
CONTENTS A. Touzé – 2023

The homology of groups.

Part II : spectral sequences

These notes are an introduction to spectral sequences, illustrated by a
few exercises. The exercises are chosen because they prove classical results,
or because they nicely illustrate some concepts/techniques, or because they
are useful in the context of the stable homology of groups or of functor
categories (sometimes for all these reasons at the same time).

The reader is assumed to know basic homological algebra (such as the
first two chapters of Weibel’s book below), and to have a basic knowledge
of algebraic topology. Material relative to spectral sequences can be found
in:
• K. S. Brown, Cohomology of groups (Chap VII). Graduate Texts in Math-
ematics 87, Springer, 1982.

• L. Evens, The cohomology of groups (Chap 7). Oxford Mathematical
Monographs. Oxford University Press, 1991.

• J. McCleary, A user’s guide to spectral sequences, Cambridge studies in
advanced mathematics 58, Cambridge University Press, 1994.

• C. A. Weibel, An introduction to homological algebra (Chap 5). Cam-
bridge Studies in Advanced Mathematics 38, Cambridge University Press,
1994.

In these notes, we shall often refer to some chapters of these books, or to
specific statements that can be found in these books. When doing so, we
just mention the author’s name. For example, we write "see Brown, Chap
VII.7" for a reference to section 7 of chapter VII of the first book.
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1 A simplified overview of spectral sequences

1.1 The definitions

A cohomology spectral sequence of R-modules is a sequence of cochain com-
plexes of R-modules (En, dn)n≥n0 such that for all n ≥ n0 there is an iso-
morphism of graded R-modules En+1 ' H(En, dn).

A cohomology spectral sequence bounded converges to a gradedR-module
H (or that the graded R-moduleH is the abutment of the spectral sequence)
if it satisfies the following two conditions:
1) Stationnarity. For all degrees i, there is an index n(i) such that Ein =

Ein+1 for all n ≥ n(i). The value Ein, n� 0, is denoted by Ei∞.

2) Isomorphism up to filtration. For all degrees i, the R-module H i has
a finite filtration, and there is an isomorphism of R-modules grH i ' Ei∞.

The term ‘bounded" refers to the fact the the filtration on H is finite (=
bounded). Bounded convergence of a spectral sequence (En, dn)n≥n0 to H
is usually denoted by ‘En0 ⇒ H’. In these notes, all the spectral sequences
considered will be bounded convergent, so we will drop the term ‘bounded’,
and simply say that (En, dn)n≥n0 converges to H.

1.2 How to think of a convergent spectral sequence

1. As an algorithm. One can think of a convergent spectral sequence
En0 ⇒ H as an algorithm to compute the graded R-module H from
the initial data En0 by making successive homology computations.
Because of this, one sometimes speaks of ‘running a spectral sequence’
in the same way as one runs an algorithm.
The main difference with a genuine algorithm is that we have no for-
mula for the differentials dn! Indeed, spectral sequences are typically
described by theorems like (here n0 = 2):
Theorem 1. There is a spectral sequence of R-modules

E2 = some explicit formula ⇒ H .

Only the E2 page is explicitly described1. One has to find additional
information or clever tricks to compute the homology at each stage.

1The reason why an explicit formula of the dn is lacking is not because the author of
the theorem is lazy. It is simply that there is no nice formula for dn one could work with.
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1.2 How to think of a convergent spectral sequence A. Touzé – 2023

Observe that the filtration on H is not explicit either! Thus if one suc-
ceeds in computing E∞ and finds that E2

∞ = R/3R⊕2 then H2 could
be equal to R/3R⊕2 or R/9R, and once again, additional information
on H or clever tricks are required to decide what is the good answer.

2. As a book. In most examples of spectral sequences, the complexes
(En, dn) are actually bigraded (see section 2), so that each En can
be represented in a two-dimensional way on a sheet of paper. Thus
a spectral sequence can be thought of as a book having a picture
representing En on page n.
Because of this analogy, the terms (En, dn) are called the pages of the
spectral sequence, and En0 the initial page. We also sometimes says
that one turns a page of the spectral sequence when one passes from
page n to page (n+ 1) by computing homology.

3. As a generalization of cohomology long exact sequences. If D
is a cochain complex and C ⊂ D, there is a long exact sequence:

· · · ∂−→ H i(C)→ H i(D)→ H i(D/C) ∂−→ H i+1(C)→ · · · (1)

We can view this long exact sequence as a device to compute the
cohomology C from the cohomology of its pieces C and D/C.
A spectral sequence En0 ⇒ H is a generalization of this. Usually
the graded R-module H is the cohomology of some object X (space,
complex. . . ) we are interested in, and En0 is the cohomology of its
pieces. The spectral sequence is a procedure to compute the coho-
mology of X from the cohomology of its pieces. This procedure goes
through computing the cohomology relative to successive differentials
dn, which reflect how the various pieces are pasted together to obtain
X. The differentials dn are not explicit, exactly in the same way as2

the connecting morphism ∂ of (1) is not explicit.

