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Computations and applications of some homological
constants for polynomial representations of GLn

Antoine Touzé

Abstract. In this paper, we review the applications of the homological con-
stants for polynomial representations of GLn defined in [Connectedness of cup
products for polynomial representations of GLn, Annals of K-theory, to ap-

pear]. We also give new applications of these constants, in particular to the
cohomology of classical groups. We make further progress on the problem of
computing these constants for polynomial modules of interest.

1. Introduction

This article deals with polynomial representations of the general linear group
over a field k of positive characteristic p, and with their restrictions to the classical
matrix subgroups (i.e. symplectic and orthogonal groups). We let Poln,d be the
category of homogeneous polynomial representations of degree d ofGLn, see Green’s
book [8] or [7, Section 3] for basic definitions. Such polynomial representations also
belong to the realm of representations of finite dimensional k-algebras. Indeed, one
of the first basic results is the equivalence between Poln,d and the category of
modules1 over the Schur algebra S(n, d).

Simple objects in Poln,d are indexed by partitions λ in at most n parts, of
size |λ| =

∑
0≤i≤n λi = d. We fix a simple object Lλ for each partition λ and

we let Pλ, resp. Jλ, be its projective cover, resp. its injective hull. Recall that
a partition in at most n parts is called pr-restricted if λn < pr and for all i < n,
λi − λi+1 < pr. Such partitions appear naturally when studying the structure of
polynomial modules, e.g. in the statement of the Steinberg tensor product theorem
[9, II.3.17]. We introduced the following definition in [20].

Definition. Given a polynomial representation M and a nonnegative integer
r, we let p(M, r) ∈ N ∪ {+∞} be the maximal integer k such that M admits a
projective resolution

· · · → Pi → Pi−1 → · · · → P0 → M → 0
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1Unlike [8] or [7], we do not assume here that our modules have finite dimension, but for

our purposes it is a rather cosmetic change. Indeed, since the Schur algebra is finite dimensional,
infinite dimensional modules have nice finiteness properties (they are direct limits of their finite
dimensional submodules, they have finite socle length,. . . ). Thus, most of our arguments working
for finite dimensional modules equally work with infinite dimensional ones.
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whose first k terms P0, . . . , Pk−1 are direct sums of indecomposable projectives Pλ

with pr-restricted λ. Similarly, we let i(M, r) be the maximal integer k such that
M has an injective resolution whose first k terms J0, . . . , Jk−1 are products of Jλ
with pr-restricted λ.

We are not aware that the homological constants i(M, r) and p(M, r) have been
considered before. In [20], we found several applications of these cohomological
constants. They are related to the behavior of cup products in the cohomology
of GLn, to generalizations and variants of Steinberg tensor product theorem, as
well as to the homological behaviour of the Schur functor which compares the
cohomology of GLn with that of Sn. We also established basic computations for
these cohomological constants. The purpose of this paper is to continue the work
started in [20]. Namely, we give new applications of the constants i(M, r) and
p(M, r), and we make further progress on the problem of computing these constants
for concrete polynomial modules.

The paper is organized as follows. Section 2 concentrates on the applications of
our cohomological constants. We review the applications already proved in [20] and
we prove additional applications. The most noteworthy new result here is theorem
2.1, which shows that the surprising behavior of cup products proved in [20] is
not specific to GLn, but also holds for other classical matrix groups (othogonal
or symplectic type). Section 3 concentrates on the problem of computing these
constants for polynomial modules of interest. We prove a new characterization
of i(M, r) and p(M, r) in proposition 3.4, related to the (derived) adjoint of the
tensor product by k

n (r) (i.e. the r-th Frobenius twist of the defining representation
of GLn). With this new tool at our disposal, we undertake to study i(M, r) and
p(M, r) for some new families of examples, including tilting modules and costantard
modules associated to hooks or to some thin shaped partitions.

Thus, this article reviews some known results and establishes new ones. In
order to make a clear distinction between what material is new and what is not,
only new theorems and propositions are numbered.

Review of strict polynomial functors. Our applications of the homological con-
stants p(M, r) and i(M, r) all assume that the polynomial modules in play are stable
polynomial modules, i.e. they work for objects of Poln,d for n ≥ d. The natural
home for stating and proving theorems involving stable polynomial modules is the
category of strict polynomial functors. Indeed, the categories Poln,d for n ≥ d are
all equivalent to one another, and strict polynomial functors provide a model for
these categories where the parasite integer n does not appear.

The remainder of the article is written in the language of strict polynomial
functors, so we end this introduction by reviewing briefly some points of this theory.
The reader may have full details and additional references by reading the seminal
article of Friedlander and Suslin [7, Section 2], or [12] or [20, Section 2].

We denote by Pd the category of homogeneous strict polynomial functors of
degree d over k (with values in arbitrary k-vector spaces), and we let P =

⊕
d≥0 Pd

be the category of strict polynomial functors of bounded degree. If k is an infinite
field, a strict polynomial functor of degree d is simply a functor F from finite
dimensional vector spaces to all vector spaces, such that the function Homk(U, V ) →
Homk(F (U), F (V )) determined by F is a polynomial of degree d. In characteristic
zero these functors appear in MacDonald’s classical book [13], where they are
called ‘polynomial functors’. As already mentioned above, over any field k, Pd is
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equivalent to the category S(n, d)−Mod of modules over the Schur algebra, or to
the category Poln,d, for any n ≥ d. The equivalence is obtained by evaluating a
functor F on k

n [7, Thm 3.2].
Many usual functors of k-vector spaces are strict polynomial functors. To fix

notations, we now provide a list of examples of strict polynomial functors which
will be considered in this article.

• We let Γd be the d-th divided power functor, that is Γd(V ) = (V ⊗d)Sd is
the subspace of invariants of V ⊗d under the action of Sd which permutes
the factors of the tensor product (in particular Γ0 is the constant functor
with value k). We let Sd be the d-th symmetric power functor, that is
Sd(V ) = (V ⊗d)Sd

is the quotient space of coinvariants. More generally,
if λ = (λ1, . . . , λn) is any n-tuple of nonnegative integers of weight |λ| =∑

λi = d, we let

Γλ = Γλ1 ⊗ · · · ⊗ Γλn , and Sλ = Sλ1 ⊗ · · · ⊗ Sλn .

The functors Γλ, resp. Sλ, for all tuples λ of weight d, form a projec-
tive generator, resp. injective cogenerator, of Pd. We also use a similar
notation Λλ indexed by tuples λ for tensor products of exterior power
functors. If (1{d}) = (1, . . . , 1) (d terms equal to one), we will denote by
⊗d the tensor product

⊗d := Γ(1{d}) = Λ(1{d}) = S(1{d}) .

