
Introduction

The operads of little discs (and the equivalent operads of little cubes) were
introduced in topology, in the works of Boardman–Vogt [7, 8] and May [47],
for the recognition of iterated loop spaces. We refer to the paper [18], in the
handbook of algebraic topology, for an account of these applications. We also
refer to the literature for the general definition of an operad in a category and
for the precise definition of the little discs operads, which we denote by Dn

throughout this chapter.
The aim of this chapter is to survey new applications of the little discs

operads which were motivated by the works of Kontsevich [42, 43] and
Tamarkin [53] on the deformation-quantization of Poisson manifolds and by
the Goodwillie–Weiss embedding calculus in topology [34, 58]. For our pur-
pose, we also consider the general class of En-operads, which consists of the
operads that are weakly-equivalent to the operad of little n-discs (equiva-
lently, to the operad of little n-cubes). Besides, we deal with En-operads in
the category of differential graded modules, which we similarly define as the
class of operads that are weakly-equivalent (quasi-isomorphic) to the operad
of singular chains on the little n-discs operad (the chain little n-discs operad)
C∗(Dn).

In Kontsevich’s approach, the proof of the existence of deformation-
quantizations of Poisson manifolds reduces to the construction of a compar-
ison map of differential graded Lie algebras between on the one hand, the
Hochschild cochain complex, which governs the deformations of an associa-
tive algebra structure, and on the other hand, the algebra of polyvector fields,
equipped with the Schouten-Nijenhuis bracket of polyvectors, which can be
used to govern the deformations of a Poisson structure on a manifold.

Kontsevich used an explicit definition of such a comparison map in his
first proof of the existence of deformation-quantizations. The theory of E2-
operads actually occurs in a second generation of proofs of this theorem. The
idea is that the differential graded Lie algebra structure of both the Hochschild
cochain complex and the algebra of polyvector fields can be integrated into an
action of a differential graded E2-operad and the algebra of polyvector fields
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is rigid (has a unique realization up to quasi-isomorphism) as an algebra over
an E2-operad.

The action of an E2-operad on the complex of Hochschild cochains was
initially conjectured by Deligne. The proof of the latter statement, now es-
tablished in a wide context (which includes the topological counterpart of the
Hochschild cohomology theory in the stable homotopy theory framework), can
be interpreted as a measure of the degree of commutativity of the Hochschild
cochain complex, regarded as a derived version of the center of associative
algebras.

The algebra of polyvector fields comes actually equipped with the structure
of a 2-Poisson algebra, where in general an n-Poisson algebra refers to a form
of graded Poisson algebra such that the Poisson bracket is an operation of
degree n− 1 (which is actually the case of the Schouten-Nijenhuis bracket for
n = 2). The operad that governs this category of graded Poisson algebras, the
n-Poisson operad Poisn, represents the homology of the operad of little n-discs
H∗(Dn). Therefore, the proof that the algebra of polyvector fields inherits an
action of an E2-operad, and actually, the crux of the operadic proof of the
existence of deformation-quantizations, is equivalent to an operadic formality
claim, which asserts that the chain operads of little 2-discs C∗(D2) is quasi-
isomorphic to the 2-Poisson operad Pois2. In fact, such a statement holds for
all n ≥ 2:

C∗(Dn) ∼ Poisn,

and one the main objectives of this chapter will be to explain this result in
details. For the moment, simply mention that the case n = 2 of this for-
mality claim was established by Tamarkin by using the theory of Drinfeld’s
associators.

This operadic approach gives deep insights on structures carried by the
set of solutions of the deformation-quantization problem, when we consider
the set of all deformation-quantization functors as a whole. Indeed, from
Tamarkin’s arguments, we can deduce the more precise result that a for-
mality quasi-isomorphism for the chain operad of little 2-discs (and as a con-
sequence, a deformation-quantization functor for Poisson manifolds) is asso-
ciated to any Drinfeld associator. This observation hints that the rational
version of the Grothendieck–Teichmüller group GT (Q) acts on the moduli
space of deformation-quantizations just because the set of Drinfeld’s asso-
ciators Ass(Q) defines a torsor under an action of this group. We explain
shortly that this connection reflects a finer identity between the Grothendieck–
Teichmüller group and the group of homotopy automorphisms of E2-operads.
Recall simply for the moment that the Grothendieck–Teichmüller group mod-
els the relations that can be gained from actions of the absolute Galois group
on curves. In deformation-quantization theory, we just consider a pro-algebraic
version of this group.

To complete this overview, let us mention that higher dimensional gen-
eralizations of the deformation-quantization problem, which involve struc-
tures governed by any class of n-Poisson algebras, have been studied by
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Calaque–Pantev–Toën–Vaquié–Vezzosi in the realm of derived algebraic ge-
ometry (see [14]).

The link between the operads of little discs and the embedding calculus
comes from certain descriptions of the Goodwillie–Weiss towers, which are
towers of “polynomial” approximations of the embedding spaces Emb(M,N),
where (M,N) is any pair of smooth manifolds (see [34, 57]). We refer to Arone–
Ching’s paper, in this handbook volume, for a comprehensive introduction to
the embedding calculus.

In what follows, we focus on the case of Euclidean spaces M = Rm,
N = Rn, and we consider a space of embeddings with compact support
Embc(R

m,Rn), whose elements are the embeddings f : Rm ↪→ Rn such that
there exists a compact domain K ⊂ Rm with f pRm \K= i, where i : Rm → Rn

denotes the standard embedding i : (x1, . . . , xm) → (x1, . . . , xm, 0, . . . , 0).
Then we consider an analogously defined space of immersions with compact
support Immc(R

m,Rn) and we take the homotopy fiber of the obvious forgeftul
map Embc(R

m,Rn) → Immc(R
m,Rn). We use the notation Embc(R

m,Rn) for
this space.

In general, one can prove that the Goodwillie–Weiss approximations are
weakly-equivalent to mapping spaces of truncated (bi)modules over the little
discs operads, where the notion of a truncated operadic (bi)module refers
to a a (bi)module which is defined up to some arity only. This result was
established by Arone–Turchin in [3], after a pioneering work of Dev Sinha [50]
on the particular case of the spaces of long knots Embc(R,R

n). In the case of the
space of embeddings with compact support modulo immersions Embc(R

m,Rn),
one can prove further that the Goodwillie–Weiss approximations are weakly-
equivalent to m+ 1-fold loop spaces of mapping spaces of truncated operads
with the little m-discs operad as source object and the little m-discs operad
as target object. This finer result has been established in full generality by
Boavida–Weiss in [10], by an improvement of the methods used in the study of
the Goodwillie–Weiss calculus of embedding spaces, while other authors have
obtained general results on mapping spaces of (truncated) operadic bimodules
which permit one to recover this delooping relation from the results obtained
by Sinha and Arone–Turchin (see the articles of Dwyer–Hess [24] and Turchin
[56] for the case m = 1, and the article of Ducoulombier–Turchin [23] for the
case of general m ≥ 1).

In the case n −m ≥ 3, we can use convergence statements to deduce an
equivalence of total spaces from the operadic interpretation of the Goodwillie–
Weiss tower, so that we have a weak homotopy equivalence:

Embc(R
m,Rn) ∼ Ωm+1 MaphOp(Dm,Dn),

where MaphOp(−,−) denotes a derived mapping space bifunctor on the category
of operads in topological spaces.

The formality of the little discs operads over the rationals can be used
to determine the rational homotopy type of the operadic derived mapping
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spaces MaphOp(Dm,Dn) which occur in this description of the embedding spaces

Embc(R
m,Rn). For this purpose, we use the fact that we have a rational homo-

topy equivalence MaphOp(Dm,Dn) ∼Q MaphOp(Dm,D
Q
n) as soon as n −m ≥ 3,

where DQ
n denotes a rationalization of the topological operad of little n-discs

Dn which is given by an operadic extension of the Sullivan rational homotopy
theory of spaces (we explain this construction with more details later on).
In fact, we use an improved version of the formality which implies that this
rational operad DQ

n has a model 〈H∗(Dn)〉 which is determined by the rational
cohomology of the operad of little n-discs H∗(Dn) = H∗(Dn,Q) (equivalently,
by the dual object of the n-Poisson operad Poisn). This result gives an effective
approach to compute the rational homotopy of the operadic mapping spaces
MaphOp(Dm,Dn), and hence, to compute the rational homotopy of the em-

bedding spaces Embc(Rm,Rn) by the Goodwillie–Weiss theory of embedding
calculus.

Besides the homotopy of the mapping spaces MaphOp(Dm,D
Q
n), we can com-

pute the rational homotopy type of the spaces of homotopy automorphisms
AuthOp(DQ

n) in the category of operads. We will actually see that AuthOp(DQ
2 )

is weakly-equivalent to a semi-direct product GT (Q) n SO(2)Q, where GT (Q)
is the rational Grothendieck–Teichmüller group, and this statement gives
a theoretical explanation for the occurrence of the rational Grothendieck–
Teichmüller group in deformation-quantization. We have an analogue of this
result in the realm of profinite homotopy theory. We explain both statements
in this chapter.

In fact, the main objective of this survey is to explain the result of these
computations of mapping spaces and of homotopy automorphism spaces of
operads. We mainly address this subject. We organize our account as follows.

We devote the first section of our survey to the particular case n = 2 of the
homotopy theory of En-operads. We will explain that the little 2-discs operad
has a model given by an operad shaped on braid groupoids. We use this model
to obtain our weak equivalence between the Grothendieck–Teichmüller group
and the homotopy automorphism space AuthOp(DQ

2 ).
We explain the formality of En-operads in the second section and we tackle

the applications to the computation of the rational homotopy of mapping
spaces of En-operads in the third section. We use graph complexes in the
proof of the formality of En-operads. We therefore retrieve graph complexes,
the graph complexes alluded to in the title of this paper, in our expression
of the rational homotopy of the mapping spaces of En-operads. The ultimate
goal of this survey is precisely to explain this graph complex description of
the rational homotopy type of the mapping spaces of En-operads.

In general, in this chapter, we use the term ‘differential graded module’ and
the language of differential graded algebra, rather than the language of chain
complexes. In fact, we only use the expression ‘(co)chain complex’ for specific
constructions of differential graded modules, like the singular complex of a
topological space, the Hochschild cochain complex, . . . For short, we also use
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the prefix ‘dg’ for any category of structured objects that we may form within
a base category of differential graded modules (like dg-algebras, dg-operads,
. . . ).

In what follows, we generally define a differential graded module (thus, a
dg-module for short) as the structure, equivalent to a (possibly unbounded)
chain complex, which consists of a module M equipped with a Z-graded de-
composition M =

⊕
n∈Z Mn and with a differential δ : M → M such that

δ(M∗) ⊂ M∗−1. If necessary, we use the phrase ‘lower graded dg-modules’ to
refer to the objects of this category of dg-modules.

In some cases, we also deal with ‘upper graded dg-modules’, which are mod-
ules M equipped with a Z-graded decomposition of the form M =

⊕
n∈Z M

n

and with a differential δ : M → M such that δ(M∗−1) ⊂ M∗. In general, we
can use the standard correspondence M∗ = M−∗ to convert an upper graded
dg-module structure into a lower graded dg-module structure, but we prefer
to keep upper graded dg-module structures when this representation is the
usual convention in the literature (for instance, in rational homotopy theory).

We equip the category of dg-modules with its standard tensor product so
that this category inherits a symmetric monoidal structure, with a symmetry
operator defined by using the usual sign rule of homological algebra,

In our study, we freely use the language and the results of the theory
of model categories. In particular, in what follows, we rather use the generic
term ‘weak equivalence’ for the class of quasi-isomorphisms, because the quasi-
isomorphisms represent the class of weak equivalences of the usual model
categories of dg-objects (dg-modules, dg-algebras, dg-operads, . . . ).

1.1 Braids and the homotopy theory of E2-operads

We devote this section to the study of the homotopy of E2-operads.
In general, we have a homotopy equivalence of spaces Dn(r)

∼−→ F (D̊n, r),
for each r ∈ N, where we consider the underlying spaces of the operad of little
n-discs Dn(r), and F (D̊n, r) denotes the configuration space of r points in D̊n.
In the case n = 2, this result implies that D2(r) forms an Eilenberg–MacLane
space K(Pr, 1), where Pr is the pure braid group on r strands in D̊2.

The first purpose of this section is to explain that we can elaborate on this
result in order to get a model of the class of E2-operads in the category of
operads in groupoids. In short, we check that we have a relation D2 ∼ B(CoB),
where we consider the classifying spaces of a certain operad in groupoids, the
operad of colored braids CoB. We will see that this operad CoB governs the
category of strict braided monoidal categories as a category of algebras. We
use a variant of this operad, the operad of parenthesized braids, which we
associate to the category of general braided monoidal categories, in order to
define the Grothendieck–Teichmüller group as a group of automorphisms of
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an operad in the category of groupoids. We will explain that, when we pass
to topological spaces, this identity gives an equivalence between the space
of homotopy automorphisms of the little 2-discs operad and a semi-direct
product of the Grothendieck–Teichmüller group with the group of rotations.
The statement of this result is the second and main objective of this section.
To complete this survey, we also explain the definition of the notion of a
Drinfeld associator from the viewpoint of the theory of operads.

