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Introduction

Definition 1.1

A random variable X defined on a probability space (Ω,A,P) and with values in a
separable Banach space (E ,BE ), is said to be Gaussian centered, when 〈X , x∗〉 is
a real-valued centered Gaussian random variable for any x∗ ∈ E∗, the topological
dual of E .

Remark 1.1

Let K be a compact metric space and let C(K ) be the Banach space of the
continuous real-valued functions defined on K . Assume that {X (t)}t∈K is a
real-valued centered Gaussian process, defined on (Ω,A,P) and with continuous
paths (for all fixed ω ∈ Ω, the function X (·, ω) : K → R, t 7→ X (t, ω) is
continuous). Then, the map (Ω,A,P)→ (C(K ),BC(K)), ω 7→ X (·, ω) is a
centered Gaussian random variable with values in (C(K ),BC(K)).
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Introduction

Theorem 1.1

X can be represented as an almost surely convergent random series of the form:

X =
+∞∑
k=1

εkαk , (1.1)

where the εk ’s are independent N (0, 1) real-valued Gaussian random variables and
the αk ’s are some deterministic elements of E .

→ See the book of Lifshits (1995) or that of Ledoux and Talagrand (1991) for a
proof Theorem 1.1.
→ In the case where X is a Brownian motion B = {B(t)}t∈[0,1], two classical
examples of such series representations are:

the representation in the trigonometric system,

B(t) = ε0t +
√

2
+∞∑
k=1

εk
sin(πkt)

πk
;

the representation in the Faber-Schauder system (it will be presented later).
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Introduction

It is natural to look for optimal series representations of X i.e. those where the
tail of the series:

+∞∑
k=n

εkαk ,

tends to zero as fast as possible. This leads to the study of the quantity

ln(X ) = inf


(

E
∥∥∥ +∞∑

k=n

εkαk

∥∥∥2
)1/2

; X =
+∞∑
k=1

εkαk

 . (1.2)

ln(X ) is called the nth l-number of X .

Remark 1.2

The value of ln(X ) remains the same even if the random variables εk are allowed
to be dependent.

Clearly, limn→+∞ ln(X ) = 0. The rate of convergence is closely connected with the
small ball behaviour of X .

A. Ayache (Lille 1) Optimality of continuous Gaussian series 04/25/2012 5 / 57



Introduction

Theorem 1.2 (Li and Linde 1999)

Let a > 0 and b ∈ R be fixed.

1 If for some constant c1 > 0 and every integer n ≥ 1,

ln(X ) ≤ c1n−a(1 + log n)b. (1.3)

Then, there is a constant c2 > 0 such that for any ε > 0 small enough,

log(P(‖X‖ ≤ ε) ≥ −c2ε
−1/a(log 1/ε)b/a. (1.4)

2 Conversely, if (1.4) holds, then there is a constant c3 > 0 such that for each
integer n ≥ 1,

ln(X ) ≤ c3n−a(1 + log n)b+1. (1.5)

Remark 1.3 (Li and Linde 1999)

When E is K -convex (e.g. Lp, 1 < p <∞) then (1.3) and (1.4) are equivalent.
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Introduction

The main three goals of our talk are the following:

(a) To connect the Hölder regularity (in the mean-square sense) of a centered
continuous real-valued Gaussian process with the rate of convergence of its
l-numbers.

(b) To present the Meyer, Sellan and Taqqu wavelet series representations of
fractional Brownian motion (fBm), and to show that they are optimal; notice
that fBm is the most natural real-valued continuous Gaussian process which
extends Brownian motion.

(c) To investigate, for the Riemann-Liouville process (that is the high-frequency
part of fBm), the optimality of the series representations obtained via the
Haar and the trigonometric bases of L2[0, 1].
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Hölder regularity and rate convergence of l-numbers

Throughout this section, X = {X (t)}t∈[0,1]N denotes a centered real-valued
Gaussian process with continuous paths.

Definition 2.1

Let H ∈ (0, 1]. One says that X is H-Hölder (in the mean-square sense), if there
exists a constant c > 0 such that for all t, s ∈ [0, 1]N ,

E
(
|X (t)− X (s)|2

)
≤ c |t − s|2H . (2.1)

Remark 2.1

1 It follows from (2.1) that the paths of X are almost surely γ-Hölder functions
for any γ ∈ (0,H); that is, for all t, s ∈ [0, 1]N ,∣∣X (t, ω)− X (s, ω)

∣∣ ≤ C ′(ω)|t − s|γ . (2.2)

2 Conversely, if the paths of X are almost surely H-Hölder functions then (2.1)
is verified.
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Hölder regularity and rate convergence of l-numbers

A classical example of a real-valued, centered, continuous and H-Hölder Gaussian
process, is the multivariate fractional Brownian motion BH = {BH(t)}t∈[0,1]N

whose covariance is given by:

EBH(t)BH(s) =
1

2

(
|t|2H + |s|2H − |t − s|2H

)
. (2.3)

The following theorem, is the main result of this section.

Theorem 2.1 (A. and Linde 2008)

Assume that X = {X (t)}t∈[0,1]N is a real-valued, centered, continuous and
H-Hölder Gaussian process. Then there exists a constant c > 0 such that for
every n ≥ 2,

ln(X ) ≤ cn−H/N
√

log n. (2.4)

For proving Theorem 2.1 we will use the operators theory.
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Gaussian processes and operators

Let X = {X (t)}t∈[0,1]N be a centered continuous real-valued Gaussian process.

