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1 Some generalities
Definition 1.1. A real-valued random variable is a random numerical quantity
related to some random experiment.

Usually one denotes this random quantity by X, Y , Z or T , and one denotes
by X(Ω), Y (Ω), Z(Ω) or T (Ω) the set of all its possible values. Notice that Ω is
the probability space corresponding to the random experiment we are interested
in.

Definition 1.2. One says that a random variable X is discrete when X(Ω) only
consists in isolated values, as for instance X(Ω) = {1, 2, 3, 4, 5, 6} = {1, . . . , 6}; in
the latter case the random variable X can not take a value strictly between 1 and
2, 2 and 3, and so on.
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Example 1.1. One tosses a fair coin 3 times and one denotes by X the random
total number of Heads. The probability space associated to this random experiment
is:

Ω =
{

(H,H,H); (T,H,H); (H,T,H); (H,H, T ); (T, T,H); (T,H, T ); (H,T, T ); (T, T, T )
}
.

One mentions that the elementary event ω = (H,T,H) means that one obtains a
Head at the first toss and a Tail at second one and a Head at the third one. What
is the meaning of each one of the seven other elementary events ?

The set of all the possible values of X is X(Ω) = {0, 1, 2, 3}. More precisely:

ω (H,H,H) (T,H,H) (H,T,H) (H,H, T ) (T, T,H) (T,H, T ) (H,T, T ) (T, T, T )
X(ω) 3 2 2 2 1 1 1 0

Definition 1.3. (Probability distribution) To each value i ∈ X(Ω) of a dis-
crete random variable X one associates the probability P(X = i) which is the
probability of the event {X = i}. The collection of all the probabilities associated
to all the values of X is called the probability distribution of X.

Example 1.1 (revisited) 1) Determine the probability distribution of the random
variable X.
2) Calculate the four probabilities P(X < 2), P(X ≤ 2), P(1 ≤ X ≤ 3) and
P(1 < X ≤ 3).

Proposition 1.1. Let X be a discrete random variable.

(a) For all i ∈ X(Ω) and j ∈ X(Ω), the events {X = i} and {X = j} are
incompatible as soon as i 6= j.

(b) The sum of all the probabilities associated to all the values of X is equal to 1,
more formally, one has ∑

i∈X(Ω)

P(X = i) = 1 . (1.1)

Definition 1.4. (cumulative function) The cumulative function of a random
variable X is the function denoted by FX and defined, for all real number t, as:

FX(t) = P(X < t) . (1.2)

For each real numbers a and b such that a < b, one has

P(a ≤ X < b) = FX(b)− FX(a) .

Problem 1.1. Let FX be the cumulative function of the random variable X in
Example 1.1 calculate FX(0), FX(0, 1), FX(1, 2), FX(2, 4) and FX(3, 1).
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Proposition 1.2. Generally speaking the cumulative function FX of a random
variable X is always with values in the interval [0, 1]. Moreover, it satisfies the
following two important properties.

(a) FX is a non-decreasing function, that is for all real numbers t1 and t2 satis-
fying t1 ≤ t2, one has FX(t1) ≤ FX(t2).

(b) One has lim
t→−∞

FX(t) = 0 and lim
t→+∞

FX(t) = 1.

Definition 1.5. (Expectation, Variance and Standard Deviation) Let X
be a discrete random variable.

(a) The expectation of X is denoted by E(X) and defined as the weighted mean
of all the values of X, that is

E(X) =
∑

i∈X(Ω)

iP(X = i) . (1.3)

(b) The variance of X is denoted by Var(X) and defined as

Var(X) = E
[(
X − E(X)

)2]
= E(X2)− E(X)2 . (1.4)

(c) The standard deviation of X is denoted by σ(X) and defined as

σ(X) =
√

Var(X) . (1.5)

Roughly speaking σ(X) allows to measure "the average distance" between the
values of X and the expectation E(X).

Proposition 1.3 (Markov’s inequality). Let X be an arbitrary random vari-
able. Then, for all strictly positive real number u, one has

P
(
|X| > u

)
≤ E(|X|)

u
, (1.6)

where |X| denotes the absolute value of X. Recall that for, any real number x, its
absolute value |x| is the nonnegative real number such that |x| = x if x ≥ 0 and
|x| = −x if x < 0 (for instance | − 2, 3| = 2, 3 and |4, 6| = 4, 6).

