
CONTENTS A. Touzé – 2023

The homology of groups.

Part I : basic theory

These notes review the basic facts regarding the (co)homology of groups,
illustrated by a few exercises. The exercises are chosen because they prove
classical results, or because they nicely illustrate some concepts/techniques,
or because they are useful in the context of the stable homology of groups
(sometimes for these three reasons at the same time). By "basic facts", we
mean some facts which do not rely on spectral sequences – spectral sequences
and their applications will be reviewed in part II.

The reader is assumed to know basic homological algebra (such as the
first two chapters of Weibel’s book below), and to have a basic knowledge
of algebraic topology. Good introductory books on the homology of groups
include:

• K. S. Brown, Cohomology of groups. Graduate Texts in Mathematics 87,
Springer, 1982.

• L. Evens, The cohomology of groups. Oxford Mathematical Monographs.
Oxford University Press, 1991.

• C. A. Weibel, An introduction to homological algebra. Cambridge Studies
in Advanced Mathematics 38, Cambridge University Press, 1994.

In these notes, we shall often refer to some chapters, or specific statements
that can be found in these books. When doing so, we just mention the
author’s name. For example, we write "see Brown, Chap V" for a reference
to chapter V of the first book.
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1 Homology

1.1 Definition

We denote by ZG the group ring of a group G. A representation M of G
is an abelian group M on which G acts by isomorphisms of abelian groups.
This is the same as a ZG-module. The homology of G with coefficients in
M is defined by

H∗(G,M) = TorZG∗ (Z,M)
where the left variable of Tor is the trivial right ZG-module (i.e. the abelian
group Z with the trivial right action of G). The homology of G can be
concretely computed as the homology of the complex P∗ ⊗ZG M where P∗
is any projective representation of Z. The homology of degree 0 of degree
zero is isomorphic to the coinvariants MG:

H0(G,M) = Z⊗ZGM 'MG := M/〈gm−m|g ∈ G,m ∈M〉 .

Higher degree homology groups are usually hard to compute, however
this is easy to do for cyclic groups, because of the existence of nice small
projective resolutions of the trivial module. To me more specific, if C∞ is
an infinite cyclic group with generator t, we have a resolution (where ε is
the augmentation map, given by ε(g) = 1 for all g ∈ G):

0→ ZC∞
1−t−−→ ZC∞

ε−→ Z . (1)

If Cn is a cyclic group of order n with generator t, and if N = 1 + t+ · · ·+
tn−1 ∈ ZG is the norm element, there is a periodic resolution:

. . .
N−→ ZCn

1−t−−→ ZCn
N−→ ZCn

1−t−−→ ZCn
ε−→ Z . (2)

Exercice 1. THE basic computation in group homology. Check that
(1) and (2) are indeed projective resolutions of the trivial representation, and
compute explicitly H∗(Cn,M) and H∗(C∞,M) for all M .

2



1.2 Homology of k-linear representations A. Touzé – 2023

[Solution: see Weibel, Thm 6.2.2 p. 168]

Bar constructions provide nice complexes computing H∗(G,M). These
bar constructions are in fact defined not only for group rings, but more
generally for k-algebras A. If N is a right A-module and M is a left A-
module, the bar complex B(N,A,M) is the complex of k-modules with

B(N,A,M)k = N ⊗k A⊗k · · · ⊗k A︸ ︷︷ ︸
k factors

⊗kM ,

and with differentials d : B(N,A,M)k → B(N,A,M)k−1 given by

d(n⊗ a1 ⊗ · · · ⊗ ak ⊗m) = na1 ⊗ a2 ⊗ · · · ⊗ ak ⊗m

+
k−1∑
i=1

(−1)in⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak ⊗m

+ (−1)kn⊗ a1 ⊗ · · · ⊗ ak−1 ⊗ akm .

If A and N are projective as k-modules, then it is known1 that:

H∗(B(N,A,M)) ' TorA∗ (N,M) . (3)

For k = Z and A = ZG the complex B(Z,ZG,M) is sometimes called the
"standard complex" and its homology is H∗(G,M). This standard complex
is useful for many purposes, but it is usually much too big to be used in
explicit computations of group homology.

1.2 Homology of k-linear representations

Let k be a commutative ring. The representation M is called a k-linear
representation if M is a k-module and G acts by k-linear isomorphisms.
Equivalently, M is a module over the group algebra kG.

If M is a k-linear representation, then N ⊗ZG M is a k-module for all
modules N : the action of k on the tensor product is given by: λ · (n⊗m) =
n⊗λn. It follows that the homology groups Hi(G,M) = Hi(P∗⊗ZGM) are
k-modules.
Exercice 2. Change of ground ring for group homology. Let M be
a k-linear representation of G.