1 There exists u : L2 = L2[0, 1]→ C = C[0, 1]N a bounded operator such that
for any t, s ∈ [0, 1]N ,

EX (t)X (s) = 〈u∗δt , u∗δs〉L2 , (2.5)

where u∗ : C∗ → L2 is the dual operator of u, and δt is the Dirac measure in
t ∈ [0, 1]N ; one calls u: an operator generating X .

2 In fact, one can prove that u belongs to the the class
G = G(L2[0, 1], C[0, 1]N), that is for each orthonormal basis (fk)k≥1 of L2

and any sequence {εk}k≥1 of independent real-valued N (0, 1) Gaussian
random variables the sum

+∞∑
k=1

εku(fk),

converges almost surely in C.
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Some useful properties of G = G(L2[0, 1], C[0, 1]N)

Any v ∈ G is a compact operator (see for example the book of Pisier (1989)).

The l-norm of any v ∈ G is defined as

l(v) =

E

∥∥∥∥∥
+∞∑
k=1

εkv(fk)

∥∥∥∥∥
2

∞

1/2

; (2.6)

this norm is known to be independent of the special choice of the
orthonormal basis (fk)k≥1.

(G, l) is a Banach space (Linde and Peitsch 1973).

If v has finite rank and X0 is an arbitrary standard Gaussian random variable
with values in (ker v)⊥. Then

l(v) =
(
E‖v(X0)‖2

∞
)1/2

.
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Another useful property of G = G(L2[0, 1], C[0, 1]N)

Let v ∈ G and define the kernel K : [0, 1]N × [0, 1]→ R by

K (t, x) = (v∗δt)(x). (2.7)

Then t 7→ Φ(t) = K (t, ·) is a continuous function from [0, 1]N into L2[0, 1].
Moreover, for any h ∈ L2[0, 1] and t ∈ [0, 1]N one has

(vh)(t) =

∫ 1

0

K (t, x)h(x) dx . (2.8)

Proof of (2.8): Using (2.7), one obtains that for all t ∈ [0, 1]N ,∫ 1

0

K (t, x)h(x) dx = 〈v∗δt , h〉L2,L2 = 〈vh, δt〉C ,C∗ = (vh)(t).

�
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Proof of the continuity of Φ : t 7→ K (t, ·): Using (2.7) and

‖f ‖L2 = sup
‖h‖L2≤1

|〈f , h〉|

for all f ∈ L2, one gets that for any t1, t2 ∈ [0, 1]N ,

‖K (t1, ·)− K (t2, ·)‖L2

= ‖v∗(δt1 )− v∗(δt2 )‖L2

= sup
‖h‖L2≤1

|〈v∗(δt1 )− v∗(δt2 ), h〉|

= sup
‖h‖L2≤1

|(vh)(t1)− (vh)(t2)|. (2.9)

Since v is compact, the set {v(h) : ‖h‖L2 ≤ 1} is equicontinuous (Arzela-Ascoli
Theorem).

Thus (2.9) implies that Φ is a continuous function from [0, 1]N into L2[0, 1].
�
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Proposition 2.1

Let X = {X (t)}t∈[0,1]N be a centered, continuous and real-valued Gaussian

process. Let u ∈ G(L2, C) be an operator generating X i.e. for all t, s ∈ [0, 1]N ,

EX (t)X (s) = 〈u∗δt , u∗δs〉L2 , (2.10)

and
K (t, x) = (u∗δt)(x), (2.11)

the kernel corresponding to u. Then

law
{

X (t) : t ∈ [0, 1]N
}

= law

{∫ 1

0

K (t, x) dB(x) : t ∈ [0, 1]N
}
,

where dB is a Brownian measure.
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Proof: It follows from (2.10) and (2.11) that for all t, s ∈ [0, 1]N ,

EX (t)X (s) =

∫ 1

0

K (t, x)K (s, x) dx .

On the other hand, using the isometry property of Wiener integral one has for all
t, s ∈ [0, 1]N ,

E
(∫ 1

0

K (t, x) dB(x)

∫ 1

0

K (s, x) dB(x)

)
=

∫ 1

0

K (t, x)K (s, x) dx .

�
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Corollary 2.1

Let X = {X (t)}t∈[0,1]N be a centered, continuous and real-valued Gaussian
process. Recall that X can be represented as,

X (t) =
+∞∑
k=1

εkαk(t).

In fact, a possible (but not unique) choice of the continuous functions αk is

αk = u(fk),

where u is an operator generating X and (fk)k≥1 is an arbitrary orthonormal basis
of L2[0, 1].
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

Proof: The process X can be represented for every t ∈ [0, 1]N as

X (t) =

∫ 1

0

K (t, x) dB(x), (2.12)

where K is the kernel corresponding to u i.e. for every h ∈ L2 and t ∈ [0, 1]N ,

(uh)(t) =

∫ 1

0

K (t, x)h(x) dx . (2.13)

Expanding, for all fixed t ∈ [0, 1]N , the function K (t, ·) in the basis (fk)k≥1 and
then using (2.13), one obtains that

K (t, ·) =
+∞∑
k=1

(ufk)(t)fk , (2.14)

where the series converges in L2([0, 1], dx). Finally, it follows from (2.14), (2.12)
and the isometry property of Wiener integral that
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

X (t) =
+∞∑
k=1

εk(ufk)(t), (2.15)

where

εk =

∫ 1

0

fk(x) dB(x), for all k .