In our constructions, we deal with versions of the Grothendieck–
Teichmüller which are associated to various completions of operads in
groupoids, and as a consequence, we actually consider various completions
of the little 2-discs operad (namely, the profinite completion and the ra-
tionalization) when we examine the relationship between the Grothendieck–
Teichmüller group and the homotopy of E2-operads. In this section, we use
a simple definition of these completion operations which we form at the level
of the groupoid models of our operads. In the next section, we revisit the
definition of the particular case of the rationalization of operads by using the
Sullivan rational homotopy theory of spaces.

1.1.1 The operad of colored braids

Briefly recall that a braid on r-strands is an isotopy class of paths α : [0, 1]→
F (D̊2 × [0, 1], r) with α(t) = (α1(t), . . . , αr(t)) ∈ F (D̊2 × [0, 1], r) such that
αi(t) = (zi(t), t) for each t ∈ [0, 1], and where we assume that α(0) =
(α1(0), . . . , αr(0)) (respectively, α(1) = (α1(1), . . . , αr(1))) is a permutation of
fixed contact points ((z0

1 , 0), . . . , (z0
r , 0)) (respectively, ((z0

1 , 1), . . . , (z0
r , 1))) on

the equatorial line y = 0 of the disc D2×{0} (respectively, D2×{1}). Thus, we
have z0

i = (x0
i , 0) for i = 1, . . . , r, and by convention we can also assume that

the contact points are ordered so that x0
1 < · · · < x0

r. In what follows, we use
the usual representation of the isotopy class of a braid in terms of a diagram
which is given by a projection onto the plane y = 0 in the space D̊2 × [0, 1].
The assumption α(t) ∈ F (D̊2 × [0, 1], r) is equivalent to the requirement that
we have zi(t) 6= zj(t) for all pairs i 6= j. In this definition, we assume that
the strands of a braid are indexed by the set {1, . . . , r}. This assumption is
not standard in the definition of a braid, but we use this convention in our
definition of colored braids. Intuitively, the indices i ∈ {1, . . . , r} are colors
which we assign to the strands of our braids, as in the following picture:

α =

123 4

12 34

3

4
12

. (1.1)

Formally, the operad of colored braids is an operad in the category of
groupoids CoB ∈ Grd Op whose components CoB(r) are groupoids with the
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permutations on r letters as objects and the isotopy classes of colored braids
as morphisms. The source (respectively, the target) of a morphism is the
permutation of the set {1, . . . , r} that corresponds to the permutation of the
contact points ((z0

1 , ε), . . . , (z
0
r , ε)) in the sequence α(0) = (α1(0), . . . , αr(0))

(respectively, α(1) = (α1(1), . . . , αr(1))). For instance, the above example
of colored braid depicts a morphism with the permutation s = (1 3 4) as
source object and the permutation t = (1 4) as target object. The composition
of braids is given by the standard concatenation operation on paths. Note
simply that this operation preserves the indexing when we consider a pair of
composable morphisms in our groupoid. Note also that our convention is to
orient braids from the top to the bottom and we compose braids accordingly.

The action of the symmetric group Σr on CoB(r) is given by the obvious
re-indexing operation of the strands of our braids. The operadic composition
operations ◦i : CoB(k) × CoB(l) → CoB(k + l − 1) are functors which are
defined on morphisms by a cabling operation on the strands of our braids. In
brief, to define a composite α ◦i β, where α ∈ CoB(k) and β ∈ CoB(l), we
insert the braid β on the ith strand of the braid α, as in the example given in
the following picture:

1 2

1 2

12 ◦1

1 2

12

1 2

=

1 2 3

2 31

1
2

3 . (1.2)

The operadic unit 1 ∈ CoB(1) is the trivial braid with one strand. By con-
vention, we also assume that the component of arity zero of the colored braid
operad is identified with the one-point set CoB(0) = ∗.

In the introduction of this section, we mentioned that this operad CoB
governs the category of strict braided monoidal categories. We give more ex-
planations on this interpretation of the colored braid operad later on, when
we explain a similar interpretation of an operad that governs the category of
general braided monoidal categories (see Theorem 1.1.5).

The following theorem gives the connection between the operad of little
2-discs and the operad of colored braids:

1.1.2 Theorem (see [26, Theorem I.5.3.4]). We have an equivalence in the
category of operads in groupoids πD2 ∼ CoB, where πD2 is the operad in
groupoids defined by the fundamental groupoids πD2(r) of the spaces of little
2-discs D2(r), r ∈ N.

In the category of operads in groupoids Grd Op, we say that a morphism
is an equivalence φ : P

∼−→ Q when this morphism defines an equivalence of
categories arity-wise φ : P(r)

∼−→ Q(r), for each r ∈ N. Then we say that
operads in groupoids P,Q ∈ Grd Op are equivalent when these operads can
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be connected by a zigzag of equivalences P
∼←− · ∼−→ · . . . · ∼−→ Q in the category

of operads in groupoids.
We just use that the fundamental groupoid functor is strongly sym-

metric monoidal in order to equip the collection of fundamental groupoids
πD2 = {πD2(r), r ∈ N} with an operad structure. We refer to the cited refer-
ence [26, Theorem I.5.3.4] for the explicit definition of a zigzag of equivalences
of operads in groupoids between this object πD2 and the colored braid operad
CoB.

We can apply the classifying space functor B(−) to go back from the cat-
egory of groupoids towards the category of spaces (or towards the category
of simplicial sets). This functor B : Grd → T op is also strongly symmetric
monoidal, and hence, preserves operad structures. For our purpose, we con-
sider the operad B(CoB) defined by the collection of the classifying spaces of
the colored braid groupoids B(CoB(r)), r ∈ N. We have the following result:

1.1.3 Theorem (Z. Fiedorowicz [25], see also [26, §I.5.2]). We have a weak
equivalence D2 ∼ B(CoB) in the category of topological operads.

This theorem is established in [25] by arguments of covering theory. In [26,
§I.5.3], it is explained that we can also deduce this weak equivalence relation
D2 ∼ B(CoB) from the result of the previous theorem. In brief, the observa-
tion that each space D2(r) is an Eilenberg–MacLane space implies that we
have a weak equivalence of spaces D2(r) ∼ B(πD2(r)), in each arity r ∈ N.
We can elaborate on the proof of this relation to establish that we actually
have a weak equivalence of operads D2 ∼ B(πD2) between the operad of lit-
tle 2-discs D2 and the classifying space of the fundamental groupoid operad
πD2. Then we just use that the equivalence of operads in groupoids of The-
orem 1.1.2 induces a zigzag of weak equivalences of operads in topological
spaces B(πD2) ∼ B(CoB) when we pass to classifying spaces.

1.1.4 The operad of parenthesized braids

The operads of colored braids are not sufficient for our purpose. To define the
Grothendieck–Teichmüller group, we need a variant of this operad, which we
call the parenthesized braid operad PaB.

The objects of the colored braid operad form an operad in sets ObCoB,
which is identified with the permutation operad , the operad Π defined by
the collection of the symmetric groups Π = {Σr, r ∈ N}. The permutation
operad also represents a set-theoretic version of the operad of unital associative
algebras, or in other words, the operad in sets that governs the structure of a
monoid.

To define the operad of parenthesized braids, we just take a pullback of
the operad of coloured braids PaB = ω∗ CoB along a morphism ω : Ω → Π,
where Ω is the operad in sets that governs the category of non-commutative
magmas with a fixed unit element (in another terminology, the category of
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non-commutative non-associative monoids). This operad Ω, the magma op-
erad, has one free generator in arity two µ ∈ Ω(2), equipped with a free action
of the symmetric group Σ2, and an extra arity-zero element ∗ ∈ Ω(0) such
that µ◦1 ∗ = 1 = µ◦2 ∗, where 1 ∈ Ω(1) denotes the operadic unit. In positive
arity, the elements of this operad π ∈ Ω(r) are formal operadic composites of
the operations µ ∈ Ω(2) and (1 2) ∈ Ω(2). The result of these operadic compo-
sition operations can also be represented as planar binary rooted trees with r
leaves indexed by the values of a permutation on r letters σ = (σ(1), . . . , σ(r)),
as in the following examples:

σ · µ =
σ(1) σ(2)

, σ · µ ◦1 µ =

σ(1) σ(2) σ(3)

, σ · µ ◦2 µ =

σ(1) σ(2) σ(3)

, . . . .

In arity zero, we just take Ω(0) = ∗.
The morphism ω : Ω → Π, which we consider in the our pullback operation

PaB = ω∗ CoB, carries µ ∈ Ω(2) to the identity permutation on 2 letters id2 ∈
Σ2. The groupoids PaB(r) underlying this operad PaB = ω∗ CoB are defined
by taking ObPaB(r) := Ω(r) and MorPaB(r)(p, q) := MorCoB(r)(ω(p), ω(q)) for
the morphism sets, for all p, q ∈ Ω(r). The operadic composition operations
are defined by taking an obvious lifting of the composition operations of the
operad of colored braids. In [26, §I.6.2], we represent a parenthesized braid by
a braid whose contact points form the centers of a dyadic decomposition of
the axis y = 0 in the disc D̊2 (a decomposition obtained by dividing intervals
into equal pieces), because one can observe that such decompositions are in
bijection with the elements of the magma operad. For instance, the following
braid

β =

12 34

1 234

. (1.3)

represents a morphism of the groupoid PaB with the object p = (1 2 4) · µ ◦2
(µ ◦1 µ) as source and the object q = (1 4 2 3) · µ ◦1 (µ ◦1 µ) as target.

In the operad PaB, we consider the morphisms

τ =

1 2

12

and α =

1 2 3

1 2 3

, (1.4)

which we call the braiding and the associator respectively.
We aim to give an interpretation of the parenthesized braid operad in

classical algebraic language. The object µ ∈ Ω(2) can be regarded as an
abstract operation on 2 variables µ = µ(x1, x2). We use the notation of a tensor
product for this operation µ(x1, x2) = x1⊗x2, because we are going to see that
µ represents a universal tensor product operation within the operad PaB. The
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element (1 2)µ = µ(x2, x1) represents an operation µ(x2, x1) = x2⊗x1, where
the variables (x1, x2) are transposed when we use this variable interpretation
of our operation. We also get that µ ◦1 µ = µ(µ(x1, x2), x3) represents the
result of the substitution of the variable x1 by the operation µ = µ(x1, x2)
in µ = µ(x1, x2), while µ ◦2 µ = µ(x1, µ(x2, x3)) represents the result of the
substitution of the second variable x2 by the same operation µ = µ(x1, x2)
with an index shift of the variables. We equivalently have µ(µ(x1, x2), x3) =
(x1 ⊗ x2)⊗ x3 and µ(x1, µ(x2, x3)) = x1 ⊗ (x2 ⊗ x3). We accordingly get that
the braiding τ = τ(x1, x2) represents an isomorphism such that

τ(x1, x2) : x1 ⊗ x2 → x2 ⊗ x1 (1.5)

in the morphism set MorPaB(2)(µ, (1 2)µ) of our operad in groupoids PaB, while
the associator α = α(x1, x2, x3) represents an isomorphism such that

α(x1, x2, x3) : (x1 ⊗ x2)⊗ x3 → x1 ⊗ (x2 ⊗ x3) (1.6)

in MorPaB(3)(µ ◦1 µ, µ ◦2 µ). The operadic composition formulas µ ◦1 ∗ = 1 =
µ ◦2 ∗ are equivalent to the relations

x1 ⊗ ∗ = x1 = ∗ ⊗ x1, (1.7)

so that the arity zero object ∗ ∈ Ω(0) = ObPaB(0) can be interpreted as a
unit object with respect to this tensor product operation µ(x1, x2) = x1⊗x2.

We easily see that the braiding and the associator satisfy the following
coherence relations with respect to this unit object:

α(∗, x1, x2) = α(x1, ∗, x2) = α(x1, x2, ∗) = id and τ(x1, ∗) = id = τ(∗, x1).
(1.8)

We easily check, moreover, that the associator satisfies the pentagon relation

x1 ⊗ α(x2, x3, x4) · α(x1, x2 ⊗ x3, x4) · α(x1, x2, x3)⊗ x4

= α(x1, x2, x3 ⊗ x4) · α(x1 ⊗ x2, x3, x4) (1.9)

in PaB, as well as the hexagon relations

x2 ⊗ τ(x1, x3) · α(x2, x1, x3) · τ(x1, x2)⊗ x3

= α(x2, x3, x1) · τ(x1, x2 ⊗ x3) · α(x1, x2, x3),
(1.10)

τ(x1, x3)⊗ x2 · α(x1, x3, x2)−1 · x1 ⊗ τ(x2, x3)

= α(x3, x1, x2)−1 · τ(x1 ⊗ x2, x3) · α(x1, x2, x3)−1.
(1.11)

Note however that the isomorphism τ(x1, x2) is not involutive in the sense that
τ(x2, x1) ·τ(x1, x2) 6= id , because the braid which represents this isomorphism
in the braid group is not involutive either.

