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Applications of functor (co)homology

Antoine Touzé

Abstract. This article is a survey of recent applications of functor
(co)homology (i.e. Ext and Tor computations in functor categories) to the
(co)homology of discrete groups, of group schemes, and to the derived func-
tors in homotopical algebra.

1. Introduction

The terms ‘Functor (co)homology’ in the title refer to Ext and Tor computa-
tions in functor categories. In this article, we will focus on two specific functor
categories. The first one is the category FR of ordinary functors over a ring R.
The objects of this category are simply the functors F : P (R) → R-mod, where
P (R) denotes the category of finitely generated projective R-modules, and the mor-
phisms are the natural transformations between such functors. The second one is
the category PR of strict polynomial functors over a commutative ring R. It is the
algebro-geometric analogue of FR: strict polynomial functors can be seen as ordi-
nary functors F : P (R) → R-mod equipped with an additional scheme theoretic
structure (described below).

Some classical homological invariants of rings, groups, or spaces can be inter-
preted as functor homology. A prototypical example is the case of the Topological
Hochschild Homology THH(R) of a ring R, which is weakly equivalent [13] to
the stable K-theory of R. By [31], THH∗(R) can be computed as the MacLane
Homology HML∗(R) of R. The latter can be interpreted [27] as functor homology:

THH∗(R) � HML∗(R) � TorFR
∗ (Id, Id) .

Why do we want such functor homology interpretations? There are several
reasons. First, functor homology usually bears a lot of structure. Hence, if we
have a functor homology interpretation of a classical invariant, we often get extra
structure on this classical invariant (see corollary 3.13 below for an example).

Second, we may use functor homology interpretations to get explicit computa-
tions. Indeed, Ext and Tor are reasonably computable in FR and in PR. To be
more specific, Ext and Tor computations are complicated enough to contain inter-
esting information. At the same time, these computations are not too complicated:
many Ext and Tor groups can be explicitly computed. For example, the functor
homology interpretation of THH(R) allow the explicit computation of Topological
Hochschild Homology when R is a finite field [20] or the ring of integers [21].
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Third, several classical homology invariants can be interpreted as functor ho-
mology. So functor homology can be taken as an intermediate concept, giving links
between a priori unrelated classical homological invariants.

The aim of this article is to present the reader with functor homology interpre-
tations of some classical (co)homology theories. We do not give proofs, but rather
describe the general picture explaining how these interpretations are related to each
other.

2. The (co)homology of discrete groups and FR

Let n be a positive integer. Evaluation on the R-module Rn yields a functor
evRn from the category of ordinary functors over R to the category of modules over
RGLn(R) (the group algebra of GLn(R) over R):

evRn : FR → RGLn(R)-Mod
F �→ F (Rn) .

The R-linear group action ρF : GLn(R) → EndR(F (R)) is simply given by ρF (g) :=
F (g). Since the evaluation functor is exact, it induces for all pairs of functors (F,G)
a graded morphism:

evRn : Ext∗FR
(F,G) → Ext∗RGLn(R)(F (Rn), G(Rn)) .(1)

A natural question is to ask what the properties of this morphism are. Of course,
one cannot expect it to be an isomorphism, since the right hand side depends on
n, while the left hand side does not. It is also too much to ask for nice properties
of this map for all functors F , G since ordinary functors can be quite wild objects.
The properties of this map will be given for the class of polynomial functors, which
we now introduce.

2.1. Polynomial functors. Polynomial functors were introduced by Eilen-
berg and Mac Lane, in the study [16] of the homology of the Eilenberg-Mac Lane
spaces K(π, n). Let F ∈ FR be an ordinary functor. For all X ∈ P (R), we let
ΔF (X) be the kernel of the morphism F (X⊕R) → F (X) induced by the canonical
projection X⊕R � X. This actually defines an ordinary functor ΔF . The induced
functor

Δ : FR → FR

is called the difference functor. An ordinary functor F is called polynomial of degree
less or equal to n if there is an n such that the (n+1)-fold iteration Δn+1F is zero.
It is polynomial of degree n if in addition ΔnF is nonzero.

Observe the analogy with set-theoretic maps, which justifies the terminology.
For all maps f : Z → Z, we denote by δf the map x �→ f(x+ 1)− f(1). Then f is
polynomial i.e. f(x) is of the form

∑n
i=0 aix

i (with ai ∈ Q) if and only if δn+1f is
constant with value zero.

In the case of functors, F is polynomial of degree zero if and only if it is
constant, F is polynomial of degree less or equal to one if and only if it can be
written as the sum of an additive functor and of a constant functor. When R is
a commutative ring, typical functors of degree n are the tensor product functor
M �→ M⊗n, the exterior power functor M �→ Λn(M), the symmetric power functor
M �→ Sn(M) = (M⊗n)Sn

, or the divided power functor M �→ Γn(M) = (M⊗n)Sn

(all the tensor products are taken over R, M is projective an finitely generated
and the symmetric group Sn acts as usual by permuting the factors of the tensor
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product). Also, subfunctors and quotients of polynomial functors are polynomial
functors (since Δ is exact).

2.2. The case of a finite field R.
2.2.1. The case of general linear groups. Assume that R is a finite field. Dwyer

proved [14] that the right hand side of the morphism (1) does not depend on n if
F and G are polynomial functors and n is big enough (Dwyer’s theorem is actually
valid over a PID).

To be more specific, let ιn+1,n : GLn(R) ↪→ GLn+1(R) be the embedding of

groups sending M to
[

M 0
0 1

]
. Then the projection π : Rn+1 → Rn onto the first

n coordinates and the inclusion ι : Rn ↪→ Rn+1 into the first n coordinates are both
GLn(R)-equivariant. Hence for all functors F , G we get a morphism:

φi
n,n+1 : ExtiRGLn+1(R)(F (Rn+1), G(Rn+1)) → ExtiRGLn(R)(F (Rn), G(Rn))

by first restricting the actions to GLn(R), and then restricting attention to F (Rn)
and G(Rn), considered as direct summands of F (Rn+1) and G(Rn+1) via F (ι) and
G(ι). If F and G are polynomial functors, then φi

n,n+1 is an isomorphism if n is
big enough with respect to i, the degree of F and the degree of G. We will use the
notation ExtiRGL(R)(F,G) for the stable value.