�

Remark 2.2

A priori, the series in (2.15) converges in L2(Ω,R) for every fixed t. However,
since u ∈ G(L2[0, 1], C[0, 1]N), one can show that it also converges almost surely
uniformly in t ∈ [0, 1]N or equivalently that it converges in L2(Ω, C[0, 1]N).
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Hölder regularity and rate convergence of l-numbers Gaussian processes and operators

The sequence of l-numbers of u, is defined as,

ln(u) = inf


E

∥∥∥∥∥
∞∑
k=n

εku(fk)

∥∥∥∥∥
2

∞

1/2

: (fk)k≥1 ONB in L2[0, 1]

 ; (2.16)

recall that, the sequence of l-numbers of X is defined as:

ln(X ) = inf


E

∥∥∥∥∥
∞∑
k=n

εkαk

∥∥∥∥∥
2

∞

1/2

: X =
∞∑
k=0

εkαk a.s.

 . (2.17)

According to Corollary 2.1, a possible choice of the αk ’s is αk = u(fk) for all k;
hence

ln(X ) ≤ ln(u). (2.18)

Observe that, the reverse inequality is also true, thus,

ln(X ) = ln(u). (2.19)

A. Ayache (Lille 1) Optimality of continuous Gaussian series 04/25/2012 20 / 57



Hölder regularity and rate convergence of l-numbers Proof of the main result of the section

Proof of the main result of the section

Recall that the goal of this section is to prove that:

Theorem 2.1

Assume that X = {X (t)}t∈[0,1]N is a real-valued, centered, continuous and
H-Hölder Gaussian process. Then,

ln(X ) ≤ O
(

n−H/N
√

log n
)
. (2.20)

Reformulation of Theorem 2.1 in terms of operators theory:

Theorem 2.1 (reformulated)

Let H ∈ (0, 1] and let u ∈ G(L2[0, 1], C[0, 1]N) be a H-Hölder operator, which
means that, there exists a constant c2 > 0 such that for any h ∈ L2[0, 1] and
t1, t2 ∈ [0, 1]N ,

|(uh)(t1)− (uh)(t2)| ≤ c2‖h‖L2 |t1 − t2|H . (2.21)

Then ln(u) = O
(
n−H/N

√
log n

)
.
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Hölder regularity and rate convergence of l-numbers Proof of the main result of the section

To prove Theorem 2.1 (reformulated), we will use the following proposition:

Proposition 2.2

Let u ∈ G(L2[0, 1], C[0, 1]N). For each a > 0 and b ∈ R, (i) is equivalent to (ii).

(i) The l-numbers of u, satisfies,

ln(u) = O
(
n−a(log n)b

)
. (2.22)

(ii) There exists a sequence (uj)j≥1 of finite rank operators, such that:
1 One has, in the sense of the l-norm,

u =
∞∑
j=1

uj ;

2 the ranks of the uj ’s satisfy

rk (uj) = O
(
2j
)

(2.23)

and, their l-norms satisfy

l(uj) = O
(
2−aj jb

)
. (2.24)
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Hölder regularity and rate convergence of l-numbers Proof of the main result of the section

Sketch of the proof of Theorem 2.1 (reformulated): We suppose that N = 1.
For any integers j ≥ 0 and 0 ≤ k ≤ 2j set

t jk = k/2j and λjk = [t jk , t
j
k+1),

with the convention that λj
2j = {1}. We denote by B([0, 1]), the Banach space of

the real-valued bounded function on [0, 1], equipped with the uniform norm. Let
vj : L2[0, 1]→ B([0, 1]) be the finite rank operator defined for all h ∈ L2 as,

vjh =
2j∑

k=0

(uh)(t jk)1λj
k
. (2.25)

It is clear that,
rk (vj) ≤ 2j+1. (2.26)

moreover, since u is a H-Hölder operator, one has

‖u − vj‖ = O
(
2−jH

)
. (2.27)

Let u0 = v0 and for all j ≥ 1, uj = vj − vj−1. (2.26) implies that rk (uj) ≤ 2j+2

and (2.27) that u =
∑+∞

j=0 uj . It remains to show that l(uj) = O
(
2−jH
√

j + 1
)
.

This can be obtained by using the fact that l(uj) =
(
E‖uj(Xj)‖2

∞
)1/2

, where Xj is
a standard Gaussian random variable with values in (ker uj)

⊥.
�
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The Meyer, Sellan and Taqqu wavelet representations of fBm

→ {BH(t)}t∈[0,1], the fractional Brownian motion (fBm) of Hurst parameter
H ∈ (0, 1), is the continuous centered real-valued Gaussian process with
covariance,

E (BH(s)BH(t)) =
1

2

(
|s|2H + |t|2H − |s − t|2H

)
; (3.1)

when H = 1/2, fBm reduces to Brownian motion, otherwise its increments are
correlated and even display long-range dependence when H ∈ (1/2, 1).
→ Kühn and Linde (2002), have obtained sharp estimates of the asymptotic
behaviour of (ln(BH))n≥1, the sequence of the l-numbers of fBm; namely, there
exist two constants 0 < c1 ≤ c2, such that for all n ≥ 2,

c1n−H
√

log n ≤ ln(BH) ≤ c2n−H
√

log n (3.2)

Observe that Theorem 2.1 allows to recover the second inequality in (3.2).
→ It seems natural to look for explicit optimal random series representations of
fBm; in view of (3.2) their rate of convergence must be, n−H

√
log n.