From this examination, we conclude that the object µ(x1, x2) = x1⊗x2 ∈
ObPaB(2) can be interpreted as an abstract tensor product operation that
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can be used to govern the structure of a braided monoidal category with
a strict unit, which is given by the arity zero element of our operad ∗ ∈
Ω(0) = ObPaB(0), but where we have a general associativity isomorphism
α = α(x1, x2, x3), which is depicted in Eqn. 1.4 together with the braiding
isomorphism τ = τ(x1, x2). The operad PaB, equipped with these generating
elements, is actually the universal operad that governs such structures, as
shown in the following statement:

1.1.5 Theorem (see [26, Theorem I.6.2.4]). Let M ∈ Cat Op be an operad
in the category of small categories C = Cat. Fixing an operad morphism φ :
PaB → M amounts to fixing a unit object e ∈ ObM(0), a product object
m ∈ ObM(2), an associativity isomorphism a ∈ MorM(3)(m ◦1m,m ◦2m), and
a braiding isomorphism c ∈ MorM(2)(m, (1 2)m) which satisfy the strict unit
relations m ◦1 e = 1 = e ◦1 m together with the coherence constraints of the
unit, pentagon and hexagon relations of Eqn. 1.7-1.11 in the operad M.

This theorem is established in the cited reference. The morphism associ-
ated to the quadruple (m, e, a, c) given in the theorem is obviously determined
by the formulas φ(µ) = m, φ(∗) = e, φ(α) = a and φ(τ) = c. The claim is
that this assignments determines a well-defined morphism on PaB. The proof
of this result follows from a combination of an operadic interpretation of the
MacLane coherence theorem and of the classical presentation of the braid
group by generators and relations. We have an analogous statement for the
operad of colored braids CoB. In this case, we just require a = id in our
statement, because we represent the tensor product operation by the identity
permutation on 2-letters id2 ∈ Σ2 in the object-sets of this operad CoB and
this operation satisfies a strict associativity relation.

Theorem 1.1.5 implies that the category of algebras governed by the op-
erad PaB in the category of categories is identified with a category of braided
monoidal categories with a strict unit but general associativity isomorphisms.
The operad of colored braids CoB has a similar interpretation (already men-
tioned in the introduction), but we then consider the category of braided
monoidal categories with strict associativity identities instead of associativity
isomorphisms. We refer to [26, §I.6.2] for more detailed explanations on these
topics.

1.1.6 The Grothendieck–Teichmüller group

The Grothendieck–Teichmüller group is defined as a group of automorphisms
of the parenthesized braid operad. To be more precise, we have to consider
completions of this operad in applications. These completions operations are
performed at the groupoid level. In what follows, we mainly consider the case
of the Malcev completion, which we denote by GQ̂ for any groupoid G ∈ Grd ,
and the profinite completion, which we denote by Ĝ (yet another natural
example of completion operation is the p-profinite completion, but we do not
consider this variant of the profinite completion in this survey). In all cases,
the considered completion operation does not change the object sets of our
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groupoids and is a natural generalization, for groupoids, of the correspond-
ing classical completion operation on groups. Recall simply that the Malcev
completion of groups is an extension of the classical rationalization of abelian
groups which combines a pro-nilpotent completion with a rationalization op-
eration. In the case of a free group for instance, we can identify the elements
of the Malcev completion with infinite products of iterated commutators with
rational exponents. (We refer to [26, §I.8] for a detailed survey of this subject.)

To define the rationalization of our operad PaB Q̂, we just perform the arity-
wise completion operation PaB Q̂(r) = PaB(r)Q̂. Then we define the rational
Grothendieck–Teichmüller group GT (Q) as the group of automorphisms of
the operad PaB Q̂ which reduce to the identity mapping on the object sets of
our operad. In principle, we regard the object PaB Q̂ as an operad in a cate-
gory of Malcev complete groupoids, where the morphisms satisfy a continuity
constraint, and we assume that our automorphisms satisfy such a condition in
the definition of the Grothendieck–Teichmüller group. But all morphisms are
automatically continuous in the case of the Malcev completion of the operad
PaB (see [26, Proposition I.10.1.5]), and therefore, we can neglect this issue
in what follows.

We use a similar construction to define the profinite completion of our
operad PaB̂and the profinite Grothendieck–Teichmüller group GT .̂ (We just
need to take care of the continuity constraints in the definition of morphisms in
this case.) We examine the definition of automorphisms on these completions
of the parenthesized braid operad to get more insights into the definition
of these Grothendieck–Teichmüller groups. We explain our constructions in
full details in the case of the rational Grothendieck–Teichmüller group only,
because the profinite analogues of these constructions is obvious.

Any morphism φ : PaB → PaB Q̂ admits a unique extension to the com-
pleted operad φ̂ : PaB Q̂ → PaB Q̂. By Theorem 1.1.5, such a morphism
φ : PaB → PaB Q̂ is fully determined by giving a triple (m, a, c) such that
m = φ(µ), a = φ(α) and c = φ(τ). Note that we automatically have φ(∗) = ∗
since PaB(0) = ∗ ⇒ PaB(0)Q̂ = ∗. For our purpose, we also set m = φ(µ) = µ
since we only consider morphisms that are given by the identity mapping on
objects in the definition of the Grothendieck–Teichmüller group.

We necessarily have φ(τ) = τ · τ2ν for some parameter ν ∈ Q, where we
identify τ2 ∈ MorPaB(2)(µ, µ) with an element of the pure braid group on 2
strands P2 and we use the expression τ2ν with ν ∈ Q to represent an element
in the Malcev completion of this group (P2)Q̂. We similarly have φ(α) = α · f
for some morphism f ∈ MorPaB(3)̂Q

(µ ◦1 µ, µ ◦1 µ), which is represented by an

element of the Malcev completion of the pure braid group on three strand
(P3)Q̂. We have P3 = 〈K〉 × 〈x12, x23〉, where K denotes a central element in
P3, which is defined by the expression:

K = , (1.12)
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while x12 and x23 denote the pure braids such that:

x12 = , x23 = . (1.13)

The notation 〈−〉, which we use in this expression P3 = 〈K〉×〈x12, x23〉, refers
to the free group generated by a collection of elements.

We can easily deduce from the unit relation a◦2 ∗ = id that the associator
φ(α) = α · f has no factor in 〈K〉Q̂. Hence, our morphism φ is determined by
an assignment of the form:

φ(µ) := µ, φ(τ) := τ · τ2ν = τλ, φ(α) := α · f(x12, x23), (1.14)

where we set λ = 1+2ν for ν ∈ Q and we assume f = f(x12, x23) ∈ 〈x12, x23〉Q̂.
In what follows, we use the notation of a formal series on two abstract variables
f = f(x, y) to represent this element f in the Malcev completion of the free
group F = 〈x12, x23〉.

One can prove that the unit relations a ◦1 e = id = a ◦2 e in the coherence
constraints of Theorem 1.1.5 are equivalent to the identities:

f(x, 1) = x = f(1, x), (1.15)

while the hexagon relations are equivalent to the following system of equations

f(x, y) · f(y, x) = 1, (1.16)

f(x, y) · xν · f(z, x) · zν · f(y, z) · yν = 1, (1.17)

for a triple of variables (x, y, z) such that zyx = 1. The pentagon equation
is equivalent to the following relation in the Malcev completion of the pure
braid group on 4 strands (P4)Q̂ (respectively, in the profinite completion P4̂):

f(x23, x34)f(x13x12, x34x24)f(x12, x23) = f(x12, x24x23)f(x23x13, x34),
(1.18)

where in general, we use the notation xij for the pure braid group elements
such that:

xij =

i j

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · · . (1.19)

(We refer to [22] and to [26, Proof of Proposition I.11.1.4] for a more detailed
analysis of these equations.)

The composition of morphisms corresponds to the following operation on
this set of pairs (λ, f(x, y)):

(λ, f(x, y)) ∗ (µ, g(x, y)) = (λµ, f(x, y) · g(xλ, f(x, y)−1 · yλ · f(x, y))). (1.20)
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Thus, an element of the Grothendieck–Teichmüller group γ ∈ GT (Q), which
corresponds to a morphism φ : PaB → PaB Q̂ that induce an isomorphism

on the Malcev completion φ̂ : PaB Q̂
'−→ PaB Q̂, can be uniquely determined

by giving a pair (λ, f) ∈ Q×〈x12, x23〉Q̂, which satisfies the constraints of
Eqn. 1.15-1.18 and which is invertible with respect to this composition oper-
ation. A necessary and sufficient condition for this invertibility condition is
given by λ ∈ Q× (see [22] and [26, Proposition I.11.1.5]).

The elements of the profinite Grothendieck–Teichmüller group GT̂have a
similar representation as pairs (λ, f) ∈ Ẑ×〈x12, x23〉 ,̂ where we now consider
the profinite completion of the integers Z for the parameter λ and the profinite
completion of the free group 〈x12, x23〉 for the formal series f = f(x12, x23).
(We just lack a simple characterization of the invertibility of morphisms in
the profinite setting.)

This representation of the elements of the Grothendieck–Teichmüller
group in terms of pairs (λ, f) and the equations of Eqn. 1.15-1.18 are ac-
tually Drinfeld’s original definition of the Grothendieck–Teichmüller group
in [22]. The correspondence between this definition and the operadic defini-
tion which we summarize in this paragraph is established with full details in
the book [26, §I.11.1], but the ideas underlying this operadic interpretation
were already implicitly present in Drinfeld’s work [22]. We also refer to [5]
for another formalization of this interpretation, which uses ideas close to the
language of universal algebra. In the introduction of this chapter, we men-
tioned that the Grothendieck–Teichmüller group was defined by using ideas
of the Grothendieck program in Galois theory. In fact, we have an embedding
Gal(Q̄/Q) ↪→ GT̂which is defined by using an action of the absolute Ga-
lois group on genus zero curves with marked points (see [22]). For the rational
Grothendieck–Teichmüller group, a result of F. Brown’s (see [13]) implies that
we have an analogous embedding GalMT(Z) ↪→ GT (Q), where GalMT(Z) now
denotes the motivic Galois group of a category of integral mixed Tate motives
(see also [21, 55] for the definition of this group and for the definition of this
mapping).

We go back to the definition of the Grothendieck–Teichmüller group

GT (Q) in terms of operad isomorphisms φγ̂ : PaB Q̂
'−→ PaB Q̂. We can regard

the classifying space operad E Q
2 = B(PaB Q̂) as a model for the rationaliza-

tion of the E2-operad E 2 = B(PaB). We deduce from the functoriality of the
classifying space construction that any element γ ∈ GT (Q) induces an auto-

morphism φγ̂ : E Q
2
∼−→ E Q

2 at the topological operad level, and hence, defines

an element in the homotopy automorphism space AuthOp(E Q
2 ). We claim that

this correspondence γ 7→ φγ̂ induces a bijection when we pass to the group of
homotopy classes of homotopy automorphisms. We can deduce this statement
from the following more precise statement:

1.1.7 Theorem (B. Fresse [26, Theorem III.5.2.5]). We have AuthOp(E Q
2 ) ∼

GT (Q) n B(Q).
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The factor B(Q) in the expression of this theorem corresponds to a rational-
ization of the group of rotations SO(2) ∼ B(Z) which acts on the little 2-discs
model of the class of E2-operads E 2 = D2 by rotating the configurations of
little 2-discs in this operad D2. We equip this factor B(Q) with the obvious
additive group structure.

We have MorPaB(2)̂Q
(µ, µ) = (P2)Q̂, and as a consequence, any element of

the Grothendieck–Teichmüller group γ ∈ GT (Q) determines an automorphism
of the Malcev completion of the pure braid group (P2)Q̂ ' Q through its
action on the automorphism group of the object µ ∈ ObPaB(2). We use this
observation to determine the action of the Grothendieck–Teichmüller group
on the group B(Q) that we consider in the definition of the semi-product
GT (Q) n B(Q). (We refer to [26, §III.5.2] for details.)

Let us insist that we consider derived homotopy automorphism spaces in
the statement of this theorem. In the model category approach, these homo-
topy automorphism spaces are defined by taking the actual spaces of homotopy
automorphism spaces associated to a cofibrant-fibrant replacement RQ

2 of our

operad E Q
2 . To associate an element of this derived homotopy automorphism

space to an element of the Grothendieck–Teichmüller group γ ∈ GT (Q), we

use the fact that an automorphism φγ̂ : E Q
2 → E Q

2 automatically admits a

lifting to this cofibrant-fibrant replacement RQ
2 . The claim is that all homo-

topy automorphisms of this cofibrant-fibrant model RQ
2 are homotopic to such

morphisms, and that this correspondence gives all the homotopy of the space
AuthOp(E Q

2 ) up to the factor B(Q).
The book [26, §§III.1-5] gives a proof of this result by using spectral se-

quence methods and an operadic cohomology theory which provides approx-
imations of our homotopy automorphism spaces. This method is close to the
methods which are used in the next sections, when we study the homotopy
automorphism spaces of En-operads for any value of the dimension parameter
n ≥ 2.