Remark 2.1. When F and G are polynomial of degree zero (that is F and G
are constant functors), the stabilization of the extension groups ExtiRGLn(R)(F (Rn),

G(Rn)) is equivalent to the stabilization of the cohomology groups Hi(GLn(R), R),
see e.g.[41] for a proof of the latter. If F and G are constant functors, the stable
value is zero (since for i > 0, the stable value of Hi(GLn(R), R) is zero, as proved
by Quillen [33]) but for polynomial functors of higher degrees, the stable value can
be very far from zero.

The following theorem was proved independently by Betley [1] and Suslin [19,
Appendix].

Theorem 2.2. Let R be a finite field, let F and G be polynomial functors.
Evaluation on Rn yields a natural isomorphism

Ext∗FR
(F,G)

�−→ Ext∗RGL(R)(F,G) .

If M,N are RGLn(R)-modules, the vector space HomR(M,N) is endowed with
an action of GLn(R) and there is an isomorphism

Ext∗RGL(R)(M,N) � H∗(GLn(R),HomR(M,N)) .

So theorem 2.2 is indeed a theorem about the stable cohomology of GLn(R). It
can be easily extended to more general coefficients than those of the somewhat
restrictive form HomR(M,N) using the category of ordinary bifunctors, see [1,18].

2.2.2. The cohomology of orthogonal and symplectic groups. One can ask for
a similar statement for other classical matrix groups. Indeed, there is a similar
stabilization of the cohomology H∗(G2n, F (R2n)), when G2n = Spn(R) is the sym-
plectic group or G2n = On,n(R) is the orthogonal group. The stabilization with
trivial coefficients was proved by Fiedorowicz and Priddy [17], following the ideas
of Quillen, and the stabilization with F (Rn) as coefficients (F is a polynomial func-
tor, and the action of G2n is obtained by restriction of the action of GLn(R)) was
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proved by Charney [4]. Let us denote by H∗(G,F ) the stable value. Djament and
Vespa proved [8] that this stable value can be interpreted as functor cohomology.

To be more specific, let us denote by RΛ2 the ordinary functor which assigns
to each R-vector space V the R-vector space with basis the set Λ2(V ). There is an
evaluation map

ExtiFR
(RΛ2, F ) → ExtiRSpn(R)(RΛ2(R2n), F (R2n)) → Hi(Spn(R), F (R2n))

obtained by composing the evaluation on R2n and the pullback along the RSpn-
equivariant map R → RΛ2(R2n), which sends λ ∈ R to λw ∈ RΛ2(R2n), where
w is the invariant element corresponding to the form defining Spn. When n is big
enough, this map lands in the stable cohomology H∗(Sp(R), F ), and Djament and
Vespa proved [8, Cor 3.33]:

Theorem 2.3. Let R be a finite field, let F be a polynomial functor. Evaluation
induces a natural isomorphism

Ext∗FR
(R[Λ2], F )

�−→ H∗(Sp(R), F ) .

A remarkable feature in this theorem is that the category FR, which is al-
ready related to the cohomology of GLn(R), is also related to the cohomology of
Spn(R). The functor R[Λ2] is reminiscent of the bilinear antisymmetric form defin-
ing Spn(R). Djament and Vespa proved a similar statement for the orthogonal
group, in odd characteristic, when Λ2 is replaced by S2 [8, Cor 3.33].

As an illustration that group cohomology computations become easier once
transposed in functor categories, Djament and Vespa compute the stable cohomol-
ogy of On,n(R) and Spn(R) with coefficients in many representations, including
[8, Thm 4.18] Sd(R2n), Λd(R2n) or Γd(R2n).

2.3. The case of an arbitrary ring R. In this section, we use a variant
of the category FR, namely the category FAb

R of functors with source P (R) and
target the category Ab of abelian groups. We do this to stick to the framework of
the articles of Scorichenko [36] and Djament [9]. This is rather a cosmetic change
for functor homology: the adjunction R⊗Z : Ab � R-Mod : O induces a similar
adjunction FAb

R � FR which can be used to translate many computations in FAb
R

into computations in FR and vice versa.
2.3.1. Stabilization: homology versus cohomology. Assume first that R is a fi-

nite field. Then the homology of the symplectic, orthogonal and general linear
groups enjoys the same stabilization property as their cohomology. These two sta-
bilizations are actually equivalent by the universal coefficient theorem. However,
the stable value of the homology has a nice interpretation which is not shared
by the cohomology. Indeed, let Hi(G,F ) be the stable value of the homology
Hi(G2n, F (R2n)), where G2n equals Spn(R) or On,n(R). Since homology commutes
with filtered colimits, there is an isomorphism:

H∗(G,F ) � colimn H∗(G2n, F (R2n)) � H∗(G∞, F (R∞)) ,

where the group G∞ is the colimit of the groups G2n under suitable block matrices
inclusions (analogous to the block matrices inclusion ιn,n+1 of the general linear
groups), and F (R∞) denotes the colimit of the F (R2n). A similar result holds for
the general linear group. If F is an ordinary functor, we denote by F∨ : P (R)op →
Ab the functor obtained by precomposing F by R-linear duality. Evaluation of F∨

on Rn yields a right ZGLn(R)-module, and we denote by TorGL
∗ (F∨, G) the stable
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value of the torsion modules TorZGLn(R)
∗ (F∨(Rn), G(Rn)) (which exists if F and G

are polynomial). Then we have an isomorphism:

TorGL
∗ (F∨, G) � TorZGL∞(R)

∗ (F∨(R∞), G(R∞)) .

Assume now that R is an arbitrary ring. Then the homology of the symplectic,
orthogonal and general linear groups need not stabilize, even for trivial coefficients.
However, the homology groups H∗(G∞, F (R∞)) still makes sense. Thus we have
a homological object independent of n and related to our groups, regardless of the
stabilization issue. This makes homology nicer to formulate the generalization of
theorems 2.2 and 2.3 over an arbitrary ring R.

