Master 2 Recherche Mathématiques Appliquées Processus Stochastiques, sujet d'oral de rattrapage numéro 2 le 3 mars 2011

Tous les documents sont autorisés.

Exercice 1 Désignons par $\{B(t)\}_{t\in[0,1]}$ un mouvement brownien standard et par Z une variable aléatoire gaussienne centrée et réduite. Pour tout réel p>0, nous posons $c(p)=E(|Z|^p)$, de plus, pour tout entier $n \ge 1$, nous posons :

$$V_n^{(p)} = n^{p/2-1} \sum_{k=0}^{n-1} \left| B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right) \right|^p.$$

- 1) Montrer que $\lim_{n\to+\infty} \mathbb{E} |V_n^{(p)} c(p)|^2 = 0.$
- 2) Montrer que, lorsque n tend vers $+\infty$, la variable aléatoire

$$n^{(p-1)/2} \left(\sum_{k=0}^{n-1} \left| B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right) \right|^p - n^{1-p/2} c(p) \right),$$

converge en loi vers une variable aléatoire gaussienne.

Exercice 2 Pour tout entier $l \geq 1$, désignons par $\{N^{(l)}(t)\}_{t \in \mathbb{R}_+}$ un processus de Poisson d'intensité l et désignons par $\{X^{(l)}(t)\}_{t \in \mathbb{R}_+}$ le processus défini par $X^{(l)}(t) = N^{(l)}(t) - lt$. 1) Montrer que les accroissements de $\{X^{(l)}(t)\}_{t \in \mathbb{R}_+}$ sont indépendants et stationnaires.

- 2) Pour tout entier $l \geq 1$ et tout réel $t \geq 0$, désignons par $\Phi_t^{(l)}$ la fonction caractéristique de la variable aléatoire $l^{-1/2}X^{(l)}(t)$. Rappelons que, par définition, pour tout $\xi \in \mathbb{R}$, $\Phi_t^{(l)}(\xi) =$ $\mathbb{E}(e^{il^{-1/2}\xi X^{(l)}(t)})$. Montrer que pour tout $\xi \in \mathbb{R}$,

$$\Phi_t^{(l)}(\xi) = \exp\left[-lt\left(1 + il^{-1/2}\xi - e^{il^{-1/2}\xi}\right)\right].$$

3) Calculer pour tout $\xi \in \mathbb{R}$, $\lim_{t \to +\infty} \Phi_t^{(l)}(\xi)$. Que peut-on en déduire?