Proposition 1.4 (Chebyshev’s inequality). Let X be a random variable whose
expectation E(X) and variance Var(X) exist. Then, for all strictly positive real
number u, one has

P
(∣∣X − E(X)

∣∣ > u
)
≤ Var(X)

u2
, (1.7)
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where
∣∣X − E(X)

∣∣ denotes the absolute value of X − E(X). Notice that one can
derive from (1.7) that, for all strictly positive real number u, one has

P
(
X − u ≤ E(X) ≤ X + u

)
≥ 1− Var(X)

u2
(1.8)

as well as
P
(
E(X)− u ≤ X ≤ E(X) + u

)
≥ 1− Var(X)

u2
. (1.9)

Remark 1.1. The Chebyshev’s inequality is of great importance for constructing a
confidence interval for an unknown parameter of a probability distribution starting
from observed data related with this distribution. More precisely, let us denote, for
instance, by p this unknown parameter. A confidence interval for p is a random
interval I = [a, b] such that the probability that p belongs to I is (very) close to 1
(100%), namely one has that

P(a ≤ p ≤ b) ≥ α , (1.10)

where the quantity α, which is called the level of confidence, is close to 1 (typically
one has α = 95% or 98% or 99%). Notice the smaller is b − a the diameter (or
length) of the confidence interval I the better is the approximation of the unknown
parameter p provided by this interval.

Example 1.1 (revisited) 3) Calculate the expectation E(X).
4) Calculate the variance Var(X).
5) Calculate the standard deviation σ(X).

Remark 1.2. Let Y1, . . . , Yn be n random variables and let a1, . . . , an, b be n + 1
real numbers.

E(a1Y1 + . . .+ anYn + b) = a1E(Y1) + . . .+ anE(Yn) + b (1.11)

Example 1.1 (revisited) 6) Antony and John play together a game whose rules
are the following. A coin is tossed three times:

(i) if the result of the first toss is "tail" then Antony gives to John 1 Euro,
otherwise John gives him 0,5 Euro;

(ii) if the result of the second toss is "tail" then Antony gives to John 1 Euro,
otherwise John gives him 2,5 Euro;

(ii) if the result of the third toss is "tail" then Antony gives to John 0,5 Euro,
otherwise John gives him nothing.
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For all k = 1, 2, 3, one denotes by Yk the random variable which is equal to 1 if the
result of the k-th toss is "head" and which is equal to 0 otherwise. One denotes
by Ga the total random amount of money which is given by John to Antony. One
denotes by Gj the total random amount of money which is given by Antony to
John.

Find the formula which connects Ga to Y1 and Y2, then use this formula for
computing the expectation E(Ga) .

Find the formula which connect Gj to Y1, Y2 and Y3, then use this formula for
computing the expectation E(Gj).

Do you think that in this game one of those two players has an advantage over
the other ? (justify your answer)

Definition 1.6. One says that two random variables Y1 and Y2 are independent,
if for all i1 ∈ Y1(Ω) and i2 ∈ Y2(Ω) the events {Y1 = i1} and {Y1 = i2} are
independent.

One says that n random variables Y1, . . . , Yn are pairwise independent if any
two of them are independent.

One says that n random variables Y1, . . . , Yn are mutually independent, if for
all i1 ∈ Y1(Ω), . . . , in ∈ Yn(Ω) the events {Y1 = i1}, . . . , {Yn = in} are mutually
independent.

Remark 1.3. Let Y1 and Y2 be two independent random variables, and let a1, a2

and b be three real numbers then

Var(a1Y1 + a2Y2 + b) = a2
1 Var(Y1) + a2

2 Var(Y2) (1.12)

More generally, let Y1, . . . , Yn be n pairwise independent random variables and let
a1, . . . , an, b be n+ 1 real numbers then

Var(a1Y1 + . . .+ anYn + b) = a2
1 Var(Y1) + . . .+ a2

nVar(Yn) . (1.13)

Observe that there is no "b" in the right-hand side of the equalities (1.12) and
(1.13).

Example 1.1 (revisited) 7) Calculate the standard deviations σ(Ga) and σ(Gj)
of the random variables Ga and Gj. Comment your result.

