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22.09.2021

TGS 2020, Lille, France



What is the Morse Discriminant?

A ⊂ Z \ {0} a finite set

Length(convA) > 3;

A affinely generates Z.
CA, the space of all Laurent polynomials with support A.

Example

A = {1, 2, 3, 4} ⊂ Z;
CA = {b1x + b2x

2 + b3x
3 + b4x

4 | bi ∈ C};
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What is the Morse Discriminant?

We are interested in the following codimension 1 strata in CA :

x

f (x)

[caustic]

The map f : (C \ 0)n → C has
a degenerate critical point.

x

f (x)

[Maxwell stratum]

The map f : (C \ 0)n → C has
a pair of coinciding critical
values taken at distinct points.
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What is the Morse Discriminant?

x

f (x)

[caustic]

x

f (x)

[Maxwell stratum]

Definition

A polynomial f ∈ CA is Morse, if it does not belong to either
the caustic or the Maxwell stratum.



Example: A = {1, 2, 3, 4}

x

f (x)

[caustic]

{hc = 0} ⊂ CA

x

f (x)

[Maxwell stratum]

{hm = 0} ⊂ CA

hc = b2
2b

2
3 − 4b1b

3
3 − 4b3

2b4 + 18b1b2b3b4 − 27b2
1b

2
4

hm = b3
3 + 8b1b

2
4 − 4b2b3b4



Statement of the Problem

Problem

Describe in terms of the set A the Newton polytope MA of
the Morse discriminant, i.e. of the polynomial h2

mhc .

Example

For A = {1, 2, 3, 4}, the polytope MA is a pentagon in R4.

(1, 0, 9, 0)

(0, 2, 8, 0)

(0, 5, 2, 3)

(2, 3, 0, 5)

(4, 0, 0, 6)
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The Support Function (Reminder)

Definition

Let P ⊂ Rn be a convex polytope. Its support function
P̃ : (Rn)∗ → R is defined as follows:

P̃(γ) = max
x∈P

γ(x).

(1, 0, 0)

(0, 1, 0)

(0, 0, 0)

0 · X + 1 · Y + 0 · Z

1 · X + 0 · Y + 0 · Z

0
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Tropical Polynomials (Reminder)

Tropical semiring (R ∪ {−∞},⊕,�) :

a ⊕ b =

{
max(a, b), a 6= b;

[−∞, a], a = b.

a � b = a + b.

A tropical Laurent polynomial F (X ) with the support A:

F (X ) =
⊕
p∈A

cp � X�p = max
p∈A

(pX + cp).

Definition

A tropical root r of F (X ) is the point where at least two
monomials of F (X ) attain the maximal value max

p∈A
(pX + cp).
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Covectors ↔ Tropical Polynomials

Let γ ∈ (R|A|)∗ be a covector.
Then γ can be viewed as a function γ : A→ R.
γ : A→ R ←→ ϕγ(X ) =

⊕
a∈A

γ(a)� X�a = max
a∈A

(aX + γ(a)).
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Non-Morse tropical Polynomials

[Tropical caustic] [Tropical Maxwell stratum]

Definition

A tropical polynomial is non-Morse, if it belongs to either the
tropical caustic or the tropical Maxwell stratum.
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Format of the Answer

We want to describe the polytope MA;

same as to compute its support function
µA : (R|A|)∗ → R,
a generic covector γ ∈ (R|A|)∗ on MA attains its maximal
value at some vertex of MA,

in other words, belongs to some full-dimensional cone –
corresponding linearity domain of µA.

Which one? What are the coefficients of µA there?

γ ∈ (R|A|)∗ ←→ a function γ : A→ R
Generic covector γ : A→ R −→
Morse Tropical Polynomial ϕγ(X ) =

⊕
a∈A

γ(a)� X�a −→

Combinatorial data
(
W ;Z ;M j

)
−→

Linearity domain of µA−→Vertex of MA
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Combinatorial Data

(−∞,−∞)

X + 2

2X + 5
−X + 5

−3X + 3

4X + 1

r0 r1 r2

2

1

4

−3

1

4

1

−1

−3

ϕγ(r1)

ϕγ(r0)

ϕγ(r2)

A = {−3,−1, 1, 2, 4}
W = {−3,−1, 2, 4}

Z = (1, 0, 2)

M0 = (2, 1, 4)

M1 = (−3, 1, 4)

M2 = (1,−1,−3)



Main Result

Theorem (A.V.’21)

There is a surjection (given by a certain loooong and scary
formula) between the set of all possible combinatorial types of
Morse tropical polynomials with support set A and the vertices
of the polytope MA.

This result allows to enumerate all the vertices of the sought
Newton polytope MA by all sorts of combinatorial types of
Morse tropical polynomials.
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Covectors ↔ Tropical Polynomials

Let γ ∈ (R|A|)∗ be a covector.
γ : A→ R ←→ ϕγ(X ) =

⊕
a∈A

γ(a)� X�a = max
a∈A

(aX + γ(a)).



Covectors ↔ Tropical Polynomials

γ′ = γ + (b, . . . , b); b > 0,
ϕγ′(X ) =

⊕
a∈A

γ(a)� b � X�a = max
a∈A

(aX + γ(a) + b).

It suffices to consider covectors with non-negative coordinates!



Covectors ↔ Polygons

γ : A→ R>0 ←→ Nγ ⊂ R2

Nγ = conv({(a, γ(a)) | a ∈ A} ∪ {(a, 0) | a ∈ A})

a0 a1 a2 a3 a4 a5



The support set A

0 /∈ A ⊂ Z, a finite set.

A affinely generates Z;

Length(convA) > 3;

A generic polynomial f ∈ CA which belongs to the Morse
discriminant has either exactly one pair of coinciding
critical values or exactly one degenerate critical point of
multiplicity 2.