Although there is no explicit formula for the differentials dn, it is some-
times possible to prove that these differentials are zero because their source
or their target is zero. If such a situation occurs, we say that the differen-
tial is zero for lacunary reasons. The next (rather trivial) exercise is the
most extreme example of such a phenomenon. We shall see other ways of
computing differentials in section 2.3.

Exercice 2. Lacunary phenomenon. Let En0 ⇒ H be a convergent
spectral sequence such that En0 is concentrated in even degrees. Show that
En0 = E∞.

2In fact, the long exact sequence (1) is nothing but a particularly simple spectral
sequence, see exercise 24.
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One can also use spectral sequences to prove qualitative properties of H
from the qualitative properties of En0 without making explicit computations.
The next two exercises give examples of this.
Exercice 3. Euler characteristics and spectral sequences. Let k
be a field, and let (En, dn)n≥n0 be a spectral sequence of k-vector spaces
converging to H. Assume that there is an m such that the total dimension
of Em is finite. Show that the pages En for n ≥ m, E∞ and H all have finite
total dimension, and if χ stands for the Euler characteristic of a complex of
finite total dimension then:

χ(Em) = χ(Em+1) = · · · = χ(E∞) = χ(H) .

Exercice 4. Serre classes. A Serre class of R-modules is a class C of
modules such that for all short exact sequences of modules

0→M ′ →M →M ′′ → 0 ,

M belongs to C if and only if M ′ and M ′′ both belong to C. For example,
R-modules of finite cardinal form a Serre class. If R is noetherian, finitely
generated R-modules also form a Serre class.

Assume given a Serre class C and a spectral sequence En0 ⇒ H, such
that in each degree i, Ein0 ∈ C. Show that for all degrees i, H i ∈ C.

1.3 Morphisms of convergent spectral sequences

Before defining morphisms of spectral sequences, we must go back to conver-
gent spectral sequences and define them in more precise way. A convergent
spectral sequence is a triple E = ((En, dn)n≥n0 , H, φ) where:

• (En, dn)n≥n0 is a cohomology spectral sequence of R-modules which is
stationnary (hence E∞ exists),

• H is a filtered graded R-module, with finite filtration in each degree,

• φ is an isomorphism of graded modules between E∞ and grH.

In particular, we insist on the fact that the filtration on H and the isomor-
phism φ are part of the data of a convergent spectral sequence. The precise
meaning of the notation En0 ⇒ H is that such a triple exists.

Assume given two convergent spectral sequences ((En)n≥n0 , H, φ) and
((E′n)n≥n0 , H

′, φ′). A morphism of convergent spectral sequences is a pair
((fn)n≥n0 , f) where:

• Each fn : (En, dn)→ (E′n, d′n) is morphism of cochain complexes, such
that fn+1 = H(fn) for all n ≥ n0. Note that this implies that the fn
induce for all degrees i a morphism of R-modules f i∞ : Ei∞ → E

′i
∞.
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1.4 Homology spectral sequences. A. Touzé – 2023

• f : H → H ′ is a graded morphism, which preserves the filtrations
(hence grf is well-defined), and there is a commutative square:

E∞ grH

E′∞ grH ′
f∞

φ

'

grf
φ′

'

.

Exercice 5. Propagation of connectivity. Let E and E′ be two conver-
gent spectral sequences, and let ((fn), f) be a morphism of spectral sequences
from E to E′. Assume that there is an index m such that fm is k-connected,
that is, f im+1 : Eim+1 → E

′i
m+1 is an isomorphism if i < k, and injective if

i = k. Show that the maps: fn for n ≥ m, f∞, and f , are all k-connected.

1.4 Homology spectral sequences.

Everything so far dealt with cohomology spectral sequences. The notion of
a homology spectral sequence is similar, except that the pages of the spectral
sequence are chain complexes instead of cochain complexes. In order to avoid
notational conflicts between page numbers and homological degrees, the
page numbers of homological spectral sequences are denoted as exponents.
In particular En0 ⇒ H denotes a homology spectral sequence converging to
a graded R-module H.

Exercises 2, 3 and 4 work without change for homology spectral se-
quences, but in exercise 5, one has to replace the cohomology version of
k-connectedness by its homology counterpart, namely a map g : C → D be-
tween chain complexes is k-connected if Hi(g) is an isomorphism for i < k
and surjective for i = k.

1.5 Towards first quadrant spectral sequences.

Many spectral sequences, and all the spectral sequences that we will consider
in theses notes, are first quadrant spectral sequences.