• Pd is a highest weight category [4] with simple objects indexed by the
poset of partitions λ of weight (or size) |λ| = d, equipped with the dom-
inance order �. In particular we have the following functors attached to
a partition λ. In the first four examples, λ is called the highest weight of
the functor Fλ, because the evaluation Fλ(k

n) with n ≥ d is a polynomial
module with highest weight λ.
(1) We let Lλ be the simple functor indexed by λ.
(2) We let Sλ be the costandard object indexed by λ. This functor

is nothing but the Schur functor defined by Akin Buchsbaum and
Weyman [2]. The notation used in [2] is different from ours, see
[17, Section 6.1.1] for the conversion between notations. In particular
S(1{d}) = Λd and S(d) = Sd.

(3) We let Wλ be the standard object indexed by λ. The functors Wλ

are called Weyl functors and can be obtained from the Schur functors

by duality: Wλ = S�
λ, where the dual F � of a functor F satisfies

F �(V ) = F (V ∨)∨ with ‘∨’ denoting the duality of k vector spaces.
In particular W(1{d}) = Λd and W(d) = Γd.

(4) We let Tλ be the indecomposable tilting object indexed by λ. Each
Tλ is characterized by indecomposability, self-duality, and by the ex-
istence of a filtration whose subquotients are Schur functors Sμ sat-
isfying μ � λ, such that Sλ appears exactly once as a subquotient.

The functor Tλ is a direct summand of Λ
˜λ, where λ̃ is the conjugate

partition of λ.
(5) We let Pλ, resp. Jλ, be the projective cover, resp. injective envelope,

of Lλ. Then Pλ is a direct summand of Γλ and Jλ is a direct summand
of Sλ.
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• Finally, given a nonnegative integer r, we let I(r) be the r-th Frobenius
twist. Thus I(r)(V ) is the subspace of Spr

(V ) generated by the elements
of the form vp

r

, v ∈ V . The functor I(0) = S1 = Λ1 = Γ1 is often
simply denoted by I (it is the identity functor of k-vector spaces). For an
arbitrary F , we denote by F (r) the composition F ◦ I(r).

Remark 1.1. In our notations, upper partitions or tuples mean tensor prod-
ucts, while lower partitions mean an index related to the highest weight category
structure. For example if λ = (3, 2, 2), then Sλ = S3⊗S2⊗S2 is a tensor product of
symmetric powers, while Sλ is the costandard (Schur) functor with highest weight
(3, 2, 2).

The homological constants i(M, r) and p(M, r) have the following alternative
definition. We say that a tuple of nonnegative integers λ = (λ1, . . . , λn) is pr-
bounded if for all i, λi < pr.

Proposition ([20, Prop 4.1]). Let F ∈ Pd. Then p(F, r) is the maximal
(possibly infinite) integer k such that F admits a projective resolution

· · · → Pi → Pi−1 → · · · → P0 → F → 0

in which the first k terms P0, . . . , Pk−1 are direct sums of functors Γλ with pr-
bounded λ. Similarly, i(F, r) is the maximal (possibly infinite) integer k such that
F admits a injective resolution in which the first k terms J0, . . . , Jk−1 are products
of functors Sλ with pr-bounded λ.

2. Applications of the constants i(F, r) and p(F, r)

2.1. Stable cup products for GLn and applications. Let us say that a
quadruple of homogeneous functors (F, F ′, G,G′) satisfies the Künneth condition
if F has values in finite dimensional vector spaces and F ′ or G also has values in
finite dimensional vector spaces. This technical condition ensures that the tensor
product induces an isomorphism

HomP(F,G)⊗HomP(F
′, G′) 	 HomP(2)(F � F ′, G � G′)

where P(2) refers to the category of strict polynomial bifunctors. It is automatically
satisfied if all the functors have values in finite dimensional vector spaces, as for the
examples of strict polynomial functors given in the introduction. Our first use of
the homological constants i(F, r) and p(F, r) is the following result on cup products.

Theorem ([20, Thm 3.6]). Let (F,G, F ′, G′) be a quadruple of homogeneous
strict polynomial functors satisfying the Künneth condition, and let r ≥ 0. The cup
product induces a graded injective map:

Ext∗Pk
(F,G)⊗ Ext∗Pk

(F ′(r), G′(r)) ↪→ Ext∗Pk
(F ⊗ F ′(r), G⊗G′(r)) .

Moreover, this graded injective map is an isomorphism in degree k in the following
situations.

(1) When degF < degG, and k < i(G, r).
(2) When degF > degG, and k < p(F, r).
(3) When degF = degG, and k < p(F, r) + i(G, r).
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This theorem may seem surprising. Indeed, it does not hold in the finite group
(scheme) cohomology setting. For example, the cohomological support variety of a
representation M of a finite group scheme G is the variety defined from the kernel
of the cup product with IdM ∈ Ext0G(M,M):

− ∪ IdM : Ext∗G(k, k) → Ext∗G(M,M) .

What makes cohomological support non trivial is precisely the fact that cup prod-
ucts are not injective in this case.

Since precomposition by I(r) induces an isomorphism in Ext-degrees zero and
one, we can even remove the Frobenius twist when working in these degrees. We
then obtain the following corollary. This corollary allows to reduce some Ext1 com-
putations between simple functors to Ext1-computations between simple functors
with p-restricted highest weight. This should be compared to [9, II 10.16 and 10.17].

Corollary ([20, Cor 3.7]). Let F and G be two homogeneous functors of the
same degree with values in finite dimensional vector spaces. Assume that both the
head of F and the socle of G are direct sums of functors Lλ with λ pr-restricted.
There are isomorphisms:

HomP(F,G)⊗HomP(F
′, G′) 	 HomP(F ⊗ F ′(r), G⊗G′(r)) ,(2.1)

HomPk
(F,G)⊗ Ext1Pk

(F ′, G′)
⊕Ext1Pk

(F,G)⊗HomPk
(F ′, G′)

	 Ext1Pk
(F ⊗ F ′(r), G⊗G′(r)) .(2.2)

In [20], we use this corollary to investigate the structure of functors or the form
F ⊗G(r) where all the composition factors of F are pr-restricted. For example the
subfunctor lattice of such tensor products is essentially determined by the subfunc-
tor lattice of F and the subfunctor lattice of G [20, Cor 5.12 and 5.13]. Another
example is the next corollary, which can be thought of as a categorical version of
the Steinberg tensor product theorem.

Corollary ([20, Cor 5.14]). Let λ be a pr restricted partition, and denote by
Lλ ⊗ P(r) the full subcategory of P whose objects are tensor products of the form
Lλ ⊗ F (r) for any F . Then Lλ ⊗ P(r) is a localizing and colocalizing subcategory
of P. Moreover, the functor P → Lλ ⊗ P(r), F �→ Lλ ⊗ F (r) is an equivalence of
categories.

2.2. Stable cup products for other classical types. In this section, we
show that the property of cup products of polynomial representations described
in section 2.1 has an analogue for the other classical matrix groups. To be more
specific, if G = Sp2n ⊂ GL2n or G = SOn ⊂ GLn, any polynomial representation of
GLn restricts to a representation of G. If M and N are polynomial representations,
and r ≥ 0, there is a cup product

H∗(G,M)⊗H∗(G,N (r)) → H∗(G,M ⊗N (r)) .