2.3.2. The homology of classical groups over an arbitrary ring. Let us start
with the case of the general linear group GLn(R). Recall that for F ∈ FAb

R , the
contravariant functor F∨ is obtained by precomposing F by R-linear duality. There
is a tensor product functor

F∨⊗FAb
R

: FAb
R → Ab .

characterized by the following properties. It commutes with arbitrary sums, it is
right exact, and if Pn is the ordinary functor which sends a R-module M to the
free abelian group with basis HomR(R

n,M), there is a natural isomorphism:

F∨ ⊗FAb
R

Pn � F∨(Rn) .

The derived functors of F∨⊗FR
are denoted Tor

FAb
R∗ (F∨,−).

We want to interpret TorZGL∞(R)
∗ (F∨(R∞), G(R∞)) as functor homology, at

least when F and G are nice functors. As a first guess, we might say it is isomorphic

to Tor
FAb

R∗ (F∨, G). However, such an isomorphism cannot hold in general, for if Z

denotes the constant functor with value Z, then Tor
FAb

R
i (Z,Z) = 0 if i > 0, whereas

TorZGL∞(R)
∗ (Z,Z) = H∗(GL∞(R),Z) is usually non zero.
The situation is actually even worse. Functor homology is a reasonably com-

putable object. By contrast, the homology of GL∞(R) with trivial coefficients is
a very complicated object, whose computation is out of reach in general. The tor-

sion groups TorZGL∞(R)
∗ (F∨(R∞), G(R∞)) are even more complicated, so it seems

hopeless to interpret them as functor homology. The reader should keep this in
mind to estimate the value of the following theorem of Scorichenko [36].

Theorem 2.4. Let R be a ring and let F,G ∈ FAb
R be polynomial functors.

Assume moreover that F takes projective values. There is a natural isomorphism:

TorZGL∞(R)
n (F∨(R∞), G(R∞)) �

⊕

p+q=n

TorF
Ab
R

p (Hq(GL∞(R),Z)⊗Z F∨, G) .

This theorem clearly breaks the computation of torsion groups for GL∞(R)
into two pieces: on the one hand there is the contribution of the homology with
trivial coefficients, and on the other hand there is the contribution of the functor

homology Tor
FAb

R∗ (F∨, G). These two pieces of different nature allow to compute
the right hand side of the isomorphism (e.g. by the universal coefficient theorem).
When R is a finite field, the contribution of the trivial coefficients is zero in positive
degrees (by Quillen’s computation), so theorem 2.4 yields an homological version of
theorem 2.2. Theorem 2.4 is a special case of Scorischenko’s theorem, which holds
for bifunctor coefficients. Scorischenko’s theorem was originally stated in terms of
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Waldhausen’s stable K-theory (that is, the homology of the homotopy fiber of the
canonical map BGL(R) → BGL(R)+). It is not available as a publication, but an
account of its original proof is available in [22], see also [9, Section 5.2].

Djament reinvestigated the methods of Scorischenko, in particular his powerful
vanishing theorem, a key ingredient in the proof of theorem 2.4. He combined
them with the arguments of [8] to obtain a generalization of theorem 2.4 to unitary
groups [9, Thm 1]. The general linear groups can be seen as unitary groups, so that
theorem 2.4 appears as a particular case of Djament’s result. Symplectic groups are
also unitary groups, and in this case Djament’s theorem specializes to the following
statement.

Theorem 2.5. Let R be a ring and let F ∈ FAb
R be a polynomial functor. There

is a natural isomorphism:

Hn(Sp∞(R), F (R∞)) � TorF
Ab
R

p (Hq(Sp∞(R),Z)⊗Z (ZΛ2)∨, F ) .

When R is a finite field, the contribution of the trivial coefficients is zero in
positive degrees (by the computation of Fiedorowicz and Priddy), so one recovers
the isomorphism of Djament and Vespa (theorem 2.3 above) in its homological
version [8, Cor 3.31].

Hn(Sp∞(R), F (R∞)) � TorF
Ab
R

n ((ZΛ2)∨, F ) .

(When F is in FR, the torsion group on the right hand side is isomorphic to

TorFR
n ((RΛ2)∨, F )). The orthogonal groups are also unitary groups, and there

is an analogue of theorem 2.5 for orthogonal groups, with Sp∞(R) replaced by
O∞,∞(R), and Λ2 replaced by S2. There are also functor homology interpretations
for the homology of some orthogonal groups defined by non-hyperbolic forms, like
On(R), under some restrictions on the ring R, see [9, Section 6].

3. The cohomology of algebraic groups and PR

In this section, we describe the algebro-geometric analogue of the setting of
section 2. We now think of the symplectic, the orthogonal or the general linear
groups as affine algebraic group schemes, and we interpret their cohomology (in
the algebro-geometric meaning) as functor homology. In this setting, the functor
category involved is Friedlander and Suslin’s category PR of strict polynomial func-
tors. Such functor cohomology interpretations have played a key role to prove the
finite generation of the cohomology algebras of finite group schemes [24] and more
generally reductive group schemes [40].

3.1. Representations of affine group schemes. In this section, we recall
basic facts of the representation theory of affine algebraic group schemes and the
relation to the representation theory of discrete groups.

3.1.1. Definitions. We fix a commutative ring R, and we denote by R-alg the
category of commutative, unital and finitely generated R-algebras. An affine alge-
braic group scheme over R is a representable functor

GR : R-alg → Groups .

For example, we denote by GLn,R the functor which sends a R-algebra A to
the group GLn(A) of invertible matrices. It is represented by the R-algebra
R[xi,j , t]1≤i,j≤n/ < det[xi,j ]t = 1 >. Orthogonal and symplectic groups can be
considered as affine group schemes as well, and we denote them by On,n,R and
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Spn,R. (This notation is intended to distinguish them from the discrete groups
On,n(R) and Spn(R) from section 2).

A representation of GR (or a GR-module) is a R-module M , endowed with a
natural transformation GR → GLM , where GLM denotes the (maybe not repre-
sentable) functorR-alg → Groups which sends an algebra A to the groupGLA(A⊗R

M) of A-linear invertible endomorphisms of A⊗R M . A morphism of GR-modules
is a linear map f ∈ HomR(M,N), such that for all R-algebras A, the map IdA⊗R f
commutes with the action of GR(A). Under reasonable hypothesis (the algebra rep-
resenting GR is flat over R), the category GR-Mod is a R-linear abelian category
with enough injectives, and the cohomology of GR with coefficients in a represen-
tation M is

H∗(GR,M) := Ext∗GR-Mod(R,M) ,

where the left argument in the Ext is the trivial representation.

