The Newton Polytope of the Morse Discriminant of a Univariate Polynomial

Arina Voorhaar

Universté de Genève, NRU HSE

22.09.2021

TGS 2020, Lille, France

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

- $A \subset \mathbb{Z} \setminus \{0\}$ a finite set
 - Length(conv A) ≥ 3 ;
 - A affinely generates \mathbb{Z} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- $A \subset \mathbb{Z} \setminus \{0\}$ a finite set
 - Length(conv A) ≥ 3 ;
 - A affinely generates \mathbb{Z} .

 \mathbb{C}^A , the space of all Laurent polynomials with support A.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- $A \subset \mathbb{Z} \setminus \{0\}$ a finite set
 - Length(conv A) ≥ 3 ;
 - A affinely generates \mathbb{Z} .

 \mathbb{C}^A , the space of all Laurent polynomials with support A.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

EXAMPLE

$$egin{aligned} & \mathcal{A} = \{1,2,3,4\} \subset \mathbb{Z}; \ & \mathbb{C}^{\mathcal{A}} = \{b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 \mid b_i \in \mathbb{C}\}; \end{aligned}$$

We are interested in the following codimension 1 strata in \mathbb{C}^A :

We are interested in the following codimension 1 strata in \mathbb{C}^A :

The map $f: (\mathbb{C} \setminus 0)^n \to \mathbb{C}$ has a degenerate critical point.

The map $f: (\mathbb{C} \setminus 0)^n \to \mathbb{C}$ has a pair of coinciding critical values taken at distinct points.

A polynomial $f \in \mathbb{C}^A$ is *Morse*, if it does not belong to either the caustic or the Maxwell stratum.

Example: $A = \{1, 2, 3, 4\}$

くちゃく 御 マイボット 御 マント・

Statement of the Problem

PROBLEM

Describe in terms of the set A the Newton polytope \mathcal{M}_A of the Morse discriminant, i.e. of the polynomial $h_m^2 h_c$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Statement of the Problem

PROBLEM

Describe in terms of the set A the Newton polytope \mathcal{M}_A of the Morse discriminant, i.e. of the polynomial $h_m^2 h_c$.

EXAMPLE

For $A = \{1, 2, 3, 4\}$, the polytope \mathcal{M}_A is a pentagon in \mathbb{R}^4 .

The Support Function (Reminder)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Support Function (Reminder)

DEFINITION

Let $P \subset \mathbb{R}^n$ be a convex polytope. Its *support function* $\tilde{P}: (\mathbb{R}^n)^* \to \mathbb{R}$ is defined as follows:

$$\tilde{P}(\gamma) = \max_{x \in P} \gamma(x).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The Support Function (Reminder)

DEFINITION

Let $P \subset \mathbb{R}^n$ be a convex polytope. Its *support function* $\tilde{P}: (\mathbb{R}^n)^* \to \mathbb{R}$ is defined as follows:

$$\tilde{P}(\gamma) = \max_{x \in P} \gamma(x).$$

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で</p>

Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = \begin{cases} \max(a, b), a \neq b; \\ [-\infty, a], a = b. \end{cases}$$

 $a \odot b = a + b.$

Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = egin{cases} \max(a,b), \ a
eq b; \ [-\infty,a], \ a = b. \ a \odot b = a + b. \end{cases}$$

A tropical Laurent polynomial F(X) with the support A:

$$F(X) = \bigoplus_{p \in A} c_p \odot X^{\odot p} = \max_{p \in A} (pX + c_p).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Tropical semiring $(\mathbb{R} \cup \{-\infty\}, \oplus, \odot)$:

$$a \oplus b = egin{cases} \max(a,b), \ a
eq b; \ [-\infty,a], \ a = b. \ a \odot b = a + b. \end{cases}$$

A tropical Laurent polynomial F(X) with the support A:

$$F(X) = \bigoplus_{p \in A} c_p \odot X^{\odot p} = \max_{p \in A} (pX + c_p).$$

DEFINITION

A tropical root r of F(X) is the point where at least two monomials of F(X) attain the maximal value $\max_{p \in A} (pX + c_p)$.

Covectors \leftrightarrow Tropical Polynomials

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Covectors \leftrightarrow Tropical Polynomials

Let $\gamma \in (\mathbb{R}^{|\mathcal{A}|})^*$ be a covector.