The main goal of this section is to present the Meyer, Sellan and Taqqu
wavelet representations of fBm, and to show that they are optimal.
Roughly speaking, they consist in expressing fBm as a series of approximations
with successive scale refinements; they are reminiscent of the representation of
Brownian motion in the Faber-Schauder system.
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The Meyer, Sellan and Taqqu wavelet representations of fBm Representation of Brownian motion in the Faber-Schauder system

Representation of Brownian motion in the Faber-Schauder
system

B(t) = ε0t +
+∞∑
j=0

2j−1∑
k=0

εj,k2−j/2τ(2j t − k), (3.3)

where:

ε0 and εj,k are independent real-valued N (0, 1) Gaussian random variables,

τ is the triangle function based on [0, 1],

the series is almost surely uniformly convergent in t ∈ [0, 1].

The expansion (3.3) was introduced by Paul Lévy in 1948. It has turned out to be
very useful in the (fine) study of Brownian motion; for instance it allows to prove
that Brownian paths do not satisfy a uniform or a pointwise Hölder condition of
order 1/2.
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The Meyer, Sellan and Taqqu wavelet representations of fBm Representation of Brownian motion in the Faber-Schauder system

Proposition 3.1

The series expansion of Brownian motion in the Faber-Schauder system is optimal.

For proving Proposition 3.1, we need the following two lemmas.

Lemma 3.1

There is a constant c > 0 such that for any integer N ≥ 1 and for each centered
Gaussian real-valued sequence Z1, . . . ,ZN one has,

E
(

sup
1≤k≤N

|Zk |
)
≤ c(1 + log N)1/2 sup

1≤k≤N

(
E|Zk |2

)1/2
. (3.4)

Lemma 3.2

For any t ∈ [0, 1] and for each integer j ≥ 0, there is at most one integer k, such
that 0 ≤ k < 2j and τ(2j t − k) 6= 0.
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The Meyer, Sellan and Taqqu wavelet representations of fBm Representation of Brownian motion in the Faber-Schauder system

Proof of Proposition 3.1: Lemma 3.2 implies that for all j ≥ 0 and t ∈ [0, 1],

2j−1∑
k=0

|εj,k ||τ(2j t − k)| ≤

(
sup

0≤k<2j

|εj,k |

)
‖τ‖∞. (3.5)

Using (3.5), the gaussianity of the εj,k ’s and Lemma 3.1, one has for all m ∈ N,

Qm = E

 sup
t∈[0,1]

∣∣∣∣∣∣B(t)− ε0t −
m∑
j=0

2j−1∑
k=0

2−j/2εj,kτ(2j t − k)

∣∣∣∣∣∣


≤ c1

+∞∑
j=m+1

2−j/2E

(
sup

0≤k<2j

|εj,k |

)

≤ c2

+∞∑
j=m+1

2−j/2(1 + j)1/2

(
sup

0≤k<2j

E|εj,k |2
)1/2

= c2

+∞∑
j=m+1

2−j/2(1 + j)1/2 ≤ c32−m/2(1 + m)1/2.

Thus, the expansion of {B(t)}t∈[0,1] in the Faber-Schauder system is optimal.
�
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The Meyer, Sellan and Taqqu wavelet representations of fBm Wavelet representation of fBm without a scaling function

Wavelet representation of fBm without a scaling function

We suppose that:

ψ is a smooth and well-localized real-valued mother wavelet defined on R,

{2j/2ψ(2j t − k); j ∈ Z and k ∈ Z} is an orthonormal basis of L2(R),

ψ̂, the Fourier transform of ψ, is a smooth and well-localized function.

Under these assumptions, for any H ∈ (0, 1),

ΨH(t) =

∫
R

e itξ ψ̂(ξ)

(iξ)H+1/2
dξ and Ψ−H(t) =

∫
R

e itξ(iξ)H+1/2ψ̂(ξ) dξ,

the fractional primitive of ψ of order H + 1/2, and its fractional derivative of
order H + 1/2, are well-defined, smooth and well-localized real-valued functions.