1Here is a proof. First, observe that B(N,A,A) is a complex of projective right A-
modules, with right action of A on each B(N,A,A)k given by the formula (n⊗ a1 ⊗ · · · ⊗
ak⊗a)·b = n⊗a1⊗· · ·⊗ak⊗ab. Second, consider the augmented complex B(N,A,A) ε−→ N
of k-modules, where ε : N ⊗ A → N is given by ε(n ⊗ a) = na. Then this complex is
acyclic: a contracting homotopy is h(n⊗a1⊗· · ·⊗ak⊗a) = (−1)kn⊗a1⊗· · ·⊗ak⊗a⊗1.
Thus B(N,A,A) is a projective resolution of N . Finally, the isomorphism (3) follows from
the isomorphism of complexes B(N,A,M) ' B(N,A,A)⊗AM .
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1. If P∗ is a projective resolution of Z as a ZG-module, show that k⊗ZP∗
is a projective resolution of trivial kG-module k.

2. Show that there is an isomorphism of k-modules, natural with respect
to the ZG-module N :

N ⊗ZGM ' (k⊗Z N)⊗kGM .

3. Deduce that there is a k-linear isomorphism:

H∗(G,M) ' TorkG∗ (k,M) . (4)

The interest of the isomorphism (4) lies in the fact that kG may be nicer
than ZG. The next exercise gives an example of this phenomenon (note
that if G is a nontrivial finite group, the first assertion is never satisfied for
k = Z, whereas it is satisfied for many fields such as k = Q or k = Fp with
p prime to the order of G).

Exercice 3. Semi-simplicity and homology. Let G be a finite group,
and let k be a field. Show that the following assertions are equivalent.

(i) The cardinal of G is invertible in k.

(ii) The augmentation map kG ε−→ k has a kG-linear section.

(iii) The trivial kG-module k is projective.

(iv) For all k-linear representations M , and for all i ≥ 1, Hi(G,M) = 0.

[Solution: it is easy to prove that (i), (ii) and (iii) are equivalent, this
relies on the fact that HomkG(k, kG) has dimension one, with generator
φ such that φ(λ) = ∑

g∈G λg. Assertion (iii) obviously implies (iv). To
prove that (iv)⇒(ii), observe first that HomkG(kG,k) has dimension one,
with generator ε. Thus proving (ii) reduces to proving that the map φ∗ :
HomkG(kG, k) → HomkG(k, k) induced by composition by φ is surjective.
For all representations M there is a natural isomorphism HomkG(M,k) '
Homk(MG,k). Thus surjectivity of φ∗ is equivalent to the injectivity of the
map (k)G → (kG)G induced by φ. The latter follows from (iv) and the
description of H0(G,−) as coinvariants.]
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1.3 Tensor products

We keep a commutative ring k. An important feature of the category of
kG-modules is that if M and M are two k-linear representations of G, their
tensor product M ⊗k N is also canonically equiped with an action of G by:

g · (m⊗ n) = (gm)⊗ (gn) .

Taking tensor products of representations is an important way to construct
interesting new representations out of old ones.

Projectivity behave nicely with respect to tensor products. Namely, if
M is projective as a k-module and if N is projective as a kG module, then
M ⊗kN is projective as a kG-module. (see ). This important fact has many
nice applications, such as the following one.
Exercice 4. Maschke’s theorem.

1. Show that the trivial representation k is projective as a kG-module if
and only if every k-linear representation is projective as a kG-module.

2. Use the previous question and exercise 3 to prove Maschke’s theorem:
given a finite group G and a field k, kG is semisimple if and only if
the cardinal of G is invertible in k.

1.4 Functoriality

Homology of a given groupG is natural with respect to the representationM .
Every morphism of ZG-modules f : M →M ′ induces a graded morphism:

H∗(G, f) : H∗(G,M)→ H∗(G,M ′) . (5)

To be more specific, (5) is induced by the chain map P∗⊗ZGf : P∗⊗ZGM →
P∗ ⊗ZG M

′. Homology is also natural with respect to G, as we shall see it
now.

Functoriality with respect to G.

If α : H → G is a morphism of group and if M is a representation of G, we
denote by α∗M the representation of H obtained by restricting the action
og G on M along α. That is, α∗M is M , acted on by H by the formula
h ·m := α(h)m. Then we have a graded morphism:

α∗ : H∗(H,α∗M)→ H∗(G,M) . (6)

Warning 5. When α is obvious from the context, e.g. H is a given subgroup
of G and α is the inclusion, α∗M is simply denoted by M . This is a lighter
notation, but it may cause confusion, e.g. if α is an automorphism of G.

5



1.4 Functoriality A. Touzé – 2023

To be more specific, let P∗ be a projective resolution of Z as a ZG-
module, and let Q∗ be a projective resolution of Z as a ZH-module. The
morphism (6) is induced by the composition of the chain maps

Q∗ ⊗ZH α∗M
id⊗α∗M−−−−−→ (α∗P∗)⊗ZH α∗M

can−−→ P ⊗ZGM

where can is the canonical quotient map, which sends p⊗m ∈ α∗Pi⊗ZHα
∗M

to p⊗m ∈ Pi ⊗ZGM , and where the chain map id : Q∗ → α∗P∗ is a lift of
the identity map id : Z→ Z (such a lift exists and is unique up to homotopy
by the fundamental lemma of homological algebra, see e.g. Weibel, Thm
2.2.6 p. 35).
Exercice 6. Let M be a representation of a cyclic group Cn of order n.
Let Cq be the cyclic subgroup of Cn of order q. Compute the map:

H∗(Cq, ι∗M)→ H∗(Cn,M)

induced by the inclusion Cq ↪→ Cn.
[Hint: Let k such that n = kq, let t be the generator of Cn and let t′ = tk

be the generator of Cq. Use the small resolutions (2), and the commutative
diagram of ZCq-modules:

Z ZCq ZCq ZCq · · ·

Z ZCn ZCn ZCn · · ·

=

ε 1−t′

K

N ′ 1−t′

ε 1−t N 1−t

whereN = 1+t+· · ·+tn−1, N ′ = 1+t′+· · ·+t′q−1 andK = 1+t+· · ·+tk−1.]

Exercice 7. (Life is easier with bar complexes.) Show that the mor-
phism (6) is induced by the chain map B(id, α, id) : B(Z,ZH,α∗M) →
B(Z,ZG,M) defined by:

B(id, α, id)(1⊗ h1 ⊗ · · · ⊗ hk ⊗m) = 1⊗ α(h1)⊗ · · · ⊗ α(hk)⊗m .

Small subgroups and big overgroups. Functoriality with respect to G
is essential to understand H∗(G,M). Indeed, the homology of G is typically
to complicated to be understood directly. A classical way to obtain some
information on the homology of G is then to consider small subgroups H
(e.g. cyclic subgroups) which are more easily understood and to study the
map H∗(H, ι∗M)→ H∗(G,M) induced by the inclusion ι : H → G.

An "opposite way" to obtain information on H∗(G,M) is to compare it
with the homology of bigger groups. For example, the symmetric group Sd
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on {1, . . . , d} identifies to the subgroup of Sd+1 stabilizing the integer d+1.
Thus, there is a sequence of injective morphisms of symmetric groups:

· · · ↪→ Sd ↪→ Sd+1 ↪→ Sd+2 ↪→ · · · · · · ↪→ S∞ =
⋃
d≥1

Sd .

Let k be a commutative ring, with trivial action of Sd. A theorem of
Nakaoka shows that for all d the inclusion induces an injective morphism:

H∗(Sd,k)→ H∗(Sd+1, k)

which is an isomorphism in degrees ≤ d/2. By the next exercise, this implies
that the map

H∗(Sd,k)→ H∗(S∞,k)

is injective and, an isomorphism in degrees ≤ d/2. Now this may sound
strange, but H∗(S∞,k) is easier to understand : this actually comes from
the fact that H∗(S∞, k) has a richer structure (among other things, it is
ring). One may compute the homology of S∞ and retrieve from this a
complete computation of H∗(Sd,k) when k is a field. The interested reader
may find details in chap V of the book "Cohomology of finite groups" by
Adem and Milgram.

Exercice 8. Homology and colimits. Let G∞ be a group, and consider
an increasing exhaustive chain of subgroups Gn:

G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · ·
⋃
n≥1

Gn = G∞ .

Assume that we are given for each n a representation Mn of Gn, together
with a Gn-equivariant map fn : Mn →Mn+1.

1. Show that M∞ := colimn≥1Mn is endowed with an action of G∞.

2. Show that H∗(G∞,M∞) is the colimit of the diagram (whose mor-
phisms are induced by the inclusions Gn ↪→ Gn+1 and the maps fn):

H∗(G1,M1)→ H∗(G2,M2)→ · · · → H∗(Gn,Mn)→ · · · .

[Hint: use the bar complex, and use that homology of complexes com-
mutes with filtered colimits (cf. Weibel, Thm 2.6.15 p. 57).]
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1.5 Schapiro’s lemma

Let H be a subgroup of G. From a representation M of H, one defines the
induced representation indGHM of G by:

indGHM = ZG⊗ZH M

with action g · (g′ ⊗m) := (gg′)⊗m. Induction is left adjoint to restriction
along the inclusion ι : H ↪→ G. The unit of adjunction is the H-equivariant
map:

ηM : M → ZG⊗ZH M
m 7→ 1⊗m .

Shapiro’s lemma asserts that the following composition is an isomorphism:

H∗(H,M) H∗(H,ηM )−−−−−−→ H∗(H, indGHM) ι∗−→ H∗(G, indGHM) (7)

Schapiro’s isomorphism (7) provides useful information on the homology of
G from the homology of its subgroups.

Exercice 9. Groups with finite homological dimension2. Let G
be a group such that the trivial representation Z admits a finite projective
resolution. Show that G has no element of finite order.

1.6 Action on the homology of normal subgroups.

Let M be a representation of a group G and let H be a normal subgroup
of G. Then H∗(H,M) is endowed with an action of G, which coincides in
degree 0 with the canonical action of G on MH . This action plays a crucial
role for computations with the Lyndon-Hochschild-Serre spectral sequence
(see part II), so we recall the details here.