True for a wide range of sets A ⊂ Z. For instance:

sets A such that A = conv(A) ∩ Z;

sets A containing 4 consecutive integers.

Conjecture

Any set A satisfying the first two properties, also satisfies the
third one.
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The Key Ideas

1 We start with a generic covector γ ∈ (R|A|)∗.

Or, actually, γ ∈ (Z|A|>0)∗...

2 Consider a family of polynomials
f γt (x) =

∑
p∈A(qp + vpt

γ(p))xp; qp, vp ∈ C.
3 The Morse discriminant is the hypersurface
{FA = 0} ⊂ CA. If we plug the coefficients of ft into FA,
we get a polynomial in t of degree µA(γ).
Thus, we can reformulate the initial problem as follows:

Problem

For how many complex values of t is the polynomial f γt (x)
non-Morse?
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Or, actually, γ ∈ (Z|A|>0)∗...

2 Consider a family of polynomials
f γt (x) =

∑
p∈A(qp + vpt

γ(p))xp; qp, vp ∈ C.
3 The Morse discriminant is the hypersurface
{FA = 0} ⊂ CA. If we plug the coefficients of ft into FA,
we get a polynomial in t of degree µA(γ).
Thus, we can reformulate the initial problem as follows:

Problem

For how many complex values of t is the polynomial f γt (x)
non-Morse?



The Key Ideas



One more statement of the problem

MA ⊂ R|A| – the Newton polytope of the Morse discriminant,
µA : (R|A|)∗ → R – its support function.

Proposition

For a generic covector γ with non-negative integer coefficients,
we have

µA(γ) = 2 · |2A1|︸ ︷︷ ︸
Maxwell stratum

+ |A2|︸︷︷︸
caustic

.

Thus, we reduced the initial problem to finding the number of
cusps and nodes of the curve D.



2 polytopes

γ : A→ Z>0 – a covector;

a0a1 a2a3 a4 a5

Nγ = N(f γt (x))
∆γ = N(f γt (x)− y)



3 equations

Proposition

|A2| = Area(Nγ)− γ(a0)− γ(a|A|−1).

Proof.

Follows from the description of the Newton polytope of the
classical discriminant by Gelfand, Kapranov, Zelevinsky.

Proposition

χ(A1) + 2|2A1|+ 2|A2| = −Area(Nγ)

Proof.

Bernstein–Kouchnirenko–Khovanskii theorem + additivity of
Euler characteristic.



3 equations

Proposition

|A2| = Area(Nγ)− γ(a0)− γ(a|A|−1).

Proof.

Follows from the description of the Newton polytope of the
classical discriminant by Gelfand, Kapranov, Zelevinsky.

Proposition

χ(A1) + 2|2A1|+ 2|A2| = −Area(Nγ)

Proof.

Bernstein–Kouchnirenko–Khovanskii theorem + additivity of
Euler characteristic.



3 equations

The first two equations do not suffice. We need the third one!

χ(D) = χ(A1) + |2A1|+ |A2|



3 equations

χ(A1) + |2A1|+ |A2|− |2A1|−
|A2|+ |2A1| · 0 + |A2| · (−1) =
χ(A1)− |A2|
By the BKK theorem,
χ(Y ) = −Area(N(D))

Thus, we have
χ(A1)− |A2| = −Area(N(D)︸ ︷︷ ︸

known

)



3 equations

Thus, we have
χ(A1)− |A2| = −Area(N(D)︸ ︷︷ ︸

known

) + ?!



3 equations

Proposition

χ(A1)− |A2| =
−Area(N(D))−

∑
s∈FPS

χ((C \ 0)2 ∩Milnor fiber of s)



Singularities at infinity: Example

C = {f (x , y , t) = g(x , y , t) = 0} ⊂ (C \ 0)3 and D = π(C)
f , g generic with support
Ã = {(0, 0, 0), (4, 0, 0), (2, 1, 0), (1, 2, 0), (0, 4, 0), (0, 0, 1)}.

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)

(1,2,0)



Singularities at infinity: Example

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)

(1,2,0)

i = (4, 2, 1, . . .)



Singularities at infinity: Example

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)

(1,2,0)

i = (4, 2, 1, . . .)



Singularities at infinity: Example

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)

(1,2,0)

i = (4, 2, 1, . . .)



Singularities at infinity: Example

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)

(1,2,0)

i = (4, 2, 1, . . .)



Singularities at infinity: Example

(0,4,0)

(4,0,0)

(0,0,1)

(2,1,0)
(1,2,0)

i = (4, 2, 1, . . .)
4− 4(3 + 2) = −16

χ(Milnor fiber of s) = i1 −
∞∑
n=1

i1(in − 1)



3 equations

The sought number |2A1| can be extracted from the following
3 equations:

|A2| = Area(Nγ)− γ(a0)− γ(a|A|−1)

χ(A1) + 2|2A1|+ 2|A2| = −Area(Nγ)

χ(A1)− |A2| =

− Area(N(D)︸ ︷︷ ︸∫
π ∆

)−
∑

s∈FPS

χ((C \ 0)2 ∩Milnor fiber of s)︸ ︷︷ ︸
tricky, but we know how to compute it



Combinatorial Data

(−∞,−∞)

X + 2

2X + 5
−X + 5

−3X + 3

4X + 1

r0 r1 r2

2

1

4

−3

1

4

1

−1

−3

ϕγ(r1)

ϕγ(r0)

ϕγ(r2)

A = {−3,−1, 1, 2, 4}
W = {−3,−1, 2, 4}

Z = (1, 0, 2)

M0 = (2, 1, 4)

M1 = (−3, 1, 4)

M2 = (1,−1,−3)



The End

Thank you!!!