We now consider the profinite version of the Grothendieck–Teichmüller
group GT .̂ We take the classifying space operad E 2̂ = B(PaB )̂ as a model for
the profinite completion of the E2-operad E 2 = B(PaB) and we use the same
construction as in the rational setting to define a mapping from the profinite
Grothendieck–Teichmüller group towards the homotopy automorphism space
of this object AuthOp(D 2̂). Then we have the following analogue of the result
of Theorem 1.1.8:

1.1.8 Theorem (G. Horel [37]). We have AuthOp(D 2̂) ∼ GT̂n B(Z )̂.

The article [37] gives a proof of the result of this theorem by using the
correspondence with groupoids. In short, the idea of this paper is to observe
that the operad PaB̂represents a cofibrant object with respect to some model
structure on the category of operads in groupoids. Then we can use model cate-
gory arguments (combined with higher category methods) to prove that we can
transport the computation of the homotopy automorphism space AuthOp(E 2̂)
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to the computation of the homotopy automorphism space associated to this
object PaB in the category of operads in groupoids.

1.1.9 The Drinfeld–Kohno Lie algebra operad

Besides the colored braid and the parenthesized braid operads, which are
defined by using the structures of the braid groups, we consider operads in
Lie algebras which are associated to infinitesimal versions of the pure braid
groups. To be explicit, in these infinitesimal versions, we consider the Drinfeld–
Kohno Lie algebras (also called the Lie algebras of infinitesimal braids), which
are defined by a presentation of the form:

p(r) = L(tij , {i, j} ⊂ {1, . . . , r})/ < [tij , tkl], [tij , tik + tjk] >, (1.21)

for r ∈ N, where L(−) denotes the free Lie algebra functor, we associate a
generator tij such that tij = tji to each pair {i 6= j} ⊂ {1, . . . , r}, and we take
the ideal generated by the commutation relations

[tij , tkl] ≡ 0, (1.22)

for all quadruples {i, j, k, l} ⊂ {1, . . . , r} such that ]{i, j, k, l} = 4, together
with the Yang-Baxter relations

[tij , tik + tjk] ≡ 0, (1.23)

for all triples {i, j, k} ⊂ {1, . . . , r} such that ]{i, j, k} = 3. This definition
makes sense over any ground ring k, but from the next paragraph on, we will
assume that the ground ring is a field of characteristic zero.

Note that this Lie algebra p(r) inherits a weight grading from the free Lie
algebra since this ideal is generated by homogeneous relations. If we use the
notation Lm = Lm(−), for the homogeneous component of weight m of the free
Lie algebra L = L(tij , {i, j} ⊂ {1, . . . , r}), then we have the decomposition
p(r) =

⊕
m≥1 p(r)m, where we set p(r)m = Lm/Lm∩ < [tij , tkl], [tij , tik +

tjk] >, for m ≥ 1. In fact, we have the identity p(r)∗ = grΓ
∗ Pr, where on

the right-hand side we consider the graded Lie algebra of the sub-quotients of
the central series filtration of the pure braid group grΓ

∗ Pr (see [26, Theorem
I.10.0.4] for a detailed proof of this statement).

The collection p = {p(r), r ∈ N} inherits the structure of an operad in
the category of Lie algebras, where we take the direct sum of Lie algebras to
define our symmetric monoidal structure. The action of the symmetric group
Σr on the Lie algebra p(r) is defined, on generators, by the obvious re-indexing
operation σ · tij = tσ(i)σ(j), for all σ ∈ Σr. The composition products are given
by Lie algebra morphisms of the form

◦i : p(k)⊕ p(l)→ p(k + l − 1), (1.24)

defined for all k, l ∈ N and i ∈ {1, . . . , k}, and which satisfy the equivariance,
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unit and associativity relations of operads in the category of Lie algebras. For
generators tab ∈ p(k) and tcd ∈ p(l), we explicitly set:

tab ◦i 0 =



ta+l−1b+l−1, if i < a < b,

tab+l−1 + · · ·+ ta+l−1b+l−1, if i = a < b,

tab+l−1, if a < i < b,

tab + · · ·+ taj+l−1, if a < i = b,

tab, if a < b < i,

(1.25)

and

0 ◦i tcd = tc+i−1d+i−1 for all i. (1.26)

The operadic unit is just given by the zero morphism 0 : 0→ p(1) with values
the zero object p(1) = 0.

In fact, these operations reflect the composition structure of the operad
of colored braids, in the sense that we can identify the components of homo-
geneous weight of this operad p(−)m, m ≥ 1, with the fibers of a tower of
operads CoB / Γm CoB, m ≥ 1, which we deduce from the central series filtra-
tion of the pure braid group. (We refer to [26, §I.10.1] for more explanations
on this correspondence.)

We call this operad p the Drinfeld–Kohno Lie algebra operad. We con-
sider generalizations of this operad when we study the Sullivan model of En-
operads. This subsequent study is our main motivation for the recollections
of this paragraph, but the Drinfeld–Kohno Lie algebra operad also occurs in
the theory of Drinfeld’s associators and in the definition of a graded version
of the Grothendieck–Teichmüller group. We just give a brief overview of this
subject to complete the account of this section.

1.1.10 The operad of chord diagrams and associators

To define the set of Drinfeld’s associators, we consider an operad in groupoids,
the chord diagram operad CD k̂, defined over any characteristic zero field k,
and such that we have the relation CD(r)k̂ = exp p̂(r) for each r ∈ N, where
we consider the exponential group associated to a completion of the Drinfeld
Kohno Lie algebra p̂(r).

To be more precise, we explained in the previous paragraph that the Drin-
feld Kohno Lie algebra admits a weight decomposition p(r) =

⊕
m≥1 p(r)m.

To form the completed Lie algebra p̂(r), we just replace the direct sum of this
decomposition by a product. Thus we have p̂(r) =

∏
m≥1 p(r)m so that the ele-

ments of this completed Lie algebra p̂(r) are represented by infinite series of Lie
polynomials (modulo the ideal generated by the commutation and the Yang-
Baxter relations). The exponential group CD(r)k̂ = exp p̂(r) consists of formal
exponential elements eξ, ξ ∈ p̂(r), together with the group operation given by
the Campbell-Hausdorff formula at the level of the completed Lie algebra
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p̂(r). We identify this group CD(r)k̂ = exp p̂(r) with a groupoid with a single
object when we regard the chord diagram operad CD k̂ = {exp p̂(r), r ∈ N}
as an operad in the category of groupoids. The structure operations of this
operad CD k̂ are induced by the structure operations of the Drinfeld–Kohno
Lie algebra operad on p̂.

We also have an identity CD(r)̂= G(Û(p̂(r))), where we consider the set of
group-like elements G(−) in the complete enveloping algebra of the Drinfeld–
Kohno Lie algebra Û(p̂(r)). Indeed, the group-like elements are identified with
actual exponential series of Lie algebra elements ξ ∈ p(r) within the com-
plete enveloping algebras Û(p̂(r)). The name “chord diagram” comes from the
theory of Vassiliev invariants, where a monomial ti1j1 · · · timjm ∈ Û(p̂(r)) is
associated to a diagram with r vertical strands numbered from 1 to r, and l
chords corresponding to the factors tikjk , as in the following picture:

t12t12t36t24 =

1 2 3 4 5 6
• •

• •
• •
• •

. (1.27)

The composition products of the chord diagram operad have a simple descrip-
tion in terms of chord diagram insertions too.

In the previous paragraph, we explained that the components of homoge-
neous weight of the Drinfeld–Kohno Lie algebra operad represent the fibers
of a tower decomposition of the parenthesized braid operad (and of the col-
ored braid operad equivalently). In fact, a stronger result holds when we work
over a field of characteristic zero. To be more explicit, we consider the Malcev
completion of the operad PaB, and a natural extension of this construction
for ground fields such that Q ⊂ k. Then we may wonder about the existence
of equivalences of operads in groupoids φα̂ : PaB k̂

∼−→ CD k̂, which would be
equivalent to a splitting of this tower decomposition over k. By Theorem 1.1.5,
the morphism of operads in groupoids φa : PaB

∼−→ CD k̂ which would in-
duce such an equivalence on the completion is determined by the choice of a
braiding c ∈ exp p̂(2) and of an associativity isomorphism a ∈ exp p̂(3). The
braiding has the form c = exp(κt12/2), for some parameter κ ∈ k×, since
p̂(2) = k t12, and one can prove that the associator is necessarily of the form
a = exp f(t12, t23), for some Lie power series f(t12, t23) ∈ L̂(t12, t23). Thus,
the existence of an equivalence of operads in groupoids φα̂ : PaB k̂

∼−→ CD k̂
reduces to the existence of such a Lie power series f(t12, t23) ∈ L̂(t12, t23) such
that a = exp f(t12, t23) satisfies the unit, pentagon and hexagon constraints
of Theorem 1.1.5, for some given parameter κ ∈ k×.

The set of Drinfeld’s associators precisely refers to this particular set of
associators a = exp f(t12, t23) which we associate to the chord diagram operad
CD k̂. This notion was introduced by Drinfeld in the paper [22], to which
we also refer for an explicit expression of the unit, pentagon and hexagon
constraints (see also the survey of [26, §I.10.2]). Further reductions occur in the
pentagon and hexagon constraints in the definition of Drinfeld’s associators.
In fact, a result of Furusho (see [30]) implies that the hexagon constraints
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are satisfied as soon as we have a power series that fulfills the unit and the
pentagon constraints.

We have the following main result:

1.1.11 Theorem (V.I. Drinfeld [22]). The set of Drinfeld’s associators is not
empty, for any choice of field of characteristic zero as ground field k (including
k = Q), so that we do have an operad morphism φα : PaB → CDQ̂ which

induces an equivalence when we pass to the Malcev completion φα̂ : PaB Q̂
∼−→

CDQ̂.

In [22], Drinfeld gives an explicit construction of a complex associator by
using the monodromy of the Knizhnik–Zamolodchikov connection. This asso-
ciator, which is usually called the Knizhnik–Zamolodchikov associator in the
literature, can also be identified with a generating series of polyzeta values.
Descent arguments can be used to establish the existence of a rational associ-
ator from the existence of this complex associator (see again [22] and [5] for
different proofs of this descent statement), so that the result of this theorem
holds over k = Q, and not only over k = C. Another explicit definition of an
associator, defined over the reals, is given by Alekseev–Torossian in [1], by
using constructions introduced by Kontsevich in his proof of the formality of
the operads of little discs (see [43]).

1.1.12 The operad of parenthesized chord diagrams, the graded
Grothendieck–Teichmüller group, and other related objects

The existence of associators can be used to get insights into the structure of
the rational Grothendieck–Teichmüller group GT (Q). Indeed, the definition
implies that the set of associators inherits a free and transitive action of the
rational Grothendieck–Teichmüller group. To go further into the applications
of associators, one introduces a parenthesized version of the chord diagram
operad PaCDQ̂ (by using the same pullback construction as in the case of
the parenthesized braid operad PaB) and a group of automorphisms, denoted
by GRT (Q), which we associate to this object PaCDQ̂. One can easily check

that every equivalence of operads in groupoids φâ : PaB Q̂
∼−→ CDQ̂ lifts to an

isomorphism φâ : PaB Q̂
'−→ PaCDQ̂ so that the existence of rational associators

implies the existence of a group isomorphism GT (Q) ' GRT (Q) by passing
to automorphism groups.

This group GRT (Q) is usually called the graded Grothendieck–Teichmüller
group in the literature, because this group is identified with the pro-algebraic
group associated to a graded Lie algebra such that grt =

⊕
m≥0 grtm. We

moreover have grtm ' Fm GT (Q)/ Fm+1 GT (Q), for all m ≥ 1, for some nat-
ural filtration of the Grothendieck–Teichmüller group GT (Q) = F0 GT (Q) ⊃
F1 GT (Q) ⊃ · · · ⊃ Fm GT (Q) ⊃ · · · . We again refer to [22] for a proof of these
results (see also the survey of [26, §I.11.4]).

The groups GT (Q), GRT (Q), and the Lie algebra grt are also related
to other objects of arithmetic geometry and group theory. In §1.1.6, we al-
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ready recalled that, by a result of F. Brown (see [13]), the Grothendieck–
Teichmüller group GT (Q) contains a realization of the motivic Galois group
of a category of integral mixed Tate motives GalMT(Z). In fact, one conjec-
tures that these groups are isomorphic (Deligne-Ihara). Furthermore, one can
prove that the Galois group GalMT(Z) reduces to the semi-direct product of
the multiplicative group with the prounipotent completion of a free group on
a sequence of generators s3, s5, . . . , s2n+1, . . . (see [21]). This result implies
that the embedding GalMT(Z) ↪→ GT (Q) is equivalent to an embedding of the
form k⊕L(s3, s5, . . . , s2n+1, . . . ) ↪→ grt when we pass to the category of Lie
algebras. In this context, one can re-express the Deligne-Ihara conjecture as
the conjecture that this embedding of Lie algebras is an isomorphism.

