition (2) of theorem 12.1.4 to prove that the category of
algebras over an operad R is equipped with a semi model structure,

– we prove that the bifunctor (M,A) 7→ SR(M,A) associated to an operad R
satisfies an analogue of the pushout-product axiom of tensor products in
symmetric monoidal model categories.

As usual, we address the case of R-algebras in any symmetric monoidal cate-
gory E over the base category C.

The bifunctor (M,A) 7→ SR(M,A) does not preserves all colimits in A.
Therefore we can not apply the argument of lemma 11.3.2 to prove the re-
quired pushout-product axiom.

To handle the difficulty we introduce right R-modules SR[M,A] such that
SR(M,A) = SR[M,A](0) and we study pushout-products on the bifunctor
(M,A) 7→ SR[M,A]. The same method is used in the proof that R-algebras
form a semi model category.





Chapter 18

Shifted modules over operads
and functors

Introduction

The purpose of this chapter is to define the functor SR[M ] : A 7→ SR[M,A]
used to determine the image of pushouts of R-algebras under the functor
SR(M) : A 7→ S(M,A) associated to a right module over an operad.

The explicit construction of the functor SR[M ] : A 7→ SR[M,A] is carried
out in §18.1. The categorical features of the construction are studied in §18.2.

In this chapter we address only categorical constructions and we do not
use any model structure.

18.1 Shifted modules and functors
to modules over operads

To define SR[M,A], we use the shifted objects M [n] associated to M and the
associated functors S[M,−](n) = S(M [n],−), defined in §4.1.4. The idea is
to substitute S[M,−] to the functor S(M,−) in the definition of SR(M,A).

The purpose of the next paragraph is to review the definition of the shifted
objects M [n] and to study the structure of the functor S[M,−] in the case
where M is a right R-module. The definition of SR[M,A] comes immediately
after these recollections.

18.1.1 Shifted modules over operads. The shifted objects M [m] are
defined in §4.1.4 byM [m](n) = M(m+n). We use the morphismΣn → Σm+n

yielded by the natural action of Σn on {m+ 1, . . . ,m+ n} ⊂ {1, . . . ,m+ n}
to determine a Σn-action on the object M [m](n), for each m,n ∈ N, so that
every collection M [m] = {M [m](n)}n∈N forms a Σ∗-object.

For any object X ∈ E , we set S[M,X](m) = S(M [m], X). For short, we
also use the notation M [X](m) = S[M,X](m). By definition, we have the
relation S[M,X](0) = S(M,X).

269
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By §4.1.4, the symmetric group Σm acts on the collection M [m] =
{M [m](n)}n∈N by automorphisms of Σ∗-objects: we use simply the mor-
phism Σm → Σm+n yielded by the natural action of Σm on {1, . . . ,m} ⊂
{1, . . . ,m + n} to determine the Σm-action on the object M [m](n). As a
byproduct, we obtain that the collection S[M,X] = {S(M [m], X)}m∈N forms
a Σ∗-object, for every X ∈ E . Note that S[M,X] forms a Σ∗-object in E and
not in the base category C.

For a right R-module M , the operadic composites at last positions

M(r + s)⊗ R(n1)⊗ · · · ⊗ R(ns)→M(r + n1 + · · ·+ ns)

provide each M [r] with the structure of a right R-module. This definition is an
obvious generalization of the right R-module structure of the shifted operad
R[ · ] introduced in §10.1.1. At the level of the functor S[M,X], the morphism

S(M [r], R(X)) = S(M [r] ◦ R, X)
S(ρ[r],X)−−−−−−→ S(M [r], X),

induced by the right R-action on M [r] gives rise to a natural morphism

S[M, R(X)] d0−→ S[M,X],

for all X ∈ E .
On the other hand, we can use operadic composites at first positions to

form morphisms

M(r + s)⊗ R(m1)⊗ · · · ⊗ R(mr)→M(m1 + · · ·+mr + s).

These morphisms provide the collectionM [ · ] = {M [r]}r∈N with the structure
of a right R-module in the category of right R-modules. At the level of the
functor S[M,X], we obtain a natural right R-module structure on S[M,X],
for every X ∈ E , so that the composition products

S[M,X](r)⊗ R(m1)⊗ · · · ⊗ R(mr)→ S[M,X](m1 + · · ·+mr)

commute with the morphisms d0 : S[M, R(X)] → S[M,E]. Equivalently, we
obtain that d0 defines a morphism of right R-modules.

18.1.2 The construction. For an R-algebra A, the action of the operad on
A induces a morphism of right R-modules

S[M, R(A)] d1−→ S[M,A],

parallel to the morphism

S[M, R(A)] d0−→ S[M,A]



18.2 Shifted functors and pushouts 271

defined in §18.1.1. In the converse direction, the morphism η(A) : A→ R(A)
induced by the operad unit η : I → R gives rise to a morphism of right
R-modules

S[M,A] s0−→ S[M, R(A)]

so that d0s0 = d1s0. The object SR[M,A] is defined by the reflexive coequal-
izer

S[M, R(A)]
d0 //

d1

// S[M,A]

s0

zz
// SR[M,A]

in the category of right R-modules.
For a fixed component SR[M,A](r), this coequalizer is identified with the

coequalizer of the object SR(M [r], A) associated to the right R-module M [r].
Hence we have the relation SR[M,A](r) = SR(M [r], A). In particular, for
r = 0, we have SR[M,A](0) = SR(M,A).

Note that SR[M,X] forms a right R-module in E and not in the base cate-
gory C.

18.2 Shifted functors and pushouts

In this section, we study the image of pushouts

R(X)

R(i)

��

u // A

f

��
R(Y )

v
// B

under the functor SR[M ] : A 7→ SR[M,A] associated to a right module M over
an operad R. Our aim is to decompose the morphism SR[M,f ] : SR[M,A] →
SR[M,B] into a composite

S[M,A] = SR[M,B]0
j1−→ · · ·

· · · → SR[M,B]n−1
jn−→ SR[M,B]n → · · ·
· · · → colim

n
SR[M,B]n = SR[M,B]

so that each morphism jn is obtained by a pushout

SR[LnM [Y/X], A] //

��

SR[M,B]n−1

��
SR[TnM [Y/X], A] // SR[M,B]n
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in the category of right R-modules. In §19, we use this construction to analyze
the image of relative cell complexes under functors associated to right R-
modules.

The objects LnM [Y/X] and TnM [Y/X] are defined in §§18.2.6-18.2.10.

A preliminary step is to reduce the construction of pushouts to reflexive
coequalizers of free R-algebras, because we have immediately:

18.2.1 Proposition.

(a) For a free R-algebra A = R(X), we have a natural isomorphism SR[M, R(X)] =
S[M,X].
(b) The functor SR[M,−] : RE → M R preserves the coequalizers which are
reflexive in E.

Proof. Since we have an identity SR[M,A](n) = SR(M [n], A), assertion (a) is
a corollary of assertion (b) of theorem 7.1.1, assertion (b) is a corollary of
proposition 5.2.2. ut

In any category, a pushout

S //

��

A

��
T // B

is equivalent to a reflexive coequalizer such that:

T ∨ S ∨A
d0 //

d1

// T ∨A

s0

||
// B .

Thus, by assertion (b) of proposition 18.2.1, the object SR[M,B] that we aim
to understand is determined by a reflexive coequalizer of the form:

SR[M, R(Y ) ∨ R(X) ∨A]
d0 //

d1

// SR[M, R(Y ) ∨A]

s0

vv
// SR[M,B] .