We will show that when the rank of G is big enough with respect to the degree of
the polynomial representations in play, this cup product is injective and it is an
isomorphism in low degrees. The result is stated in theorem 2.1.

As with cup products for GLn, the natural home for stating and proving the-
orem 2.1 is the category of strict polynomial functors. So we first recall the con-
nection between classical groups and strict polynomial functors proved in [16] (and
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improved in [19, section 7.4]). Let us fix a strict polynomial functor X. Then for
all F , we let H∗

X(F ) be the extension groups:

Hi
X(F ) :=

⊕
k≥0

ExtiP(Γ
k ◦X,F ) .

For all k, �, there is a natural inclusion Γk+�(V ) → Γk(V ) ⊗ Γ�(V ). Replacing V
by X(−), we obtain a morphism of strict polynomial functors:

Δk,� : Γ
k+� ◦X → (Γk ◦X)⊗ (Γ� ◦X) .

We can now define an associative cup product as the composite

Hi
X(F )⊗Hj

X(G)
⊗−→

⊕
k,�≥0

Exti+j
P ((Γk ◦X)⊗ (Γ� ◦X), F ⊗G)

Δ∗
k,�−−−→ Hi+j

X (F ⊗G) .

The next theorem gives the link with the cohomology of symplectic groups.

Theorem ([16, Thm 3.17], [19, Thm 7.24]). There is a graded map, which is
natural with respect to F ∈ Pk and compatible with cup products:

φF,2n : H∗
Λ2(F ) → H∗(Sp2n, F (k2n)) .

Moreover it is a graded isomorphism if 2n ≥ degF .

There are similar results for orthogonal groups and special orthogonal groups,
with Λ2 replaced by S2. See [16, Thm 3.24] and [19, Thm 7.27 and Cor 7.31]. We
can now describe the behavior of cup products for symplectic and orthogonal types.

Theorem 2.1. Let X = Λ2 or X = S2, let F and G be two homogeneous strict
polynomial functors and let r ≥ 0. The cup product

∪ : H∗
X(F )⊗H∗

X(G(r)) → H∗
X(F ⊗G(r))

is injective. Moreover, it is an isomorphism in degree k if k < i(F, r).

In the remainder of the section, we outline the proof of theorem 2.1. This proof
is a modification of the proof for GLn given in [20]. We will treat only the case
when F and G both have even degrees. If one of the two functors has odd degree,
then the proof is similar, and actually easier. For example, if F or G has odd
degree, then the source of the cup product map in theorem 2.1 is zero for degree
reasons, so injectivity is trivial.

So in the remainder of section 2.2 we assume that F has degree 2d and G has
degree 2e. The proof decomposes in several steps.

Step 1: reduction to a connectedness statement. Injectivity of the cup
product was already proved in [16], and we recall the proof here. For all vector
spaces V,W and all nonnegative integers n we have a canonical decomposition

Γn(X(V ⊕W )) 	
⊕

k+�+m=n

Γk(X(V ))⊗ Γ�(V ⊗W )⊗ Γm(X(W )) .

Thus Γd(X(V ))⊗Γe(X(W )) is a direct summand on Γd+e(X(V ⊕W )), and there is
a commutative diagram, in which P(V,W ) denotes the category of strict polynomial
bifunctors with variables V and W (see e.g. [20, Section 2], [16, Section 2]), the
top vertical arrow is induced by the canonical projection of Γd+epr

(X(V ⊕ W ))
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onto Γd(X(V )) ⊗ Γepr

(X(W )), and the bottom vertical arrow is induced by the
sum diagonal adjunction map

Ext∗P(Γ
d ◦X,F )

⊗Ext∗P(Γ
epr ◦X,G(r))

⊗
�

��

∪

��

Ext∗P(V,W )(Γ
d(X(V ))⊗ Γepr (X(W )), F (V )⊗G(r)(W ))

� �

��

Ext∗P(V,W )(Γ
d+epr (X(V ⊕W )), F (V )⊗G(r)(W ))

�
��

Ext∗P(Γ
d+epr ◦X,F ⊗G(r))

Thus, the cup product is injective. Moreover, the cokernel of the cup product map
can be identified from the diagram above. Namely, it is isomorphic to:

Ext∗P(V,W )

(⊕
Γk(X(V ))⊗ Γ�(V ⊗W )⊗ Γm(X(W )), F (V )⊗G(r)(W )

)
,

where the sum is taken over all triples (k, �,m) satisfying k + � + m = d + epr

and k > 0, m > 0. Since there is no nontrivial extensions between homogeneous
bifunctors of different bidegrees, it is also isomorphic to the direct sum of the graded
vector spaces for i > 0:

Ext∗P(V,W )

(
Γd−i(X(V ))⊗ Γ2i(V ⊗W )⊗ Γepr−i(X(W )), F (V )⊗G(r)(W )

)
.

We denote for short by E∗(i, F,G(r)) these graded vector spaces. So to prove
theorem 2.1, it remains to prove the following connectedness statement:

Ek(i, F,G(r)) = 0 for i > 0 and k < i(F, r). (∗)
Step 2: proof of assertion (∗) in a special case. We now assume that F = Sμ

for a pr-bounded tuple μ, and G = Sν for an arbitrary tuple ν. We observe that

Sμ(V ⊕ V ′) can be written as a direct sum of terms of the form Sμ1

(V )⊗ Sμ2

(V ′)
where both μ1 and μ2 are pr bounded. Thus, using sum-diagonal adjunction (see
e.g. [20, Section 2] or [16, Section 5]), we obtain that E∗(i, Sμ, Sν (r)) is isomorphic
to a finite direct sum of terms of the form

Ext∗P(V,W,V ′,W ′)

(
Γd−i(X(V ))⊗Γ2i(V ′ ⊗W ′)⊗ Γepr−i(X(W ′)) ,

Sμ1

(V )⊗ Sμ2

(V ′)⊗ Sν1 (r)(W )⊗ Sν2 (r)(W ′)
)
,

where μ1 and μ2 are pr-bounded, and P(V,W, V ′,W ′) is the category of strict
polynomial quadrifunctors with variables V , W , V ′, W ′. By the Künneth theorem,
such an Ext is isomorphic to E∗

1 ⊗ E∗
2 ⊗ E∗

3 with

E∗
1 = Ext∗P(Γ

d−i ◦X,Sμ1

) ,

E∗
2 = Ext∗P(V ′,W ′)(Γ

2i(V ′ ⊗W ′), Sμ2

(V ′)⊗ Sν1 (r)(W ′)) ,

E∗
3 = Ext∗P(Γ

epr−i ◦X,Sν2 (r)) .

We claim that E∗
2 is zero in all degrees. Indeed, replacing V ′ by U∨, where U is

a finite dimensional vector space and ‘∨’ denote k-linear duality, yields an equiva-
lence of categories between P(V ′,W ′) and Bif(U,W ′) where the latter denotes the
category of strict polynomial bifunctors, contravariant in the first variable U and
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covariant with the second variable W ′. With this substitution, E∗
2 is isomorphic to

the graded vector space:

Ext∗Bif(U,W ′)(Γ
2i(Homk(U,W

′)),Homk(Γ
μ2

(U), Sν1 (r)(W ′)) .