Such spectral sequences have additional structure. In particular their
pages are bigraded, with nonzero terms placed in nonnegative bidegrees.
The differentials of the spectral sequence and the filtration of the abutment
must satisfy some compatibility relations with bidegrees. We make these
conditions explicit in the next section.

When we restrict our attention to the total degree on each page (and
when we forget the compatibility relations with bidegrees) these first quad-
rant spectral sequences become spectral sequences in the sense of this sec-
tion. It is good to think in terms of the total degree because it notably
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1.5 Towards first quadrant spectral sequences. A. Touzé – 2023

simplifies the picture. However, the information given by the bidegree is
very useful to compute differentials, and to reconstruct H from grH (among
other things).

To illustrate this, let us give the example of the Leray-Serre spectral
spectral sequence. Let F ↪→ X � B be a fibration3 with path connected
fiber F and simply connected base space B, and let k be a field. Then
the homology Leray-Serre spectral sequence allows to compute the singular
homology of X from the singular homologies of B and F . Restricting our
attention to the total degree, we can view the Leray-Serre spectral sequence
as a spectral sequence:

E2
∗ = H∗(B, k)⊗H∗(F,k)⇒ H∗(X,k) . (2)

This is sufficient to conclude that the Euler characteristic4 χ(X) is equal
to χ(B)χ(F ). However, in the simple case where F = S3 and B = S2, the
spectral sequence (2) does not allow us to determine H∗(X,k): the initial
page equals k in degrees 0, 2, 3, 5 and there could very well be a differential
dn inducing an isomorphism between the vector space of degree 3 and that
of degree 2. The bigraded version of the Serre spectral sequence reads:

E2
p,q = Hp(B, k)⊗Hq(F,k)⇒ Hp+q(X,k) . (3)

The reader can go to the definition of a first quadrant homology spectral se-
quence in the next section, inspect how the differentials behave with respect
to the bidegree, and conclude that if F = S3 and B = S2, then H∗(X,k)
must be isomorphic to H∗(B, k)⊗H∗(F,k).

3See section 3.1 for more details on fibrations. For the moment it is sufficient to think
that X is a certain topological space constructed from B and F .

4The Euler characteristic of a space is by definition the Euler characteristic of its
homology. This number does not depend on the field k considered.
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2 First quadrant spectral sequences
All the spectral sequences that we will consider in these notes are first quad-
rant spectral sequences. Such spectral sequences are instances of the spectral
sequences of the previous section, but they bear more structure. In partic-
ular, each page is bigraded, and the differentials and the filtrations satisfy
some compatibility relations with the bidegrees. One recovers the notion of
spectral sequence as described in section 1 by forgetting these compatibility
conditions and considering only the total degree.

2.1 Definitions

A cohomology first quadrant spectral sequence is a sequence (En, dn)n≥n0

satisfying the following conditions.

• Each En is a bigraded R-module, with Ei,jn = 0 as soon as i or j is
negative.

• The differential dn is compatible with the bidegree in the sense that it
restricts to maps dn : Ei,jn → Ei+n,j+1−n

n .
This implies that the cohomology of (En, dn) is bigraded, namely

H i,j(En, dn) = Ker
(
dn : Ei,jn → Ei+n,j+1−n

n

)
Im
(
dn : Ei−n,j+n−1

n → Ei,jn
) .

• Each term of the sequence is related to the following one by: Ei,jn+1 =
H i,j(En, dn) for all i, j.

Visualization of the pages. The pages of a first quadrant spectral se-
quence can be visualized as a diagram in the plane of the following form.
Each dot in the diagram represents a potential nonzero term: the dot at
position (i, j) stands for the term Ei,j2 . The total degree is constant along
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each dashed line, and a few differentials d2 are represented.

j

...
...

...
... (Ei,j

2 , d2)

• • • • • · · ·

• • • • • · · ·

• • • • • i

2

1

0 1 2 3

d2 d2

i+
j=2

i+
j=3

Instead of a dot, one can also write the actual value of Ei,j2 in position (i, j).
Here is a similar drawing for page 3.

j

...
...

...
... (Ei,j

3 , d3)

• • • • • · · ·

• • • • • · · ·

• • • • • i

2

1

0 1 2 3

d3 d3

i+
j=2

i+
j=3

This way of drawing spectral sequences explains the term ‘first quadrant
spectral sequence’. Indeed the nonzero terms in the pages of the spectral
sequence occupy the north-east region of the plane, aka the first quadrant
of the plane.

Convergence. First quadrant cohomology spectral sequences are auto-
matically stationnary. Indeed, for all pairs (i, j), the differential dn starting
from Ei,jn or landing in Ei,jn are zero for lacunary reasons if n ≥ i + j + 2
(these differentials are "too long" and their other extremity is outside the
first quadrant). Thus,

Ei,ji+j+2 = Ei,ji+j+3 = Ei,ji+j+4 = · · · =: Ei,j∞ .
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A first quadrant cohomology spectral sequence (En, dn)n≥0 converges to
H if in each degree k, Hk has a finite filtration

0 = F k+1Hk ⊂ F kHk · · · ⊂ F 2Hk ⊂ F 1Hk ⊂ F 0Hk = Hk

and if there is a graded isomorphism

φ : F iHk

F i+1Hk
' Ei,k−i∞ .