For all g ∈ G we consider the conjugation map: cg : H → H such that
cg(h) = ghg−1. The action of G on H∗(H,M) is defined by letting g ∈ G
act as the composition:

H∗(H,M) '−→ H∗(H, c∗gM) (cg)∗−−−→ H∗(H,M) (8)

where the isomorphism on the left hand-side is induced by the morphism of
representations M → c∗gM , m 7→ gm.

Exercice 10. The action of G on H∗(G,M) is trivial. Let P∗ be a
projective resolution of Z as a kG-module.

2Using the fact that tensoring any representation with a projective representation is
projective, one sees that the trivial representation Z has a projective resolution of length n
if and only if every representation has a projective representation of length n. The latter
property says exactly that G has homological dimension n (see e.g. Weibel, chap 4).
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1. Show that the restriction of P∗ to H yields a projective resolution of
Z as a ZH-module, and that the map (8) is induced by the chain
map P∗ ⊗ZH M → P∗ ⊗ZH M which sends p ⊗ m ∈ Pk ⊗ZH M to
pg−1 ⊗ gm ∈ Pk ⊗ZH M .

2. In the case H = G, deduce that the action of H on H∗(H,M) is trivial.
In particular, the action of G on H∗(H,M) factors through an action
of G/H.

Exercice 11. Let α1, α2 : H → G be two conjugate morphisms of groups
(i.e. there are g ∈ G and h ∈ H such that α1 = cg ◦ α2 ◦ ch). Show that α1
and α2 induce the same map H∗(H,k)→ H∗(G, k) in homology with trivial
coefficients.

Exercice 12. Dihedral groups. The dihedral groupD2n is the semidirect
product of cyclic groups CnoC2, where the generator of C2 acts nontrivially
on Cn. (If n ≥ 3, this is the group of isometries of the regular n-gon.) Let
g ∈ D2n \ Cn. Show that g acts as multiplication by (−1)i on H2i−1(Cn, k)
and H2i(Cn, k).

[Hint: see Weibel, ex. 6.7.10 page 191.]
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2 Cohomology

2.1 Basic properties

Let M be a representation of G. The cohomology of G with coefficients in
M is defined by

H∗(G,M) = Ext∗ZG(Z,M)

where Z is a trivial representation. Thus, if P∗ is a projective resolution of
Z in the category of ZG-modules, H∗(G,M) is the homology of the cochain
complex HomZG(P∗,M). Degree zero cohomology is isomorphic to the in-
variants MG

H0(G,M) = HomZG(Z,M) 'MG := {m ∈M |gm = m ∀g ∈ G} .

Much of what has been said for the homology of groups has an analogue for
cohomology.

The standard complex C∗(G,M). It is the cochain complex with

Cn(G,M) = Map(G×n,M),

where Map(X,Y ) stands for the set of set-theoretic functions f : X → Y ,
and whose differential d : Cn(G,M)→ Cn+1(G,M) sends f to the function
df such that

df(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn) .

The standard complex is isomorphic to the complex HomZG(P∗,M) with
P∗ = B(ZG,ZG,Z), hence it computes H∗(G,M).

The cohomology of cyclic groups. Using the nice small projective res-
olutions (1) and (2), one can compute the cohomology of cyclic groups for
all representations M . For the finite cyclic groups Cn, one finds that

H i(Cn,M) =


MG for i = 0,
KerN for i odd,
CokerN for i even and positive,

(9)

where N : MG →MG is the norm map, which sends the class [m] in MG of
an element m ∈M to Nm = ∑

g∈G gm ∈MG.
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Exercice 13. Cohomology of infinite cyclic groups. Compute the
cohomology of the infinite cyclic group C∞ for all representations M .

Exercice 14. Another application of the norm map3. Let G be a
finite group of order n. We define ρM : M →MG by ρM (m) = N([m]).

1. Let M ′ be a subrepresentation of M and let q : M � M/M ′ denote
the quotient morphism. Show that for all x ∈ M/M ′G, nx is in the
image of q : MG → (M/M ′)G.

[Hint: use the diagram:
M MG

(M/M ′)G M/M ′ (M/M ′)G
q

ρM

q

nid

ρM

]

2. By taking M injective, show that multiplication by n kills the abelian
group H1(G,M ′) for all M ′. Deduce that multiplication by n kills
H i(G,M ′) for all M ′ and all i > 0.

[Hint: use dimension shifting, see e.g. Brown’s book, Chap III.7.]

Changing the ground ring. If k is a commutative ring and M is a k-
linear representation, then H∗(G,M) is a graded k-module, and there is a
k-linear isomorphism:

H∗(G,M) ' Ext∗kG(k,M) . (10)

Functoriality. Cohomology H∗(G,M) is covariant with respect to M ,
and contravariant with respect to G. To be more specific, every ZG-linear
morphism f : M →M ′ yields a morphism

H∗(G, f) : H∗(G,M)→ H∗(G,M ′) (11)

which is induced by the cochain map HomZG(P∗,M) → HomZG(P∗,M ′)
given by composition with f . Every morphism of groups α : H → G yields
a restriction morphism in cohomology:

α∗ : H∗(G,M)→ H∗(H,α∗M) . (12)
3This way of proving that the cardinal of a group G kills the cohomology is taken from

the article of van der Kallen, A Friedlander-Suslin theorem over a noetherian base ring,
arXiv:2212.14600. It carries out to the cohomology of arbitrary finite group schemes.
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If P∗ is a projective resolution of Z as a trivial ZG-module and Q∗ is a
projective resolution of Z as a trivial ZH-module then (12) is induced by
the cochain map defined as the composition:

HomZG(P∗,M) ↪→ HomZH(α∗P∗, α∗M) −→ HomZH(Q∗, α∗M)

where the first cochain map is the canonical inclusion (every ZG-linear map
is ZH-linear), and the second one is induced by composition with a chain
map id : α∗P → Q∗ which lifts id : Z→ Z.