Remark 3.1. In contrast to the representations of discrete groups, the category
GR-Mod almost never has enough projectives (even for GLn,R), thus there is no
definition for the homology of group schemes. We refer the reader to [23] for a
short introduction to the cohomology of group schemes, and to [26] for full details.

3.1.2. Affine group schemes versus discrete groups. The cohomology of affine
group schemes and the cohomology of discrete groups are related in the following
way. Let GR be an affine algebraic group scheme. For all R-algebras A, the discrete
group GR(A) is called the group of A-points of GR. Evaluation on A yields an exact
forgetful functor (where AGR(A) is the algebra of the discrete group GR(A) over
A):

GR-Mod → AGR(A)-Mod .

Hence the cohomology of algebraic group schemes is related to the cohomology of
discrete groups of points by natural A-linear morphisms (induced by evaluation on
A and extension of scalars):

A⊗R Ext∗GR-Mod(M,N) → Ext∗AGR(A)(A⊗R M,A⊗R N) ,

A⊗R H∗(GR,M) → H∗(GR(A), A⊗R M) .

The properties of these morphisms are not understood in general. However, the
situation is pretty well understood over finite fields, thanks to the work of Cline,
Parshall, Scott and van der Kallen [6]. Their result applies in particular to the
group schemes GLn,Fp

, Spn,Fp
and On,n,Fp

over a prime field Fp. To describe their
result, we have to introduce a few notations. Let GFp

be a group scheme defined
over Fp. We denote by F r : GFp

→ GFp
the morphism of group schemes which

sends for all A a matrix [ai,j ] ∈ GFp
(A) to the matrix [ap

r

i,j ] ∈ GFp
(A).

Remark 3.2. The natural transformation F r : GFp
→ GFp

is not an isomor-
phism of group schemes. However, for all field k of characteristic p, it induces an
isomorphism of groups GFp

(k) → GFp
(k).

If M is a GFp
-module, we let M (r) be its r-th Frobenius twist. Concretely,

M (r) is the Fp-vector space M , equipped with the modified action ρM(r) defined as
the composite:

GFp

F r

−−→ GFp

ρM−−→ GLM .

If k is a field with pr elements, we observe that the kGFp
(k)-modules k⊗Fp

M and

k⊗Fp
M (r) are equal. We can now state [6, Thm 6.6].
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Theorem 3.3. Let GFp
be a reductive algebraic group scheme defined and split

over the ground ring Fp, let M be a GFp
-module. Let i be a nonnegative integer.

Assume that r is big enough (with respect to i) and that q = pn is big enough (with
respect to i, and some constant depending on M). Then the evaluation map:

Fq ⊗Fp
Hi(GFp

,M (r)) → Hi(GFp
(Fq),Fq ⊗Fp

M (r)) � Hi(GFp
(Fq),Fq ⊗Fp

M)

is an isomorphism.

The original theorem of Cline, Parshall, Scott and van der Kallen actually
gives explicit bounds for q and r, which we have omitted for the sake of simplicity.
Theorem 3.3 shows a strong connection in positive characteristic between the repre-
sentation theory of the reductive algebraic groups schemes, and the representation
theory of the finite groups of Lie type. Another example of this type of connection
is the theorem of Steinberg which relates the simple GFp

(Fq)-modules to the simple
GFp

-modules. (The reader might consult [25] for more results of that kind).

Remark 3.4. If a reductive algebraic group scheme GFp
is connected, its coho-

mology with trivial coefficients H∗(GFp
,Fp) is zero in positive degrees [26, II.4.13]

(this follows from Kempf vanishing theorem in sheaf cohomology). Moreover, the
Frobenius twist of the trivial representation is the trivial representation. Thus, from
theorem 3.3 we retrieve the fact (originally proved by Quillen [33] for GLn(Fq), and
by Fiedorowicz and Priddy [17] for other finite groups of Lie type) that the degree
i cohomology with trivial coefficients Fp of the finite groups of Lie type GFp

(Fq)
vanishes for 0 < i ≤ n(q), where n(q) is an explicit increasing function of q.

3.2. Strict polynomial functors. We want to interpret the cohomology of
algebraic group schemes in the same fashion as in section 2. So we are first looking
for some category of functors, temporarily denoted ‘FuncR’, together with an exact
evaluation functor:

FuncR → GLn,R-Mod

The category of ordinary functors FR is not a good choice for FuncR. Indeed, if
F is an ordinary functor, then F (Rn) has a canonical action of the discrete group
GLn(R), that is of the group of R-points of the algebraic group scheme GLn,R. But
there is no canonical way (and sometimes, no way at all) to extend this action of
GLn(R) to an action of the group scheme GLn,R. The solution is to use for FuncR
a functor category whose objects are ordinary functors, equipped with some extra
data specifying how to extend the action of GLn(R) into an action of the group
scheme GLn,R. This leads to the definition of the category of strict polynomial
functors PR introduced by Friedlander and Suslin in [24]. This category fits into a
commutative square

(D) PR
��

evn

��

FR

evn

��
GLn,R-Mod �� GLn(R)-Mod,

where the horizontal arrows are forgetful functors, and the vertical arrows are eval-
uation maps. The reader may have some intuition of the category PR by thinking
of diagram (D) as a pullback square defining PR.

In this section, we state the definition and basic properties of PR, and some
relations to the category of ordinary functors.
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3.2.1. Definitions and basic properties. In this section, a functor from R-alg →
Sets will be called a ‘scheme’, and natural transformation between such functors
will be called a ‘morphism of schemes’.1 Using these names is quite incorrect
(actual schemes are required to satisfy additional conditions) but it will simplify
the exposition. If M is an R-module, we denote by M† the scheme which assigns
an R-algebra A to the set A ⊗R M . If f : M → N is an R-linear map, the maps
IdA ⊗R f : A⊗R M → A⊗R N define a morphism of schemes f† : M† → N†.