By [6, Thm 1.5], the latter is isomorphic to Ext∗P(Γ
μ2

, Sν1 (r)), which is zero in

positive degrees because Γμ2

is projective, and which is zero in degree zero by
[20, Lm 3.10]. Thus E∗

1 ⊗E∗
2 ⊗E∗

3 is zero, which implies assertion (∗) in our special
case.

Step 3: proof of assertion (∗) in general. We now return to the general case.
The functor F has an injective coresolution JF whose first i(F, r) terms are products
of functors Sμ for pr-bounded tuples μ. Let JG be an injective coresolution of G.

Then JF (V )⊗ J
(r)
G (W ) is a coresolution of F (V )⊗G(W ), whose first i(F, r) terms

are finite direct sums of functors of the form (
∏

Sμi

(V )) ⊗ (
∏

Sνj (r)(W )) where
the μi are pr-bounded tuples of integers.

Lemma 2.2. Let μi be pr-bounded tuples of integers and let νj be arbitrary tuples

of integers. Then (
∏

Sμi

(V )) ⊗ (
∏

Sνj

(W )) is a direct summand of a product of
bifunctors of the form Sμ(V )⊗Sν(W ) for pr-bounded tuples μ and arbitrary tuples
ν.

Proof. First, by [20, Lm 3.3(iii)] (
∏

Sμi

) is a direct summand of a direct sum⊕
k S

αk

for pr-bounded tuples αk. Similarly,
∏

Sνj

is a direct summand of a direct

sum of a direct sum
⊕

� S
β�

. So (
∏

Sμi

(V ))⊗ (
∏

Sνj

(W )) is a direct summand of⊕
k,� S

αk

(V )⊗ Sβ�

(W ). The latter is an injective bifunctor, hence by injectivity it

is a direct summand of
∏

k,� S
αk

(V )⊗ Sβ�

(W ). �

Using lemma 2.2 and applying the r-th Frobenius twist on the variable W ,

we obtain that in the complex JF (V ) ⊗ J
(r)
G (W ), the terms (JF (V ) ⊗ J

(r)
G (W ))s

with 0 ≤ s < i(F, r) are direct summands of products of bifunctors of the form
Sμ(V )⊗ Sν (r)(W ) for pr-bounded tuples μ and arbitrary tuples ν. Thus using the
special case of assertion (∗) proved in step 2, together with the spectral sequence

Es,t
1 = ExttP(V,W )(B(V,W ),(JF (V )⊗ J

(r)
G (W ))s)

=⇒ Exts+t
P(V,W )(B(V,W ), F (V )⊗G(r)(W ))

which we apply to the bifunctor

B(V,W ) = Γd−i(X(V ))⊗ Γ2i(V ⊗W )⊗ Γepr−i(X(W ))

we obtain assertion (∗) in the general case. This finishes the proof of theorem 2.1.

2.3. On the closed monoidal structure of Pd. As explained in [12], Pd

has a closed symmetric monoidal structure. We denote by ⊗ the internal tensor
product, and by Hom the internal tensor product. Since P =

⊕
d≥0 Pd, we formally

extend this symmetric monoidal structure to the whole category P by letting for
all F , G with homogeneous components F d, Gd of degree d :

Hom(F,G) =
⊕
d≥0

Hom(F d, Gd) , F⊗G =
⊕
d≥0

F d⊗Gd .
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The properties of cup products described in section 2.1 have consequences for the
symmetric monoidal structure of Pd. This is what is behind the proof of [20, Prop
6.1], and we explain everything in more details here.

The internal Hom can be concretely described in terms of parametrizations.
To be more specific, we denote by FV and FV the strict polynomial functors U �→
F (Homk(V, U), U �→ F (U ⊗ V ). Then one has isomorphisms of functors of the
variable V , natural with respect to F , G:

HomP(F
V , G) 	 Hom(F,G)(V ) 	 HomP(F,GV ) .

We let Ext∗(F,G) be the value on G of the derived functor of Hom(F,−) : P → P.
Since parametrization is exact and preserves projectives and injectives, one has

Ext∗P(F
V , G) 	 Ext∗(F,G)(V ) 	 Ext∗P(F,GV ).

Such parametrized extension groups appear naturally in computations of strict
polynomial functors, see e.g. [17,18]. It is easy to see [20, Prop 7.3 (a)] that for all
V one has p(F, r) = p(FV , r) and i(G, r) = i(GV , r). Thus we have a parametrized
version of [20, Thm 3.6].

Proposition 2.3. Let (F,G, F ′, G′) be a quadruple of homogeneous strict poly-
nomial functors satisfying the Künneth condition, and let r ≥ 0. Cup product
induces a graded injective map:

Ext∗(F,G)⊗ Ext∗(F ′(r), G′(r)) ↪→ Ext∗(F ⊗ F ′(r), G⊗G′(r)) .

Moreover, this graded injective map is an isomorphism in degree k in the following
situations.

(1) When degF < degG, and k < i(G, r).
(2) When degF > degG, and k < p(F, r).
(3) When degF = degG, and k < p(F, r) + i(G, r).

We let Tor∗(F,G) be the value on G of the derived functors of F⊗− : P → P.
Internal Tor are related to internal Ext by isomorphisms of functors, natural with
respect to F,G:

Tori(F,G)� 	 Exti(F,G�) ,

where � refers to Kuhn (or contragedient) duality: F �(V ) = F (V ∨)∨ with ∨ de-
noting the duality of k-vector spaces. Internal Tor are not equipped with a cup
product but rather with a coproduct. The construction of the coproduct in degree
zero is explained in [20, Section 6.1], and after deriving, this coproduct induces a
graded map:

Tor∗(F ⊗ F ′, G⊗G′) → Tor∗(F,G)⊗ Tor∗(F
′, G′) .

One has the following connectedness property for internal Tor.

Proposition 2.4. Let F,G, F ′, G′ be homogeneous strict polynomial functors
and let r ≥ 0. The coproduct induces a graded surjective map:

Tor∗(F ⊗ F ′(r), G⊗G′(r)) � Tor∗(F,G)⊗ Tor∗(F
′(r), G′(r)) .

Moreover, this graded surjective map is an isomorphism in degree k in the following
situations.

(1) When degF < degG, G is finite and k < p(G, r).
(2) When degF > degG, F is finite and k < p(F, r).
(3) When degF = degG, F and G are finite and k < p(F, r) + p(G, r).
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Proof. We first prove the statement when F, F ′, G,G′ are finite (i.e their
values are finite dimensional vector spaces). As noted in the proof of [20, Prop 6.1],
in this case the coproduct is just the dual (for the duality �) of the cup product

for internal Ext for the quadruple (F, F ′(r), G�, G′(r)�). Since G′(r)� 	 (G′�)(r), and
i(G�, r) = p(G, r), the statement follows from proposition 2.3. For the general case,
we use that each functor is the filtered colimit of its finite subfunctors, and that
tensor products and internal Tor commute with filtered colimits. �

Remark 2.5. The finiteness hypotheses in proposition 2.4 can actually be
removed, but then our short proof using dualization does not work anymore. One
rather needs to redo all the calculations of the proof of [20, Thm 3.6], replacing
the Hom spaces by tensor products over the source category or by its parametrized
variant ⊗.