Functoriality with respect to G has a nice description on the level of
standard complexes. Namely, α∗ is induced by the chain map C∗(α, id) :
C∗(G,M) → C∗(H,α∗M) which sends an function f : G×n → M to the
function f ◦α×n. (The proof of this fact has the same flavour as exercise 7.)

Schapiro’s lemma. Let H be a subgroup of G and let M be a represen-
tation of H. The coinduced representation coindGHM is the representation
of G defined by:

coindGHM = HomZH(ZG,M)

with action of g ∈ G sending and H-equivariant map f to the map x 7→
f(xg). Coinduction is a right adjoint to restriction ZG−Mod→ ZH−Mod.
Schapiro’s lemma asserts that the adjonction isomorphism extends to an
isomorphism on the Ext-level:

H∗(H,M) ' H∗(G, coindGHM) . (13)

Action of G on the cohomology of its normal subgroups. Let H be
a normal subgroup of G and let M be a representation of G. Then MH is
a subrepresentation of M , and the action of G on MH extends to an action
on the whole cohomology H∗(H,M).

To be more specific, an element g ∈ G acts as the composition of restric-
tion along the conjugation morphism together with the morphism induced
by the H-equivariant map c∗gM →M , m 7→ g−1m:

H∗(H,M)
c∗g−→ H∗(H, c∗gM)→ H∗(H,M). (14)

One can prove that G acts trivially on H∗(G,M) in the same fashion as
in exercise 10. Here is an alternative proof (which can be also adapted to
homology).

Exercice 15. Another proof that G acts trivially on its cohomology.
Show that the morphism H∗(H,M) → H∗(H,M) given by the action of
g ∈ G is the unique morphism of δ-functors which is equal to the map
MH → MH , m 7→ gm, in degree 0. Deduce that for H = G, the action of
G on its cohomology is trivial.
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2.2 Homology versus cohomology A. Touzé – 2023

[Hint: see Brown Chap III.7, or Weibel Chap 2, for the notion of a δ-functor.
One needs here to prove here that H∗(H,−) : ZG−Mod → Z−Mod is a
universal δ-functor, which requires to check that the restriction to H of an
injective representation of G remains injective.]

2.2 Homology versus cohomology

We have seen in the previous section that homology and cohomology have
analogous properties. We shall see in this section that cohomology and
homology are related by a universal coefficient exact sequence (16), thus
the groups H∗(G,M) and H∗(G,M) contain closely related information.
However, as we briefly explain it below, homology and cohomology both
have their own advantages (that one should keep in mind before choosing
to work with homology or cohomology).

The universal coefficient exact sequence. Let k be a commutative
ring and let M be a kG-module and let N be a k-module. Then g ∈ G acts
on Homk(M,N) by sending a k-linear map f to the k-linear map gf : m 7→
f(g−1m). There is an isomorphism, natural with respect to M , N and the
right kG-module P :

Homk(P ⊗kGM,N) ' HomkG(P,Homk(M,N)) . (15)

Replacing the kG-module P by a projective resolution of the trivial kG-
module k, the right-hand side of (15) becomes a cochain complex whose
homology computes H∗(G,Homk(M,N)). Thus, if k is a PID, by applying
the universal coefficient theorem to the left-hand side of (15), one obtains
the universal coefficient exact sequence for group homology. Namely, for all
i we have an exact sequence (which is natural with respect to M and N ,
and which splits non naturally with respect to M and N):

0→ Ext1
k(Hi−1(G,M), N)→ H i(G,Homk(M,N))→ Homk(Hi(G,M), N)→ 0 .

(16)

Exercice 16. Let G be a finite group of cardinal n. Deduce from exercise
14 and the universal coefficient exact sequence (16) that H∗(G,M) is killed
by n for all representations M .

[Hint: consider the exact sequence with k = Z and N = Q/Z.]

Exercice 17. Let α : H → G be a morphism of groups, letM be a k-linear
representation of G (k a commutative ring), and let N be a k-module.
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1. Show that the following square commutes (the vertical arrow on the the
right hand-side is given by restriction along α and the one on the left
hand-side is induced by the canonical epimorphism α∗P ⊗kH α∗M �
P ⊗kGM):

Homk(P ⊗kGM,N) HomkG(P,Homk(M,N))

Homk(α∗P ⊗kH α∗M,N) HomkH(α∗P,Homk(α∗M,N))

'
(15)

'
(15)

.