Convergence is usually denoted by Ei,jn0 ⇒ H i+j .

Exercice 6. The five terms exact sequence. Let Ei,j2 ⇒ H i+j be a
convergent first quadrant spectral sequence. Show that there is a five term
exact sequence:

0→ E1,0
2 → H1 → E0,1

2
d2−→ E0,2

2 → H2 .

Exercice 7. Gysin and Wang exact sequences.5 Let Ei,j2 ⇒ H i+j be
a convergent first quadrant spectral sequence.

1. Assume that Ei,j2 = 0 if j 6∈ {0, k} (i.e. only two rows of the initial
page are nonzero, the 0-th one and the k-th one). Show that there is
a Gysin long exact sequence:

· · · → H i+k+1 → Ei+1,k
2

dk+1−−−→ Ei+k+2,0
2 → H i+k+2 → Ei+2,k

2
dk+1−−−→ . . .

2. Assume that only the 0-th column and the k-th column are nonzero.
Write down a long exact sequence relating E2 and H. (This long exact
sequence is the Wang sequence).

Morphisms. A morphism between two first quadrant spectral sequences
is just a morphism of spectral sequences defined as in section 1.3, which in
addition preserves the bigrading at each page.

5When applying exercise 7 to the Leray-Serre spectral sequence of a fibration whose
fibre, resp. base, is a sphere, one obtains the traditional Gysin sequence, resp. Wang
sequence, in singular cohomology.
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2.2 Homology first quadrant spectral sequences. A. Touzé – 2023

2.2 Homology first quadrant spectral sequences.

Everything so far dealt with cohomology spectral sequences. The notion of
a homology first quadrant spectral sequence is similar. However, bigradings
are a bit complicated, so we take time to repeat here the definitions.

A homology first quadrant spectral sequence is a sequence (En, dn)n≥0
such that

• the pages are first quadrant bigraded R-module, i.e. Eni,j is zero if i or
j is negative

• the differentials dn restrict to maps dn : Eni,j → Eni−n,j+n−1.

Homology first quadrant spectral sequences are then drawn in the following
way (compare with the cohomology version):

j

...
...

...
... (E2

i,j, d2)

• • • • • · · ·

• • • • • · · ·

• • • • • i

2

1

0 1 2 3

d2 d2

i+
j=2

i+
j=3

For lacunary reasons, homology first quadrant spectral sequences are sta-
tionnary. One says that (En, dn) converges to the graded R-module H, and
one writes Eni,j ⇒ Hi+j , if there is a finite filtration on each Hk:

0 = F−1Hk ⊂ F0Hk ⊂ · · · ⊂ Fk−1Hk ⊂ FkHk = Hk

and a graded isomorphism

φ : FiHk

Fi−1Hk
' E∞i,k−i .

2.3 How to compute with spectral sequences

As already pointed out, the problem for computations is that the differentials
dn and the filtration on H∗ are not explicit. In particular H∗ cannot be
computed from the knowledge of the initial page only (see e.g. exercise
14). We now review briefly three classical ways of obtaining additional
information, which may be of great help for computations.
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Edge morphisms. The two edge morphisms of a convergent first quad-
rant cohomology spectral sequence Ei,jn0 ⇒ H i+j are the composite mor-
phisms

H∗ = F 0H∗ � F 0H∗/F 1H∗ ' E0,∗
∞ ↪→ E0,∗

n0 , (4)
E∗,0n0 � E∗,0∞ ' F ∗H∗/F ∗+1H∗ = F ∗H∗ ↪→ H∗ . (5)

Such edge morphisms are specific to first quadrant spectral sequences: the
maps E0,∗

∞ ↪→ E0,∗
n0 and E0,∗

n0 � E0,∗
∞ come from lacunary phenomena due to

the first quadrant shape of the spectral sequence.
These edge morphisms can often be interpreted as familiar maps con-

structed independently of the spectral sequence, which make them precious
for computations (see e.g. exercise 10 below).

Exercice 8. Write down the two edge morphisms in the case of a homology
spectral sequence.

Functoriality. Another technique consists in comparing the spectral se-
quence we are interested in, with another spectral sequence that we under-
stand well, via a morphism of spectral sequences. The morphism of spectral
sequences then allows to transport information on differentials of the well-
understood spectral sequence to the less well-understood one. The next
exercise is a very extreme instance of this technique.