In our comments on Theorem 1.1.11, we also explained that the Knizhnik–
Zamolodchikov associator represents the generating series of polyzeta val-
ues. The polyzeta values satisfy certain equations, called the regularized
double shuffle relations, which can be expressed in terms of the Knizhnik–
Zamolodchikov associator, and one conjectures that all relations between
polyzetas follow from the double shuffle relations and from the fact that the
Knizhnik–Zamolodchikov associator defines a group-like power series. By a
result of Furusho [31], the pentagon condition for associators implies the reg-
ularized double shuffle relations. This result implies that the Grothendieck–
Teichmüller group embeds in a group defined by solutions of regularized double
shuffle relations with a degeneration condition, and one conjectures again that
this embedding is an isomorphism.

The theory of associators is also used by Alekseev–Torossian in the study
of the solutions of the Kashiwara–Vergne conjecture, a problem about the
Campbell-Hausdorff formula motivated by questions of harmonic analysis.
These authors notably proved in [1] that the set of Drinfeld’s associators
embeds into the set of solutions of the Kashiwara–Vergne conjecture. In par-
ticular, one can deduce the existence of such solutions from the existence of
associators. In addition, one can prove that the action of the Grothendieck–
Teichmüller group on Drinfeld’s associators lifts to the set of solutions of the
Kashiwara–Vergne conjecture. This action is still free so that we get that the
Grothendieck–Teichmüller group embeds into a group of automorphisms as-
sociated to this set of solutions. The conjecture is that this group embedding
is an isomorphism, yet again.

1.2 The rational homotopy of En-operads and formality
theorems

The goal of this section is to explain the definition of rational models of
En-operads and a characterization of the class of En-operads up to rational
homotopy equivalence. In what follows, we just focus on the case n ≥ 2,
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because we can put the case n = 1 apart. Indeed, we have D1 ∼ Π, where
we regard the permutation operad Π = {Σr, r ∈ N} (see §1.1.4) as a discrete
operad in topological spaces. Hence, the class of E1-operads is also identified
with the class of operads that are weakly-equivalent to this discrete operad
Π, and such a class of objects is fixed by the rationalization.

Recall that a map of simply connected topological spaces is a rational ho-

motopy equivalence f : X
∼Q−−→ Y if this map induces a bijection on homotopy

groups f∗ : π∗(X) ⊗Z Q
'−→ π∗(Y ) ⊗Z Q. In what follows, we consider a gen-

eralization of this notion in the context of spaces which, like the underlying
spaces of the little 2-disc operad, are (connected but) not necessarily simply
connected. In this case, we assume that a rational homotopy equivalence also
induces an isomorphism on the Malcev completion of the fundamental group

f∗ : π1(X,x)Q̂
'−→ π1(Y, f(x))Q̂.

In the context of operads, we just consider operad morphisms φ : P
∼Q−−→ Q

which define a rational homotopy equivalence of spaces arity-wise φ : P(r)
∼Q−−→

Q(r). and we write P ∼Q Q when our objects P and Q can be connected by a
zigzag of such rational homotopy equivalences. We aim to determine the class
of operads such that R ∼Q Dn.

We develop a rational homotopy theory of operads to address this problem.
We rely on the Sullivan rational homotopy of spaces, which we briefly review
in the next paragraph. We explain the construction of an operadic extension
of the Sullivan model afterwards. We eventually check that the n-Poisson
cooperad, the dual structure of the n-Poisson operad, defines a Sullivan model
of the little n-discs operad Dn, and as such determines a model for the class
of En-operads up to rational homotopy. We need a cofibrant resolution of the
n-Poisson cooperad to perform computations with this model. We will explain
that such a cofibrant resolution is given by the Chevalley–Eilenberg cochain
complex of a graded version of the Drinfeld–Kohno Lie algebra operad of the
previous section. We actually consider another resolution in our construction,
namely a cooperad of graphs, and we also explain the definition of this object.
We use the latter model in the next section, when we explain a graph complex
description of the rational homotopy type of mapping spaces of En-operads.

In order to apply the methods of rational homotopy theory, we take k = Q
as a ground ring for our categories of modules from now on, and we also
consider the cohomology with coefficients in this field H∗(−) = H∗(−,Q). We
similarly take H∗(−) = H∗(−,Q) for the homology.

1.2.1 Recollections on the Sullivan rational homotopy theory of
spaces

Recall that we call ‘upper graded dg-module’ the structure formed by a module
M equipped with a decomposition such that M =

⊕
n∈Z M

n and with a dif-
ferential δ : M →M such that δ(M∗−1) ⊂M∗. We say that such a dg-module
M is non-negatively graded when we have Mn = 0 for n < 0. Let dg∗ Com
be the category of commutative algebras in upper non-negatively graded dg-
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modules (the category of commutative cochain dg-algebras for short). The
Sullivan model for the rational homotopy of a space takes values in this cate-
gory dg∗ Com and is obtained by applying the Sullivan functor of PL differen-
tial forms, a version of the de Rham cochain complex which is defined over Q
(instead of R) and on the category of simplicial complexes (or simplicial sets),
instead of the category of smooth manifolds (see [52]). For our purpose, we
consider the simplicial set variant of this functor:

Ω∗ : sSetop → dg∗ Com . (1.28)

In the particular case of a simplex ∆n = {0 ≤ x1 ≤ · · · ≤ xn ≤ 1}, we
explicitly have:

Ω∗(∆n) = Q[x1, . . . , xn, dx1, . . . , dxn], (1.29)

where dx1, . . . , dxn represents the differential of the variables x1, . . . , xn in
this commutative cochain dg-algebra.

The Sullivan functor Ω∗ : sSetop → dg∗ Com has a left adjoint

G• : dg∗ Com → sSetop, (1.30)

which is given by the formula G•(A) = Mordg∗ Com(A, Ω∗(∆•)), for any com-
mutative cochain dg-algebra A ∈ dg∗ Com, and this pair of adjoint functors
(G•, Ω) defines a Quillen adjunction. (We refer to [12] for this application of
the formalism of model categories to Sullivan’s constructions.) Then we set:

〈A〉 := derived functor of G•(A) = Mordg∗ Com(RA, Ω
∗(∆•)), (1.31)

where RA
∼−→ A is any cofibrant resolution of A in dg∗ Com. If X satisfies

reasonable finiteness and nilpotence assumptions, then the space

XQ := 〈Ω∗(X)〉 (1.32)

defines a rationalization of the space X in the sense that we have the identities

π∗(X
Q) :=

{
π∗(X)⊗Z Q, for ∗ ≥ 2,

π1(X)Q̂, for ∗ = 1,
(1.33)

where we again use the notation (−)Q̂ for the Malcev completion functor on
groups. Besides, one can prove that the unit of the derived adjunction relation
between the functors G• and Ω∗ defines a map η : X → XQ which corresponds
to the usual rationalization map at the level of these homotopy groups.

1.2.2 The category of Hopf cochain dg-cooperads

To extend the Sullivan model to operads, the idea is to consider cooperads
in the category of commutative cochain dg-algebras, where the cooperad is a
structure which is dual to an operad in the sense of the theory of categories.

In general, a cooperad in a symmetric category C consists of a collection
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of objects C = {C (r), r ∈ N}, together with an action of the symmetric group
Σr on C (r), for each r ∈ N, and composition coproducts

◦∗i : C (k + l − 1)→ C (k)⊗ C (l), (1.34)

defined for all k, l ∈ N, i ∈ {1, . . . , k}, and which satisfy equivariance, unit
and coassociativity relations dual to the equivariance, unit and coassociativ-
ity axioms of operads. To handle difficulties, we consider a subcategory of
cooperads such that C (0) = C (1) = 1 where 1 is the unit object of our base
category, and we use the notation Opc∗1 for this category of cooperads. This
restriction enables us to simplify some constructions, because the composition
coproducts are automatically conilpotent when we put the component of arity
zero apart and we assume C (1) = 1. In some cases, we consider a category of
cooperads Opc∗N such that we still have C (0) = 1, but where C (1) may not
reduce to the unit object. More care is necessary in this case, and we actually
assume an extra conilpotence condition for the composition coproducts that
involve the component of arity one. (We refer to [27] for the precise expression
of this conilpotence condition.)

In [26, §II.12] the author considers a category of Λ-cooperads, whose ob-
jects have no term in arity zero, but a diagram structure over the category of
finite ordinals and injective maps which extends the action of the symmetric
groups on ordinary operads. This category of Λ-cooperads is isomorphic to
the category of cooperads which we consider in this paragraph Opc∗1, so that
the results of this reference [26] can immediately be transposed to our setting.
(The structure of a Λ-cooperad is used to overcome technical difficulties that
occurs in the construction of the Sullivan model of operads, but we can neglect
these issues in this overview.)

We use the name ‘Hopf cochain dg-cooperad’ for the category of cooperads
in the category of commutative cochain dg-algebras C = dg∗ Com and we also
adopt the notation dg∗Hopf Opc∗1 for this category of cooperads. We also
consider a category of operads in simplicial sets satisfying P(0) = P(1) = ∗ in
order to deal with the restrictions imposed by the definition of our category
of cooperads in our model. We use the notation sSet Op∗1 for this category
of operads. We have the following statement:

1.2.3 Theorem (B. Fresse [26, §II.10, §II.12]).

– The letf adjoint of the Sullivan functor G• : dg∗ Com → sSetop induces
a functor G• : dg∗Hopf Opc∗1 → sSet Opop∗1 from the category of Hopf
cochain dg-cooperads dg∗Hopf Opc∗1 to the category of operads in simpli-
cial sets sSet Opop∗1. For an object A ∈ dg∗Hopf Opc∗1, we set

G•(A)(r) = G•(A(r))

and we use the fact that G•(−) is strongly symmetric monoidal to equip
the collection of these simplicial sets G•(A) = {G•(A(r)), r ∈ N} with the
structure of an operad.



24 Handbook of Homotopy Theory

– This functor G• : dg∗Hopf Opc∗1 → sSet Opop∗1 admits a right adjoint

Ω∗] : sSet Opop∗1 → dg∗Hopf Opc∗1

and the pair of functors (G•, Ω
∗
] ) defines a Quillen adjunction.

– For a cofibrant operad P ∈ sSet Op∗1 such that H∗(P(r)) forms a finite
dimensional Q-module in each arity r ∈ N and in each degree ∗ ∈ N, we
have a weak equivalence

Ω∗] (P)(r)
∼−→ Ω∗(P(r))

between the component of arity r of the Hopf cochain dg-cooperad Ω∗] (P) ∈
dg∗Hopf Opc∗1 and the image of the space P(r) under the Sullivan functor
Ω∗(−), for any r ∈ N.

The first claim of this theorem follows from the observation that the functor
G•(−) is strongly symmetric monoidal. The functor Ω∗(−), on the other hand,
is only weakly monoidal. To be more precise, in the case of this functor, we
have a Künneth morphism ∇ : Ω∗(X)⊗ Ω∗(Y )→ Ω∗(X × Y ) which is a quasi-
isomorphism but not an isomorphism. Hence, for an operad in simplicial sets
P, we only get that the composition product ◦i : P(k) × P(l) → P(k + l −
1) induces a morphism which fits in a zigzag of morphisms of commutative

cochain dg-algebras Ω∗(P(k+l−1))
◦∗i−→ Ω∗(P(k)×P(l))

∼←− Ω∗(P(k))⊗Ω∗(P(l)).
The idea is to use the adjoint lifting theorem (see for instance [11, §4.5]) to
produce the functor of the second claim of the theorem Ω∗] : sSet Opop∗1 →
dg∗Hopf Opc∗1 and to fix this problem. Then the crux lies in the verification
of the third claim, for which we refer to the cited reference.

For an operad in simplicial sets P ∈ sSet Op∗1, we now set:

PQ := 〈R Ω∗] (P)〉,

where we use the notation R Ω∗] (−) for the right derived functor of the functor

of the previous theorem Ω∗] : sSet Opop∗1 → dg∗Hopf Opc∗1, and we again use
the notation 〈−〉 for the left derived functor of the Sullivan realization on op-
erads G• : dg∗Hopf Opc∗1 → sSet Opop∗1. The equivalence Ω∗] (P)(r) ∼ Ω∗(P(r))
implies that we have the following result at the level of this realization:

1.2.4 Theorem (B. Fresse [26, Theorem II.10.2.1 and Theorem II.12.2.1]).
For any operad P ∈ sSet Op∗1 such that H∗(P(r)) = H∗(P(r),Q) forms a finite
dimensional Q-module in each arity r ∈ N and in each degree ∗ ∈ N, we have:

PQ(r) ∼ P(r)Q,

where we consider the component of arity r of the operad PQ on the left-hand
side and the Sullivan rationalization of the space P(r) on the right-hand side.
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For the operad of little n-discs Dn, we now set R Ω∗] (Dn) = Ω∗] (En),
where En is any cofibrant model of En-operad in simplicial sets such that
En(0) = En(1) = ∗, and we still write DQ

n = 〈R Ω∗] (Dn)〉. To apply the rational
homotopy theory to the class of En-operads, we aim to determine the model
of these objects R Ω∗] (Dn).