2. Deduce that for all injective k-modules N , there is an isomorphism
natural with respect to G:

H i(G,Homk(M,N)) ' Homk(Hi(G,M), N)

3. Assume that N is an injective cogenerator of k-modules. Show that
α∗ : Hi(H,α∗M)→ Hi(G,α∗M) is an isomorphism if and only if α∗ :
H i(G,Homk(M,N))→ H i(H,α∗Homk(M,N))) is an isomorphism.

The advantages of homology. As we saw it in exercise 8, group homol-
ogy preserves filtered colimits4.

The good behavior with colimits is very useful to reduce the study of
group homology to smaller groups or to smaller representations. This is
well illustrated by the computation of homology of arbitrary abelian groups
with coefficients in a prime field Fp. For the sake of concreteness, we briefly
review this computation, with p odd.

1. One proves that H1(A,Fp) ' A/pA, and that there is a natural map
pA = {a ∈ A | pa = 0} ↪→ H2(A,Fp). Moreover, by inspecting the bar
construction, one proves that H∗(A,Fp) has the structure of a graded
commutative Fp-algebra with divided powers. Thus, there is a morphism
of graded rings, natural with respect to A:

ΓFp(pA)⊗ ΛFp(A/pA)→ H∗(A,Fp) , (17)

where the left hand side is the tensor product of the free divided power
algebra5 on a copy of pA placed in degree 2 with an exterior algebra on
a copy of A/pA placed in degree 1.
4In exercise 8, the diagram of subgroups is indexed by N, but the proof carries without

change for a diagram of subgroups indexed by an arbitrary filtered ordered set.
5If V is an Fp-vector space, let the symmetric group Sd act on V ⊗d by permuting the

factors of the tensor product, and set Γd(V ) = (V ⊗d)Sd . Then ΓFp (V ) =
⊕

d≥0 ΓdFp
(V )

as a graded vector space, with ΓdFp
(V ) placed in degree 2d. Thus, ΓdFp

(V ) is a graded
subspace of T (V ) =

⊕
d≥d V

⊗d. It is in fact a graded subalgebra of T (V ) if we consider
the latter as equipped with the shuffle product.

14
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2. Our good knowledge of cyclic subgroups shows that (17) is an isomor-
phism if A is cyclic. With the Künneth theorem one deduces that (17)
is an isomorphism if A is a finite product of cyclic groups (= a finitely
generated abelian group).

3. The world of abelian groups is vast and there are full of scary weird
abelian groups. But every abelian group is the filtered colimit of its
finitely generated abelian subgroups. Since both sides of the natural
map (17) preserve filtered colimits, this implies without any further com-
putation, that (17) is an isomorphism for all abelian groups A!

The interested reader may find further details relative to the homology of
abelian groups in Brown, Chap V. A functorial description of the mod 2
homology of abelian groups was found recently by S. O. Ivanov and A. A.
Zaikovskii, arXiv:1810.12728.

The advantages of cohomology. Cohomology does not behave well with
colimits (nor with limits!), but has at least two advantages over homology.

1) The low dimensional cohomology groups H1, H2, H3 are tightly con-
nected to the concrete problem of constructing group extensions of G.

2) More importantly, there are products in cohomology. Theses products
are an important tool for concrete computations, and they also encodes
important qualitative information relative to the representations of G.

We review these two features of cohomology in the next two subsections.

2.3 Low degree cohomology

A group extension of G by a group N is a short exact sequence of groups

1→ N → E
π−→ G→ 1 (18)

and two such extensions are isomorphic if there is a commutative diagram
of groups

1 N E G 1

1 N E′ G 1

=

π

' =

π′

.

A basic problem is to study the extensions of G by a given N . As we shall
briefly explain it now, the cohomology groups H1 and H2 give information
on this problem when N is abelian. We refer the reader to Brown, Chap IV
for full details.

Consider an extension (18) with N abelian. Since N is abelian, the
conjugation action of N on itself is trivial, hence the conjugation action of

15
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E on N induces an action of E/N = G on N . Therefore we may restrict the
study to extensions (18) with a given action of G on N . Thus, from now
on, we fix a group G and a representation N of G, and we investigate the
extensions of G which correspond to our representation N .

The information contained in H1(G,N). By inspecting the standard
complex C∗(G,N), one computes:

H1(G,N) = {f : G→ N | f(gh) = f(g) + gf(h) ∀(g, h) ∈ G2} . (19)

In particular if N is a trivial representation then H1(G,N) is isomorphic to
the set of group morphisms f : G→ N .