The motivation to introduce refined functors SR[M,−] appears in the next
observations:

18.2.2 Lemma. For any Σ∗-object M and any sum of objects X ⊕ Y in E,
we have identities

S[M,X ⊕ Y ] ' S[M [X], Y ] ' S[M,Y ][X].

Proof. Easy consequence of the decomposition of the tensor power:
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(X ⊕ Y )⊗n =
⊕
p+q=n

Σn ⊗Σp×Σq
X⊗p ⊗ Y ⊗q

(we use a similar splitting in the proof of lemma 2.3.9). ut

Recall that M [X] is a short notation for M [X] = S[M,X].

18.2.3 Lemma. For all M ∈ M R, A ∈ RE and X ∈ E, we have natural
isomorphisms

SR[M, R(X) ∨A] ' SR[M [X], A]
' SR[M,A][X],

where ∨ denotes the coproduct in the category of R-algebras.

Proof. Observe that the coproduct R(X) ∨ A is realized by a reflexive co-
equalizer of the form

R(X ⊕ R(A))
d0 //

d1

// R(X ⊕A)

s0

yy
// R(X) ∨A .

The morphism d0 is defined by the composite

R(X⊕R(A))
R(η(X)⊕id)−−−−−−−→ R(R(X)⊕R(A))

R(R(iX),R(iA))−−−−−−−−−→ R(R(X⊕A))
µ(X⊕A)−−−−−→ R(X⊕A),

where µ : R ◦ R → R denotes the composition product of the operad R. The
morphism d1 is the morphism of free R-algebras

R(X ⊕ R(A))
R(X⊕λ)−−−−−→ R(X ⊕A)

induced by the operad action λ : R(A)→ A. The reflection s0 is the morphism
of free R-algebras

R(X ⊕A)
R(X⊕η(A))−−−−−−−→ R(X ⊕ R(A)),

where η : I → R denotes the unit of the operad R.
By proposition 18.2.1, the functor SR[M,−] maps this reflexive coequalizer

to a coequalizer of the form

S[M,X ⊕ R(A)]
d0 //

d1

// S[M,X ⊕A]

s0

xx
// SR[M, R(X) ∨A] .

The natural isomorphism S[M,X ⊕ Y ] ' S[M [X], Y ] of lemma 18.2.2
transports our coequalizer to a coequalizer of the form
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S[M [X], R(A)]
d0 //

d1

// S[M [X], A]

s0

xx
// SR[M, R(X) ∨A] .

A straightforward verification shows that this coequalizer is identified with
the coequalizer that determines SR[M [X], A]. Hence we obtain the relation
SR[M, R(X) ∨A] ' SR[M [X], A].

Similarly, we use the natural isomorphism S[M,X ⊕ Y ] ' S[M,Y ][X] to
obtain SR[M, R(X) ∨A] ' SR[M,A][X]. ut

18.2.4 The decomposition of SR[M,B]. Thus we are reduced to study a
reflexive coequalizer of the form:

SR[M,A][X ⊕ Y ]
d0 //

d1

// SR[M,A][Y ]

s0

xx
// SR[M,B] .

The morphism

SR[M,A][X ⊕ Y ]
SR[M,A][(i,id)]−−−−−−−−−→ SR[M,A][Y ]

induced by i : X → Y gives d0. The morphism

SR[M,A][X ⊕ Y ] ' SR[M,A ∨ R(X)][Y ]
SR[M,(id,u)][Y ]−−−−−−−−−→ SR[M,A][Y ]

determined by u : R(X)→ A gives d1. The canonical embedding

SR[M,A][Y ]
SR[M,A][(0,id)]−−−−−−−−−→ SR[M,A][X ⊕ Y ]

gives s0.
The functor S(N) : E → E associated to any Σ∗-object N has a canonical

filtration by subfunctors S(N)n : Y 7→ S(N,Y )n defined by:

S(N,Y )n =
n⊕

m=0

N(m)⊗Σm Y ⊗m.

The shifted functor S[N,Y ] = S(N [ · ], Y ) inherits a filtration from S(N [ · ], Y ):

S[N,Y ]n = S(N [ · ], Y )n =
n⊕

m=0

N(m+ · )⊗Σm
Y ⊗m.

If N is a right R-module, then S[N,Y ]n forms a subobject of S[N,Y ] in the
category of right R-modules.

To form the decomposition SR[M,B] = colimn SR[M,B]n, we use the se-
quence of reflexive coequalizers
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· · · // SR[M,A][X ⊕ Y ]n−1

�� ��

// SR[M,A][X ⊕ Y ]n

�� ��

// · · ·

· · · // SR[M,A][Y ]n−1

UU

��

// SR[M,A][Y ]n

UU

��

// · · ·

· · · // SR[M,B]n−1
jn

// SR[M,B]n // · · ·

determined by the filtration of SR[M,A][X ⊕ Y ] and SR[M,A][Y ] (note
that the morphisms d0, d1, s0 preserve filtrations). We have SR[M,B] =
colimn SR[M,B]n by interchange of colimits. We have moreover SR[M,A][X⊕
Y ]0 = SR[M,A][Y ]0 = SR[M,B]0 = SR[M,A].

The coequalizers of SR[M,B]n−1 and SR[M,B]n can be reorganized to give:

18.2.5 Lemma. The morphism jn : SR[M,B]n−1 → SR[M,B]n fits a natural
pushout of the form:⊕

p+q=n
q<n

N(n+ · )⊗Σp×Σq X
⊗p ⊗ Y ⊗q //

��

SR[M,B]n−1

jn

��
N(n+ · )⊗Σn Y

⊗n // SR[M,B]n

,

where we set N = SR[M,A].

Proof. Set

S = SR[M,A][X ⊕ Y ]n−1, T = SR[M,A][Y ]n−1,

and U =
⊕
p+q=n
q<n

N(n+ · )⊗Σp×Σq
X⊗p ⊗ Y ⊗q,

V = N(n+ · )⊗Σn
Y ⊗n.

We have by definition

SR[M,A][X ⊕ Y ]n = SR[M,A][X ⊕ Y ]n−1 ⊕ U ⊕ V = S ⊕ U ⊕ V,
SR[M,A][Y ]n = SR[M,A][Y ]n−1 ⊕ V = T ⊕ V,

and the coequalizers C = SR[M,B]n−1 and D = SR[M,B]n fit a diagram of
the form:
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S

�� ��

// S ⊕ U ⊕ V

�� ��
T

VV

��

// T ⊕ V

UU

��
C // D

.

The morphisms d0, d1 : S ⊕ U ⊕ V ⇒ T ⊕ V are the identity on V . The
summand U is mapped into V by the morphism d0, into T by the morphism
d1. Accordingly, we have a commutative square

U
d1 //

d0

��

C

��
V // D

.

By an easy inspection of the categorical constructions, we check that this
square forms a pushout and the lemma follows. ut

18.2.6 Iterated pushout-products. Let T0 = X, T1 = Y . To improve
the result of lemma 18.2.5 we use the cubical diagram formed by the tensor
products Tε1 ⊗ · · · ⊗ Tεn on vertices and the morphisms

Tε1 ⊗ · · · ⊗ T0 ⊗ · · · ⊗ Tεn
Tε1⊗···⊗i⊗···⊗Tεn−−−−−−−−−−−−→ Tε1 ⊗ · · · ⊗ T1 ⊗ · · · ⊗ Tεn

on edges. The terminal vertex of the cube is associated to the tensor power

Tn(Y/X) = T1 ⊗ · · · ⊗ T1 = Y ⊗n.