Recall that we have a homotopy equivalence Dn(r) ∼ F (Rn, r) between the
underlying spaces of the operad of little n-discs Dn(r) and the configuration
spaces of the Euclidean space F (Rn, r). (In §1.1.1, we use an equivalent ho-

motopy equivalence Dn(r) ∼ F (D̊
n
, r), where we take the open disc D̊

n ∼= Rn

rather than the Euclidean spaces Rn.) In a first step, we recall the following
result about the cohomology algebras of these spaces:

1.2.5 Theorem (V.I. Arnold [2], F. Cohen [20]). Let n ≥ 2. For each r ∈ N,
the graded commutative algebra H∗(Dn(r)) ' H∗(F (Rn, r)) has a presentation
of the form:

H∗(F (Rn, r)) =

∧
(ωij , 1 ≤ i < j ≤ r)

(ω2
ij , ωijωik − ωijωjk + ωikωjk)

where the elements ωij correspond to cohomology classes of degree n− 1.

In the expression of this theorem, the notation
∧

(−) represents the free
graded commutative algebra generated by the variables ωij . The result estab-
lished by V.I. Arnold in [2] concerns the case n = 2 of this statement. The
already cited work of F. Cohen [20] gives the general case n ≥ 2. We also refer
to Sinha’s survey [51] for a gentle introduction to the computation of this theo-
rem. The classes ωij ∈ H∗(F (Rn, r)) represent the pullbacks of the fundamental
class of the n− 1-sphere ω ∈ H∗(Sn−1) under the maps πij : F (Rn, r)→ Sn−1

such that πij(a1, . . . , ar) = (aj−ai)/||aj−ai||. We can also consider unordered
pairs {i, j} in this definition. We just have ωij = (−1)nωji in this case, since
ωij corresponds to the image of ωji under the action of the antipodal map on
the sphere. In what follows, we refer to these cohomology classes ωij as the
Arnold classes, we refer to the identity ωijωik − ωijωjk + ωikωjk = 0 as the
Arnold relation, and we refer to the presentation of the above theorem as the
Arnold presentation.

The homology of the operad Dn now inherits the structure of an operad in
graded modules. The cohomology H∗(Dn) inherits a dual cooperad structure,
because the homology of the spaces Dn(r) has a finite dimension as a Q-module
in each arity and in each degree, so that we have the arity-wise duality relation
H∗(Dn(r)) = HomgrMod(H∗(Dn(r)),Q) in the category of graded modules. Note
that we have Dn(0) = ∗ ⇒ H∗(Dn(0)) = Q and Dn(1) ∼ ∗ ⇒ H∗(Dn(1)) = Q,
so that the collection H∗(Dn) = {H∗(Dn(r), r ∈ N} satisfies our connectedness
condition in the definition of a cooperad. One can easily check that this coop-
erad structure is compatible with the graded commutative algebra structure
of the cohomology, so that the object H∗(Dn) actually forms a Hopf cooperad
in the category of graded modules.
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We aim to determine this cooperad structure. We use the following identity,
already mentioned in the introduction of this chapter:

1.2.6 Theorem (F. Cohen [20]). For n ≥ 2, we have an isomorphism of
operads in graded modules H∗(Dn) ' Poisn, where Poisn is the operad that
governs the category of n-Poisson algebras.

Recall that the structure of an n-Poisson algebra refers to a graded version
of Poisson structure where we have a commutative product µ(x1, x2) = x1x2

of degree 0 and a Poisson bracket λ(x1, x2) = [x1, x2] of degree n − 1. This
Poisson bracket satisfies the symmetry relation λ(x1, x2) = (−1)nλ(x2, x1),
a graded version of the Jacobi identity and of the Poisson distribution rela-
tion. The n-Poisson operad Poisn is defined by the corresponding presentation
by generators and relations in the category of operads. Equivalently, we can
represent an element of the graded module Poisn(r) as a Poisson polynomial
π = π(x1, . . . , xr) of degree one in each variable xi.

For our purpose, we actually consider a unitary version of the n-Poisson
operad, where we have an extra arity zero operation e ∈ Pois(0) such that
µ ◦1 e = 1 = µ ◦2 e and λ ◦1 e = 0 = λ ◦2 e. This operation corresponds
to a unit in the structure of an n-Poisson algebra and reflects the identity
Dn(0) = ∗ at the level of the topological operad Dn.

We get the following result when we pass to the cohomology:

1.2.7 Proposition. The cohomology algebras H∗(Dn(r)), r ∈ N, form a Hopf
cooperad in graded modules such that H∗(Dn) ∼= Poiscn, where Poiscn denotes
the cooperad dual to Poisn in graded modules.

The n-Poisson cooperad Poiscn is explicitly defined by taking the dual
graded modules of the components of the n-Poisson operad Poiscn(r) =
HomgrMod(Poisn(r),Q). We take the adjoint morphisms of the composition
products of the n-Poisson operad to provided this collection of graded mod-
ules Poiscn(r) with a cooperad structure. Therefore, the relation of this propo-
sition H∗(Dn) ∼= Poiscn follows from the result of the previous theorem
H∗(Dn) ∼= Poisn and the duality between the homology and the cohomology
H∗(Dn(r)) = HomgrMod(H∗(Dn(r)),Q).

Let 〈−,−〉 : Poisn(r) ⊗ H∗(D(r)) → Q denote the duality pairing which
we obtain by using this relation H∗(Dn) ∼= Poisn. For a Poisson monomial
π(x1, . . . , xr) ∈ Poisn(r), we have the formula:

〈ωij , π(x1, . . . , xr)〉 =

{
1, if π(x1, . . . , xr) = x1 . . . [xi, xj ] · · · x̂j · · ·xr,
0, otherwise,

where we consider the generating classes ωij ∈ H∗(F (Rn, r)) = H∗(D(r)) of the
Arnold presentation of Theorem 1.2.5. This duality relation is immediate in
arity 2, because the Poisson bracket operation λ = λ(x1, x2) corresponds to
the fundamental class of the n − 1-sphere in the homology of Dn(2), where
we use the relation Dn(2) ∼ F (Rn, r) ∼ Sn−1. The general formula follows
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from the fact that the maps πij : F (Rn, r)→ F (Rn, 2) in the definition of the
classes ωij correspond to composites with the zero-ary operation ∗ ∈ Dn(0)
which represents our algebra unit e ∈ Poisn(0) when we pass to the n-Poisson
operad Poisn. We refer to the paper [51] for a more thorough study of this
duality relation between the n-Poisson polynomials and the elements of the
cohomology algebras H∗(Dn(r)) = H∗(F (Rn, r)) in the Arnold presentation.

We can now regard the object Poiscn ' H∗(Dn) as a Hopf cochain dg-
cooperad equipped with a trivial differential. We have to make explicit a
cofibrant resolution of this object for the applications of our methods of the
rational homotopy theory of operads. In the next paragraphs, we explain a
first definition of such a resolution by using graded analogues of the Drinfeld–
Kohno Lie algebra operad of the previous section.

1.2.8 The graded Drinfeld–Kohno Lie algebra operads and the as-
sociated Chevalley–Eilenberg cochain complexes

The graded analogues of the Drinfeld–Kohno Lie algebra operad, which we
define for every value of the parameter n ≥ 2, are denoted by pn. The ungraded
Drinfeld–Kohno Lie algebra operad of §1.1.9 corresponds to the case n = 2.
Thus, we have p = p2 with the notation of §1.1.9.

To define the Lie algebras pn(r), we use the same presentation as in
Eqn. 1.21:

pn(r) = L(tij , {i, j} ⊂ {1, . . . , r})/ < [tij , tkl], [tij , tik + tjk] >, (1.35)

but we now take deg(tij) = n−2 and we assume the graded symmetry relation
tji = (−1)ntij , for every pair {i, j} ⊂ {1, . . . , r}. Then we take the same
construction as in §1.1.9 to provide these Lie algebras with an action of the
symmetric groups and with additive composition products ◦i : pn(k)⊕pn(l)→
pn(k+ l− 1), so that the collection pn = {pn(r), r ∈ N} inherits the structure
of an operad in the category of graded Lie algebras.

Note that the graded Lie algebras pn(r) still inherit a weight grading from
the free Lie algebra, and hence, form weight graded objects in the category of
graded modules. Besides, we can form a completed version of the operads p̂n,
as in the case n = 2 in §1.1.9, but for n ≥ 3, we trivially have p̂n = pn because
the components of homogeneous weight m ≥ 1 of the Lie algebras pn(r) are
concentrated in a single degree ∗ = m(n − 2) and we have m(n − 2) → ∞
when n ≥ 3.

We consider the Chevalley–Eilenberg cochain complexes C∗CE(ĝ) associated
to the complete Lie algebras ĝ = p̂n(r). The cofibrant objects of the category
of commutative cochain dg-algebras are retracts of dg-algebras of the form
R = (S(V ), ∂), where S(V ) is the symmetric algebra on an upper graded dg-
module V equipped with a filtration F1 V ⊂ F2 V ⊂ · · · ⊃ Fm V ⊂ · · · ⊂ V
and where we have a differential ∂ such that ∂(Fm V ) ⊂ S(Fm−1 V ). The
Chevalley–Eilenberg cochain complex is precisely defined by an expression of
this form C∗CE(g) = (S(Q[−1]⊗ ĝ∨), ∂), where Q[−1] = Q e denotes the graded
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module generated by a single element e in lower degree −1 (equivalently, in
upper degree one) and ĝ∨ denotes the (continuous) dual of the completed Lie
algebra ĝ = p̂n(r). The differential ∂ is induced by the dual map of the Lie
bracket [−,−] on ĝ.

The commutative cochain dg-algebras C∗CE(p̂n(r)) inherit an action of
the symmetric groups by functoriality of the Chevalley–Eilenberg cochain
complex, as well as composition coproducts ◦∗i : C∗CE(p̂n(k + l − 1)) →
C∗CE(p̂n(k)) ⊗ C∗CE(p̂n(l)), which are given by the composites of the mor-
phisms ◦∗i : C∗CE(p̂n(k + l − 1)) → C∗CE(p̂n(k) ⊕ p̂n(l)) induced by the
composition products of the operad pn with the Künneth isomorphisms
C∗CE(p̂n(k) ⊕ p̂n(l)) ' C∗CE(p̂n(k)) ⊗ C∗CE(p̂n(l)). Hence, we get that the col-
lection C∗CE(p̂n) = {C∗CE(p̂n(r)), r ∈ N} inherits the structure of Hopf cochain
dg-cooperad. In addition, one can prove that this Hopf cochain dg-cooperad
is cofibrant (see [26, Theorem II.14.1.7]).

Then we have the following statement:

1.2.9 Theorem (T. Kohno [40]). We have a quasi-isomorphism of commu-
tative cochain dg-algebras

C∗CE(p̂n(r))
∼−→ H∗(F (D̊n, r))

such that t∨ij 7→ ωij for each pair {i, j} ⊂ {1, . . . , r} and p∨ 7→ 0 when p∨ is
the dual basis element of a homogeneous Lie polynomial p ∈ pn(r)m of weight
m > 1.

The cited reference gives the case n = 2 of this statement. The general
result can be deduced from the observation that the cohomology algebra
H∗(F (D̊n, r) forms a Koszul algebra with the enveloping algebra of the Lie
algebra pn(r) as dual associative algebra. We refer to [26, Theorem II.14.1.14]
for further explanations on this approach.

Now we can easily check that the quasi-isomorphisms of this theorem pre-
serve cooperad structures. Hence, we get the following statement:

1.2.10 Proposition. The quasi-isomorphisms of Theorem 1.2.9 define a weak
equivalence of Hopf cochain dg-cooperads

C∗CE(p̂n)
∼−→ H∗(Dn) = Poiscn,

where we regard the cohomology of the little n-discs operad H∗(Dn) as a Hopf
cochain dg-cooperad equipped with a trivial differential.