Proposition 2.4 is already interesting in the cases where one has isomorphism
in degree zero. For example, the following application is analogous to the Steinberg
tensor product theorem in that it allows to reduce the computation of the internal
tensor product between simples to that of internal tensor products between simples
with p-restricted highest weights.

Theorem ([20, Thm 6.2, Cor 6.5]). Let λ0, . . . , λr and μ0, . . . , μs be p-restricted
partitions, and let λ =

∑
piλi and μ =

∑
piμi.

(1) If r = s and μi and λi have the same weight for all i, then Lλ⊗Lμ is
nonzero and there is an isomorphism:

Lλ⊗Lμ 	 (Lλ0⊗Lμ0)⊗ (Lλ1⊗Lμ1)(1) ⊗ · · · ⊗ (Lλr⊗Lμr)(r) .

(2) Otherwise, Lλ⊗Lμ is zero.

2.4. Connectivity of the Schur functor. Given a degree d homogenous
strict polynomial functor F , we let fd(F ) = HomP(⊗d, F ). The action of the
symmetric group Sd on ⊗d makes fd(F ) into a kSd-module. The functor fd is
known as the Schur functor, and it is part of a recollement of abelian categories:

Ker fd �� Pd
fd ��

��

��

kSd −Mod.

�d

��

rd

��

The interaction between cohomology of the symmetric group and cohomology of
GLn has been studied by the means of the Grothendieck spectral sequences associ-
ated to the composition of fd and its adjoints [5,10]. We observe that i(F, 1) can
be understood as the maximal integer k such that F has an injective resolution J
such that the first k terms of the complex fd(J) are injective kSd-modules (and
p(F, r) has a similar description). So we deduce the following comparison result.

Theorem ([20, Thm 8.2]). Let F and G be homogeneous functors of degree d.
The map induced by the Schur functor:

ExtkP(F,G) −→ Extk
kSd

(fd(F ), fd(G))

is an isomorphism in degrees k < p(F, 1) + i(G, 1)− 1, and it is injective in degree
k = p(F, 1) + i(G, 1)− 1.
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For some classes of functors, it is not to hard to compute lower bounds for
p(F, 1) or i(G, 1), and we recover in this way various known results on the coho-
mology of symmetric groups.

• The right adjoint rd of fd is left exact and sends injective kSd-modules
to p-bounded injectives, hence one has i(rdM, 1) ≥ 2 for all kSd-modules
M . This remark together with the previous theorem encompasses most
of the Ext1-computations and comparison results between representations
of Schur algebras and symmetric groups obtained in [5].

• Using Ringel duality for strict polynomial functors we proved [20, Prop
7.6] that i(W d

λ , 1) ≥ p− 1+ i(S
˜λ, 1) where Wλ, resp. S˜λ denotes the Weyl

functor associated to λ, resp. the Schur functor associated to the conjugate

partition λ̃. This computation and the previous theorem encompass all
the applications in [10, Section 6], except [10, Theorem 6.1].

• We compute in corollary 3.12 below that i(Sλ, 1) ≥ 2 when λ is a partition
with λ1 ≤ p − 2. Thus for all p-restricted partitions μ such that μ � �λ
one has (the first equality comes from highest weight category theory):

0 = Ext1P(Lμ, Sλ) 	 Ext1
kSd

(fdLμ, fdSλ) .

This result is similar (but not equivalent) to the main result of [11].

3. Computations of i(F, r) and p(F, r)

The results of section 2 motivates us to investigate how to compute the homo-
logical constants i(F, r) and p(F, r). In this section, we give basic tools to compute
i(F, r) and p(F, r), and partial results regarding the values of these constants for
simples Lλ, Schur functors Sλ, Weyl functors Wλ and tilting functors Tλ.

3.1. General computation rules and reductions. We first recall some
general facts established in [20, Section 7].

Proposition. Let F and G be two strict polynomial functors, let λ be a par-

tition and λ̃ its conjugate partition. The following holds.

p(F, r) = i(F �, r) ,(3.1)

i(F, r) = i(F (s), r + s) ,(3.2)

i(F ⊗G, r) = min{ i(F, r) , i(G, r) } ,(3.3)

i(Wλ, r) ≥ pr − 1 + i(S
˜λ, r) ,(3.4)

i(Λd, r) = pr − 1 if d ≥ pr,(3.5)

i(Γd, r) = 2pr − 2 if d ≥ pr,(3.6)

i(F, r) = +∞ if degF < pr.(3.7)

In view of these results we will restrict ourselves to understand i(F, r) for the
following functors in the sequel.

• Functors F = Lλ with p-restricted highest weight λ. Indeed, the value
for arbitrary λ can then be obtain by equality (3.2) and (3.3) and the
Steinberg tensor product theorem.

• Functors F = Sλ, with λ arbitrary. Indeed, we then obtain lower bounds
for Wλ by inequality (3.4). Note that (3.5) and (3.6) show that inequality
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(3.4) is an equality for λ = (1, . . . , 1) and for λ = (d). We don’t know if
equality holds in general.

• Functors F = Tλ with λ arbitrary.

3.2. The integer i(F, r) as a connectedness bound. We now recall a
homological criterion to compute i(F, r). Given a tuple of nonnegative integers
(d0, . . . , dk) we let

T (d0,...,dk) := (I(0))⊗d0 ⊗ (I(1))⊗d1 ⊗ · · · ⊗ (I(k))⊗dk .

Thus T (d0,...,dk) is a homogeneous strict polynomial functor of degree
∑k

i=0 p
idi.

We let T (d, r) be the (finite) direct sum of all the T (d0,...,dk) of degree d which have
at least one factor I(s) with s ≥ r (in particular T (d, r) = 0 as soon as d < pr).
The next proposition shows that we can interpret i(F, r) as a connectedness bound.
For brevity we will use the following notation.

Definition 3.1 (Notation). If E∗ is a graded vector space, or a graded functor,
we let

connE∗ = inf
{
k ∈ N | Ek �= 0

}
.

In particular connE∗ = +∞ if and only if E∗ = 0.

Proposition ([20, Prop 7.1]). For all F homogeneous of degree d:

i(F, r) = connExt∗P(T (d, r), F ) .

We will now prove another characterization of i(F, r) which will be easier to
check in practice. This characterization, given in proposition 3.4 below, uses the
right adjoint of the functor −⊗I(r) : P → P. This adjoint exists for formal reasons
[14, Chap V], but we need an explicit formula. The reasonning works for the adjoint
of −⊗F for any degree d homogeneous strict polynomial functor F , so we present
the results in this generality. Given a strict polynomial functor G, we form the
bifunctor (V,W ) �→ G(V ⊕W ). As for every strict polynomial bifunctor, there is a
decomposition

G(V ⊕W ) =
⊕
k≥0

G(k,∗)(V,W )

where each G(k,∗)(V,W ) is homogeneous of degree k with respect to the variable
V . We let [F : −] : P → P be the functor defined by:

[F : G](W ) = HomP(V )

(
F (V ), G(d,∗)(V,W )

)
,

where HomP(V )(−,−) means that we are computing Hom between strict polynomial
functors of the variable V .