The latching morphism λ : Ln(Y/X)→ Tn(Y/X) associated to the diagram
Tε1 ⊗ · · · ⊗ Tεn is the canonical morphism from the colimit

Ln(Y/X) = colim
(ε1,...,εn)<(1,...,1)

Tε1 ⊗ · · · ⊗ Tεn

to the terminal vertex Tn(Y/X) = T1 ⊗ · · · ⊗ T1. The next observation is
used in §19.1 to determine the class of a latching morphism whenever i is
a cofibration (respectively, an acyclic cofibration) in a symmetric monoidal
model category:

18.2.7 Observation. The latching morphism

Ln(Y/X) λ−→ Tn(Y/X) = Y ⊗n

is identified with the pushout-product
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Ln−1(Y/X)⊗ Y
⊕

Ln−1(Y/X)⊗X

Y ⊗n−1 ⊗X (λ∗,i∗)−−−−→ Y ⊗n−1 ⊗ Y

of the previous latching morphism λ : Ln(Y/X)→ Y ⊗n−1 with i : X → Y .

This observation follows from an immediate interchange of colimits. Be-
cause of this observation, we also refer to the morphism λ : Ln(Y/X) →
Tn(Y/X) as an n-fold pushout-product of i : X → Y .

18.2.8 Iterated pushout-products and functor decomposition. The
symmetric group Σn acts naturally (on the right) on Tn(Y/X) and Ln(Y/X).
Moreover the latching morphism λ : Ln(Y/X)→ Tn(Y/X) is equivariant. For
a Σ∗-object N , we set

TnN [Y/X] = N(n+ · )⊗Σn
Tn(Y/X) and LnN [Y/X] = N(n+ · )⊗Σn

Ln(Y/X).

Note that TnN [Y/X] (respectively, LnN [Y/X]) inherits the structure of a
right R-module if N has this structure. By definition, we have

TnN [Y/X] = N(n+ · )⊗Σn Y
⊗n

and the morphism of lemma 18.2.5 has an obvious factorization⊕
p+q=n
q<n

N(n+ · )⊗Σp×Σq
X⊗p ⊗ Y ⊗q

�� ��
N(n+ · )⊗Σn Y

⊗n LnN [Y/X]oo

,

Furthermore:

18.2.9 Lemma. In lemma 18.2.5, the base of the pushout can be replaced by
factorizations: ⊕

p+q=n
q<n

N(n+ · )⊗Σp×Σq
X⊗p ⊗ Y ⊗q

�� �� ��
N(n+ · )⊗Σn Y

⊗n LnN [Y/X]oo // SR[M,B]n−1

.

Consequently, we have a pushout of the form:

LnN [Y/X]

��

// SR[M,B]n−1

jn

��
TnN [Y/X] // SR[M,B]n

,

where we set again N = SR[M,A].
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Proof. The existence of factorizations follows from a straightforward inspec-
tion. To prove the identity of the pushout of lemma 18.2.5 with the pushout
based on LnN [X/Y ], use that the morphism

⊕
p+q=n
q<n

Σn ⊗Σp×Σq
X⊗p ⊗

Y ⊗q → Ln(Y/X) is epi, as well as the induced morphism

N(n+ · )⊗Σp×Σq
X⊗p ⊗ Y ⊗q

= N(n+ · )⊗Σn

{ ⊕
p+q=n
q<n

Σn ⊗Σp×Σq X
⊗p ⊗ Y ⊗q

}
→ N(n+ · )⊗Σn Ln(Y/X) = LnN [X/Y ].

ut

In §19.2, we also use:

18.2.10 Lemma. For the functor N = SR[M,A], we have identities Ln SR[M,A][Y/X] =
SR[LnM [Y/X], A] and Tn SR[M,A][Y/X] = SR[TnM [Y/X], A].

Proof. Immediate by permutation of tensors and interchange of colimits. ut

To summarize:

18.2.11 Proposition. Let M be a right module over an operad R. Let

R(X)

R(i)

��

u // A

f

��
R(Y )

v
// B

be a pushout in the category of R-algebras. The morphism SR[M,f ] : SR[M,A]→
SR[M,B] has a canonical decomposition

S[M,A] = SR[M,B]0
j1−→ · · ·

· · · → SR[M,B]n−1
jn−→ SR[M,B]n → · · ·
· · · → colim

n
SR[M,B]n = SR[M,B]

so that each morphism jn is obtained by a pushout

SR[LnM [Y/X], A] //

SR[λ,A]

��

SR[M,B]n−1

jn

��
SR[TnM [Y/X], A] // SR[M,B]n



18.2 Shifted functors and pushouts 279

in the category of right R-modules, where λ : LnM [Y/X]→ TnM [Y/X] is de-
fined by the tensor product M(n+ · )⊗Σn

− with a certain latching morphism
λ : Ln(Y/X)→ Y ⊗n. ut





Chapter 19

Shifted functors and pushout-products

Introduction

In this chapter we assume that the base category C is equipped with a model
structure and satisfies axioms MM0-MM1 of §11.3.3. Let R be any operad
in C. In principle we consider R-algebras in any symmetric monoidal model
category E over C such that axioms MM0-MM1 hold in E and the canonical
functor η : C → E preserves cofibrations (see §11.3.3).

But we use constructions of §18 which return Σ∗-objects in E and right
R-modules in E . For this reason we do not assume necessarily that Σ∗-objects
and right R-modules belong to the base category C. To simplify we use the
canonical functor η : C → E associated to E to transport all objects in E , and
we assume C = E . This operation makes sense because the canonical functor
η : C → E is supposed to preserves cofibrations and acyclic cofibrations.
¶ Our results can be improved in the context of (reduced symmetric

monoidal categories) with regular tensor powers. These refinements are ad-
dressed in the note apparatus.

Say that a morphism of R-algebras f : A → B is a Σ∗-flat cofibration if
the pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]→ SR[N,B]

forms a Σ∗-cofibration of right R-modules (respectively, an acyclic Σ∗-
cofibration) whenever i is so, for every morphism of right R-modules i : M →
N in E . Say that f : A → B is a Σ∗-flat acyclic cofibration if the same
pushout-product (i∗, f∗) forms an acyclic Σ∗-cofibration of right R-modules
for every Σ∗-cofibration of right R-modules i : M → N in E .

Suppose that the operad R is Σ∗-cofibrant. The goal of this chapter is to
prove that certain relative cell extensions of R-algebras are Σ∗-flat (acyclic)
cofibrations. The result is used in §12.3 to prove that R-algebras form a semi

281
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model category and implies that any (acyclic) cofibration of R-algebras such
that A is cofibrant is a Σ∗-flat (acyclic) cofibration (see §20.1).

But we can not use the axiom of semi model categories for the moment.
For this reason we consider the class R(Ec) (respectively, R(Ea)) of morphisms
of free R-algebras R(i) : R(X)→ R(Y ) such that i : X → Y is a cofibration in
E (respectively an acyclic cofibration). The main result of this chapter reads:

Lemma 19.A. Every relative R(Ec)-cell (respectively, R(Ea)) complex f :
A → B whose domain A is an R(Ec)-cell complex is a Σ∗-flat cofibration
(respectively, a Σ∗-flat acyclic cofibration).

¶ If E has regular tensor powers with respect to a class of B-cofibrations.
then the lemma holds for (acyclic) B-cofibrations of Σ∗-objects.

We prove lemma 19.A by induction on the cell decompositions, using that:

(1) the pushout of a morphism of free R-algebras R(j) : R(X) → R(Y ) forms
a Σ∗-flat cofibration (respectively, a Σ∗-flat acyclic cofibration) if j is a
cofibration (respectively, an acyclic cofibration),

(2) the class of Σ∗-flat cofibrations (respectively, Σ∗-flat acyclic cofibrations)
is stable under (possibly transfinite) composites.