The definition of algebraic group schemes and their representations look for-
mally similar to the definition of discrete groups and their representations. The only
difference is that sets, and set-theoretic maps in the discrete setting are replaced
by schemes and morphisms of schemes in the algebraic group scheme setting.

Definition 3.5 ([24, Def 2.1]). A strict polynomial functor F is the data of:

(1) for each M ∈ P (R), an R-module F (M),
(2) for each pair (M,N) ∈ P (R)2, a morphism of schemes:

FM,N : HomR(M,N)† → HomR(F (M), F (N))†,

satisfying the following conditions:

(i) The set-theoretic map FM,M (R) : EndR(M) → EndR(F (M)) sends the
identity map of M to the identity map of F (M).

(ii) The following diagrams of natural transformations commute (where the
horizontal natural transformations are the one induced by composition):

HomR(N,P )† ×HomR(M,N)†
◦ ��

FN,P×FM,N

��

HomR(M,P )†

FM,P

��
HomR(F (N), F (P ))† ×HomR(F (M), F (N))†

◦ �� HomR(F (M), F (P ))†

Amorphism of strict polynomial functors is a family of R-linear maps fM : F (M) →
G(M), M ∈ P (R), such that for all M,N the following diagram commutes

HomR(M,N)†
FM,N ��

GM,N

��

HomR(F (M), F (N))†

(fN◦−)†

��
HomR(G(M), G(N))†

(−◦fM )† �� HomR(F (M), G(N))†

Remark 3.6. Despite their name, strict polynomial functors are not really
functors, but rather the scheme theoretic equivalent of functors.

For example, symmetric powers Sd can be considered as strict polynomial func-
tors when equipped with the family of natural transformations Sd

M,N defined by
sending the element

a⊗ f ∈ A⊗R HomR(M,N) � HomA(A⊗R M,A⊗R N)

to the element (where Sd
A denote the symmetric power defined over A)

Sd
A(a⊗ f) ∈ HomA(S

d
A(A⊗R M), Sd

A(A⊗R N)) � A⊗R HomR(S
d(M), Sd(N)) .

Similarly the d-th tensor power ⊗d, the d-th exterior power Λd and the d-th divided
power Γd can be considered as strict polynomial functors.

1Such natural transformations are called ‘lois polynomes’ in [35].
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Remark 3.7. Contrarily to what the case of symmetric powers might suggest, it
is not always possible to define a strict polynomial functor from an ordinary functor
F . Indeed, the assignment f �→ F (f) might not be R-linear, so the assignment
a⊗ f �→ a⊗F (f) is usually not well-defined, and cannot be used to define a family
(FM,N ) satisfying the axioms of definition 3.5. Actually, such a family might not
exist for a given ordinary functor F .

Let us denote by HomM,N : R-alg → Sets the functor which sends an algebra
A to the set HomA(A ⊗R M,A ⊗R N). Extension of scalars defines a natural
transformation HomR(M,N)† → HomM,N , which is an isomorphism if M ∈ P (R).
For all M ∈ P (R) the composite

GLM ↪→ EndM � EndR(M)†
FM,M−−−−→ EndR(F (M))† → EndF (M)(2)

defines an action of the group scheme GLM on F (M).

Definition 3.8. A strict polynomial functor F is homogeneous of degree d ≥ 0,
if for all M ∈ P (R) the action of the center GL1,R of GLM on F (M) is given by
the formula λ · (a⊗ x) = (λda)⊗ x.

Friedlander and Suslin’s category PR of strict polynomial functors of finite de-
gree, is the category whose objects are finite sums of homogeneous strict polynomial
functors, and whose morphisms are the morphisms of strict polynomial functors.
We let Pd,R be the full subcategory of PR whose objects are the homogeneous strict
polynomial functors of finite degree.

We now list the basic properties of PR. First, evaluation on a free R-module
Rn yields an exact functor (the action on F (Rn) is given by the morphism (2))

evn : PR → GLn,R-Mod .

Second, PR is an abelian category, and Pd,R is an abelian subcategory. More-
over we have a direct sum decomposition:

PR �
⊕

d≥0

Pd,R .

This means that each functor decomposes as the direct sum of finitely many homo-
geneous functors, and that there are no nonzero morphisms between homogeneous
functors of different degrees.

Finally, homogeneous strict polynomial functors can be more concretely de-
scribed as representations of the classical Schur algebras. Recall e.g. from [30] that
for positive integers n, d the Schur algebra S(n, d) is the algebra EndSd

((Rn)⊗d) of
Sd equivariant endomorphisms of (Rn)⊗d (where Sd acts by permuting the factors
of the tensor product as usual). Then all the GLn,R-modules in the image of the
evaluation functor evn can be equivalently described as S(n, d)-modules. For n ≥ d,
the evaluation map actually induces an equivalence of categories

Pd,R � S(n, d)-Mod .

The proof is given in [24, Thm 3.2] when R is a field but generalizes without change
to an arbitrary commutative ring R.
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3.2.2. Strict polynomial versus ordinary functors. By evaluation on the R-
algebra R, a morphism of schemes φ : M† → N† yields a set theoretic map
φ(R) : M → N . Thus a strict polynomial functor F = (F (M), FM,N ) yields an
ordinary functor (F (M), FM,N (R)), which we call the underlying ordinary functor
of F . For example, the underlying ordinary functor of the d-th symmetric power Sd

is just the usual d-th symmetric power. We obtain in this way a forgetful functor:

U : PR → FR .

It is not hard to see that the forgetful functor sends strict polynomial functors to
polynomial functors in the sense of Eilenberg and Mac Lane (i.e. relative to the
definition of section 2.1). However, we warn the reader that the two notions do not
coincide.

(1) There exist polynomial functors which do not lie in the image of the
forgetful functor U .

(2) There exist nonisomorphic strict polynomial functors which are sent to
isomorphic functors by U .

(3) The functor U does not preserve degrees.

This is the reason for the adjective ‘strict’ in the terminology ‘strict polynomial
functors’. We shall not go deeply into details about the difference between strict
polynomial and polynomial functors, we just give an elementary illustration of both
the second and the third phenomenon.