In the decomposition of G(V ⊕ W ), the direct summands G(k,∗)(V,W ) have
degree less or equal to degG − k as strict polynomial functors of the variable W
and they are zero if degG − k is negative. Thus deg[F : G] ≤ degG − d and
[F : G] is zero if degG− d is negative. Moreover G(degG,∗)(V,W ) = G(V ), hence if
degG = d then [F : G] is a constant functor with value HomP(F,G).

Lemma 3.2. The functor [F : −] : P → P is right adjoint to −⊗ F : P → P.
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Proof. We have a chain of natural isomorphisms:

HomP(F⊗H,G) 	 HomP(V,W )(F (V )⊗H(W ), G(V ⊕W ))

	 HomP(V,W )(F (V )⊗H(W ), G(d,∗)(V,W ))

	 HomP(W )(H(W ) , HomP(V )(F (V ), G(d,∗)(V,W )) )

= HomP(W )(H(W ), [F : G](W )) .

The first isomorphism is by sum-diagonal adjunction, the second one follows from
the fact that there is no Hom between homogeneous strict polynomial bifunctors
of different bidegrees, the third one is [14, Prop 1 p. 37]. �

Next we consider the right derived functors Ri[F : −] : P → P. If degG < d
then R∗[F : G] is zero, and if degG = d then R∗[F : G] is a constant functor with
value Ext∗P(F,G). The next lemma gives basic rules to compute R∗[F : G] when
the degree of G is greater than d.

Lemma 3.3. Assume that F is homogeneous of degree d with finite dimensional
values. For all i, there is a functor Φi : Pop × P × P → P and a canonical
decomposition, natural with respect to F,G,H

Ri[F : G⊗H] 	 G⊗Ri[F : H] ⊕ Φi(F,G,H) ⊕ Ri[F : G]⊗H .

Moreover, for all r ≥ 0, Φi(I(r), G,H) = 0 for all G, H. Finally, let E∗ = S∗,
Λ∗, or any exponential functor with each Ek homogeneous of degree k. Let Δk,� :
Ek+� → Ek⊗E� and mk,� : E

k⊗E� → Ek+� be the components of the multiplication
and comultiplications of E∗. Then for all k ≥ 0 the following compositions (with
Ej = 0 for j < 0) are isomorphisms

Ek−d ⊗Ri[F : Ed] ↪→ Ri[F : Ek−d ⊗ Ed]
Ri[F :mk−d,�]−−−−−−−−−→ Ri[F : Ek] ,

Ri[F : Ek]
Ri[F :Δk−d,�]−−−−−−−−−→ Ri[F : Ek−d ⊗ Ed] � Ek−d ⊗Ri[F : Ed] .

Proof. We have a direct sum decomposition:

(G⊗H)(d,∗)(V,W ) =

d⊕
i=0

G(i,∗)(V,W )⊗H(d−i,∗)(V,W ) . (∗)

The summands indexed by i = 0 and i = d are respectively equal to

G(W )⊗H(d,∗)(V,W ) and G(d,∗)(V,W )⊗H(W ) .

The direct sum decomposition is obtained by applying ExtiP(V )(F (V ),−) to this

decomposition, and using the canonical isomorphisms (which hold since F has finite
dimensional values hence it has a resolution by finitely generated projectives):

ExtiP(V )(F (V ), G(W )⊗H(d,∗)(V,W )) � G(W )⊗ ExtiP(V )(F (V ),H(d,∗)(V,W )) ,

ExtiP(V )(F (V ), G(d,∗)(V,W )⊗H(W )) � ExtiP(V )(F (V ), G(d,∗)(V,W ))⊗H(W ) .

If F = I(r), Pirashvili’s vanishing lemma [7, Thm 2.13] shows that the summands
of (∗) indexed by i = 0 and i = d are the only ones which may have a nonzero

contribution after applying ExtiP(V )(I
(r)(V ),−). Finally, the last statement follows

from the fact that there is an isomorphism:

(Ek)(d,∗)(V,W )
�−→ Ed(V )⊗ Ek−d(W )
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induced by the comultiplication of E, with inverse induced by the multiplication
of E. �

Proposition 3.4. For all F homogeneous of degree d one has

i(F, r) = min
r≤s≤logp(d)

connR∗[I(s) : F ] .

Proof. For all G, there is a Grothendieck spectral sequence

Ek,�
2 = ExtkP(G,R�[I(s) : F ]) =⇒ Extk+�

P (G⊗ I(s), F ) .

Let E∗
2 denote the second page with total grading. Then

connExt∗P(G⊗ I(s), F ) ≥ connE∗
2 ≥ connR∗[I(s) : F ] . (∗)

Moreover, if c = connR∗[I(s) : F ] and HomP(G,Rc[I(s) : F ]) �= 0, then E0,c
2 = E0,c

∞
for degree reasons, so the inequalities in (∗) are equalities.

This being said, let m denote the right hand side of the equality of proposition
3.4. Since any direct summand T (d0,...,dk) of T (d, r) is of the form G ⊗ I(s) for
some s ∈ [r, logp(d)], inequality (∗) implies that i(F, r) ≥ m. Let t be such that

connR∗[I(t) : F ] = m. Since all simple functors are quotients of some T (d0,...,d�)

(this is a consequence of the Steinberg tensor product theorem and Clausen and
James’ theorem, see e.g [20, Cor 4.3]), one may find a tuple (d0, . . . , d�) such that
HomP(T

(d0,...,d�),Rm[I(t) : F ]) is nonzero. Thus we have

i(F, r) ≤ connExt∗P(T
(d0,...,d�) ⊗ I(t), F ) = connR∗[I(t) : F ] = m .

This finishes the proof of proposition 3.4. �

3.3. Computations for tilting functors.

Lemma 3.5. Let λ be a partition of weight d. The following assertions are
equivalent.

(i) λ is pr-restricted,
(ii) HomP(T (d, r), Jλ) is zero,
(iii) HomP(⊗d−pr ⊗ I(r), Jλ) is zero.