Exercice 9. Let f : E → E′ be a morphism of convergent spectral
sequences. Assume that fn0 : E∗,∗n0 → E

′∗,∗
n0 is injective and that E′ collapses

at page n0 (i.e. E′∗,∗n0 = E
′∗,∗
∞ ). Show that E collapses at page n0 as well.

Algebra structure. A spectral sequence of algebras is a spectral sequence
E = ((En, dn)n≥0, φ,H) such that:

1. Each E∗,∗n is equipped with a bigraded algebra structure, and the differ-
ential satisfies dn(xy) = dn(x)y+ (−1)deg xxdn(y) where deg x denotes
the total degree of x. Each E∗,∗n+1 equals the homology of the previous
page as a bigraded algebra.

2. The abutment H is a filtered graded algebra, i.e. a graded algebra
such that the product takes F iHk⊗F jH` to F i+jHk+`. In particular,
grH is a bigraded algebra.

3. The graded isomorphism φ : Ei,j∞ ' griH i+j is an isomorphism of
algebras.
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2.3 How to compute with spectral sequences A. Touzé – 2023

Algebra structures are precious for computations, since the behaviour of the
differentials on the generators of the algebras determine their behaviour on
all the elements of the algebra. Here is a classical application.

Exercice 10. The Leray-Hirsch theorem6. Let B∗ and F ∗ be two
connected graded k-algebras over a field k, and let Ep,q2 = Bp⊗F q ⇒ Hp+q

be a spectral sequence of k-algebras. Assume that the edge map H∗ → E0,∗
2

is surjective.

1. Show that H∗ ' B∗ ⊗ F ∗ as graded vector spaces.

2. The edge map B∗ = E∗,02 → H∗ defines a morphism of graded algebras,
hence H∗ is a B∗-module. Show that the isomorphism of the previous
question is actually an isomorphism of B∗-modules.

Working backwards. The filtration on H is a source of nuisance. The
situation is better for spectral sequences of k-vector spaces, since we al-
ways have grH ' H as graded k-vector spaces. But it may be difficult
to reconstruct the algebra structure on H from that on grH. To bypass
this difficulty one sometimes work ‘backwards’, i.e. use spectral sequences
with known abutment and deduce information on the initial page. The next
exercise is a typical illustration of this approach (see also exercise 16).

Exercice 11. An elementary case of a theorem of Borel7. Let B∗
and F ∗ be two connected graded k-algebras over a field k, and let Ep,q2 =
Bp⊗F q ⇒ Hp+q be a spectral sequence of k-algebras. Assume thatH>0 = 0
and that H0 ' k, and that F ∗ = Λ(x), an exterior algebra on a generator
of degree n. Show that B∗ = k[y], a polynomial algebra on a generator y of
degree n+ 1.

6One recovers the classical Leray-Hirsch theorem in singular cohomology by applying
this exercise to the Leray-Serre spectral sequence.

7Borel’s theorem treat the case where F ∗ is an exterior algebra on possibly more than
one generators, see e.g. McCleary, thm 3.27.
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3 Examples of spectral sequences.
In this section we present a few classical spectral sequences. We describe
the spectral sequences and give some of their applications in the exercises,
but we don’t explain their construction. We refer the reader to McCleary
for the construction of these spectral sequences, or Chap. 7 of Evens, for the
Lyndon-Hochschild-Serre spectral sequence. (In practice, the details of the
construction of a spectral sequence doesn’t help for concrete computations).
The three subsections can be read independently.

3.1 The Leray-Serre spectral sequence.

Recall that a (Serre) fibration is a map f : X → B satisfying the homotopy
lifting property for CW-complexes. If B is arcwise connected, then all the
fibers of f have the same homotopy type. A large class of geometric examples
is provided by locally trivial fibrations with fiber F , i.e. maps f : X → B
such that every b ∈ B is contained in an open set U such that there exists
an homeomorphism φU making the following triangle commutative (where
pr denote the projection onto the first factor)

U × F p−1(U)

B

φU
∼

pr
p .

One may think of a locally fibration as a twisted product of B and F . One
can also think of it as the analogue for topological spaces of group extensions.
Here are some examples.

1. The canonical projection B × F → B is a locally trivial fibration.

2. If F is a discrete space, a locally trivial fibration is nothing but a
covering map.

3. Fix a unital vector u ∈ Rn. Let S2n−1 be the unit sphere of Cn. The
map π : SUn → S2n−1 such that π(g) = gu is a locally trivial fibration
with fiber SUn−1.

4. Every vector bundle of dimension n over π : E → B is a locally
trivial fibration with fiber Rn. If the fiber bundle is equipped with a
riemanian metric, then restricting π to the vectors of norm 1 yields a
locally trivial fibration π : SE → B with fiber Sn−1.