We check assertion (1) in §19.2, assertion (2) in §19.3. We recapitulate the
results and conclude in §19.4.

The verification of (1) use the decomposition of §18.2 and the latching
morphism λ : LnM [Y/X]→ TnM [Y/X] associated to morphisms j : X → Y
in E , for a Σ∗-object M . To prove (1), we need first to determine the class of
the latching morphism λ : LnM [Y/X]→ TnM [Y/X] when j is a cofibration
(respectively, an acyclic cofibration). This preliminary step is addressed in
the next section.

19.1 Preliminary step

The goal of this section is to prove:

Lemma 19.1.A. Let i : M → N be any morphism in EΣ∗ , the category of
Σ∗-objects in E. Let j : X → Y be a morphism in E. The pushout-product

(i∗, λ∗) : TnM [Y/X]
⊕

LnM [Y/X]

LnN [Y/X]→ TnN [Y/X]

forms a cofibration in EΣ∗ if i is so and j is a cofibration in E, an acyclic
cofibration if i or j is also acyclic.

19.1.1 ¶ Remark. In the context of categories with regular tensor pow-
ers, we replace (acyclic) cofibrations in EΣ∗ by (acyclic) B-cofibrations. The
statement is nothing but axiom R1.
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Proof. By lemma 11.3.2, we can assume that i : M → N is a generating
(acyclic) cofibration of the category of Σ∗-objects, and hence is given by a
tensor products k ⊗ Fr : K ⊗ Fr → L⊗ Fr, where k : K → L is a generating
(acyclic) cofibration of E ,

For a Σ∗-object M , the latching morphism λ : LnM [Y/X]→ TnM [Y/X]
is defined by a tensor product

M(n+ · )⊗Σn λ : M(n+ · )⊗Σn Ln(Y/X)→M(n+ · )⊗Σn Tn(Y/X)

where Tn(Y/X) = Y ⊗n and λ : Ln(Y/X) → Tn(Y/X) is an n-fold pushout-
product of the morphism j : X → Y . Note that Σn operates on Ln(Y/X)
and Tn(Y/X) on the right.

Let T be any object equipped with a right Σn-action. Recall that

Fr(s) =

{
1[Σr], if r = s,

0, otherwise.

According to this definition, we have Fr(n+ s)⊗Σn
T = 0 if n+ s 6= r and

Fr(n+ r − n)⊗Σn
T = 1[Σr]⊗Σn

T

' Σn\Σr ⊗ T
' Σn ×Σr−n\Σr ⊗ T ⊗ Fr−n(r − n)

otherwise. Hence we obtain an isomorphism

(Fr(n+ · )⊗ T )Σn ' T ⊗ (Πr,n ⊗ Fr−n),

where Πr,n = Σn ×Σr−n\Σr, and the latching morphism λ : LnFr[Y/X]→
TnFr[Y/X] is identified with a tensor product

λ⊗ (Πr,n ⊗ Fr−n) : Ln(Y/X)⊗ (Πr,n ⊗ Fr−n)→ Tn(Y/X)⊗ (Πr,n ⊗ Fr−n).

For a morphism of the form

i = k ⊗ Fr : K ⊗ Fr → L⊗ Fr,

the pushout-product

(i∗, j∗) : S[K ⊗ Fr, Y ]
⊕

S[K⊗Fr,X]

S[L⊗ Fr, X]→ S[L⊗ Fr, Y ]

is identified with the tensor product of the object Πr,n⊗Fr−n ∈M with the
pushout product in E

(k∗, λ∗) : K ⊗ Tn(Y/X)
⊕

K⊗Ln(Y/X)

L⊗ Ln(Y/X)→ L⊗ Tn(Y/X).
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The pushout-product (k∗, λ∗) forms a cofibration in E if k and λ are so,
an acyclic cofibration if k or λ is also an acyclic cofibration. Since λ :
LnM [Y/X] → TnM [Y/X] is defined by an n-fold pushout-product in E ,
we obtain that λ forms a cofibration (respectively, an acyclic cofibration) if
j is so. The conclusion follows. ut

19.2 Pushouts

In this section, we study the morphism f : A→ B obtained by a pushout

R(X)

R(j)

��

u // A

f

��
R(Y )

v
// B

,

where R(j) : R(X) → R(Y ) is a morphism of free R-algebras induced by a
morphism j : X → Y in E . Our goal is to prove:

Lemma 19.2.A. Let A be an R-algebra. Suppose that the initial R-algebra
morphism η : R(0) → A forms a Σ∗-flat cofibration. If j is a cofibration
(respectively, an acyclic cofibration) in E, then the morphism f : A → B
obtained by a pushout of R(j) : R(X)→ R(Y ) is a Σ∗-flat cofibration (respec-
tively, a Σ∗-flat acyclic cofibration).

We begin the proof of lemma 19.2.A by an observation:

19.2.1 Lemma. If η : R(0)→ A is a Σ∗-flat cofibration, then the morphism
SR[i, A] : SR[M,A]→ SR[N,A] forms a Σ∗-cofibration (respectively, an acyclic
Σ∗-cofibration) whenever i : M → N is so.

Proof. For the initial algebra R(0), proposition 18.2.1 gives an identity
SR[M, R(0)] = S[M, 0] = M . Hence the pushout-product (i∗, η∗) is identi-
fied with the morphism SR[M,A]

⊕
M N → SR[N,A] induced by SR[i, A] and

the natural morphism N → SR[N,A]. The pushout

M

��

// SR[M,A]

��
N // SR[M,A]

⊕
M N

returns a Σ∗-cofibration (respectively, an acyclic Σ∗-cofibration) if i is so.
Hence, if η : R(0) → A is a Σ∗-flat cofibration, then we obtain that the
composite

SR[M,A]→ SR[M,A]
⊕
M

N → SR[N,A]
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forms a Σ∗-cofibration (respectively, an acyclic Σ∗-cofibration) as well. ut

In the next proofs, we use the following independent lemma repeatedly:

19.2.2 Lemma. For all S, T ∈ M R, the functor −
⊕

S T : M R → M R

defined by the relative sum M 7→M
⊕

S T in the category of right R-modules
preserves (acyclic) Σ∗-cofibrations.

Proof. The operation −
⊕

S T : A → A preserves (acyclic) cofibrations in
any model category A.

The lemma is an immediate corollary of this assertion and of the fact
that the forgetful functor U :M R →M from right R-modules to Σ∗-objects
creates colimits. ut

For the remainder of this section, we suppose given a pushout

R(X)

R(j)

��

// A

f

��
R(Y ) // B

and we assume that η : R(0) → A forms a Σ∗-flat cofibration. We aim to
prove:

Claim (claim of lemma 19.2.A). The pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]→ SR[N,B]

forms a Σ∗-cofibration if i is so and j is a cofibration in E, an acyclic Σ∗-
cofibration if i or j is also acyclic.

Hence the morphism f forms a Σ∗-flat cofibration (respectively, Σ∗-flat
acyclic cofibration) if j is a cofibration (respectively, an acyclic cofibration),
as asserted by lemma 19.2.A.