Let R be a field of positive characteristic p. We denote by I(r) ∈ Ppr,R the r-th

Frobenius twist functor. To be more specific, I(r) is the intersection of the kernels
of the maps Spr → Si ⊗ Spr−i, 0 < i < pr, induced by the comultiplication of the
graded Hopf algebra S∗. So for all R-vector spaces V , I(r)(V ) ⊂ Spr

(V ) is the
subvector space generated by the pr-th powers of the elements v ∈ V . As a strict
polynomial functor, I(r) is homogeneous of degree pr, hence I(r) is not isomorphic
to I(�) if r �= 	. However, if R = Fpr , all the underlying ordinary functors UI(nr),
n ≥ 0 are isomorphic to the identity functor, hence they all have degree one in the
sense of Eilenberg and Mac Lane.

Remark 3.9. If F ∈ Pd,R is a strict polynomial functor, we can precompose

it by I(r) to get a strict polynomial functor F ◦ I(r) ∈ Pdpr ,R. Let evn be the

evaluation functor on Rn. Then the GLn,R-module evn(F ◦ I(r)) is isomorphic to
the r-th Frobenius twist of the GLn,R-module evn(F ) as defined in section 3.1.2.

The fact that the forgetful functor U sends different functors I(r) to the same
ordinary functor (or more generally functors of the form F ◦ I(r), for distinct values
of r, to the same ordinary functor) is the functorial version of the fact already
observed in section 3.1.2 that the RGLn(R)-modules M (r) ⊗ R and M ⊗ R might
be equal.

Theorem 3.3 has a functor homology analogue, which was proved by Franjou,
Friedlander, Suslin, Scorischenko in [19], and by Kuhn in [29].

Theorem 3.10. Let F,G ∈ Pd,R be homogeneous strict polynomial functors of
degree d over a finite field R of cardinal greater or equal to d. If r is big enough
with respect to i, the natural morphism induced by the forgetful map

ExtiPR
(F ◦ I(r), G ◦ I(r)) → ExtiFR

(F ◦ I(r), G ◦ I(r)) = ExtiFR
(F,G)

is an isomorphism.
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One of the interests of this theorem is that the left hand side of the isomorphism
is easier to compute than the right hand side. The extension groups in PR involving
functors precomposed by Frobenius twists can be computed from simpler extension
groups (without Frobenius twists) [3,39].

When the field R is replaced by the ring of integers, or by an arbitrary ring
commutative, very little is known about the relations between Ext and Tor-groups
in FR and in PR.

3.3. The cohomology of classical groups. The following theorem was
proved by Friedlander and Suslin when R is a field in [24, Cor 3.13], and the
result generalizes over an arbitrary commutative ring R easily [37, Thm 3.10].

Theorem 3.11. Let R be a commutative ring, let F and G be strict polynomial
functors with values in P (R), and let n be an integer greater than the degree of F
and G. The evaluation map induces a natural isomorphism

Ext∗PR
(F,G)

�−→ Ext∗GLn,R
(F (Rn), G(Rn)) .

As in the discrete group case of theorems 2.2 and 2.4, there are bifunctor ver-
sions of this theorem [18,37], allowing more general coefficients for the cohomology
of GLn,R.

Theorem 3.11 shows major differences between the discrete setting of section 2
and the algebraic setting. First, no limit appears on the right hand side. Actually, as
a corollary of theorem 3.11, we obtain that the extensions ExtiGLn,R

(F (Rn), G(Rn))
stabilize when n grows. Observe that in the discrete group case, the analogous the-
orems 2.2 and 2.4 cannot be used to prove such a stabilization. Moreover, the
stabilization is quite brutal: in contrast with the case of discrete groups, stabiliza-
tion occurs for all commutative ring R, and all the Exti stabilize for the same value
of n. Another difference with the discrete group case is that the cohomology of
GLn,R with trivial coefficients does not appear in the statement (in contrast with
theorem 2.4). The reason for this is quite simple: unlike the cohomology of discrete
groups, the cohomology of connected reductive group schemes (like GLn,R) with
trivial coefficients is always zero in positive degrees [26, II.4.13].

Theorem 3.11 has analogues for other classical groups, proved in [37]. Let
us explain the symplectic case. First, for all F ∈ PR, the R-module F (R2n) is
endowed with an action of the symplectic group by restricting the action of the
general linear group to Spn,R ⊂ GL2n,R. A special role is played by the functors
Γd ◦ Λ2 = ((Λ2)⊗d)Sd . Indeed, for all d ≥ 0, the antisymmetric bilinear form
defining Spn,R yields an invariant element w ∈ Λ2(R2n), hence an invariant element
w⊗d ∈ Γd(Λ2(R2n)). So there is a graded morphism

Ext∗PR
(Γd ◦ Λ2, F ) → Ext∗Spn,R

(Γd(Λ2(R2n)), F (R2n)) → H∗(Spn,R, F (R2n))

obtained by composing the evaluation on R2n and the pullback along the Sp2n,R-
equivariant map R → Γd(Λ2(R2n)), λ �→ λw⊗d. The following result is obtained in
[37, Thm 3.17].

Theorem 3.12. Let R be a commutative ring, let F ∈ Pd,R with values in P (R),
and let n be an integer greater than half the degree of F . Then H∗(Spn,R, F (R2n))
is zero if d is odd, and if d is even, the evaluation map induces an isomorphism:

Ext∗PR
(Γd/2 ◦ Λ2, F )

�−→ H∗(Spn,R, F (R2n)) .
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There is a similar result for the orthogonal group schemes On,n,R, when 2 is
invertible in R, with Λ2 replaced by S2 [37, Thm 3.24]. Although the statement
of theorem 3.12 looks quite similar to the ones of theorems 2.3 and 2.5, the proof
is more elementary, and relies on rather different ingredients. It relies on coho-
mological vanishing results [26, II.4.13] (implied by Kempf’s vanishing theorem in
sheaf cohomology), and on the ‘fundamental theorems’ of classical invariant theory,
proved by Weyl over fields of characteristic zero [43] and de Concini and Procesi
over an arbitrary ring [5].

As in the case of GLn,R, theorem 3.12 implies a stabilization result for coho-
mology. As another example of application, theorem 3.12 can be used to study cup
products in the stable range. If M and N are Spn,R-modules, there is an (external)
cup product

Hi(Spn,R,M)⊗Hj(Spn,R, N)
∪−→ Hi+j(Spn,R,M ⊗R N) .