A morphism of fibrations is a commutative square:

F X B

F ′ X ′ B′

fF

p

fX fB

p′

.
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3.1 The Leray-Serre spectral sequence. A. Touzé – 2023

The Leray-Serre spectral sequence gives a way to compute the singular
cohomology of the total space X of a fibration π : X → B from that of the
fiber F and of the base B. For simplicity, we state the theorem over a field,
when the base is simply connected. (See MacCleary, Chap. 5 for the general
statement.)

Theorem 12 (Leray-Serre spectral sequence). Let π : X → B be a fibration
with arcwise connected fiber F , and with simply connected base B. Let k be
a field. There is a homology spectral sequence of k-vector spaces:

E2
p,q = Hp(B, k)⊗Hq(F,k)⇒ Hp+q(X,k)

whose edge maps H∗(F,k) → H∗(X,k) and H∗(X,k) → H∗(B, k) equal
the maps induced by the inclusion F ↪→ X and f respectively. Moreover,
this spectral sequence is natural with respect to morphisms fibrations, the
morphism induced by (fF , fX , fB) coincides with H∗(fB) ⊗ H∗(fF ) on the
second page, and with H∗(fX) on the abutment.

There is also a cohomology spectral sequence of k-algebras:

Ep,q2 = Hp(B, k)⊗Hq(F,k)⇒ Hp+q(X,k) .

The two edge maps H∗(B, k) → H∗(X,k) and H∗(X,k) → H∗(F,k) equal
the maps induced by f and by the inclusion F ↪→ X respectively, and the
spectral sequence is natural with respect to morphisms of fibrations.

Exercice 13. Show that the statement on the edge maps of the Leray-
Serre spectral sequence is a consequence of the naturality statement.

Exercice 14. Find two fibrations giving rise to Leray-Serre spectral se-
quences with the same initial pages but non isomorphic abutments.

Exercice 15. Let M π−→ M ′′ be a fibration between two manifolds,
with fiber a manifold M ′. Assume that M ′′ is simply connected and that
M ′ is connected. Show that M has trivial singular homology (with field
coefficients) if and only if M ′ and M ′′ both have trivial singular homology
(with field coefficients).

Exercice 16. Complex projective spaces. Use the fibration S2n+1 →
CPn with fiber S1 to compute the graded ring H∗(CPn,Z).

Exercice 17. Special unitary groups. Let n ≥ 2. Use the fibration
SUn → S2n−1 with fibre SUn−1 to prove that the singular cohomology ring
H∗(SUn,Z) is an exterior algebra on generators x3, . . . , x2n−1, each xk being
of degree k.

14
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3.2 The Lyndon-Hochschild-Serre spectral sequence

Let H be a normal subgroup of G. The Lyndon-Hochschild-Serre spectral
sequence computes the homology of G from the homology of H and G/H.
In order to formulate the theorem, we first recall a few facts on the homology
of groups.

Let M be a representation of G. The quotient G/H acts on H∗(H,M)
and H∗(H,M), hence

Hp(G/H,Hq(H,M)) and Hp(G/H,Hq(H,M))

are well-defined. If M = k, the latter has an algebra structure. Namely
(letting H∗ := H∗(H,k) for reasons of space), the product is the composition

Hp(G/H,Hq)⊗Hr(G/H,Hs)→ Hp+r(G/H,Hr⊗Hs)→ Hp+r(G/H,Hq+s) ,

where the first map is the cup product on the cohomology of G/H and the
second one is induced by the algebra structure on H∗. Finally, a morphism
of extensions of groups is a commutative diagram of groups

1 H ′ G′ G′/H ′ 1

1 H G G/H 1

fH fG fG/H
.

Theorem 18. Let 1 → H → G → G/H → 1 be an extension of groups,
and let M be a representation of G. There is a homology spectral sequence

E2
p,q = Hp(G/H,Hq(H,M))⇒ Hp+q(G,M) .

This spectral sequence is natural with respect to the representation M as well
as with respect to morphisms of extensions of groups. The composition:

H∗(H,M) � H∗(H,M)G/H → H∗(G,M)

where the second map is the edge map equals the map induced in homology by
the inclusion H ↪→ G. The edge map H∗(G,M)→ H∗(G/H,MH) equals the
following composition (induced by the quotients M �MH and G→ G/H):

H∗(G,M)→ H∗(G,MH)→ H∗(G/H,MH) .

There is also a cohomological spectral sequence

Ep,q2 = Hp(G/H,Hq(H,M))⇒ Hp+q(G,M) .

If M = k this is a spectral sequence of algebras. This spectral sequence
is natural with respect to the representation M as well as with respect to

15
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morphisms of extensions of groups. The composition of the edge map with
the canonical inclusion:

H∗(G,M)→ H∗(H,M)G/H ↪→ H∗(H,M)

is induced by the inclusion H ↪→ G, while the edge map H∗(G/H,MH) →
H∗(G,M) is induced by restriction along G� G/H and by the G-equivariant
quotient map MH ↪→M .