Our arguments are based on the decomposition of proposition 18.2.11.
Explicitly, for any right R-module M , we have a natural decomposition

S[M,A] = SR[M,B]0
j1−→ · · ·

· · · → SR[M,B]n−1
jn−→ SR[M,B]n → · · ·
· · · → colim

n
SR[M,B]n = SR[M,B]

of the morphism SR[M,f ] : SR[M,A] → SR[M,B] so that each morphism jn
is obtained by a pushout
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SR[LnM [Y/X], A] //

SR[λ,A]

��

SR[M,B]n−1

jn

��
SR[TnM [Y/X], A] // SR[M,B]n

in the category of right R-modules. By naturality of the decomposition, any
morphism of right R-modules i : M → N , gives rise to a morphism SR[i, B]n :
SR[M,B]n → SR[N,B]n which can also be determined by the pushout of
morphisms

SR[TnM [Y/X], A]

SR[Tnf [Y/X],A]

��

SR[LnM [Y/X], A]oo //

SR[Tnf [Y/X],A]

��

SR[M,B]n−1

SR[f,B]n−1

��
SR[TnN [Y/X], A] SR[LnN [Y/X], A]oo // SR[N,B]n−1

induced by f .
The proof of the claim is achieved by the next lemmas. The idea is use

the categorical decomposition to split the pushout-product of the claim into
(acyclic) cofibrations.

19.2.3 Lemma. The pushout-product

((SR[i, B]n)∗, (jn)∗) : SR[M,B]n
⊕

SR[M,B]n−1

SR[N,B]n−1 → SR[N,B]n

forms a Σ∗-cofibration if i is so and j is a cofibration in E, an acyclic Σ∗-
cofibration if i or j is also acyclic.

Proof. We use a categorical decomposition of the pushout-product

((SR[i, B]n)∗, (jn)∗) : SR[M,B]n
⊕

SR[M,B]n−1

SR[N,B]n−1
(1)−−→ SR[N,B]n

to check that ((SR[i, B]n)∗, (jn)∗) forms a Σ∗-cofibration (respectively an
acyclic Σ∗-cofibration) under the assumptions of the lemma.

Throughout this proof we adopt the short notation

Ln[M,A] = Ln SR[M,A][Y/X], Tn[M,A] = Tn SR[M,A][Y/X],
LnM [Y/X] = LnM, TnM [Y/X] = TnM,

and so on. Hence proposition 18.2.11 gives natural isomorphisms
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SR[M,B]n = Tn[M,A]
⊕

Ln[M,A]

SR[M,B]n−1

and SR[N,B]n = Tn[N,A]
⊕

Ln[N,A]

SR[N,B]n−1

and morphism (1) is identified with the morphism of pushouts

Tn[M,A]
⊕

Ln[M,A]

SR[N,B]n−1
(2)−−→ Tn[N,A]

⊕
Ln[N,A]

SR[N,B]n−1

induced by the morphisms

Tn[M,A]

Tn[i,A]

��

Ln[M,A]

Ln[i,A]

��

oo // SR[N,B]n−1

=

��
Tn[N,A] Ln[N,A]oo // SR[N,B]n−1

.

Since

Tn[M,A]
⊕

Ln[M,A]

SR[N,B]n−1 '
{
Tn[M,A]

⊕
Ln[M,A]

Ln[N,A]
} ⊕
Ln[N,A]

SR[N,B]n−1

morphism (2) is also equal to the image of the natural morphism

Tn[M,A]
⊕

Ln[M,A]

Ln[N,A]
(3)−−→ Tn[N,A]

under the relative sum operation

−
⊕

Ln[N,A]

SR[N,B]n−1.

Recall that we use short notation TnM = TnM [Y/X], Tn[M,A] =
Tn SR[M,A][Y/X], and so on. Since the functor SR[−, A] preserves colimits,
lemma 18.2.10 implies that morphism (3) is the image of the morphism

TnM
⊕
LnM

LnN
(4)−−→ TnN

under the functor SR[−, A].
By lemma 19.1.A, morphism (4) forms a Σ∗-cofibration if i is so and j

is a cofibration in E , an acyclic Σ∗-cofibration if i or j is also acyclic. So
does morphism (3) by lemma 19.2.1, morphism (2) by lemma 19.2.2, and the
conclusion regarding morphism (1) follows. ut

19.2.4 Lemma. If each pushout-product
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((SR[i, B]n)∗, (jn)∗) : SR[M,B]n
⊕

SR[M,B]n−1

SR[N,B]n−1 → SR[N,B]n

forms a Σ∗-cofibration (respectively, an acyclic Σ∗-cofibration), then so does
the pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]→ SR[N,B].

Proof. The pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]
(1)−−→ SR[N,B]

can be decomposed into:

SR[M,B]
⊕

SR[M,A]

SR[N,A] = SR[M,B]
⊕

SR[M,B]0

SR[N,B]0 → · · ·

· · · → SR[M,B]
⊕

SR[M,B]n−1

SR[N,B]n−1 → SR[M,B]
⊕

SR[M,B]n

SR[N,B]n → · · ·

· · · → colim
n

{
SR[M,B]

⊕
SR[M,B]n

SR[N,B]n
}
' SR[N,B].

The morphism

SR[M,B]
⊕

SR[M,B]n−1

SR[N,B]n−1
(2)−−→ SR[M,B]

⊕
SR[M,B]n

SR[N,B]n

is also identified with the image of

SR[M,B]n
⊕

SR[M,B]n−1

SR[N,B]n−1
(3)−−→ SR[N,B]n

under the relative sum operation

SR[M,B]
⊕

SR[M,B]n

−.

By lemma 19.2.2, morphism (2) forms a Σ∗-cofibration (respectively, an
acyclic cofibration) if morphism (3) is so. Since the class of (acyclic) cofi-
brations in a model category is closed under composites, we conclude that
morphism (1) forms a Σ∗-cofibration (respectively, an acyclic cofibration) if
every morphism (3) is so. ut

This proof achieves the proof of lemma 19.2.A. ut
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19.3 Third step: composites

In this section, we prove:

Lemma 19.3.A. A morphism f : A → B that decomposes into a (possibly
transfinite) composite of Σ∗-flat (acyclic) cofibrations

A = B0
f0−→ · · · → Bλ−1

fλ−→ Bλ → · · · → colim
λ

Bλ = B

forms itself a Σ∗-flat (acyclic) cofibration.

We deduce this lemma from formal categorical constructions.

Proof. Let i : M → N be a fixed morphism in the category of right R-modules.
Recall that functors of the form SR(M) : A 7→ SR(M,A) preserve filtered

colimits in A. So do the extended functors SR[M,−] : A 7→ SR[M,A] since we
have SR[M,A](m) = SR(M [m], A), for any m ∈ N.

As a consequence, for any sequential colimit

A = B0
f0−→ · · · → Bλ

iλ−→ Bλ → · · · → colim
λ

Bλ = B,

we have

SR[M,B] = colim
λ

SR[M,Bλ], SR[N,B] = colim
λ

SR[N,Bλ]

and the pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]
(1)−−→ SR[N,B]

can be decomposed into a colimit

SR[M,B]
⊕

SR[M,A]

SR[N,A] = SR[M,B]
⊕

SR[M,B0]

SR[N,B0]→ · · ·

· · · → SR[M,B]
⊕

SR[M,Bλ−1]

SR[N,Bλ−1]→ SR[M,B]
⊕

SR[M,Bλ]

SR[N,Bλ]→ · · ·

· · · → colim
λ

{
SR[M,B]

⊕
SR[M,Bλ]

SR[N,Bλ]
}
' SR[N,B].

The morphism

SR[M,B]
⊕

SR[M,Bλ−1]

SR[N,Bλ−1]
(2)−−→ SR[M,B]

⊕
SR[M,Bλ]

SR[N,Bλ]

is also identified with the image of
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SR[M,Bλ]
⊕

SR[M,Bλ−1]

SR[N,Bλ−1]
(3)−−→ SR[N,Bλ]

under the relative sum operation

SR[M,B]
⊕

SR[M,Bλ]

−.