We deduce from this proposition that the object C∗CE(p̂n) defines a cofi-
brant resolution of the object Poiscn = H∗(Dn) in the category of Hopf cochain
dg-cooperads. In our constructions, we actually consider a second cofibrant
resolution, which is given by a Hopf cochain dg-cooperad of graphs Graphscn,
and we explain the definition of this object in the next paragraph.
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1.2.11 The graph cooperad

The Hopf cochain dg-cooperad Graphscn precisely consists of graphs γ ∈
Graphscn(r) with unnumbered internal vertices • and external vertices indexed
by 1, . . . , r, as in the following picture:

γ =
•

1 2 3
. (1.36)

The degree of such a graph is determined by assuming that each internal vertex
• contributes to the degree by deg(•) = n and that each edge contributes
to the degree by deg(−) = 1 − n (in the lower grading convention). Thus,
we have deg(γ) = (1 − n)v + ne (in the lower grading convention again),
where v denotes the number of internal vertices and e denotes the number
of edges in the graph γ ∈ Graphscn(r). In fact, we can regard our graphs as
tensor products of symbolic elements given by the internal vertices and by the
edges of our objects. In particular, we assume that graphs equipped with odd
symmetries vanish in Graphscn(r). We also assume that each edge is oriented
and that a reversal of orientation is equivalent to the multiplication by a sign
(−1)n in Graphscn(r). For our purpose, we allow graphs with double edges,
but not loops (edges with the same origin and endpoint) and we assume that
each internal vertex is at least trivalent though the latter conditions are not
essential. Besides, we assume that each connected component of our graph
contains at least one external vertex.

The differential of graphs is defined by contracting edges in order to merge
internal vertices together or in order to merge internal vertices with external
vertices, as shown schematically in the following picture:

δ

· · ·
•
•
· · ·

=
· · ·
•
· · ·

and δ

· · ·
· · · • · · ·

i
=

· · ·
i

. (1.37)

For instance, we have the formula:

δ
•

1 2 3
=

1 2 3
±

1 2 3
±

1 2 3
(1.38)

in Graphscn(3). The product is given by the amalgamated sum of graphs along
external vertices. For instance, we have the formula:

1 2 3
=

1 2 3
·

1 2 3
. (1.39)

The cooperad coproduct ◦∗i : Graphscn(k+l−1)→ Graphscn(k)⊗Graphscn(l),
where we fix k, l ∈ N, i ∈ {1, . . . , k}, has the form ◦∗i (γ) =

∑
α⊂γ γ/α ⊗ α,

where the sum runs over all the subgraphs α ⊂ γ that contain the external
vertices indexed by i, . . . , i + l − 1, and γ/α denotes the graph obtained by
collapsing this subgraph to a single external vertex (which we index by i in
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the result of the operation, while we shift the index of the vertices such that
j > i by j 7→ j − l + 1). Note that we have Graphscn(1) 6= Q in general, so
that our object Graphscn belongs to the extended category of Hopf cochain dg-
cooperads dg∗Hopf Opc∗N but not to the category of connected Hopf cochain
dg-cooperads dg∗Hopf Opc∗1.

We easily see that the commutative cochain dg-algebras of graphs de-
fined in this paragraph Graphscn(r) have a structure of the form Graphscn(r) =
(S(Q[−1]⊗ICGraphscn(r)), ∂) (like the Chevalley–Eilenberg cochain dg-algebras
of the previous paragraph), where ICGraphscn(r) is a complex of graphs which
are connected when we remove the external vertices inside Graphscn(r). (In
what follows, we refer to such graphs as internally connected graphs.) We
just perform an extra degree shift in the definition of this complex of in-
ternally connected graphs in order to get a Q[−1] factor on the generating
dg-module of our symmetric algebra (as in the definition of the Chevalley–
Eilenberg cochain complex of a Lie dg-algebra). We can actually use this ex-
pression to identify the object ICGraphscn(r) with the dual of an L∞-algebra (a
strongly homotopy Lie algebra). We can use this symmetric algebra structure
Graphscn(r) = (S(Q[−1]⊗ICGraphscn(r)), ∂) to prove that Graphscn forms a cofi-
brant object in the category dg∗Hopf Opc∗N , and we also have the following
proposition:

1.2.12 Proposition (M. Kontsevich [43]). We have a quasi-isomorphism of
Hopf dg-cooperads

Graphscn
∼−→ H∗(Dn) = Poiscn

which carries the graph γij ∈ Graphscn(r) with a single edge i j to the Arnold
class ωij and which cancel the internally connected graphs with a non-empty
set of internal vertices.

The assignment of this proposition determines the map Graphscn(r)
∼−→

H∗(Dn(r)) as a morphism of graded commutative algebras since the internally
connected graphs generate the object Graphscn(r) as a graded commutative
algebra. (Note that the graphs γij of the proposition represent the internally
connected graphs with an empty set of internal vertices.) We just check that
this map preserves differentials (and hence, gives a well-defined morphism of
commutative cochain dg-algebras in each arity r ∈ N), as well as the cooperad
structures, so that our collection of maps define a morphism of Hopf dg-
cooperads. We refer to the cited reference [43] and to [46] for a proof that this
morphism defines a quasi-isomorphism. Observe simply that the differential
identity of Eqn. 1.38 is carried to the Arnold relation in H∗(Dn(3)).

Recall that we set R Ω∗] (Dn) = Ω∗] (En) for the topological operad of little
n-discs Dn, where En is any cofibrant model of En-operad in simplicial sets
such that En(0) = En(1) = ∗. We have the following result:

1.2.13 Theorem (B. Fresse and T. Willwacher [29, Theorem A’]). We have
the relation

Poiscn ∼ R Ω∗] (Dn),
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in the category of Hopf cochain dg-cooperads.

This theorem asserts that the operad of little n-discs is formal in the
sense of our operadic counterpart of the Sullivan rational homotopy theory
of spaces. The cited reference [29, Theorem A’] proves an intrinsic formality
theorem which implies this operadic formality result in the case n ≥ 3. (In the
next statement, we will explain that the case n = 2 of this theorem follows
from the existence of Drinfeld’s associators.)

The result of this theorem can also be deduced from Kontsevich’s proof
of the formality of En-operads when we pass to real coefficients (see [43]).
Indeed, the construction of Kontsevich can be used to define a collection of
quasi-isomorphisms Graphscn(r)

∼−→ Ω∗sa(FMn(r)), where FMn is a model of
En-operad given a real oriented analogue of the Fulton-MacPherson compact-
ification of the configuration spaces (see [33]) and Ω∗sa(−) denotes a cochain
dg-algebra functor of semi-algebraic forms (see [36, 46]). One can observe
that these morphisms can be associated to a strict morphism of Hopf cochain
dg-cooperads Graphscn

∼−→ Ω∗] (FMn) (by using a general coherence statement
of [26, Proposition II.12.1.3]).

The approach of the cited reference [29] does not use this constructions
and gives a formality quasi-isomorphism which is defined over the rationals
by using obstruction theory methods. The claim of this reference is that the
En-operads are intrinsically rationally formal for n ≥ 3 in the sense that every
Hopf cochain dg-cooperad An which satisfies H∗(An) ' Poiscn and is equipped
with an extra-involution operad J : An → An such that J(λ) = −λ in the case
4|n satisfies An ∼ Poiscn. We apply this claim to the Hopf cochain dg-cooperad
An = R Ω∗] (Dn) to get the statement of the theorem. We have an extension of
this formality result for the morphisms Dm → Dn which link the operads of
little discs when n−m ≥ 2 (see [29, Theorem C]).

Recall that we set
DQ
n := 〈R Ω∗] (Dn)〉

to define a model for the rationalization of the little n-discs operad in topo-
logical spaces. The result of the previous theorem has the following corollary:

1.2.14 Corollary. We have DQ
n = 〈Poiscn〉, for any n ≥ 2, where we con-

sider the image of the dual cooperad of the n-Poisson operad Poiscn under the
operadic upgrading of the Sullivan realization functor 〈−〉.

We just use the implication Poiscn ∼ R Ω∗] (Dn) ⇒ 〈Poiscn〉 ∼ 〈R Ω∗] (Dn)〉
to get the result of this corollary. This result, together with the observations
of Proposition 1.2.10 and Proposition 1.2.12, implies that we can take either
〈Poiscn〉 = G•(C

∗
CE(p̂n)) or 〈Poiscn〉 = G•(Graphscn) to get a model of the ratio-

nalization DQ
n.

We have an identity G•(C
∗
CE(p̂n(r))) = MC•(p̂n(r)), for each r ∈ N, where

we consider a Maurer–Cartan space associated to the complete Lie algebra
p̂n(r) (we review the definition of this construction in the next sections).
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Hence, the results of this section gives a simple algebraic model of the rational
homotopy type of En-operads. In the case n = 2, we have an identity C∗CE(p̂) ∼
B(CDQ̂), where we consider the chord diagram operad of §1.1.10 (recall also
that we use the notation p̂ = p̂2 for the ungraded Drinfeld–Kohno Lie algebra
operad which occurs in this case n = 2). Thus, since we have on the other hand

DQ
2 = B(PaB Q̂) (see §1.1), we can deduce the existence of a weak equivalence

DQ
2 ∼ 〈Poiscn〉 from the operadic interpretation of Drinfeld’s associators given

in §1.1.10 (see [26, §II.14.2]).

We now examine a counterpart of the formality result of Theorem 1.2.13
in the category of dg-modules dg∗Mod . We use the notation C∗(−) for both
the singular complex functor from the category of topological spaces to the
category of dg-modules and for the standard normalized chain complex functor
on simplicial sets. These functors are lax symmetric monoidal and therefore
carry operads in topological spaces (respectively, in simplicial sets) to operads
in dg-modules. Furthermore, in the case of a cofibrant operad in simplicial
sets R, we have the duality relation Ω∗] (R)∨ ∼ C∗(R) in the category of dg-
operads dg Op∗ when we consider the dual in dg-modules of the Hopf cochain
dg-cooperad Ω∗] (R) of Theorem 1.2.13. Therefore, the result of Theorem 1.2.13
implies the following statement, which was also obtained by the authors cited
in this statement by other method:

1.2.15 Theorem (D. Tamarkin [54], M. Kontsevich [43]). We have the rela-
tion

Poisn ∼ C∗(Dn),

in the category of dg-operads.

This result is exactly the formality theorem mentioned in the introduction
of this chapter for the class of En-operads in dg-modules. Tamarkin’s proof
of this theorem, which works in the case n = 2, relies on the correspondence
between formality equivalences and associators, whereas Kontsevich’s proof,
which works for every n ≥ 2 but requires to pass to real coefficients, relies
on the definition of semi-algebraic forms associated to graphs (as we explain
in our survey of Theorem 1.2.13). In [9], Boavida and Horel have given a
new proof of the formality result of this theorem by using a generalization of
classical formality criterion of mixed Hodge theory in the context of operads
(see also [48] for an application of this approach in the case n = 2).

1.3 The rational homotopy of mapping spaces on the
operads of little discs

We now tackle the main objective of this chapter, namely the computation
of the homotopy of the mapping spaces MaphT opOp(Dm,D

Q
n) and of the homo-
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topy automorphism spaces AuthOp(DQ
n), for all n ≥ 2. Thus, we aim to gener-

alize the computation carried out in §1.1 in the case of the automorphism
space AuthOp(DQ

2 ). In the case of the mapping spaces MaphT opOp(Dm,D
Q
n),

we are also going to check that we have the relation MaphT opOp(Dm,D
Q
n) ∼

MaphT opOp(Dm,Dn)Q when n−m ≥ 3, so that the results explained in this sec-
tion gives a full computation of the rational homotopy of the mapping spaces
MaphT opOp(Dm,Dn) that occur in the operadic description of the introduction

for the embedding spaces Embc(R
m,Rn).

To carry out these computations, we use the graph complex model Graphscn
of the rational homotopy of the operad Dn. Hence, we naturally obtain,
as a main outcome, a graph complex description of the homotopy type of
the spaces MaphT opOp(Dm,D

Q
n) and AuthOp(DQ

n). In the case of the mapping

spaces MaphT opOp(Dm,D
Q
n), we express the result as the Maurer–Cartan space

MC•(HGCmn) associated to a Lie dg-algebra of hairy graphs HGCmn. We
explain the definition of this object first and we explain our computation
afterwards.

In the case of the automorphism spaces AuthOp(DQ
n), we get that our object

is homotopy equivalent to a cartesian product of Eilenberg–MacLane spaces
(like any H-group in rational homotopy theory). Thus, we can focus on the
computation of the homotopy groups in this case. We give a description of
these groups in terms of the homology of a non-hairy graph complex GCn of
which we also explain the definition beforehand. This graph complex GCn is
a graded version of a complex introduced by Kontsevich in [41], and therefore,
this complex is usually called the Kontsevich graph complex in the literature.

1.3.1 The hairy graph complex

The hairy graph complex HGCmn explicitly consists of formal series of con-
nected graphs with internal vertices •, internal edges •−•, which link internal
vertices together, and external edges •− (the hairs), which are open at one
extremity, as in the following examples:

, , . (1.40)

This complex HGCmn is equipped with a lower grading. The degree of a
graph γ ∈ HGCmn is determined by assuming that each vertex contributes
by deg(•) = n, that each internal edge contributes by deg(•−•) = 1− n, that
each hair contributes by deg(•−) = m− n+ 1, and by adding a global degree
shift by −m. Thus, we have deg(γ) = nv + (1 − n)e + (m − n + 1)h − m,
where v denotes the number of internal vertices, the letter e denotes the
number of internal edges and h denotes the number of hairs of the graph
γ ∈ HGCmn. The differential of the hairy graph complex is defined by the
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blow-up of internal vertices:

δ
· · ·
•
· · ·

=

· · ·
•
•
· · ·

. (1.41)

We equip the hairy graph complex with the Lie bracket such that:[
γ1

· · ·
,

γ2

· · ·

]
=
∑
±

γ1

· · ·γ2

· · ·
−
∑
±

γ2

· · ·γ1

· · ·
, (1.42)

where the first sum runs over the re-connections of a hair of the graph γ1

to a vertex of the graph γ2, and similarly in the second sum, with the role
of the graphs γ1 and γ2 exchanged. In the case m = 1, we have to consider
a deformation of this Lie dg-algebra structure which we call the Shoikhet
L∞-structure (a strongly homotopy Lie algebra). We just refer to [59] for the
explicit definition of this structure.