Let $\gamma \in (\mathbb{R}^{|\mathcal{A}|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon \mathcal{A} \to \mathbb{R}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Covectors \leftrightarrow Tropical Polynomials

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$

(日) (日) (日) (日) (日) (日)

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$

Covectors \leftrightarrow Tropical Polynomials

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma: A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma: A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$ - 4 同 ト 4 国 ト - ヨ - りへで

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma: A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$ a∈A

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma: A \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Let $\gamma \in (\mathbb{R}^{|A|})^*$ be a covector. Then γ can be viewed as a function $\gamma \colon \mathcal{A} \to \mathbb{R}$. $\gamma \colon A \to \mathbb{R} \iff \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a)).$ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Non-Morse tropical Polynomials

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 ― のへぐ

Non-Morse tropical Polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Non-Morse tropical Polynomials

DEFINITION

A tropical polynomial is non-Morse, if it belongs to either the tropical caustic or the tropical Maxwell stratum.

・ロト・(部・・ヨト・ヨー・つへで

• We want to describe the polytope \mathcal{M}_A ;

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●
- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Which one? What are the coefficients of μ_A there?

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Which one? What are the coefficients of μ_A there?
- $\gamma \in (\mathbb{R}^{|\mathcal{A}|})^* \longleftrightarrow$ a function $\gamma \colon \mathcal{A} \to \mathbb{R}$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Which one? What are the coefficients of μ_A there?

 $\begin{array}{l} \gamma \in (\mathbb{R}^{|\mathcal{A}|})^* \longleftrightarrow \text{ a function } \gamma \colon \mathcal{A} \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon \mathcal{A} \to \mathbb{R} \\ \hline \end{array}$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{ a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R} \\ \hline \text{Morse Tropical Polynomial } \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \end{array}$$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$ on \mathcal{M}_A attains its maximal value at some vertex of \mathcal{M}_A ,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{ a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R} \\ \hline \text{Morse Tropical Polynomial } \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \text{Combinatorial data } (W; Z; M^j) \\ \hline \end{array} \rightarrow$$

- We want to describe the polytope \mathcal{M}_A ;
- same as to compute its support function $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R},$
- a generic covector γ ∈ (ℝ^{|A|})* on M_A attains its maximal value at some vertex of M_A,
- in other words, belongs to some full-dimensional cone corresponding linearity domain of μ_A .
- Which one? What are the coefficients of μ_A there?

$$\begin{array}{l} \gamma \in (\mathbb{R}^{|A|})^* \longleftrightarrow \text{ a function } \gamma \colon A \to \mathbb{R} \\ \hline \text{Generic covector } \gamma \colon A \to \mathbb{R} \\ \hline \text{Morse Tropical Polynomial } \varphi_{\gamma}(X) = \bigoplus_{a \in A} \gamma(a) \odot X^{\odot a} \\ \hline \text{Combinatorial data } (W; Z; M^{j}) \\ \hline \text{Linearity domain of } \mu_{A} \\ \hline \text{Vertex of } \mathcal{M}_{A} \\ \hline \end{array}$$

Combinatorial Data

THEOREM (A.V.'21)

There is a surjection (given by a certain loooong and scary formula) between the set of all possible combinatorial types of Morse tropical polynomials with support set A and the vertices of the polytope \mathcal{M}_A .

・ロト ・四ト ・ヨト ・ヨ

nan

Main Result

THEOREM (A.V.'21)

There is a surjection (given by a certain loooong and scary formula) between the set of all possible combinatorial types of Morse tropical polynomials with support set A and the vertices of the polytope \mathcal{M}_A .

This result allows to enumerate all the vertices of the sought Newton polytope \mathcal{M}_A by all sorts of combinatorial types of Morse tropical polynomials.

・ロト ・ 四ト ・ ヨト ・ ヨー

SQA

Example: $A = \{1, 2, 3, 4\}$

Covectors ↔ Tropical Polynomials

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

Covectors \leftrightarrow Tropical Polynomials

$$\gamma' = \gamma + (b, \dots, b); b > 0,$$

 $\varphi_{\gamma'}(X) = \bigoplus_{a \in A} \gamma(a) \odot b \odot X^{\odot a} = \max_{a \in A} (aX + \gamma(a) + b).$

It suffices to consider covectors with non-negative coordinates!