If i : M → N is a Σ∗-cofibration and fλ : Bλ−1 → Bλ is a Σ∗-flat
cofibration, then (3) forms a Σ∗-cofibration, and so does morphism (2) by
lemma 19.2.2. Since the class of cofibrations in a model category is closed un-
der composites, we obtain that morphism (1) forms aΣ∗-cofibration whenever
i : M → N is a Σ∗-cofibration and every fλ : Bλ−1 → Bλ is a Σ∗-flat cofibra-
tion. We prove similarly that morphism (1) forms an acyclic Σ∗-cofibration
if i or every fλ is also acyclic. ut

19.4 Recapitulation and conclusion

By definition, a relative R(Ec)-cell (respectively, R(Ea)-cell) complex is a mor-
phism of R-algebras f : A→ B which can be decomposed into a composite

A = B0
f0−→ B1 → · · · → Bλ−1

fλ−→ Bλ → · · · → colim
λ

Bλ = B

so that the morphisms fλ : Bλ−1 → Bλ are obtained by cobase extensions

R(Xλ) //

R(iλ)

��

Bλ−1

fλ

��
R(Yλ) // Bλ

,

where iλ : Xλ → Yλ is a cofibration (respectively, an acyclic cofibration).
Lemmas 19.2.A-19.3.A imply by induction that a relative R(Ec)-cell com-

plex f : A → B is a Σ∗-flat cofibration as long as the initial morphism
η : R(0) → A is so. Observe that the identity morphism η : R(0) → R(0) is
trivially a Σ∗-flat cofibration to conclude that any relative R(Ec)-cell complex
f : A→ B, where A is an R(Ec)-cell complex, is a Σ∗-flat cofibration.

Lemmas 19.2.A-19.3.A imply further that a relative R(Ea)-cell complex
f : A → B is a Σ∗-flat acyclic cofibration as long as the initial morphism
η : R(0)→ A is a Σ∗-flat cofibration. We conclude that any relative R(Ea)-cell
complex f : A → B, where A is an R(Ec)-cell complex, is a Σ∗-flat acyclic
cofibration.

This conclusion achieves the proof of lemma 19.A. ut



Chapter 20

Applications of the pushout-products
of shifted functors

Introduction

The purpose of this chapter is to check lemma 12.3.1 and lemma 15.2.C whose
verification was put off in §12.3 and §15.2. Both statements are applications
of the results of §19.

20.1 The semi model category of algebras
over an operad

The purpose of this section is to check the following lemma announced
in §12.3:

Lemma 20.1.A (see lemma 12.3.1). Suppose P is a Σ∗-cofibrant operad in
a base model category C. Let E be a symmetric monoidal category over C.
Let P(Ec) denote the class of morphisms P(i) : P(C) → P(D) so that i is a
cofibration in Ec.

For any pushout
P(X)

P(j)

��

// A

f

��
P(Y ) // B

such that A is a P(Ec)-cell complex, the morphism f forms a cofibration (re-
spectively, an acyclic cofibration) in the underlying category E if i : X → Y
is so.

In the context of a (reduced) symmetric monoidal category with regular
tensor powers, the proposition holds if the operad is C-cofibrant.

291
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Proof. The proof of lemma 20.1.A relies on an easy applications of the results
of §19.2.

The initial morphism of the P-algebra A is a Σ∗-flat cofibration since we
assume that A is a P(Ec)-cell complex and lemma 19.2.A implies that the
morphism f : A → B forms a Σ∗-flat cofibration (respectively, a Σ∗-flat
acyclic cofibration) if j is a cofibration (respectively, an acyclic cofibration)
in E . The trivial morphism 0 : 0→ P forms a Σ∗-cofibration by assumption.
Therefore the pushout-product

(0∗, f∗) : SP[0, B]
⊕

SP[0,A]

SP[P, A]→ SP[P, B]

forms a Σ∗-cofibration (respectively, an acyclic Σ∗-cofibration) if j is a cofi-
bration (respectively, an acyclic cofibration) in E .

Since SP[0,−] = 0, the pushout-product (0∗, f∗) is identified with the mor-
phism SP[P, f ] : SP[P, A]→ SP[P, B] induced by f . Since SP(P,−) = SP[P,−](0)
is identified with the forgetful functor U : PE → E , we conclude that the mor-
phism f : A→ B forms a cofibration (respectively, an acyclic cofibration) in
E if j is so. ut

The verification of lemma 20.1.A achieves the proof of theorem 12.3.A: the
category of P-algebras in E forms a semi model category. ut

20.2 Applications: homotopy invariance of functors
for cofibrant algebras

Lemma 19.A gives as a corollary:

Lemma 20.2.A (see lemma 15.2.C). Suppose R is a Σ∗-cofibrant operad in
a base model category C. Let E be a symmetric monoidal category over C.

Let i : M → N be a morphism of right R-modules. Let f : A → B be a
morphism of R-algebras in E. The pushout-product

(i∗, f∗) : SR(M,B)
⊕

SR(M,A)

SR(N,A)→ S(N,B)

forms a cofibration in E if i defines a Σ∗-cofibration, the morphism f is a
cofibration of R-algebras, and A is a cofibrant R-algebra, an acyclic cofibration
if i or f is also acyclic.

Proof. As in §19, we use the notation Ec (respectively, Ea) to refer to the class
of cofibrations (respectively, an acyclic cofibrations) in E . Let I ⊂ Ec (respec-
tively, J ⊂ Ea) be the set of generating cofibrations (respectively, acyclic
cofibrations) of E . By construction, the semi model category of R-algebras is
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cofibrantly generated, with R(I) = {R(i), i ∈ I} as a set of generating cofi-
brations and R(J ) = {R(i), i ∈ I} as a set of generating acyclic cofibrations.
Any cofibrant R-algebra A forms a retract of an R(I)-cell complex in the cat-
egory of R-algebras. Any cofibration of R-algebras f : A → B such that A is
cofibrant forms a retract of a relative R(I)-cell complex.

Lemma 19 asserts that the pushout-product

(i∗, f∗) : SR[M,B]
⊕

SR[M,A]

SR[N,A]→ S[N,B]

forms a Σ∗-cofibration if i defines a Σ∗-cofibration, the object A is an R(Ec)-
cell complex and the morphism f is a relative R(Ec)-complex, an acyclic Σ∗-
cofibration if i is also acyclic or f is a relative R(Ea)-complex. The result
can be extended to morphisms f which are retracts of relative R(Ec)-cell
(respectively, R(Ea)-cell) complexes with a domain A which forms a retract
of a R(Ec)-cell complex.