Theorem 3.1 (Meyer, Sellan and Taqqu 1999)

The sequences of functions {2j/2ΨH(2j t − k); j ∈ Z and k ∈ Z} and
{2j/2Ψ−H(2j t − k); j ∈ Z and k ∈ Z} are two biorthogonal bases of L2(R).
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The Meyer, Sellan and Taqqu wavelet representations of fBm Wavelet representation of fBm without a scaling function

These bases are well-adapted to the analysis of fBm:

Theorem 3.2 (Meyer, Sellan and Taqqu 1999)

The fBm {BH(t)}t∈[0,1] can be expressed as:

BH(t) =
+∞∑

j=−∞

+∞∑
k=−∞

2−jH
(
ΨH(2j t − k)−ΨH(−k)

)
εj,k , (3.6)

where the εj,k ’s are independent N (0, 1) Gaussian random variables and the series
is almost surely uniformly convergent in t. Moreover,

εj,k = 2j(H+1)

∫
R

BH(t)Ψ−H(2j t − k) dt. (3.7)

→ (3.6) is almost a Karhunen-Loeve expansion of BH .
→ It allows to obtain some local and asymptotic properties of BH (nowhere
differentiability, moduli of continuity, behaviour at infinity, and so on).
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Proof of Theorem 3.2: Let us start from the harmonizable representation of
fBm:

BH(t) =

∫
R

e itξ − 1

(iξ)H+1/2
dB̂(ξ), (3.8)

where dB̂ is the ”Fourier transform” of the Brownian measure dB. Expanding the

function ξ 7→ e itξ−1
(iξ)N+1/2 in the orthonormal basis{

2−j/2e ikξ/2j

ψ̂(2−jξ); j ∈ Z and k ∈ Z
}

and then, using the isometry property of the integral

∫
R

(·)dB̂, it follows that
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BH(t) =

∫
R

e itξ − 1

(iξ)H+1/2
dB̂(ξ) =

∑
j,k∈Z

αj,k(t)εj,k , (3.9)

where the

εj,k = 2−j/2

∫
R

e ikξ/2j

ψ̂(2−jξ) dB̂(ξ)

are independent N (0, 1) real-valued Gaussian random variables and

αj,k(t) = 2−j/2

∫
R

e itξ − 1

(iξ)H+1/2
e−ikξ/2j

ψ̂(2−jξ) dξ. (3.10)

The series (3.9) is almost surely uniformly convergent in t (Itô-Nisio Theorem).
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Let us now prove that

αj,k(t) = 2−jH
(
ΨH(2j t − k)−ΨH(−k)

)
. (3.11)

As the first two moments of the wavelet ψ vanish, one has,

ψ̂(ξ) = O(ξ2), (3.12)

which implies that

αj,k(t) = 2−j/2

∫
R

e i(t−k/2j )ξ ψ̂(2−jξ)

(iξ)H+1/2
dξ − 2−j/2

∫
R

e−ikξ/2j ψ̂(2−jξ)

(iξ)H+1/2
dξ.

(3.13)

Finally, setting η = 2−jξ in the latter two integrals, one obtains (3.11).
�
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Wavelet representation with a well-localized scaling
function

The mother wavelet ψ satisfies the same conditions as previously and φ is a
corresponding scaling function.

As φ̂(0) = 1 6= 0, the fractional primitive of φ of order H + 1/2, can only be
defined when H ∈ (0, 1/2); moreover, it is irregular and bad localized.

⇒ The problem of finding a wavelet expansion of fBm with a well-localized
scaling function is tricky. However, we need to have this well-localization for the
expansion to be optimal.

To overcome this difficulty Meyer, Sellan and Taqqu have replaced the fractional
primitive of φ, by the function ΦH defined as,

Φ̂H(ξ) =

(
1 + e−iξ

iξ

)H+1/2

Φ̂(ξ). (3.14)
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Theorem 3.3 (Meyer, Sellan and Taqqu 1999)

Let ΨH and Ψ−H be the fractional primitive of order H + 1/2 and the fractional
derivative of order H + 1/2, of the mother wavelet ψ. Let ΦH be as in (3.14) and
let Φ−H be defined as,

Φ̂−H(ξ) =

(
1 + e−iξ

iξ

)−H−1/2

Φ̂(ξ). (3.15)

Then for any m ∈ Z,{
2m/2ΦH(2mt − l) : l ∈ Z

}⋃{
2j/2ΨH(2j t − k) : j ∈ Z, j ≥ m, k ∈ Z

}
and{

2m/2Φ−H(2mt − l) : l ∈ Z
}⋃{

2j/2Ψ−H(2j t − k) : j ∈ Z, j ≥ m, k ∈ Z
}

are two biorthogonal bases of L2(R).
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Theorem 3.4 (Meyer, Sellan and Taqqu 1999)

For any m ∈ Z, the fBm {BH(t)}t∈[0,1] can be expressed as:

BH(t) = 2−mH
+∞∑

l=−∞

ΦH(2mt − l)S
(H)
m,l

+
+∞∑
j=m

+∞∑
k=−∞

2−jHΨH(2j t − k)− b0, (3.16)

where {S (H)
m,l }l∈Z is a FARIMA(0,H-1/2,0) random walk and {εj,k}j≥m,k∈Z is a

sequence of independent real-valued N (0, 1) Gaussian random variables. The
series in (3.16), are almost surely uniformly convergent in t; moreover,

S
(H)
m,l = 2m(H+1)

∫
R

BH(t)Φ−H(2mt − l) dt

and

εj,k = 2j(H+1)

∫
R

BH(t)Ψ−H(2j t − k) dt.
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The main two advantages of the latter representation with respect to the
representation without scaling function are the following.

1 The first term isolates the low frequencies and gives the tendency while the
second term involves fluctuations around it.