One might want to use the cup product to construct classes in the cohomology
of Spn,R with coefficients in tensor products. But this does not work so well in
general because the cup product c1 ∪ c2 of two nonzero classes might very well be
zero. This cancelling might occur even when c1 and c2 are degree zero classes, and
even when R is a field of characteristic zero. The functor homology interpretation
has the following somewhat surprising consequence [37, Cor. 6.2].

Corollary 3.13. Let R be a field. Let F and G be strict polynomial functors
of respective degrees d1, d2. If 2n ≥ d1 + d2, the cup product induces an injective
map

H∗(Spn,R, F (R2n))⊗H∗(Spn,R, G(R2n)) ↪→ H∗(Spn,R, F (R2n)⊗G(R2n)) .

4. Ringel duality in algebraic topology

The derived category of strict polynomial functors is equipped with a Ringel
duality operator Θ : Db(PR) → Db(PR), which originates from the representation
theory of quasi-hereditary algebras and the theory of tilting modules [15,34]. On
the other hand, Dold and Puppe defined [11,12] a notion of derived functors for
ordinary (not necessarily additive) functors, related to algebraic topology compu-
tations. If F ∈ FR, we denote by LiF (M ;n) the value of its i-th derived functor
(with height n) on a given R-module M . In this section, we present the connec-
tion between the two theories, worked out in [38]. Namely, if F ∈ Pd,R is a strict
polynomial functor and M ∈ P (R), there is an isomorphism:

Lnd−iF (M ;n) � Hi (ΘnF (M)) .

As a corollary of this isomorphism, we can provide functor homology interpretations
of Dold Puppe derived functors, and therefore provide new links between problems
of representation theory and algebraic topology computations.

4.1. Derived functors of non additive functors. Let F : R-Mod →
R-Mod be an arbitrary functor. For all R-modules M , there exists a unique (up
to weak simplicial homotopy equivalence) simplicial R-module M ′ with each M ′

i

a projective R-module, and such that πi(M
′) is zero for i �= n, and equals M for

i = n. The i-th derived functor of F with height n

LiF (−, n) : R-Mod → R-Mod
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is the functor sending an R-module M to the i-th homotopy group of the simplicial
R-module F (M ′).

This definition was introduced by Dold and Puppe [11,12], and later general-
ized by Quillen [32] using model categories. When the functor F is additive, one
recovers the usual notion of derived functors in homological algebra [42, Chap. 3].
To be more specific, for all nonnegative integers n there is an isomorphism (where
the functor on the right hand side is the usual derived functor)

Li+nF (M ;n) � LiF (M) .

Remark 4.1. The existence and uniqueness of M ′ follows from the Dold-
Kan correspondence [10], which asserts that the category sR-Mod of simplicial
R-modules is equivalent to the category Ch≥0(R-Mod) of nonnegative chain com-
plexes of R-modules, by an equivalence preserving homotopies. The equivalence of
categories is the normalized chain functor N : sR-Mod → Ch≥0(R-Mod), and it has
an explicit inverse K. Thus, if M is an R-module and PM a projective resolution
of M , one may take for M ′ the simplicial R-module K(PM [n]).

The derived functors of non additive functors are related to algebraic topol-
ogy computations. For example, the derived functors of symmetric powers Sd :
R-Mod → R-Mod are related to the homology of Eilenberg-Mac Lane spaces
[12, Satz 4.16] and the homology of symmetric products of spaces [10, section
7]. The derived functors of the free Lie functors Ld : R-Mod → R-Mod are related
to the homotopy groups of spheres, via the Curtis spectral sequence [7].

We finish the section by two elementary observations, which make the link with
strict polynomial functors. First, if R is a commutative ring, and M an R-module,
then M ′ = K(M [n]) = K(R[n]) ⊗R M . Thus, if F is a strict polynomial functor
(as for example when F is a symmetric power or a free Lie functor), then the
derived functors LiF (−, n) are strict polynomial functors (of the same degree) as
a consequence of the following easy lemma.

Lemma 4.2 (First parameterization lemma). If F ∈ Pd,R, then for all M ∈
P (R), the functor FM : N → F (M ⊗N) is canonically endowed with the structure
of a homogeneous strict polynomial functor of degree d. Moreover, an R-linear map
f : M → N induces a morphism of strict polynomial functors FM → FN .

Second, rather than studying the derived functors LiF (M,n), we can study the
complex formed by the normalized chains of the simplicial object F (K(R[n])⊗RM).
This yields a bounded (because we have taken normalized chains) complex of strict
polynomial functors, which we denote by L(F ;n). This definition extends when F
is replaced by a complex C of strict polynomial functors: we define L(C;n)(M) as
the total complex of the bicomplex C(K(R[n])⊗R M). This yields a functor

L(−;n) : D(Pd,R) → D(Pd,R) ,

where D(Pd,R) denotes the (unbounded) derived category of homogeneous strict
polynomial functors of degree d. We can also consider L(−;n) as an endofunctor
of the bounded, bounded above or bounded below derived categories.

4.2. Ringel duality. Ringel duality was introduced in the context of the
representation theory of quasi-hereditary algebras by Ringel [34], and worked out
for the Schur algebra by Donkin [15]. Since Pd,R is equivalent to a category of
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modules over the Schur algebra, Ringel duality can be transposed in the realm of
strict polynomial functors [2,28,38].

If F and G are homogeneous strict polynomial functors of degree d, we define
the Hom-group with parameter M ∈ P (R) by

HomPd,R
(F,G)(M) = HomPd,R

(F,GM ) ,

where GM is the strict polynomial functor N �→ G(M ⊗R N) of lemma 4.2. The
following lemma is an easy check.

Lemma 4.3 (Second parameterization lemma). If F,G ∈ Pd,R, then
HomPd,R

(F,G) is canonically endowed with the structure of a homogeneous strict
polynomial functor of degree d. Moreover, morphisms of strict polynomial functors
F → F ′ and G → G′ induce morphisms of strict polynomial functors between the
corresponding parameterized Homs.

In particular, by placing the d-th divided power Λd as the first argument of
parameterized Homs, we get a functor

HomPd,R
(Λd,−) : Pd,R → Pd,R .