Definition 1.7. Let X and Y be two random variables, the covariance of X and
Y is denoted by Cov(X, Y ) and defined as:

Cov(X, Y ) = E
[(
X − E(X)

)(
X − E(Y )

)]
= E(XY )− E(X)E(Y ) . (1.14)

Observe that one always has Cov(X, Y ) = Cov(Y,X) and Cov(X,X) = Var(X).
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Remark 1.4. Let X be a random variable, let Y1, . . . , Yn be n other random vari-
ables and let a1, . . . , an, b be n+ 1 real numbers. One has

Cov
(
X, a1Y1 + . . .+ anYn + b

)
= a1Cov(X, Y1) + . . .+ anCov(X, Yn) (1.15)

and

Cov
(
a1Y1 + . . .+ anYn + b,X

)
= a1Cov(Y1, X) + . . .+ anCov(Yn, X) . (1.16)

Observe that there is no "b" in the right-hand side of the equalities (1.15) and
(1.16).

Remark 1.5. When two random variables X and Y are independent, then one
necessarily has that Cov(X, Y ) = 0. The reciprocal is not necessarily true; namely,
one may have Cov(X, Y ) = 0 for two dependent random variables X and Y .

Definition 1.8. Let X and Y be two random variables whose standard deviations
σ(X) and σ(Y ) do not vanish. The correlation coefficient of X and Y is denoted
by ρ(X, Y ) and defined as:

ρ(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
. (1.17)

Remark 1.6. The value taken by the correlation coefficient ρ(X, Y ) is always
between −1 and 1.

Example 1.1 (revisited) 8) Calculate the correlation coefficient ρ(Ga, Gj).

2 Discrete uniform distribution
Definition 2.1. Let an arbitrary integer n ≥ 1. One says that a random vari-
able X has a discrete uniform distribution over the the set {1, . . . , n}, if X(Ω) =
{1, . . . , n} and for all i ∈ X(Ω), one has

P(X = i) =
1

n
.

Example 2.1. One tosses a fair dice and one denotes by X the obtained re-
sult. Then the random variable X has a discrete uniform distribution over the set
{1, 2, 3, 4, 5, 6} = {1, . . . , 6}.

Proposition 2.1. Generally speaking when X has a discrete uniform distribution
over the the set {1, . . . , n}, then its expectation and variance are given by the
formulas:

E(X) =
n+ 1

2
and Var(X) =

n2 − 1

12
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Thus in the case of the random variable X in Exemple 2.1, one has

E(X) =
n+ 1

2
=

6 + 1

2
= 3, 5

and
Var(X) =

n2 − 1

12
=

62 − 1

12
=

35

12
= 2, 92

3 Bernoulli distribution and binomial distribution
Definition 3.1. One says that a random variable Y has Bernoulli distribution of
parameter p ∈ [0, 1], if Y (Ω) = {0, 1} (Y can only take two values 0 and 1) and

P(Y = 1) = p

This implies that P(Y = 0) = 1− p. Usually, one sets q = 1− p.

One mention in passing that the random variables Y1, Y2 and Y3, we have
introduced in part 6) of Exemple 1.1, have the same Bernoulli distribution of
parameter p = 0, 5 .

Proposition 3.1. Generally speaking when Y has a Bernoulli distribution of pa-
rameter p ∈ [0, 1], then its expectation and variance are given by the formulas:

E(Y ) = p and Var(Y ) = p(1− p) = pq

Problem 3.1. Give the proof of Proposition 3.1.

Definition 3.2. One says that a random variable X has a binomial distribution of
parameters n ∈ N∗ (N∗ being the set of the strictly positive integers) and p ∈ [0, 1],
if X(Ω) = {0, 1, . . . , n} and, for all k ∈ X(Ω),

P(X = k) = C k
n p

k qn−k , (3.1)

where q = 1− p.

Proposition 3.2. Suppose that n independent trials, each of which results in a
"success" with probability p and in a "failure" with probability q = 1− p, are to be
performed. If X represents the number of successes that occur in the n trials, then
this random variable X has a binomial distribution of parameters n and p.

Thus, it turns out that a random variable X has binomial distribution of pa-
rameters n and p if and only if it can be expressed as

X = Y1 + . . .+ Yn ,

where Y1, . . . , Yn are mutually independent Bernoulli random variables of the same
parameter p.
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The following proposition is a consequence of Proposition 3.2, Remark 1.2,
Remark 1.3 and Proposition 3.1.

Proposition 3.3. Generally speaking when X has a binomial distribution of pa-
rameters n ∈ N∗ and p ∈ [0, 1], then its expectation and variance are given by the
formulas:

E(X) = np and Var(X) = np(1− p) = npq

Remark 3.1. Notice that the useful inequality

x(1− x) ≤ 1

4
, for all x ∈ [0, 1], (3.2)

implies that the variance of a random variable X having a binomial distribution of
arbitrary parameters n ∈ N∗ and p ∈ [0, 1] always satisfies

Var(X) ≤ n

4
. (3.3)

Proposition 3.4. Let X1 and X2 be two independent random variables such that
X1 has a binomial distribution with parameters n = n1 and p = p0, and X2 has
a binomial distribution with parameters n = n2 and p = p0. Then the random
variable X1 + X2 has a binomial distribution with parameters n = n1 + n2 and
p = p0.