Proof. (i)⇒(ii) since no composition factor of T (d, r) is pr-restricted, and
(ii)⇒(iii) since ⊗d−pr ⊗ I(r) is a direct summand of T (d, r). It remains to prove
(iii)⇒(i). But (iii) implies that Lλ is not a composition factor of ⊗d−pr ⊗ I(r).
Thus, to prove (i), it suffices to prove that all Lμ with μ of weight d and not pr-

restricted appear as composition factors of ⊗d−pr ⊗ I(r). If μ is not pr-restricted
then by Clausen and James’ theorem and the Steinberg tensor product theorem Lμ

is a quotient of a tensor product T (d0,...,dk) with dk > 0 for some k ≥ r. Observe

that for all s, I(s+1) is a subfunctor of Sps+1

, hence a subquotient of (I(s))⊗p. Using
this observation repeatedly, we find that T (d0,...,dk) is a subquotient of ⊗d−pr ⊗I(r),
hence that Lμ is a composition factor of ⊗d−pr ⊗ I(r). �

Proposition 3.6. Let λ be an arbitrary partition. Then i(Tλ, r) ∈ {pr−1,∞}.
Moreover i(Tλ, r) = +∞ if and only if λ̃ is pr-restricted.
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Proof. We use Ringel duality, in the same way as in the proof of [20, Lemma
7.5]. To be more specific, Ringel duality is an equivalence of categories Θ : D(P) →
D(P), which sends J

˜λ to Tλ and T (d0,...,dk) to T (d0,...,dk)[−s], where s =
∑k

i=0 di(p
i−

1). In particular

Ext∗P(T
(d0,...,dk), J

˜λ) 	 Ext∗+s
P (T (d0,...,dk), Tλ) . (∗)

Since J
˜λ is injective, the left hand side of (∗) is zero in positive degrees. Now if λ̃ is

pr-restricted, then HomP(T (d, r), J˜λ) is zero by lemma 3.5, hence Ext∗P(T (d, r), Tλ)

is zero by (∗). If λ̃ is not pr-restricted, then HomP(⊗d−pr ⊗ I(r), Jλ) is nonzero by
lemma 3.5. Since the degree shift s is minimal for the summand ⊗d−pr ⊗ I(r) of
T (d, r), we obtain

i(Tλ, r) = connExt∗P(⊗d−pr ⊗ I(r), Tλ) = pr − 1 .

�

3.4. Computations for Schur functors indexed by hooks. Schur func-
tors indexed by hooks are often quite easy to deal with. Indeed they appear as
the kernels of some Koszul complexes which have a very simple description. To be
more specific, for d ≥ 1 we let κd be the complex:

Λd → Λd−1 ⊗ S1 → · · · → Λ1 ⊗ Sd−1 → Sd

where each Λd−i ⊗ Si is placed in homological degree d − i, and the differential
d : Λd−i ⊗ Si → Λd−i−1 ⊗ Si+1 is the composition (recall that S1 = Λ1 = I):

Λd−i ⊗ Si comult⊗Si

−−−−−−−→ Λd−i−1 ⊗ I ⊗ Si Λd−i−1⊗mult−−−−−−−−−→ Λd−i−1 ⊗ Si+1 .

Then κd is an exact complex, and for all i one has (see e.g. [3, p. 80]):

S(i,1{d−i}) = ker
[
Λd−i ⊗ Si → Λd−i−1 ⊗ Si+1

]
.

All of what is recalled above is valid for d > 0. If d = 0, we let κ0 be the complex
equal to k concentrated in degree zero.

For all nonnegative i, we may apply the functor Ri[I(r) : −] termwise to the
Koszul complex κd to obtain another complex of strict polynomial functors, which
we denote by Ri[I(r) : κd]. In the next lemma we compute these complexes. As
usual, the shift C[s] of a complex C is a complex satisfying C[s]n = Cs+n.

Lemma 3.7. Let d ≥ pr. We have

Ri[I(r) : κd] 	

⎧⎪⎨⎪⎩
κd−pr

if i = 0,

κd−pr

[pr] if i = pr − 1,

0 else.

Proof. As computed in [7, (4.5.1) p. 241], Ri[I(r) : Λpr

] = ExtiP(I
(r),Λpr

)

equals k if i = pr−1 and zero if i �= pr−1. Also, Ri[I(r) : Spr

] = ExtiP(I
(r), Spr

) is
zero in positive degrees and equals k in degree zero. Thus, by lemma 3.3, Ri[I(r) :
κd] is zero for i �∈ {0, pr − 1}. Also, we have the following commutative diagram:

R0[I(r),Λd−i ⊗ Si] �� R0[I(r),Λd−i−1 ⊗ I ⊗ Si] �� R0[I(r),Λd−i−1 ⊗ Si+1]

Λd−i ⊗ Si−pr ⊗ k ��

�

		

Λd−i−1 ⊗ I ⊗ Si−pr ⊗ k ��

�

		

Λd−i−1 ⊗ Si+1−pr ⊗ k

�
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where the horizontal maps are induced by the comultiplication of the exterior alge-
bra and the multiplication of the symmetric algebra, and the vertical isomorphisms
are compositions of the form (for suitable values of G, j) as in lemma 3.3:

G⊗ Sj ⊗ k = G⊗ Sj ⊗R0[I(r), Spr

] 	 G⊗R0[I(r), Sj+pr

] → R0[I(r), G⊗ Sj+pr

] .

Thus R0[I(r) : κd] 	 κd−pr

. One identifies Rpr−1[I(r) : κd] similarly. �

Lemma 3.8. Let λ = (i, 1{d−i}) be a hook-shaped partition of weight d and let
1 ≤ r ≤ logp(d). If d < pr then R∗[I(r), Sλ] is zero. If d = pr then

Rk[I(r), Sλ] =

{
k if k = (d− i),

0 else.

If d > pr then

Rk[I(r), Sλ] =

⎧⎪⎨⎪⎩
S(i−pr,1{d−i}) if k = 0 and i > pr,

S(i,1{d−i−pr}) if k = pr − 1 and d− i ≥ pr,

0 else.

Proof. If d < pr vanishing occurs for degree reasons ([I(r) : F ] is zero on
functors of degree less than pr). So we may assume that d ≥ pr. Let κd

≤d−i be the

stupid truncation of κd:

κd
≤d−i = Λd−i ⊗ Si → · · · → Λ1 ⊗ Sd−1 → Sd .

The homology of κd
≤d−i is S(i,1{d−i}) in degree d−i and zero in other degrees. Thus,

we have a hypercohomology spectral sequence:

E−s,t
1 = Rt[I(r) : Λs ⊗ Sd−s] =⇒ Rt−s+(d−i)[I(r) : S(i,1{d−i})] .

By lemma 3.7 there are only two nonzero rows in the first page, the row t = 0 and the

row t = pr−1, and the complex (E∗,0
1 , d1) is isomorphic to κd−pr

≤d−i while the complex

(E∗,pr−1
1 , d1) is isomorphic to κd−pr

≤d−i−pr [pr]. Thus we can compute explicitly page

E2 of the spectral sequence. Assume first that d = pr. Then E0,0
2 = k is the only

nonzero term of the second page. Thus E∗,∗
2 = E∗,∗

∞ and we obtain R∗[I(r) : Sλ] as
described in the lemma. Assume now that d > pr. Then the only possibly nonzero

terms of page E2 are E
−(d−i),0
2 and E

−(d−i),pr−1
2 . Thus

R∗[I(r) : S(i,1{d−i})] = E−(d−i),∗
∞ = E

−(d−i),∗
2 ,

and we obtain R∗[I(r) : Sλ] as described in the lemma. �

We are now ready to prove the main result of this section.