2 FBm can be approximated by the first term and Mallat pyramidal algorithm
allows to compute by induction the coefficients Sm,l , l ∈ Z for any m ≥ 1.
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Optimality of both representations

Theorem 3.5 (A. and Taqqu 2003)

For each integer J ≥ 0, let
FJ = {(j , k) ∈ Z2; 0 ≤ j ≤ J and |k | ≤ (J − j + 1)−22J+4}, and
PJ = {(j , k) ∈ Z2; −J ≤ j ≤ −1 and |k | ≤ 2J/2}. For every integer n ≥ β with
β = 128

∑+∞
p=1 p−2, let In ⊂ Z2 be a set satisfying the following properties:

In contains, at most, n indices (j , k),

for all n ≥ β, FJ(n) ∪ PJ(n) ⊂ In, where J(n) is the unique integer such that

β2J(n) ≤ n < β2J(n)+1.

At last let

BH,n(t) =
∑

(j,k)∈In

2−jH
(
ΨH(2j t − k)−ΨH(−k)

)
εj,k . (3.17)

Then there is a r. v. C > 0 of finite moments such that a.s. for all n ≥ β,

sup
t∈[0,1]

|BH(t)− BH,n(t)| ≤ Cn−H(1 + log n)1/2. (3.18)
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Theorem 3.6 (A. and Taqqu 2003)

We suppose that β, FJ and J(n) are the same as in Theorem 3.5. For every
integer J ≥ 0 let QJ = {l ∈ Z; |l | ≤ 2J}. For every integer n ≥ β, let I ′n ⊂ Z and
I ′′n ⊂ Z2 be two sets satisfying the following properties:

I ′n contains at most n/2 indices l and I ′′n contains at most n/2 indices (j , k),

for every n ≥ β, QJ(n) ⊂ I ′n and FJ(n) ⊂ I ′′n .

At last let

BH,n(t) =
∑
l∈I′n

ΦH(t − l)S
(H)
0,l (3.19)

+
∑

(j,k)∈I′′n

2−jH
(
ΨH(2j t − k)−ΨH(−k)

)
εj,k .

Then there is a r. v. C > 0 of finite moments such that a.s. for all n ≥ β,

sup
t∈[0,1]

|BH(t)− BH,n(t)| ≤ Cn−H(1 + log n)1/2. (3.20)
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Remark 3.1

Another optimal series representation of fBm has been introduced in 2003 by
Dzhaparidze and Van Zanten. It has some similarities with the expansion of
Brownian motion in the trigonometric system.
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Classical series representations of RLp

Organization of the talk

1 Introduction

2 Hölder regularity and rate convergence of l-numbers
Gaussian processes and operators
Proof of the main result of the section

3 The Meyer, Sellan and Taqqu wavelet representations of fBm
Representation of Brownian motion in the Faber-Schauder system
Wavelet representation of fBm without a scaling function
Wavelet representation with a well-localized scaling function
Optimality of both representations

4 Classical series representations of RLp
Some generalities on Riemann-Liouville process
Optimality of classical series representations
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Some generalities on Riemann-Liouville process

{Rα(t)}t∈[0,1], the Reimann-Liouville process (RLp) of parameter α > 1/2, is
defined as the Wiener integral,

Rα(t) =
1

Γ(α)

∫ 1

0

(t − s)α−1
+ dB(s), (4.1)

with the convention that for all (x , γ) ∈ R2, (x)γ+ = xγ if x > 0 and (x)γ+ = 0 else.

Remark 4.1

{R1(t)}t∈[0,1] is the usual Brownian motion.

If 1/2 < α < 3/2, then {Rα(t)}t∈[0,1] differs from {Bα−1/2(t)}t∈[0,1], the
fBm of Hurst parameter H = α− 1/2, only by a very smooth process, namely,

Qα(t) =
1

Γ(α)

∫ 1

0

{
(t − s)α−1

+ − (−s)α−1
+

}
dB(s);

sometime {Rα(t)}t∈[0,1] is called the high-frequency part of fBm and
{Qα(t)}t∈[0,1] the low-frequency part.
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An advantage of RLp with respect to fBm is that its parameter α can take
any value strictly greater than 1/2, while the Hurst parameter of fBm is
necessarily obliged to belong to (0, 1).

The semigroup property of RLp: for each real number β > 1/2, we denote
by Cβ−1/2[0, 1], the Hölder space on [0, 1] of order β − 1/2, and we denote
by Iβ : L2[0, 1]→ Cβ−1/2[0, 1] the fractional primitive operator of order β,
defined, for all h ∈ L2[0, 1] and t ∈ [0, 1] as,

(Iβh)(t) =
1

Γ(β)

∫ 1

0

(t − s)β−1
+ h(s) ds; (4.2)

then one has (IβRα)(t) = Rα+β(t).
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Series representation of RLP by an orthonormal basis:

Let F = (fk)k≥1 be an arbitrary orthonormal basis of L2[0, 1]. Expanding, for every
fixed t ∈ [0, 1], the function s 7→ (t − s)α−1

+ in this basis, one gets that

(t − ·)α−1
+ =

∞∑
k=1

(Iαfk)(t)ϕk(·). (4.3)

Next, using the isometry property of Wiener integral, it follows that

Rα(t) =
∞∑
k=1

(Iαfk)(t)εk , (4.4)

where

(εk)k≥1 =
(∫ 1

0

fk(s) dB(s)
)
k≥1

, (4.5)

is a sequence of independent real-valued N (0, 1) Gaussian random variables.
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Remark 4.2

The previous series is called the series representation of RLp by the basis F.