The connection of the H1 calculation (19) with the study of extensions
of the form (18) is the following. Consider the group N o G : it is the set
N ×G, endowed with the multiplication (n, g) · (n′, g′) = (n+gn′, gg′). This
groups yields an extension

1→ N → N oG
π−→ G→ 1

with π(n, g) = g. One proves that this extension is (up to isomorphism)
the unique extension of the form (18) in which the morphism of group π
has a section, i.e. the unique extension of the form (18) for which there
is a morphism of groups s : G → N o G such that π ◦ s = id. Now one
easily checks from the definition of the group structure of N o G and the
calculation (19) that there is a bijection:

H1(G,N) '−→ {sections of π}
f 7→ [g 7→ (f(g), g)] . (20)

Exercice 18. Let D2n = 〈a, b | an = b2 = 1, ab = ba−1〉 be the dihedral
group of cardinal 2n. This group contains the cyclic group Cn = 〈a | an = 1〉
as a normal subgroup. Assume that n is even. Compute H1(D2n,F2) and
show that the restriction map H1(D2n,F2)→ H1(Cn,F2) is surjective.

The information contained in H2(G,N). The subgroup of 2-cocycles
of the standard complex C∗(G,N) is:

Z2(G,N) =
{
G2 f−→ N

∣∣∣∣∣ gf(h, k)− f(gh, k) + f(g, hk)− f(g, h)
∀(g, h, k) ∈ G3

}
.

Extensions of G by N can be used to construct elements of Z2(G,N). To
be more specific, if E = 1 → N → E

π−→ G → 1 is such an extension, we

16



2.4 Cup products A. Touzé – 2023

can choose a set theoretic section of π, i.e. a function s : G → E such that
π ◦ s = id. Then the function:

fE,s : (g, h) 7→ s(gh)s(h)−1s(g)−1

is a 2-cocycle. One can prove that the cohomology class of fE,s does not
depend on the choice of the section s, and we denote this cohomology class
by cE . Further verifications show that we obtain in this way a bijection:{

isomorphism classes of
extensions of G by N

}
'−→ H2(G,N)

JEK 7→ cE

. (21)

Observe that the extension S = 1→ N → N oG
π−→ G→ 1 is characterized

(up to isomorphism) by the fact that it has a section which is a group
morphism. The 2-cocycle associated to such a section is constant equal to
zero, so that cS = 0. Hence, cE = 0 if and only if E is isomorphic to S.
Exercice 19. Let n be an even positive integer.

1. Show that there is (up to isomorphism) only one non-split extension of
Cn by C2, namely the extension 1→ C2 → C2n → Cn → 1. Compute
a 2-cocycle associated with this extension.

2. Let D4n = 〈c, b | c2n = b2 = 1, cb = bc−1〉, and let π : D4n → D2n
be the morphism such that π(c) = a and π(b) = b (with the same
notations for the generators of D2n as in exercise (18)). Compute a
2-cocycle associated with the extension 1→ C2 → D4n

π−→ D2n → 1.

3. Show that the restriction mapH2(D2n,F2)→ H2(Cn,F2) is surjective.

2.4 Cup products

LetM and N be two k-linear representations of a group G. The cup product
is family of morphisms

H i(G,M)⊗k H
j(G,N) → H i+j(G,M ⊗k N)

x⊗ y 7→ xy
(22)

which is natural with respect to G, M and N , which is graded commutative
xy = (−1)ijyx and associative x(yz) = (xy)z. Moreover, if i = j = 0, the
cup product coincides with the map

MG ⊗k N
G → (M ⊗k N)G

m⊗ n 7→ m⊗ n .

Finally, if M = N = k (with trivial action), then M ⊗k N is canonically
isomorphic to k, so that the cup product (22) yields a graded commutative
algebra structure on H∗(G, k).

17
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The construction. The cup product (22) is defined as the composition

H i(G,M)⊗k H
j(G,N) ×−→ H i+j(G×G,M ⊗k N) ∆∗−−→ H i+j(G,M ⊗k N)

where ∆∗ is restriction along the morphism ∆ : G→ G2, g 7→ (g, g), and ×
stands for the cross product, which is induced by the cochain map:

HomkG(P∗,M)⊗HomkG(P∗, N) ⊗−→ HomkG⊗kkG(P∗ ⊗k P∗,M ⊗k N) .

Cyclic groups. For cyclic groups one can make concrete computations
based on the nice small resolutions (1) and (2). We refer the reader to
Evens, section 3.2 for details on these computations, and we bound ourselves
to stating the results. If p is odd, there is an isomorphism of algebras:

H∗(Cpk,Fp) ' Fp[y]⊗ Λ(x) (23)

where x is a class of degree 1 and y is a class of degree 2. If p = 2, there is
a surprise. One has isomorphisms of algebras:

H∗(C2k,F2) '
{
F2[x] if k is odd,
F2[y]⊗ Λ(x) if k is even,

(24)

where x is a class of degree 1 and y is a class of degree 2. Thus, although
the description of H∗(C2k,F2) as a graded F2-vector space is uniform for all
k, the description of the products is not!

Exercice 20. Let n be an integer. Show that the restriction map
H∗(D2n,F2)→ H∗(Cn,F2) is surjective.

[Hint: if n is odd, the statement is trivial. If n is even, use exercises 18 and
19.]
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3 Topology and group (co)homology
Everything presented so far is purely algebraic. But actions of groups on
spaces provides strong connection of group (co)homology with topology.
The simplest case of such an interaction is provided by the homology of the
K(G, 1) spaces.