$\mathsf{Covectors} \leftrightarrow \mathsf{Polygons}$

$$\gamma \colon A \to \mathbb{R}_{\geq 0} \longleftrightarrow N_{\gamma} \subset \mathbb{R}^{2}$$
$$N_{\gamma} = \operatorname{conv}(\{(a, \gamma(a)) \mid a \in A\} \cup \{(a, 0) \mid a \in A\})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $0 \notin A \subset \mathbb{Z}$, a finite set.
 - A affinely generates \mathbb{Z} ;
 - Length(conv A) ≥ 3 ;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $0 \notin A \subset \mathbb{Z}$, a finite set.

- A affinely generates \mathbb{Z} ;
- Length(conv A) \geq 3;
- A generic polynomial f ∈ C^A which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $0 \notin A \subset \mathbb{Z}$, a finite set.

- A affinely generates Z;
- Length(conv A) ≥ 3 ;
- A generic polynomial f ∈ C^A which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

True for a wide range of sets $A \subset \mathbb{Z}$. For instance:

- sets A such that $A = \operatorname{conv}(A) \cap \mathbb{Z}$;
- sets A containing 4 consecutive integers.

 $0 \notin A \subset \mathbb{Z}$, a finite set.

- A affinely generates \mathbb{Z} ;
- Length(conv A) \geq 3;
- A generic polynomial f ∈ C^A which belongs to the Morse discriminant has either exactly one pair of coinciding critical values or exactly one degenerate critical point of multiplicity 2.

True for a wide range of sets $A \subset \mathbb{Z}$. For instance:

- sets A such that $A = \operatorname{conv}(A) \cap \mathbb{Z}$;
- sets A containing 4 consecutive integers.

Conjecture

Any set A satisfying the first two properties, also satisfies the third one.

• We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$.

• We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- We start with a generic covector γ ∈ (ℝ^{|A|})*. Or, actually, γ ∈ (ℤ^{|A|}_{≥0})*...
- Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- The Morse discriminant is the hypersurface $\{\mathcal{F}_A = 0\} \subset \mathbb{C}^A$.

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- The Morse discriminant is the hypersurface $\{\mathcal{F}_A = 0\} \subset \mathbb{C}^A$. If we plug the coefficients of f_t into \mathcal{F}_A , we get a polynomial in t of degree $\mu_A(\gamma)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- We start with a generic covector $\gamma \in (\mathbb{R}^{|A|})^*$. Or, actually, $\gamma \in (\mathbb{Z}_{\geq 0}^{|A|})^*$...
- Consider a family of polynomials $f_t^{\gamma}(x) = \sum_{p \in A} (q_p + v_p t^{\gamma(p)}) x^p; \ q_p, v_p \in \mathbb{C}.$
- The Morse discriminant is the hypersurface $\{\mathcal{F}_A = 0\} \subset \mathbb{C}^A$. If we plug the coefficients of f_t into \mathcal{F}_A , we get a polynomial in t of degree $\mu_A(\gamma)$. Thus, we can reformulate the initial problem as follows:

PROBLEM

For how many complex values of t is the polynomial $f_t^{\gamma}(x)$ non-Morse?

 $\mathcal{C} = \left\{ f_{t}(x) - y = x \frac{\partial x}{\partial f_{t}(x)} = 0 \right\} \quad \mathcal{D} = \pi(\mathcal{C})$ Jt={f(x)-y=0} H H $\pi: (\mathbb{C}\setminus 0)^{3} \to (\mathbb{C}\setminus 0)^{3}$ (x,y,t) → (y,t) f_t(x)-y=0 has one root of multiplicity 2 Π Π (yo, to) 24 \mathfrak{H}_2 f_t(x)-yo=0 has ¹² one root of multiplicity 3 ft(x)-y₀=0 has 2 roots of multiplicity2 590

 $\mathcal{M}_A \subset \mathbb{R}^{|A|}$ – the Newton polytope of the Morse discriminant, $\mu_A \colon (\mathbb{R}^{|A|})^* \to \mathbb{R}$ – its support function.