A priori, this series is, for every fixed t, convergent in L2(Ω), where Ω denotes
the underlying probability space. However, Itô-Nisio Theorem allows to show
that it is also convergent, with probability 1, uniformly in t.

Theorem 4.1 (Kühn and Linde 2002)

For all α > 1/2, there are two constants 0 < c1 ≤ c2 such that for every n ≥ 2,

c1n−α+1/2
√

log n ≤ ln(Rα) ≤ c2n−α+1/2
√

log n,

where ln(Rα) denotes the nth l-number of RLp.

Theorem 4.2 (Schack 2009)

For all α > 1/2, any Daubechies wavelet basis of L2[0,+∞) with at least
max{2[α + 1/2] + 3, 7} vanishing moments, generates an optimal random series
representation of Rα.
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Optimality of classical series representations

The main two results of this section:

Theorem 4.3 (A. and Linde 2009)

For all 1/2 < α < 3/2, the Haar basis of L2[0, 1],

H := {1} ∪ {hj,k : j ∈ N0 and 0 ≤ k < 2j},

where
hj,k = 2j/2

(
1[ 2k

2j+1 ,
2k+1

2j+1 ] − 1[ 2k+1

2j+1 ,
2k+2

2j+1 ]

)
,

generates an optimal series representation of Rα.

Theorem 4.4 (A. and Linde 2009)

For all 1 < α ≤ 2, the trigonometric basis of L2[0, 1],

T := {1} ∪ {
√

2 cos(kπ·) : k ∈ N},

generates an optimal series representation of Rα.
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Remark 4.3

When α > 3/2, the random series representation of Rα generated by the
Haar basis is rearrangement non-optimal i.e. the optimality does not hold
even if the terms of the series are renumbered (A. and Linde 2009); the latter
result remains true when α = 1 (Lifshits 2009).

The random series representation of Rα generated by the trigonometric basis
is rearrangement non-optimal if α > 2 (A. and Linde 2009).

Kühn and Linde (2002) have shown that the random series representation of
Rα generated by the trigonometric basis is optimal if α ∈ (1/2, 1].
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From now on, we will mainly focus on the proof of the theorem which concerns
the Haar basis.
Let us set

h−1 = 1 and ε−1 =

∫ 1

0

h−1(s) dB(s).

We denote by {εj,k : j ∈ N0, 0 ≤ k ≤ 2j − 1}, the sequence of the real-valued
N (0, 1) Gaussian random variables, defined as,

εj,k =

∫ 1

0

hj,k(s) dB(s).

At last, recall that Iα : L2[0, 1]→ Cα−1/2[0, 1], is the fractional primitive operator
of order α.

The series representation of Rα by the Haar basis can be expressed as:

Rα(t) = ε−1(Iαh−1)(t) +
+∞∑
j=0

2j−1∑
k=0

εj,k(Iαhj,k)(t). (4.6)
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The latter infinite sum will be approximated by the finite sum,

Rα
J (t) = ε−1(Iαh−1)(t) +

J−1∑
j=0

2j−1∑
k=0

εj,k(Iαhj,k)(t), (4.7)

in which there are exactly 2J terms.

Theorem 4.5 (A. and Linde 2009)

Suppose 1/2 < α < 1. Then there is a random variable C > 0 of finite moments
of any order, such that one has almost surely, for every J ∈ N,

sup
t∈[0,1]

∣∣∣Rα(t)− Rα
J (t)

∣∣∣ ≤ C 2−(α−1/2)J
√

1 + J.

Theorem 4.6 (A. and Linde 2009)

Suppose 1 < α < 3/2. Then there is a constant c > 0, such that one has almost
surely, for every J ∈ N,

E sup
t∈[0,1]

∣∣∣Rα(t)− Rα
J (t)

∣∣∣ ≤ c2−(α−1/2)J
√

1 + J.
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In order to be able to prove the latter two theorems, we need some preliminary
results.

Remark 4.4

One has

(Iαhj,k)(t)

=
2j/2

Γ(α + 1)

{∫ (2k+1)/2j+1

2k/2j+1

(t − s)α−1
+ ds −

∫ (2k+2)/2j+1

(2k+1)/2j+1

(t − s)α−1
+ ds

}

=
2j/2

Γ(α + 1)

{(
t − 2k + 2

2j+1

)α
+
− 2
(

t − 2k + 1

2j+1

)α
+

+
(

t − 2k

2j+1

)α
+

}
.