Proposition 3.9. Let λ = (i, 1{d−i}) be a hook-shaped partition, and let r ≥ 1.
The following holds.

(i) If d < pr, then i(Sλ, r) = +∞.
(ii) If d = pr, then i(Sλ, r) = (d− i).
(iii) If pr < d < 2pr then

i(Sλ, r) =

⎧⎪⎨⎪⎩
pr − 1 if i ≤ d− pr,

+∞ if d− pr < i ≤ pr,

0 if pr < i.
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(iv) If 2pr ≤ d, then i(Sλ, r) =

{
pr − 1 if i ≤ pr,

0 if i > pr.

Proof. Statement (i) follows from general rules of computations recalled in
section 3.1. For (ii), (iii) and (iv) we use that i(Sλ, r) is the minimal value of
the connectedness of R∗[I(s), Sλ] with r ≤ s ≤ logp(d) by proposition 3.4. If

pr ≤ d < 2pr one only has to consider the connectedness of R∗[I(s), Sλ] for s = r,
which is directly given by lemma 3.8, and one obtains (ii) and (iii). For (iv) there
might be several integers s to consider. As pr ≤ d− pr we have by lemma 3.8:

connR∗[I(r), Sλ] =

{
pr − 1 if i ≤ pr,

0 if i > pr.

To prove (iv), it remains to prove that if s > r, then connR∗[I(s), Sλ] is greater
or equal to connR∗[I(r), Sλ]. It suffices to check it when i ≤ pr. If s > r and
d = ps then connR∗[I(s), Sλ] = ps − i by lemma 3.8. But i ≤ pr implies that
ps − i ≥ ps − pr > pr − 1 and we are done. If s > r and d �= ps then i ≤ pr implies
that i ≤ ps, hence by lemma 3.8 connR∗[I(r), Sλ] ∈ {ps − 1,+∞} is greater than
pr − 1 and we are done. �

3.5. Thin partitions. In this section we do not compute exact values for
i(Sλ, r) or i(Lλ, r), but we rather provide lower bounds for these integers. The
philosophy of the results obtained can be roughly explained as follows. First if
λ = (1{d}), then Sλ = Lλ = Λd and i(Λd, r) are high numbers (pr − 1 or +∞).
Now if λ is a thin partition, that is if λ resembles (1{d}) then Sλ and Lλ should
resemble Λd, hence i(Sλ, r) and i(Lλ, r) should be high numbers, too.

Lemma 3.10. Let λ = (λ1, . . . , λn) be a partition of pr in exactly n parts. Then

i(Sλ, r) = connExt∗P(I
(r), Sλ) ≥ n− 1 .

Proof. The equality follows from proposition 3.4 and the fact that λ has
weight pr. By the Pieri rule [1, Thm (3)], one has a short exact sequence

0 → Sλ → Sλ1 ⊗ S(λ2,...,λn) → Cλ → 0

and Cλ has a finite length filtration whose layers are Schur functors indexed by
partitions μ of pr in n or n − 1 parts, which all strictly dominate λ. Since
Ext∗(I(r), Sλ1 ⊗ S(λ2,...,λn)) is zero by Pirashvili vanishing lemma [7, Thm 2.13],
the associated long exact sequence of Ext-groups tells us that

i(Sλ, r) ≥ min
μ

i(Sμ, r) + 1 (∗)

where the minimum is taken over the layers Sμ of the Pieri filtration of Sλ1 ⊗
S(λ2,...,λn). Now we prove lemma 3.10 inductively. For n = 1 there is nothing to
prove. Assume that lemma 3.10 holds for partitions of pr in at most n parts. Then
if λ is a partition of pr in (n + 1) parts which is maximal among those partitions
with respect to the dominance order, the filtration of Cλ has only layers of the form
Sμ for partitions of μ in n parts. Thus, by using (∗) lemma 3.10 holds for Sλ. We
then propagate the statement of lemma 3.10 by downwards induction on the finite
poset (with respect to the dominance order) of partitions of pr in (n + 1) parts.
Thus we obtain that lemma 3.10 holds for all partitions of pr into (n+1) parts. �
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Proposition 3.11. Let λ be a partition. Assume that λ contains no partition
α of pr in less or equal to n parts with trivial p-core. Then i(Sλ, r) ≥ n.

Proof. By [2, Thm II.4.11], Sλ(V ⊕W ) has a filtration whose layers have the
form Sα(V ) ⊗ Sλ/α(W ) for α ⊂ λ. Let s ≥ r. Restricting to the direct summand
of Sλ(V ⊕W ) which has degree ps with respect to V , one obtains

connR∗[I(s) : Sλ] ≥ min
α

{
conn

(
Ext∗P(I

(s), Sα)
)}

, (∗)

where the minimum is taken over the partitions α of ps which are contained in λ.
If λ contains no partition α of pr in less or equal to n parts with trivial p-core, then
it contains no partition of α of ps in less or equal to n parts with trivial p-core.
Thus by lemma 3.10 the right hand side of (∗) is greater or equal to n, so that
connR∗[I(s) : Sλ] ≥ n. By proposition 3.4, this implies that i(Sλ, r) ≥ n. �

The hypothesis in proposition 3.11 is not very simple. We give a simpler equiv-
alent formulation for r = 1 in corollary 3.12, and a simpler but weaker condition
for r ≥ 1 in corollary 3.13.

Corollary 3.12. If λ satisfies λ1 ≤ p− n, then i(Sλ, 1) ≥ n.

Proof. The partitions of p with trivial p-core are the hooks (p− i, 1{i}). �

Corollary 3.13. If λ satisfies λ1 + · · ·+ λn < pr, then i(Sλ, r) ≥ n.

Proof. The condition implies that λ is too thin to contain any partition of pr

into less or equal to n parts. �

Proposition 3.14. Let λ be an arbitrary partition. The following holds.

(1) If λ satisfies λ1 ≤ p− n then i(Lλ, 1) ≥ n.
(2) If λ satisfies λ1 + · · ·+ λn < pr, then i(Lλ, r) ≥ n.

Proof. We will use the short exact sequences (coming from the highest weight
structure of Sλ)

0 → Lλ → Sλ → Dλ → 0 , (∗)
where Dλ := Sλ/Lλ has a finite filtration whose layers are Lμ for μ dominated by
λ. We prove both statements of proposition 3.14 simultaneously, by induction on
the poset of partitions (with respect to the dominance order). First, if λ is minimal
in this poset, then Lλ = Sλ and the result is given by corollaries 3.12 and 3.13.
Now let λ be a partition and assume that proposition 3.14 holds for all partitions
dominated by λ. The key observation is that if μ is dominated by λ and λ satisfies
one of the conditions of proposition 3.14, then μ also satisfies the same condition.
In particular, we obtain that i(Dλ, r) ≥ n by the induction hypothesis. We also
have i(Sλ, r) ≥ n by corollary 3.12 or 3.13. Thus the Ext∗P(T (d, r),−)-long exact
sequence associated to (∗) implies that i(Lλ, r) ≥ n. �
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