PROPOSITION

For a generic covector γ with non-negative integer coefficients, we have

$$\mu_{A}(\gamma) = 2 \cdot \underbrace{|2\mathcal{A}_{1}|}_{Maxwell \ stratum} + \underbrace{|\mathcal{A}_{2}|}_{caustic}$$

Thus, we reduced the initial problem to finding the number of cusps and nodes of the curve \mathcal{D} .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

2 polytopes

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

PROPOSITION

$$|\mathcal{A}_2| = \operatorname{Area}(N_{\gamma}) - \gamma(a_0) - \gamma(a_{|\mathcal{A}|-1}).$$

Proof.

Follows from the description of the Newton polytope of the classical discriminant by Gelfand, Kapranov, Zelevinsky.

SQA

PROPOSITION

$$|\mathcal{A}_2| = \operatorname{Area}(N_{\gamma}) - \gamma(a_0) - \gamma(a_{|\mathcal{A}|-1}).$$

Proof.

Follows from the description of the Newton polytope of the classical discriminant by Gelfand, Kapranov, Zelevinsky.

PROPOSITION

$$\chi(\mathcal{A}_1) + 2|2\mathcal{A}_1| + 2|\mathcal{A}_2| = -\operatorname{Area}(N_{\gamma})$$

Proof.

Bernstein–Kouchnirenko–Khovanskii theorem + additivity of Euler characteristic.

The first two equations do not suffice. We need the third one!

 $\chi(\mathcal{D}) = \chi(\mathcal{A}_1) + |2\mathcal{A}_1| + |\mathcal{A}_2|$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\begin{split} \chi(\mathcal{A}_1) + & |2\mathcal{A}_1| + |\mathcal{A}_2| - |2\mathcal{A}_1| - \\ & |\mathcal{A}_2| + |2\mathcal{A}_1| \cdot 0 + |\mathcal{A}_2| \cdot (-1) = \\ & \chi(\mathcal{A}_1) - |\mathcal{A}_2| \\ \end{split}$$
By the BKK theorem,
$$\chi(Y) = -\operatorname{Area}(\mathcal{N}(\mathcal{D})) \end{split}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ セ > ◆ ○ > ◇ < ○ >

ヘロト 人間 ト 人 ヨト 人 ヨト

3

5900

PROPOSITION

$$\chi(\mathcal{A}_1) - |\mathcal{A}_2| = -\operatorname{Area}(\mathcal{N}(\mathcal{D})) - \sum_{s \in \mathrm{FPS}} \chi((\mathbb{C} \setminus 0)^2 \cap \textit{Milnor fiber of s})$$

Singularities at infinity: Example

$$\begin{aligned} \mathcal{C} &= \{f(x,y,t) = g(x,y,t) = 0\} \subset (\mathbb{C} \setminus 0)^3 \text{ and } \mathcal{D} = \pi(\mathcal{C}) \\ f,g \text{ generic with support} \\ \tilde{\mathcal{A}} &= \{(0,0,0), (4,0,0), (2,1,0), (1,2,0), (0,4,0), (0,0,1)\}. \end{aligned}$$

Singularities at infinity: Example

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

5900

Singularities at infinity: Example

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

5900
Singularities at infinity: Example

・ロト ・ 同ト ・ ヨト ・ ヨト

€ 990

Singularities at infinity: Example

イロト 不得 トイヨト イヨト ニヨー

590

Singularities at infinity: Example

▲□▶▲□▶▲□▶▲□▶ □ ● ●

3 equations

The sought number $|2A_1|$ can be extracted from the following 3 equations:

$$\begin{aligned} |\mathcal{A}_{2}| &= \operatorname{Area}(N_{\gamma}) - \gamma(a_{0}) - \gamma(a_{|\mathcal{A}|-1}) \\ \chi(\mathcal{A}_{1}) + 2|2\mathcal{A}_{1}| + 2|\mathcal{A}_{2}| &= -\operatorname{Area}(N_{\gamma}) \end{aligned}$$
$$\chi(\mathcal{A}_{1}) - |\mathcal{A}_{2}| &= \\ -\operatorname{Area}(\underbrace{\mathcal{N}(\mathcal{D})}_{\int_{\pi} \Delta}) - \sum_{s \in \operatorname{FPS}} \underbrace{\chi((\mathbb{C} \setminus 0)^{2} \cap \operatorname{\mathsf{Milnor fiber of } s)}_{\operatorname{tricky, but we know how to compute it}} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Combinatorial Data

Thank you!!!