The following lemma allows to estimate (Iαhj,k)(t).
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Lemma 4.1

For each reals γ > 0 and t ∈ [0, 1], and for all integers j ∈ N0 and 0 ≤ k ≤ 2j − 1,
we set

Aγ,j,k(t) :=
(

t − 2k + 2

2j+1

)γ
+
− 2
(

t − 2k + 1

2j+1

)γ
+

+
(

t − 2k

2j+1

)γ
+
. (4.8)

Furthermore, let k̃j(t) the unique integer satisfying:

k̃j(t)

2j
≤ t <

k̃j(t) + 1

2j
. (4.9)

with the convention that k̃j(1) = 2j − 1. Then,

(i) for all k ≥ k̃j(t) + 1, one has Aγ,j,k(t) = 0;

(ii) there is a constant c > 0, only depending on γ, such that for all j ∈ N0 and

0 ≤ k ≤ k̃j(t), one has

|Aγ,j,k(t)| ≤ c2−jγ
(

1 + k̃j(t)− k
)γ−2

. (4.10)
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The following lemma, results from Borel-Cantelli Lemma; it provides sharp
estimates of the asymptotic behaviour of the sequence of the real-valued N (0, 1)
Gaussian random variables, {εj,k : j ∈ N0, 0 ≤ k ≤ 2j − 1}.

Lemma 4.2

There exists a random variable C > 0 of finite moment of any order such that one
has almost surely, for every j ∈ N0 and 0 ≤ k < 2j − 1,

|εj,k | ≤ C
√

1 + j .
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Proof of the optimality when 1/2 < α < 1:

It follows from the latter two lemmas that almost surely for every t ∈ [0, 1] and
J ∈ N,

|Rα(t)− Rα
J (t)| ≤

+∞∑
j=J

2j−1∑
k=0

|εj,k ||(Iαhj,k)(t)|

≤ C1

+∞∑
j=J

2−j(α−1/2)
√

j + 1

k̃j (t)∑
k=0

(
1 + k̃j(t)− k

)α−2

≤ C22−J(α−1/2)
√

J + 1.

Observe that the condition 1/2 ≤ α < 1 plays a crucial role in the proof. Indeed,
one has

k̃j (t)∑
k=0

(
1 + k̃j(t)− k

)α−2

≤
+∞∑
p=1

pα−2 <∞, (4.11)

only when it is satisfied.
�
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Main ideas of the proof of the optimality when 1 < α < 3/2:

We want to show that there is a constant c1 > 0, such that one has for every
J ∈ N,

E(AJ) ≤ c12−(α−1/2)J
√

1 + J, (4.12)

where
AJ = sup

t∈[0,1]

|Rα(t)− Rα
J (t)|. (4.13)

First step: We prove that there is a constant c2 > 0, such that one has for every
J ∈ N,

E(BJ) ≤ c22−(α−1/2)J
√

1 + J, (4.14)

where
BJ = sup

0≤K<2J ,K∈N0

|Rα(K 2−J))− Rα
J (K 2−J))|. (4.15)

Second step: We prove that there is a constant c3 > 0, such that one has for
every J ∈ N,

0 ≤ E(AJ − BJ) ≤ c32−(α−1/2)J
√

1 + J. (4.16)
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Proof of the first step:

Lemma 4.3

There exists a constant c > 0 such that for any N ∈ N and any real-valued
centered Gaussian sequence Z1, . . . ,ZN one has,

E
{

sup
1≤k≤N

|Zk |
}
≤ c (1 + log N)1/2 sup

1≤k≤N

(
E |Zk |2

)1/2
. (4.17)

Therefore, there is a constant c4 > 0 such that for all J ∈ N,

E sup
0≤K<2J ,K∈N0

∣∣∣Rα(K 2−J))− Rα
J (K 2−J))

∣∣∣
≤ c4(1 + J)1/2 sup

0≤K<2J ,K∈N0

(
E
∣∣∣Rα(K 2−J))− Rα

J (K 2−J))
∣∣∣2)1/2

.

Then the following lemma allows to finish the proof.
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Lemma 4.4

There is a constant c > 0 such that one has for all t ∈ [0, 1] and J ∈ N,

E
∣∣∣Rα(t)− Rα

J (t))
∣∣∣2 ≤ c2−J(2α−1).

Proof Lemma 4.4: Using the fact that {εj,k : j ∈ N0, 0 ≤ k ≤ 2j − 1} is a
sequence of independent real-valued N (0, 1) Gaussian random variables and using
the previous estimations of the (Iαhj,k)(t)’s, one gets that for all J ∈ N,

E
∣∣∣Rα(t)− Rα

J (t))
∣∣∣2

= E
( +∞∑

j=J

2j−1∑
k=0

εj,k(Iαhj,k)(t)
)2

=
+∞∑
j=J

2j−1∑
k=0

|(Iαhj,k)(t)|2

≤ c1

+∞∑
j=J

2−j(2α−1)

k̃j (t)∑
k=0

(
1 + k̃j(t)− k

)−2(2−α)

≤ c22−J(2α−1).

�
A. Ayache (Lille 1) Optimality of continuous Gaussian series 04/25/2012 56 / 57



Classical series representations of RLp Optimality of classical series representations

Optimality of the representention by the trigonometric basis:

Roughly speaking, when α ∈ (1/2, 2], the optimality of the representention by the
trigonometric basis, can be shown, by following the main lines as in the proof of
the latter theorem, and by using the fact there is a constant c > 0 such that for
all integer k ≥ 1,

sup
t∈[0,1]

|(Iα{cos(kπ·)})(t)| ≤ ck−α (4.18)

and
sup

t∈[0,1]

|(Iα{sin(kπ·)})(t)| ≤ ck−α (4.19)
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