Exercice 19. Cyclic groups. From the knowledge of the graded al-
gebras H∗(Cn,F2), with n = 2, k, 2k, determine all the differentials in the
LHS spectral sequence of the group extension 1 → Ck → C2k → C2 → 1.
Deduce from this analysis the morphisms H∗(C2,F2) → H∗(C2k,F2) and
H∗(C2k,F2)→ H∗(Ck,F2) respectively induced by the morphisms of groups
C2k → C2 and Ck → C2k.

Exercice 20. The Heisenberg group. Let G ⊂ M3(Z) be the group
of upper triangular matrices with 1s on the diagonal (this is the Heisenberg
group). Let Z be the center of G.

1. Show that Z is an infinite cyclic group, and that the action of G on
H∗(Z,Z) is trivial. Compute the E2-page of the LHS spectral sequence
associated to the extension 1→ Z → G→ G/Z → 1.

2. Compute H∗(G,Z). [Hint: use a direct computation of H1(G,Z).]

Exercice 21. Dihedral groups. Let D2n = 〈a, b | an = 1 = b2 ab = ba−1〉
be the dihedral group of order 2n. Use the LHS spectral sequence of the
extension 1 → Cn → D2n → C2 → 1 to compute the graded vector space
H∗(D2n,Fp).

[Hint: there are three cases. The easiest case is p = 2 and n odd. The case
p odd is slightly more difficult. The hardest case is p = 2 and n even. One
approach for this case is to use our knowledge of the cohomology of D2n in
low degrees (see the exercises in part I).]

3.3 Spectral sequences associated to double complexes

A cohomological first quadrant bicomplex is a bigraded R-module (Cp,q)p,q≥0
equipped with horizontal differentials d : Cp,q → Cp+1,q and vertical differ-
entials ∂ : Cp,q → Cp,q+1 which commute d ◦ ∂ = ∂ ◦ d. The associated
total complex TotC has ⊕p+q=nC

p,q in degree n, and its differential sends
x ∈ Cp,q to dx+ (−1)p∂x.

16
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In order to compute the cohomology of TotC one may first ignore the
horizontal differential, and compute the cohomology according to the verti-
cal differential only. Unless the horizontal differential is zero, the result
obtained is very far from the cohomology of TotC. To take the hori-
zontal differential d into account, we observe that d can be viewed as a
morphism of complexes d : (Cp,∗, ∂) → (Cp+1,∗, ∂) hence it induces maps
d1 : Hq(Cp,∗, ∂) → Hq(Cp+1,∗, ∂). In this way we obtain a bigraded com-
plex (E1

p,q, d1) which is vizualized as follows.

...
... (Ep,q

1 , d1)

H2(C0,∗, ∂) H2(C1,∗, ∂) · · ·

H1(C0,∗, ∂) H1(C1,∗, ∂) · · ·

H0(C0,∗, ∂) H0(C1,∗, ∂) · · ·

d1 d1

d1 d1

d1 d1

One can compute the homology of (E1, d1). This is a better approximation
of TotC, but it is usually different8 from TotC. To get closer to the coho-
mology of TotC, there are higher differentials to be computed, resulting in
a spectral sequence.

Note that we started computing the homology according to the vertical
differential, but we could have as well started with the horizontal differential.
This would lead to another spectral sequence, converging to TotC.

In general these two spectral sequences are very different, and much
information on TotC can be obtained by comparing them.
Theorem 22. Let (Cp,q, d, ∂) be a cohomology first quadrant bicomplex.
There is a cohomology spectral sequence

Ep,q1 = Hq(Cp,∗, ∂)⇒ Hp+q(TotC)

whose first differential d1 is the map induced in cohomology by d. Moreover,
this spectral sequence is natural with respect to the bicomplex (Cp,q, d, ∂).

There is also another cohomology spectral sequence

Ep,q1 = Hp(Cq,∗, d)⇒ Hp+q(TotC)

whose first differential d1 is the map induced in cohomology by ∂. Moreover,
this spectral sequence is natural with respect to the bicomplex (Cp,q, d, ∂).

8Otherwise, by exercise 24, homology of complexes would be an exact functor, and you
would certainly not be reading these lines, as homological algebra would not exist.
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Exercice 23. Describe the edge maps of the spectral sequences associated
to (Cp,q, d, ∂). [Hint: use naturality.]

Exercice 24. The cohomology long exact sequence. Let C be a non-
negatively graded cochain complex, and let C ′ be a subcomplex of C. Con-
sider the short exact sequence 0→ C ′ → C → C ′′ → 0 as a double complex,
and derive from the associated spectral sequences the usual cohomology long
exact sequence associated to a short exact sequence of complexes.