4 Poisson distribution
Definition 4.1. Let λ be a strictly positive real number, that is λ ∈]0,+∞[.
One says that a random variable X has a Poisson distribution of parameter λ,
if X(Ω) = N="the set of the nonnegative integers", and, for all k ∈ X(Ω), one
has

P(X = k) =
e−λ λk

k!
.

Proposition 4.1. Generally speaking when X has a Poisson distribution of pa-
rameter λ ∈]0,+∞[, then its expectation and variance are given by the formulas:

E(X) = λ and Var(X) = λ

Proposition 4.2. Let X1 and X2 be two independent random variables such that
X1 has a Poisson distribution with parameter λ = λ1 and X2 has a Poisson distri-
bution with parameter λ = λ2. Then the random variable X1 + X2 has a Poisson
distribution with parameter λ = λ1 + λ2.
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Proposition 4.3. One of the main reasons for which Poisson distribution has a
great importance is that, under some conditions, it allows to approximate bino-
mial distribution. More precisely let Z be a random variable having a binomial
distribution whose parameters n and p satisfy the conditions:

n ≥ 30 and p ≤ 0, 1 and np ≤ 15 , (4.1)

then the binomial distribution of Z can be approximated by a Poisson distribution
of parameter λ = np, namely, for all k ∈ {0, 1, . . . , n}, one has

P(Z = k) = Ck
n p

k(1− p)n−k ' e−np(np)k

k!
.

5 Hypergeometric distribution
Definition 5.1. Let N , M and n be 3 nonnegative integers such that 0 ≤ n ≤ N
and 0 ≤ M ≤ N , one says that a random variable X has an hypergeometric
distribution of parameters N , M and n, if X(Ω) is the set of the integers k such
that 0 ≤ k ≤M and 0 ≤ n− k ≤ N −M and, for all k ∈ X(Ω), one has

P(X = k) =
C k
M C n−k

N−M

C n
N

. (5.1)

Concrete meaning:

• N is the size of the (statistical) population we are interested in.

• M is the number of individuals in this population who have some feature F .

• p = M/N is the proportion of individuals in the population who have
the feature F .

• n is the size of the sample which is chosen at random without replacement
from the population; one does not take into account the order in which the n
individuals forming the sample are chosen.

• X is the random number of individuals in the sample who have the feature
F .

It is worth mentioning that hypergeometric distribution plays an important
role in quality controls and in opinion polls.
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Proposition 5.1. Generally speaking when X has an hypergeometric distribution
of parameters N , M and n, then its expectation and variance are given by the
formulas:

E(X) = n
(M
N

)
= np

and
Var(X) = n

(N − n
N − 1

)(M
N

)(
1− M

N

)
= n

(N − n
N − 1

)
p(1− p) .

Proposition 5.2. If N and M are large compared to n, and p = M/N is not
close to 0 or 1, then the hypergeometric distribution of parameters N , M and n
can be approximated by the binomial distribution of parameter n and p = M/N .
More precisely, for all k ∈ X(Ω), one has

P(X = k) =
C k
M C n−k

N−M

C n
N

' C k
n

(M
N

)k(
1− M

N

)n−k
.

6 Geometric distribution
Definition 6.1. One says that a random variable X has a geometric distribution
of parameter p ∈]0, 1[, if X(Ω) = N∗ ="the set of the strictly positive integers",
and for k ∈ X(Ω), one has

P(X = k) = qk−1 p , (6.1)

where q = 1− p.

Example 6.1. Suppose that independent trials, each having probability p of being
a success, are performed until a success occurs. If we let X be the number of trials
required until the first success then X has a geometric distribution of parameter p.