In the next theorem, we consider the Maurer–Cartan space MC•(L) associ-
ated to the Lie dg-algebra L = HGCm,n. This simplicial set MC•(L) is defined
by the sets of flat L-valued PL connections on the simplices ∆n, n ∈ N.
To be more precise, in the definition of this object MC•(L), we generally as-
sume that L forms a complete Lie dg-algebra with respect to a filtration
L = F1 L ⊃ F2 L ⊃ · · · ⊃ Fk L ⊃ · · · such that [Fk L, Fl L] ⊂ Fk+l L. In the
case L = HGCmn, we assume that Fk L = Fk HGCmn consists of power series
of graphs γ ∈ Hmn such that e− v ≥ k, where e denotes the number of edges
and v denotes the number of internal vertices in γ. Then we explicitly set:

MCn(L) =
{
ω ∈ (L⊗̂ Ω∗(∆n))1 | δ(ω) +

1

2
[ω, ω] = 0}

}
, (1.43)

for every simplicial dimension n ∈ N, where (L⊗̂ Ω∗(∆n))1 denotes the compo-
nent of upper degree 1 in the completed tensor product of the Lie dg-algebra
L with the Sullivan cochain dg-algebra of PL forms Ω∗(∆n). The face and de-
generacy operators of this simplicial set are inherited from the simplices. This
construction has a natural extension for L∞-algebras (see for instance [32]).
We now have the following main result:

1.3.2 Theorem (B. Fresse, V. Turchin, and T. Willwacher [28, Theorem 1]).
For any n ≥ m ≥ 2, we have the relation:

MaphT opOp(Dm,D
Q
n) ∼ MC•(HGCmn),

where HGCmn is the hairy graph complex. This relation extends to the case
n > m = 1 when we equip HGC 1n equipped with the Shoikhet L∞-structure.

The results of the previous section imply that we have the following weak-
equivalences:

MaphT opOp(Dm,D
Q
n) ∼ Maphdg∗Hopf Opc

∗1
(R Ω∗] (Dn), R Ω∗] (Dm)) (1.44)

∼ Maphdg∗Hopf Opc
∗1

(Poiscn,Poiscm), (1.45)
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where Maphdg∗Hopf Opc
∗1

(−,−) denote a derived mapping space bifunctor in the
category of Hopf cochain dg-cooperads, we use the Quillen adjunction between
the functors G•(−) and Ω∗] (−) in the first equivalence (1.44) and the formality
result of Theorem 1.2.13 in the second equivalence (1.45). These equivalences
reduce the proof of Theorem 1.3.2 to a problem of algebra.

To compute the derived mapping space of Hopf cochain dg-cooperads
Maphdg∗Hopf Opc

∗1
(Poiscn,Poiscm), we need to pick a cofibrant resolution of the

object Poiscn on the source and a fibrant resolution of the object Poiscm on
the target. For this purpose, we take the cofibrant Hopf cochain dg-cooperad
Rn = C∗CE(p̂n) (see §1.2.8) and we adapt the classical Boardman–Vogt W -
construction of operads to define a natural fibrant resolution functor Wc(−) on
the category of Hopf cochain dg-cooperad (see [28, §5] for a detailed definition
of this functor). By analyzing the definition of maps on these Hopf cochain
dg-cooperads, one sees that the mapping space Maphdg∗Hopf Opc

∗1
(Poiscn,Poiscm)

is weakly equivalent to the Maurer–Cartan space associated to an L∞-algebra
of biderivations BiDer(C∗CE(p̂n), Wc(Poiscm)) (see [28, §6]).

The object C∗CE(p̂n) in this complex of biderivations can be replaced by
the graph cooperad model of the n-Poisson cooperad Graphscn ∼ Poiscn. The
connection of the derived mapping space Maphdg∗Hopf Opc

∗1
(Poiscn,Poiscm) with

the hairy graph complex of the theorem comes from an ultimate reduction of
this L∞-algebra of biderivations, which yields a relation of the form

HGCmn ∼ BiDer(Graphscn, W
c(Poiscm)) (1.46)

in the category of L∞-algebras (see [28, §8]).

The result of this theorem has the following corollary:

1.3.3 Corollary. For any n ≥ m ≥ 2 (and for n > m = 1), we have the
identity:

π∗(Map
h
T opOp(Dm,D

Q
n), ω) = H∗−1(HGCω

mn),

for any ω ∈ MC0(HGCmn), where HGCω
mn is the complex HGCmn equipped

with the twisted differential δω = δ + [ω,−] + (extra terms in the L∞-case).

The identity of this statement follows from the result of Theorem 1.3.2 and
from a general result about the homotopy groups of Maurer–Cartan spaces
MC•(L) for which we refer to [6].

A computation of the rational homotopy groups of the embedding spaces
Embc(R

m,Rn), analogous to the result established in this corollary, is given
in [4] (see also [44] for the case m = 1 of these computations). These previous
computations are based on the interpretation in terms of mapping spaces of
operadic bimodules of the Goodwillie–Weiss tower of the embedding spaces
Embc(R

m,Rn) (or of the equivalent interpretation of the Goodwillie–Weiss
tower in terms of Sinha’s cosimplicial model in the case m = 1). In [45], the
formality of En-operads in chain complexes is also used to get a description of
the homology of the embedding spaces Embc(R

1,Rn) in terms of a Hochschild
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cohomology theory for operads (we apply this Hochschild cohomology theory
to the n-Poisson operad). The graph operad model of the n-Poisson can also
be used to deduce a graph complex model of the homology of the embedding
space Embc(R

1,Rn) from this algebraic approach.
In fact, we can use the result of the above corollary and the equivalence

between the embedding space Embc(R
m,Rn) and the m+ 1-fold iterated loop

space of the operadic mapping space MaphT opOp(Dm,Dn) given in the introduc-
tion to get applications of the result of Theorem 1.3.2 in the theory embedding
spaces. For this purpose, we also use the following theorem:

1.3.4 Theorem (B. Fresse, V. Turchin, and T. Willwacher [28, Theorem 15]).
In the case n−m ≥ 3, the space MaphT opOp(Dm,Dn) is n−m− 1 connected,
and we moreover have the relation:

MaphT opOp(Dm,Dn)Q ∼ MapT opOp(Dm,D
Q
n)

in the homotopy category of spaces.

We refer to the cited reference [28, §10] for the detailed proof of this state-
ment, which relies on an analogous result for spaces, established by Haefliger
in [35].

We examine the rational homotopy of the spaces of homotopy automor-
phisms to complete the result of this section. We first explain the definition
of the Kontsevich graph complexes GCn which occur in this computation.

1.3.5 The Kontsevich graph complex

The definition of the complex GCn is the same as the definition of the hairy
graph complex HGCmn, except that we now consider graphs without hairs,
as in the following examples:

, . (1.47)

We determine the degree of a graph in GCn by assuming that each vertex
contributes by deg(•) = n and each edge contributes by deg(•−•) = 1−n as in
the case of hairy graphs. We still assume that every vertex of a graph in GCn

is at least trivalent and we do not allow loops (edges with the same origin and
endpoint). The differential is defined by the blow-up of vertices again.

The space of homotopy automorphisms AuthT opOp(DQ
n) is the sum of the

connected components of the mapping spaces MaphT opOp(Dn,D
Q
n) associated to

the morphisms φ which are invertible in the homotopy category of operads. Let
h : AuthT opOp(DQ

n)→ AutHopf Op(H∗(Dn,Q)) be the natural map which carries
any such morphism to the associated homology morphism. For n ≥ 2, we have
a bijection AutHopf Op(H∗(Dn,Q)) = Q× which is determined by taking the
action of an automorphism φ ∈ AutHopf Op(H∗(Dn,Q)) on the representative
of the Poisson bracket operation λ ∈ Poisn in the operad Poisn = H∗(Dn). We
get the following result:
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1.3.6 Theorem (B. Fresse, V. Turchin, and T. Willwacher [28, Corollary 5]).
For each λ ∈ Q×, we have the identity:

π∗(h
−1(λ)) = H∗(GCn)⊕

{
Q, if ∗ ≡ −n− 1(4),

0, otherwise,

where GCn denotes the Kontsevich graph complex.

We deduce this statement from the result of Theorem 1.3.2, by using that
the identity morphism is represented by the Maurer–Cartan element such that
ω = | in the hairy graph complex HGCnn. We just consider versions of the
graph complexes GC 2

n and HGC 2
mn where bivalent vertices are allowed. We

have HGC 2
mn ∼ HGCmn for any n ≥ m ≥ 2, whereas for the graph complex

GC 2
n, we have:

H∗(GC 2
n) = H∗(GCn)⊕

{
QL∗, if ∗ ≡ −n− 1(4),

0, otherwise,
(1.48)

where L∗ denotes the homology classes of graphs of the form:

L∗ =

· · ·

(1.49)

We easily see that the operation [ω,−] in the differential δω = δ + [ω,−]
of the twisted complex (HGC 2

nn)ω associated to the Maurer–Cartan element
ω = | is given by the addition of a hair | to any graph γ ∈ HGC 2

nn. We
can then use a spectral sequence to check that we have a quasi-isomorphism
Q |⊕Q[−1]⊗GC 2

n
∼−→ HGC 2

nn where we consider the mapping γ 7→ γ− which
associates a graph with one hair γ− ∈ HGC 2

nn to any graph γ ∈ GCn. We
refer to [29, Proposition 2.2.9] for the detailed line of arguments.

In the case n = 2, we have H0(GCn) = grt by a result of T. Willwacher,
where grt is the graded Grothendieck–Teichmüller Lie algebra (see [60]).
Therefore, in this case, the result of Theorem 1.3.6 reflects the relation that
we obtained in Theorem 1.1.7.

1.4 Outlook

Throughout this survey, we have focused on the study of the homotopy of En-
operads themselves, but one can use variants of the definition of an En-operad
to associate operadic right module structures to any n-manifold M .
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For this purpose, we can use again the Fulton–MacPherson operad FMn,
the model of En-operad, given by a real oriented version of the Fulton–
MacPherson compactification of the configuration spaces, which was consid-
ered by Kontsevich in his proof of the formality of En-operads (see §1.2).
These Fulton–MacPherson compactifications have a natural generalization for
the configuration spaces of manifolds F (M, r), and when M is a framed mani-
fold, this construction returns a collection of spaces FMM = {FMM (r), r ∈ N}
which inherits the structure of a right module (in the operadic sense) over the
Fulton–MacPherson operad FMn.

This object is equivalent to constructions used by Ayala–Francis in the def-
inition of the factorization homology of manifolds (see Ayala–Francis’s chap-
ter, in this handbook volume, for a survey of this subject). In particular, one
can use a relative composition product of the object FMM over the operad
FMn to compute the factorization homology of any framed manifold M . The
methods used by Kontsevich to prove the formality of En-operads have been
used by several authors to define models of the rational homotopy type of
this right module FMM , and hence, to tackle the rational homotopy compu-
tations in factorization homology theory. To cite a few works on this subject,
let us mention that a graph complex model of the object FMM , which ex-
tends the graph cooperad of §1.2.11 when M is a simply connected compact
manifold without boundary, is defined by Campos–Willwacher in [17], while
an extension of Arnold’s presentation is used by Idrissi in [38] to get a small
model of the object FMM . Idrissi’s result provides a generalization of Knud-
sen’s description of the factorization homology for higher enveloping algebras
of Lie algebras [39]. The paper [16] provides an extension of the construc-
tions of [17, 38] for manifolds with boundary, while the paper [15] addresses
an extension of the definition of these operadic module structures by using a
framed version of the operads of little discs.

In §§1.2-1.3, we entirely focus on the rational homotopy theory framework,
but we may wonder which information we may still retrieve by our methods
in positive characteristic. For instance, partial formality results have been ob-
tained by Cirici–Horel in [19] when we take an arity-wise truncation of oper-
ads below the characteristic of the coefficients (see also [9] for an improvement
of these partial formality results). In fact, the En-operads are not formal as
symmetric operads in chain complexes in positive characteristic, because their
components are not formal as representations of the symmetric groups. Nev-
ertheless, we may wonder whether En-operads are formal as non-symmetric
operads, which is enough for the study of mapping spaces over an E1-operad.
The case n > 2 of this question is still open, but Salvatore has proved in [49]
that E2-operads are not formal as non-symmetric operads over F2.
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