If R is a field of characteristic zero, this functor is an equivalence of categories, but
this is not the case over a general ring R. For example, it is not hard to compute

HomPd,R
(Λd, Sd) = Λd ,

HomPd,R
(Λd,Λd) = Γd ,

HomPd,R
(Λd,Γd) = Γd if R has characteristic 2 and Λd otherwise.

The Ringel duality operator Θ is defined as the right derived functor of the functor
HomPd,R

(Λd,−):

Θ = RHomPd,R
(Λd,−) : D(Pd,R) → D(Pd,R) .

It restricts to an endofunctor of the bounded, bounded above and bounded below
derived categories, still denoted by Θ. The following theorem [2,28] explains the
interest of Ringel duality.

Theorem 4.4. The functor Θ is an equivalence of categories.

Remark 4.5. Despite the name ‘duality’, Θ is not an involution. The name
‘duality’ becomes clearer when we look at the seminal paper of Ringel [34] written
in the context of representations of finite dimensional algebras. To be more specific,
some finite dimensional algebras A admit a tilting module T (roughly T is a A-
module admitting some nice filtrations) and the dual algebra A′ is then defined as
the endomorphism algebra EndA(T ). The original Ringel duality is an equivalence
of categories betweenDb(A) andDb(A′). Donkin proved [15] that the Schur algebra
S(n, d), with n ≥ d is self-dual. In this case, Ringel duality becomes an auto-
equivalence of the category Db(S(n, d)) (or equivalently of the category Pd,R.)
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4.3. Functor homology interpretation and applications.
4.3.1. Ringel duality and derived functors. The following relation between

Ringel duality and derivation of functors was proved in [38, Thm 5.5].

Theorem 4.6. There is an isomorphism of endofunctors of the (unbounded,
bounded, bounded above or bounded below) derived category of Pd,R

Θn � L(−;n)[−nd] ,

where Θn denotes the n fold composition of Θ and [−nd] denotes the suspension.
In particular, for all F ∈ Pd,R and all M ∈ P (R) there are natural isomorphisms

Hi (ΘnF ) (M) � Lnd−iF (M ;n) .

In [38], we stated theorem 4.6 for the bounded derived category, under the
hypothesis that the ground ring R is a PID. This case covered all the applications
we had in mind. But this restriction is not really necessary: we used it to keep our
presentation of Ringel duality as close as possible to the one in [2], and theorem
4.6 above is actually valid over an arbitrary ring R.

Sketch of proof of theorem 4.6. First the simplicial R-module K(R[n])
is homotopy equivalent to K(R[1])⊗n. Thus L(C;n)(M) is homotopy equivalent to
the complex C(K(R[1])⊗n⊗RM). In particular, the operator L(−;n) : D(Pd,R) →
D(Pd,R) is isomorphic to the n-fold composition of L(−; 1). Hence, it suffices to
prove theorem 4.6 for the case n = 1.

ForM ∈ P (R), let us denote by Q(M) the normalized chain complex associated
to the cosimplicial object Γd(K(R[1])∨ ⊗R M) (here K(R[1])∨ is the cosimplicial
object which is the R-linear dual of the simplicial object K(R[1]). So Q(M) looks
as follows:

Γd(M) → Γd−1(M)⊗M ⊕M ⊗ Γd−1(M) → · · · → M⊗d ,

with Γd(M) in degree 1 and M⊗d in degree d. Moreover it is well known that the
homology of Q(M) is zero everywhere, except in degree d where it equals Λd(M).
Thus Q[d] is a projective resolution of Λd, so that

(*) Θ(C) � HomPd,R
(Q[d], C) = HomPd,R

(Q,C)[d] .

If F is a functor, and X is a cosimplicial object in P (R), we can parameterize F
by the cosimplicial object X as in lemma 4.2 to get a cosimplicial strict polynomial
functor FX . For example, P is just the normalized chains of Γd

K(R[1])∨ . If C is

a complex of strict polynomial functors, there is an isomorphism of complexes of
simplicial strict polynomial functors

HomPd,R
(Γd

K(R[1])∨ , C) � CK(R[1]) .

So by taking first normalized chains degreewise, and then total complexes, we get
an isomorphism:

(**) HomPd,R
(Q,C) � L(C; 1) .

By composing the isomorphisms (∗) and (∗∗) together, we obtain the required
isomorphism. �

Remark 4.7. Tensor products yield monoidal products ⊗ :Db(Pd,R)×Db(Pe,R)
→ Db(Pd+e,R). It is not hard to prove that Θ and L(−;n) are monoidal. In
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[38, Thm 5.5], we also proved the slightly delicate compatibility of the asserted
isomorphism with products. This forces to keep track of many signs in the proofs.

4.3.2. Applications. Theorem 4.6 leads to functor homology interpretations of
derived functors in the sense of Dold and Puppe. Let us denote by Ext∗Pd,R

(F,G)

the parameterized extension groups Ext∗Pd,R
(F,G)(M) = Ext∗Pd,R

(F,GM), for all

M ∈ P (R). The case n = 1 in theorem 4.6 yields an isomorphism:

ExtiPd,R
(Λd, G)(M) � Ld−iG(M ; 1) .(3)

Since Λd = Θ−1(Γd), we also have a functor homology interpretation of derived
functors with height 2:

ExtiPd,R
(Sd, G)(M) � L2d−iG(M ; 2) .(4)

Now the simplicial R module K(R[1])⊗n is homotopy equivalent to K(R[n]), so
that L∗G(M⊗n;n) � L∗(G ◦ ⊗d)(M ; 1) when M ∈ P (R), so we also have functor
homology interpretations of higher derived functors:

ExtiPd,R
(Λnd, G ◦ ⊗n)(M) � Lnd−iG(M⊗n;n) .(5)

For other functor homology interpretations of this kind, see [38, Section 6.2]. Such
functor homology interpretations enable nontrivial computations of derived functors
in the sense of Dold and Puppe. Indeed, some available methods of representation
theory for studying the left hand side (such as block theory, or highest weight
categories) are not available on the right hand side. Conversely, some algebraic
topology computations (like the homology of Eilenberg-Mac Lane spaces) yield
new Ext-computations for strict polynomial functors.
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