3.1 Homology of K(G, 1) spaces

A K(G, 1) space is a topological space X such that: (i) X is arcwise con-
nected, with fundamental group isomorphic to G, and (ii) X admits a uni-
versal cover which is contractible.

Specifying aK(G, 1) space is equivalent to specifying a contractible space
Y , equipped with an action of G which is (a) free, and6 (b) such that every
y ∈ Y is contained in an open set U such that gU ∩ U = ∅ if g 6= 1. Indeed,
by the theory of coverings, the quotient map Y � Y/G =: X is then a
covering map, and X is a K(G, 1) space.

If X is a K(G, 1) space, the singular (co)homology of X is isomorphic7

to the (co)homology of G with trivial coefficients (in the case of cohomology
it is an isomorphism of algebras):

H∗(G, k) ' H∗(X,k) , H∗(G, k) ' H∗(X,k) . (25)

Exercice 21. Let G be a group acting freely on a contractible manifold.
Show that G has no element of finite order.

Exercice 22. Let G = 〈a1, b1, a2, b2, . . . ag, bg | [a1, b1] · · · [an, bn] = 1〉.
Compute H∗(G, k).

3.2 The proof of isomorphisms (25)

We concentrate on homology. The isomorphism is obtained by combining
two independent arguments. We sketch these arguments here because they
can be used or adapted to other situations.

A) If G acts on a space Y , then it acts on the set of singular simplices of Y ,
and the singular chain complex Csing

∗ (Y,k) is a complex of kG-modules.
Moreover:

6Note that condition (b) is automatically satisfied if Y is a normal space (e.g. a metric
space or a CW complex) and if G is finite.

7This is actually the way that (co)homology was first defined historically, see Weibel,
history of homological algebra. Chap 28 of History of topology, 797–836, North-Holland,
Amsterdam, 1999.
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• If the action of G on Y is free, then each Csing
n (Y ) is a projective

module. This comes from the fact that is S is a set endowed with
a free action of G, then kS (the free k-module on S) is isomorphic
to (kG)⊕G/S as a representation of G.
• If Y is contractible, then Csing

∗ (Y,k) has homology equal to k con-
centrated in degree zero.

To sum up: if Y is a contractible space with a free action of G, then
Csing
∗ (Y,k) is a projective representation of the trivial representation k.

As a consequence H∗(G, k) can be computed as the homology of the
complex of k-modules Csing

∗ (Y,k)G.

B) If Y is a space with a free action of G and π : Y � Y/G is a covering
map, then π induces an isomorphism

Csing
∗ (Y, k)G ' Csing

∗ (Y/G, k) .

This follows from the fact that if S is a set endowed with an action of
G, then (kS)G ' k(S/G), and from the fact that π induces a bijection:

{ singular n-simplices of Y }/G ' { singular n-simplices of Y/G } .

Exercice 23. Let X be an arcwise connected space with fundamental
group G and n-connected universal cover. Show that Hi(X,k) ' Hi(G, k)
if i ≤ n and that there is a surjective map ψ : Hn+1(X,k) � Hn+1(G,k).
[Hint: modify A). You can also read Brown, Thm (5.2), where in addition
Kerψ is identified as the image of the Hurewicz map of X if k = Z.]

3.3 Groups acting on spaces and resolutions of kG-modules

The argument A) above shows that free actions of G on contractible spaces
provide projective resolutions of the trivial representation of G. However,
the projective resolution Csing

∗ (Y,k) is not very useful for computational
purposes because it is huge. In order to obtain smaller resolutions from
topology, we can replace singular chains by cellular chains. This leads us to
the following definition.

A G-complex is a CW-complex Y with an action of G such that the
action permutes the cells of Y (i.e. if e is a cell of Y , then ge is a cell of Y ).
Exercice 24. Consider Sn with the antipodal action of C2. Define a CW
structure on Sn which makes it a C2-complex.

If Y is a contractible G-complex with free action, then the argument A)
can be carried out with cellular chains, and the cellular complex Ccell

∗ (Y,k)
yields a resolution of the trivial representation k by projective kG-modules.
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Exercice 25. Work out the adaptation of the argument A) to cellular
chain complexes.

In general, it is not easy to find nice small contractible G-complexes Y
with free action. We can weaken our requirements on Y in two directions.

• First we can work with an n-connected G-complex Y with free action.
Then Ccell

∗ (Y, k) gives a projective resolution of k up to degree n+ 1.

• Second we can work with a G-complex Y on which the action of G is
not free. In this case the kG-modules Ccell

i (Y, k) are no longer projec-
tive: we have an isomorphism of kG-modules:

Ccell
n (Y,k) '

⊕
e∈Σn

indGGekσ (26)

where Σn is a set of representatives of the G-orbits of n-cells, Ge is the
stabilizer of the cell e, and ke is the k-module k on which each g ∈ Ge
acts by multiplication by its topological degree. We refer the reader to
Brown, Chap III, ex (5.5)(b) for an explanation of isomorphism (26).
The complex Ccell

∗ (Y,k) can then be used to link the homology of G
with that of the stabilizers Ge through a spectral sequence (we will
return to this in part II).
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