There is an analogue of these spectral sequences for homology first quad-
rant bicomplexes, i.e. bigraded R-modules (Cp,q)p,q≥0 equipped with differ-
entials d : Cp,q → Cp−1,q and ∂ : Cp,q → Cp,q−1.

Theorem 25. Let (Cp,q, d, ∂) be a homology first quadrant bicomplex. There
is a homology spectral sequence

E1
p,q = Hq(Cp,∗, ∂)⇒ Hp+q(TotC)

whose first differential d1 is the map induced in cohomology by d. Moreover,
this spectral sequence is natural with respect to the bicomplex (Cp,q, d, ∂).

There is also another homology spectral sequence

E1
p,q = Hp(Cq,∗, d)⇒ Hp+q(TotC)

whose first differential d1 is the map induced in cohomology by ∂. Moreover,
this spectral sequence is natural with respect to the bicomplex (Cp,q, d, ∂).

Many spectral sequences can be constructed as special cases of a spectral
sequence of a bicomplex. This is the case for the Leray-Serre spectral se-
quence (see McCleary, Chap 6, p. 225-229) and for the Lyndon-Hochschild-
Serre spectral sequence (see Evens, Chap 7 or Brown, Chap 7 section 6).
The next exercises give further examples.
Exercice 26. The Cartan-Leray spectral sequence. Let G be a group
acting freely on a space X and assume that the quotient map X � X/G is
a covering map. Let k be a commutative ring.

1. Show that there is a spectral sequence9 (called Cartan-Leray spectral
sequence)

Hp(G,Hq(X,k))⇒ Hp+q(X/G, k) .

[Hint: Analyse the bicomplex Pq⊗kGC
sing
q (X,k) where P∗ is a projec-

tive resolution of the trivial representation k.]
9The Leray-Serre spectral sequence can only be applied to fibrations with path con-

nected fibers. The Cartan-Leray spectral sequence is a replacement of the Leray-Serre
spectral sequence for covering maps.
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2. Assume that X is n-connected, and let Y = X/G. Show that there is
a 5-term exact sequence:

Hn+1(Y,k)→ Hn+1(G,k)→ Hn(Y,k)G → Hn(Y, k)→ Hn(G, k)→ 0 .

Exercice 27. Equivariant homology. Let X be a G-complex10 Let k be
a commutative ring. The cellular chain complex Ccell

∗ (X,k) is a complex of
kG-modules. Let P∗ be a projective resolution of the trivial representation k.
The G-equivariant homology HG

∗ (X) is the homology of P∗ ⊗kG C
cell
∗ (X,k).

1. Show that if the homology groups H i(X,k) are zero for 0 < i < n,
then HG

∗ (X) ' H∗(G, k) for i < n.

2. For all p ≥ 0 denote by Σp the set of representatives of the G-orbits of
p-cells of X. If e is a p-cell, we denote by Ge the stabilizer of the cell,
and by ke the representation by the k-module k on which each g ∈ G
acts trivially if g preserves the orientation of e and by −1 if it reverses
the orientation of e. Show that there is a spectral sequence

E1
p,q =

⊕
e∈Σp

Hq(Ge, ke)⇒ HG
p+q(X,k) .

[Hint: Analyse the bicomplex Pq ⊗kG C
cell
q (X,k). You may use the

induction formula described at the end of part I.]

For the next exercise, one needs the notion of a Cartan-Eilenberg pro-
jective resolution of a chain complex. If C is a nonnegatively graded chain
complex, a Cartan-Eilenberg resolution of C is a first quadrant double com-
plex (Pp,q, d, ∂), together with a chain map ε : (P0,∗, ∂)→ C∗ such that:

• For all q ≥ 0, ε : (P∗,q, d)→ Cq is a projective resolution of Cq,

• For all q ≥ 0, the map induced on boundaries Bq(ε) : Bq(P, ∂) →
Bq(C) is a projective resolution of Bq(C),

• For all q ≥ 0, the map induced on homologyHq(ε) : Hq(P, ∂)→ Hq(C)
is a projective resolution of Hq(C).

Such Cartan-Eilenberg projective resolutions exist (!), see Weibel, Chap 5,
section 5.7.
Exercice 28. The Grothendieck spectral sequence. Let F : S−Mod→
T−Mod and G : R−Mod → S−Mod be two right exact functors. Assume

10Recall from part I that a G-complex is a CW-complex endowed with an action of G
which permutes the cells.
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that for all projective modules P , G(P ) is F -acyclic, i.e. the derived func-
tors of F satisfy LiF (G(P )) = 0 for i > 0. Show that there is a spectral
sequence, natural with respect to the R-module M :

E2
p,q = LpF

(
LqG(M)

)
⇒ Lp+q(F ◦G)(M) .

[Hint: Let Q be a projective resolution ofM . Consider the bicomplex F (P ),
where P is a Cartan-Eilenberg resolution of G(Q).]
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