Proposition 6.1. Generally speaking when X has a geometric distribution of pa-
rameter p ∈]0, 1[, then its expectation and variance are given by the formulas:

E(X) =
1

p
and Var(X) =

q

p2

Remark 6.1. In the frame of geometric distribution the formula

n∑
k=0

xk = 1 + x+ . . .+ xn =
1− xn+1

1− x
,

which holds for all nonnegative integer n and real number x 6= 1, is very useful.
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7 Problems
Problem 7.1. Pieces of metal manufactured in a workshop can have at most 3
defects (too heavy piece, too long, or too wide). One chooses at random a piece of
metal in this workshop and denotes by D its number of defects. One assumes that
the probability distribution of the random variable D satisfies P(D = 0) = 90%,
P(D = 1) = 3% and P(D = 3) = 1, 5%. Imperfect pieces can still be used and
thus they can be sold. The more defects there are in a piece the lower is its price.
More precisely the price X in euros of a piece of metal is connected to its number
of defects D through the formula X = 1− 0, 3D.
1) Calculate the expectation and the standard deviation of the random variable X.
2) Determine the probability distribution of X.
3) One chooses at random 2 pieces. Their 2 prices in euros are denoted by X1 and
X2; one assumes that the random variables X1 and X2 are independent.

(a) Calculate the following probabilities: P
(
{X1 = 1} ∪ {X2 = 1}

)
,

P(X1 +X2 = 2), P(X1 +X2 = 1, 70) and P(X1 = X2).
(b) Calculate the expectation E(X1−X2) and the standard deviation σ(X1−X2).
(c) Calculate the covariance Cov(X1 +X2, X1 −X2)

Problem 7.2. Two products A and B are commercialized by a society. One
chooses at random a day in the next week. The random variables X denotes the
number of items of the product A which will be sold by the society during this day.
The random variables Y denotes the number of items of the product B which will
be sold by the society during this day. The random variables Z denotes the number
of items of the two products A and B together which will be sold by the society
during this day. Statistical surveys have show that the standard deviations of X,
Y and Z satisfy the equalities: σ(X) = 10, 2 ; σ(Y ) = 13, 5 and σ(Z) = 20, 3.
Calculate the correlation coefficient of X and Y .

Problem 7.3. A seller has planed to visit one after the other 6 potential buyers for
proposing to each one of them to buy a single product. One assumes that for each
one of them the probability to buy is 20% and he takes this decision independently
of the others. The random variable Z denotes the total number of products which
will be sold thanks to the 6 visits.
1) Determine the probability distribution of Z.
2) Calculate E(Z), Var(Z) and σ(Z).
3) Calculate the probabilities P(Z = 2), P(Z = 4), P(Z > 0), P(Z ≤ 5),
P(0 < Z < 6) and P(1 < Z ≤ 4).

Problem 7.4. The probability that a motor manufactured in some factory be de-
fective is 1%. This factory has delivered 100 motors which have been chosen at
random. One denotes by X the random number of defective motors among them.
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1) What is the probability distribution of the random variable X ?
2) By using the probability distribution of X, calculate the probabilities P(X = 1)
and P(X > 2).
3) By using an approximation of the probability distribution of X, calculate the
probability P(2 ≤ X < 5).

Problem 7.5. An association intends to organize a travel by bus which will take
place on March 12, 2023. It has to support a fix cost of 630 euros whatever the
number of travelers might be. 70 persons have bought their tickets for this travel;
the association has sold each ticket at 25 euros. The probability that one of these
persons abandons the travel is 5%; in this case the association reimburses him 80%
of the price of his ticket. One assumes that each person who decides to abandon
the travel takes his decision independently of the other persons who have planed to
make it. At last, in order to simplify the problem, one assumes that the association
does not resell the tickets of the persons who abandon the travel.

One denotes by R the random number of the persons who will abandon the
travel. One denotes by B the random profit that the association will have thanks
to this travel; observe that it is not completely excluded that B < 0, in his case B
will be a loss.
1) Determine the probability distribution of the random variable R, calculate its
expectation, its variance and its standard deviation.
2) a) Calculate the probability that no person abandon the travel.

b) Calculate the probability that at least 3 persons abandon the travel.
3) a) Give a formula for calculating B from R.

b) Calculate the expectation, the variance and the standard deviation of B.
4) By using an approximation of the probability distribution of R by a well-chosen
distribution, find an estimate of the probability that the profit B be strictly bigger
than 1000 euros.

Problem 7.6. Mister Smith is the owner of 3 cinemas A, B, and C in 3 different
small cities. The independent random variables X1, X2 and X3 respectively denote
the numbers of tickets per week sold by the cinemas A, B and C. One assumes they
have Poisson distributions of parameters λ1 = 223, λ2 = 254 and λ3 = 279.

The random variable Y denotes the total number of tickets per week which are
sold by the 3 cinemas together. Determine the probability distribution of Y and
calculate its expectation and standard deviation.