By applying this result to the term SR(−,−) = SR[−,−](0) of the Σ∗-
objects SR[−,−], we obtain that the morphism

(i∗, f∗) : SR(M,B)
⊕

SR(M,A)

SR(N,A)→ S(N,B)

forms a cofibration (respectively, an acyclic cofibrations) in E under the same
assumptions on i and f . The conclusion follows. ut

The verification of this statement, put off in §15.2, achieves the proof of
theorem 15.2.A. ut
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adjunction
of symmetric monoidal categories over a base, §1.1.8
Quillen adjunction in a model category, §11.1.15
Quillen adjunction in a semi-model category, §12.1.8

associative operad, §3.1.8, §3.1.9
algebras over the associative operad, §3.2.4, §3.2.5
(co)homology of algebras over the associative operad, §13.1.5, §17.3.5
enveloping algebra of algebras over the associative operad, §4.3.6, §§10.2.3-

10.2.4,
Kähler differentials of algebras over the associative operad, §4.4.6, §§10.3.2-

10.3.3
representations of algebras over the associative operad, §4.2.4

algebras over an operad, §3.2
free algebras over an operad, §3.2.13
in Σ∗-objects, §3.2.9, §3.2.10, §9
in functors, §3.2.7, §3.2.8
in right modules over an operad, §9.1
semi-model category of algebras over an operad, §12.3

bimodules over operads, §9.1
extension of structures for, §9.3
functors associated to, §9.2
restriction of structures for, §9.3

Brown’s lemma, §11.1.18, §12.1.6

C-cofibrant objects, §11.1.17,
in the category of Σ∗-objects, §11.4.1
in the category of right modules over an operad, §14.1.2
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C-cofibrations, §11.1.17,
in the category of Σ∗-objects, §11.4.1
in the category of right modules over an operad, §14.1.2

cell complexes
cofibrant cell complexes, §11.1.8
cofibrant cell complexes in dg-modules, §11.2
cofibrant cell complexes in dg-operads, §§12.2.1-12.2.3
cofibrant cell complexes in algebras over dg-operads, §§12.3.6-12.3.8
cofibrant cell complexes in right modules over dg-operads, §14.2
relative cell complexes in cofibrantly generated model categories, §11.1.8

coequalizers
reflexive, §1.2

cofibrations,
B-cofibrations, §§11.1.16-11.1.17
C-cofibrations: see the entry “C-cofibrations”
E-cofibrations: see the entry “E-cofibrations”
enlarged class of, §§11.1.16-11.1.17
generating (acyclic) cofibrations: see the entry “generating (acyclic) cofi-

brations”
Σ∗-cofibrations: see the entry “Σ∗-cofibrations”

cohomology of algebras over operads, §13, §17.3

commutative operad, §3.1.8, §3.1.9
algebras over the commutative operad, §3.2.4, §3.2.5
(co)homology of algebras over the commutative operad, §13.1.5, §17.3.5
enveloping algebra of algebras over the commutative operad, §4.3.5, §§10.2.1-

10.2.2,
Kähler differentials of algebras over the commutative operad, §4.4.5,
representations of algebras over the commutative operad, §4.2.4

composition products
of Σ∗-objects, §2.2, §2.2.2
relative, §5.1.5

connected
Σ∗-objects, §2.1.3
right modules over an operad, §5.1.4

constant
Σ∗-objects, §2.1.2
right modules over an operad, §5.1.4

cotriple construction in operads, §13.3, §17.2
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differential graded modules (dg-modules for short), §1.1.4
the model category of dg-modules, §11.1.9, §11.2
the semi-model category of algebras in dg-modules, §12.3.6

endomorphism operads
for right modules over operads, §9.4
in enriched symmetric monoidal categories, §3.4, §3.4.1
of functors, §3.4.4, §9.4

endomorphism module of a pair, §2.3.1, §8.1.1

enlarged class of cofibrations, §§11.1.16-11.1.17

enveloping
operads, §4.1, §10.1, §17.4
algebras, §4.3, §10.2, §17.4

enriched
category of Σ∗-objects, §2.1.11
category of functors, §2.1.11
functor, §1.1.15
symmetric monoidal category over a base category, §1.1.12
symmetric monoidal model category over a base category, §11.3.4

extension of functors, §7.2.3

extension of structures
of algebras over operads, §3.3.5
of left modules over operads, §3.3.6
of right modules over operads, §7.2, §7.2.1
of bimodules over operads, §9.3

E-cofibrant objects in algebras over operads, §12.3.2

E-cofibrations of algebras over operads, §12.3.2

free
algebra over an operad, §3.2.13
left module over an operad, §3.2.13
operad, §3.1.5
right module over an operad, §7.1

functors
associated to bimodules over operads, §9.2
associated to left modules over operads, §3.2.15
associated to right modules over operads, §5.1.3
associated to Σ∗-objects, §2.1.1
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functors
in the enriched sense, §1.1.15
of symmetric monoidal categories over a base, §1.1.8

generating
Σ∗-objects, §§2.1.12-2.1.15
right modules over an operad, §§7.1.2-7.1.5

generating (acyclic) cofibrations
in a cofibrantly generated model category, §11.1.5
of algebras over an operad, §12.3.A
of dg-modules, §11.1.9
of right modules over an operad, §14.1.A
of Σ∗-objects, §11.4.A
of simplicial sets, §11.1.11
of topological spaces, §11.1.10

homology of algebras over operads, §13, §17.3

hom-objects
of a symmetric monoidal category over the base category, §1.1.12
of the category of Σ∗-objects, §2.1.11
of the category of right modules over an operad, §6.3
of the category of functors, §2.1.11

Kähler differentials, §4.4,
module of Kähler differentials over an operad, §10.3

left modules over an operad, §3.2.9, §3.2.10, §9
extension of structures for, §3.3.6
free objects in, §3.2.13
functors associated to, §3.2.15
model category of, §12.3
restriction of structures for, §3.3.6

Lie operad, §3.1.8,
algebras over the Lie operad, §3.2.4,
(co)homology of algebras over the Lie operad, §13.1.5, §17.3.5
enveloping algebra of algebras over the Lie operad, §4.3.7, §§10.2.5-10.2.7,
Kähler differentials of algebras over the Lie operad, §4.4.7, §§10.3.4-10.3.5
representations of algebras over the Lie operad, §4.2.4

model category
of dg-modules §11.1.9, §11.2
of modules over an associative dg-algebra, §§11.2.5-11.2.10
of right modules over an operad, §14.1
of Σ∗-objects, §11.4
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of simplicial sets, §11.1.11
of topological spaces, §11.1.10
semi-model category: see the entry “semi-model category”

modules
bimodules over operads, §9.1
of Kähler differentials, §4.4, §10.3
left modules over an operad, §3.2.9, §3.2.10, §9
right modules over an operad, §5, §5.1.1

monads associated to
an operad, §3.2.1
a non-unitary operad, §3.2.2

natural transformation
of symmetric monoidal categories over a base, §1.1.8

non-unitary operad, §3.2.2
right modules over a, §5.1.4

operad, §3.1
algebras over an, §3.2.1
bimodules over operads, §9.1
endomorphism, §3.4, §9.4
enveloping operads, §4.1, §10.1, §17.4
left modules over an, §3.2.9, §3.2.10, §9
monads associated to an, §3.2.1
non-unitary, §3.2.2
right modules over an, §5.1.1
semi-model category of operads, §12.2

pointwise tensors
principle of generalized, §0.5

properness axiom
in model categories, §11.1.3, §11.1.4
in semi-model categories §12.1.2, §12.1.11,
for operads, §12.2.B
for algebras over cofibrant operads, §12.4.B

pushout-products, §11.3.1, §11.5.1, §11.6.3, §15.2.C, §15.1.1, §19
pushout-product axiom of symmetric monoidal model categories, §11.3.3

quasi-free
algebras over dg-operads, §12.3.6
dg-operads, §12.2.1
modules over a dg-algebra, §11.2.8
modules over a dg-operad, §14.2.1
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Quillen
adjunction in a model category, §11.1.15
adjunction in a semi-model category, §12.1.8
equivalence in a model category, §11.1.15
equivalence in a semi-model category, §12.1.8

reduced symmetric monoidal categories over a base, §1.1.17
with regular tensor powers, §11.6

reflexive coequalizers, §1.2
in categories of algebras, §3.3

reflexive pairs of morphisms, §1.2

regular tensor powers, §11.6

relative cell complexes, §11.1.6

relative composition product, §5.1.5, §9.2.4
homotopy invariance, §15.3

representations of algebras over operads, §4.2, §13

restriction of functors, §7.2.3

restriction of structures
of algebras over operads, §3.3.5
of bimodules over operads, §9.3
of left modules over operads, §3.3.6
of right modules over operads, §7.2, §7.2.1

right modules over an operad §5, §5.1.1
connected, §5.1.4
constant, §5.1.4
extension of structures for, §7.2, §7.2.1
free, §7.1
functors associated to, §5.1.3
generating, §§7.1.2-7.1.5
hom-objects of the category of, §6.3
model category of, §14.1
restriction of structures for, §7.2, §7.2.1
tensor product of, §6.1
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semi-model category, §12.1
over a model category, §12.1.9
semi-model category of algebras over a cofibrant operad, §12.4,
semi-model category of algebras over an operad, §12.3,
semi-model category of bimodules over operads, §14.3
semi-model category of left modules over an operad, §12.3
semi-model category of operads, §12.2