Problem 7.7. A safety engineer knows from statistical surveys that industrial
accidents in her plant happen independently of each other, and there is a 25%
probability of such an accident being caused by failure of employees to follow in-
structions. She decides to look at the accident reports until she finds one that
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shows an accident caused by failure of employees to follow instructions. The ran-
dom variable X denotes the number of reports the safety engineer must examine
until she finds a report showing an accident caused by employee failure to follow
instructions.
1) Determine the probability distribution of the random variable X, calculate its
expectation, its variance and its standard deviation.
2) Calculate the probabilities P(X = 5), P(X < 20) and P(2 ≤ X ≤ 10) by making
as less calculations as possible.

Problem 7.8. A light bulb has been selected at random. The random variable
T denotes its lifetime measured in number of days. One assumes that T has a
geometric distribution of parameter p ∈]0, 1[. Show that, for any arbitrary strictly
positive integers m and n the conditional probability P(T ≥ m + n − 1/T ≥ m)
satisfies

P(T ≥ m+ n− 1/T ≥ m) = P(T ≥ n) .

Give a concrete interpretation of this result.

Problem 7.9. A coin having probability p of coming up head is successively flipped
until the 5-th head appears. The random variable X denotes the numbers of flips
required to this end.
1) Determine X(Ω) the set of all the possible values of X.
2) Show that, for all n ∈ X(Ω), one has

P(X = n) = P
({

Yn = 1
}
∩
{ n−1∑
k=1

Yk = 4
})

,

where, for every k ∈ {1, . . . , n − 1, n}, one denotes by Yk the Bernoulli random
variable such that Yk = 1 if the outcome of the k-th flip is head and Yk = 0
otherwise.

3) By using the fact that the two random variables Yn and
n−1∑
k=1

Yk are independent,

calculate the probability P(X = n) in terms of n and p

Problem 7.10. You are president of an on-campus special events organization
which consists of 18 women and 15 men. You choose at random 7 persons among
them for forming a committee. The random variable Z denotes the number of men
in this committee.
1) Determine Z(Ω) the set of all the possible values of Z.
2) Determine the probability distribution of Z.
3) Calculate the expectation, the variance and the standard deviation of Z.
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Problem 7.11. A supermarket has a stock of 10000 tin cans, 550 among them
are of bad quality. Someone chooses at random a sample of 20 tin cans in this
stock. The random variable Z denotes the number of tin cans of bad quality in this
sample. Find an approximative value for the probability P(Z ≤ 2).

Problem 7.12 (On Markov’s inequality and Chebishev’s inequality (see
Propositions 1.3 and 1.4)). The random variable X denotes the number of
items which will be produced in some factory during the next week.
1) If one knows that the expectation E(X) = 500, then what can be said about the
probability P(X > 1000) ?
2) If one knows that the expectation E(X) = 500 and the standard deviation
σ(X) = 10, then what can be said about the probability P(400 ≤ X ≤ 600) ?

Problem 7.13. One tosses a fair coin 400 times; the random variable X denotes
the total number of heads. Show that

P(X ≥ 170) ≥ 8

9
.

Problem 7.14. Let B be the same random variable as in Problem 7.5. Answer
to the following questions by making as less calculations as possible.
1) Show that the probability P(B ≤ 0) is strictly less than 6, 4%.
2) Show that the probability P(985 ≤ B ≤ 1115) is strictly greater than 68, 5%.
3) Show that the probability P(B ≥ 750) is strictly greater than 98, 5%.

Problem 7.15. The goal of this problem is to estimate the unknown probability
θ that an individual, who is chosen at random in a very large population has the
disease D. A test is used for detecting it. For an individual having the disease
there is a 95% probability that the test gives a positive result. For an individual
not having the disease there is a 2, 5% probability that the test gives a positive
result.
1) One denotes by θ∗ the probability that the test gives a positive result for an
individual selected at random in the population. Calculate θ∗ in terms of θ. Then
calculate θ in terms of θ∗
2) One focuses on a sample of 500 individuals who have been chosen at random
and independently of each other in the population. Each one of these individuals
has passed the test. The random variable X denotes the total number of positive
results in the sample

a) Determine the probability distribution of X.
b) In fact, it has been observed that X = 31. Determine a confidence interval

for θ∗ at the level of confidence α = 95%, then use it for determining a confidence
interval for θ at the level of confidence α = 95%.
3) If one wants to construct at the level of confidence α = 95% a confidence
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interval for θ with a very small diameter equals to 10−4 = 0, 0001, then what
should be the minimal size of the corresponding sample of individuals selected from
the population ?
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