Σ∗-cofibrant objects, §11.4

Σ∗-cofibrations, §11.4

Σ∗-objects, §2
algebras over an operad in the category of, §3.2.9, §3.2.10, §9
composition product of, §2.2, §2.2.2
constant, §2.1.2
connected, §2.1.3
functors associated to, §2.1.1
generating, §§2.1.12-2.1.15
hom-objects of the category of, §2.1.11
model category of, §11.4
tensor product of, §§2.1.5-2.1.7

symmetric monoidal category, §1.1.2
of functors, §2.1.4
of right modules over an operad, §6.1
of Σ∗-objects, §§2.1.5-2.1.7
over a base, §1.1.2

symmetric monoidal categories over a base, §1.1.2
adjunction of, §1.1.8
enriched, §1.1.12
functors of, §1.1.8
natural transformations of, §1.1.8
reduced, §1.1.17

symmetric monoidal model category, §11.3.3
enriched, §11.3.4
of right modules over an operad, §14
of Σ∗-objects, §11.4
over a base, §11.3.3

symmetric sequences (also called Σ∗-objects), §2

tensor product
of Σ∗-objects, §§2.1.5-2.1.7
of right modules over an operad, §6.1
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twisting cochains
of algebras over dg-operads, §12.3.6
of dg-modules, §11.2.1, §11.2.8
of dg-operads, §12.2.1
of modules over a dg-operad, §14.2.1
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A: the associative operad, §3.1.8, §3.1.9

A, B: some (model) categories

A∆: the category of simplicial objects in a category A, §13.3

C: the commutative operad, §3.1.8, §3.1.9

C: the base symmetric monoidal category, §1.1.2

E : a symmetric monoidal category over the base category, §1.1.2

Ec: the class of cofibrations in E , when E is equipped with a model structure,
§19

E0: a reduced symmetric monoidal category over the base category, §1.1.17

PE : the category of P-algebras in a category E , for P an operad in the base
category, §3.2

EndX : endomorphism operads, §3.4, §3.4.1,

EndX,Y : the endomorphism module of a pair, §2.3.1, §8.1.1

F : the category of functors F : E → E , where E is a fixed symmetric monoidal
category over a base category C, §2.1

F R: the category of functors F : RE → E , §5

P F : the category of functors F : E → PE , §3.2.7, §3.2.8

P F R: the category of functors F : RE → PE , §9
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F0: the category formed by functors F : E → E which vanish on the initial
object 0 ∈ E , §2.1.4

Fr: generators of the category of Σ∗-objects, §2.1.12

F(A,X ): the category of functors F : A → X

F(M): the free operad on a Σ∗-object M , §3.1.5

Γ(G): the Σ∗-object associated to a functor G : E → E , §2.3, §2.3.4

ΓR(G): the right R-module associated to a functor G : RE → E , for R an
operad, §8, §8.1.4

dg k Mod: the category of differential graded k-modules over a ground ring
k, §1.1.4, §11.1.9, §11.2

HomE(−,−): the hom-objects of a category E enriched over the base cate-
gory C, §1.1.12

HomF (−,−): the hom-objects of the category of functors F , §2.1.11

HomM(−,−): the hom-objects of the category of Σ∗-objects M, §2.1.11

HomMR
(−,−): the hom-objects of the category of right modules over an

operad R, §6.3

I: the set of generating cofibrations in a cofibrantly generated (semi-)model
category, §§11.1.5-11.1.8

J : the set of generating acyclic cofibrations in a cofibrantly generated
(semi-)model category, §§11.1.5-11.1.8

k: a ground ring

k Mod: the category of k-modules

L: the Lie operad, §3.1.8

M: the category of Σ∗-objects, §2.1

M R: the category of right modules over an operad R, §5.1

PM: the category of left modules over an operad P, or, equivalently, the
category of P-algebras in Σ∗-objects, §3.2.9, §3.2.10, §9

PM R: the category of bimodules over operads P, R, or, equivalently, the cat-
egory of P-algebras in right R-modules, §9
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M0: the category of connected Σ∗-objects, §2.1

M0
R: the category of connected objects in right modules over an operad R,

§5.1.4

M [X], same as S[M,X]: the Σ∗-object defined by shifting the Σ∗-object M
in the construction (M,X) 7→ S(M,X), §4.1.4, §18.1.1

M ◦N : the composition product of Σ∗-objects, §2.2, §2.2.2

M ◦RN : the relative composition product between right and left modules over
an operad, §5.1.5

MorA(−,−): the morphism sets of a category A

O: the category of operads in the base category C, §3.1.1

OE : the category of operads in a symmetric monoidal category E , §3.1.1

OR: the category of operads in right R-modules, §4.1

Ω1
R : the module of Kähler differentials over an operad, §10.3

Ω1
R (A): the module of Kähler differentials of an algebra A over an operad R,
§4.4, §10.3

1: the unit object
in a symmetric monoidal category, §1.1.2
in Σ∗-objects, §2.1.7
in right modules over an operad, §6.1

P (and also Q, R, S): any operad in the base category C

P(X): the free algebra over an operad P, §3.2.13

φ!: the functor of extension of structures associated to an operad morphism φ
for bimodules, §9.3
for left modules, §3.3.6
for right modules, §7.2
for algebras, §3.3.5

φ∗: the functor of restriction of structures associated to an operad morphism φ
for bimodules, §9.3
for left modules, §3.3.6
for right modules, §7.2
for algebras, §3.3.5

RP(A): the category of representations of an algebra A over an operad P, §4.2
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S(M): the functor on a symmetric monoidal category E associated to a Σ∗-
object M , §2, §2.1.1

S(M,X): the image of an object X ∈ E under the functor S(M) : E → E
associated to a Σ∗-object M , §2, §2.1.1

S[M,X], same as M [X]: the Σ∗-object defined by shifting the Σ∗-object M
in the construction (M,X) 7→ S(M,X), §4.1.4, §18.1.1

SR(M): the functor on R-algebras associated to a right R-module M , for R an
operad, §5, §5.1.3

SR(M,A): the image of an R-algebra A under the functor SR(M) : RE → RE
associated to a right R-module M , §5, §5.1.3

SR[M,A]: the right R-module defined by shifting the right R-module M in the
construction (M,A) 7→ SR(M,A), §18.1

Σr: the symmetric group in r letters

Σ∗: the sequence of symmetric groups

UR(A): the enveloping operad (respectively, algebra) of an algebra over an
operad, §4.1, §4.3 §10.1, §10.2 §17.4

X , Y: some (model) categories

X c: the class of cofibrations in a model category X , §11.1.14, §12.1.4
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