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1 Basic notions of set theory
Definition 1.1. A set consists in a collection of elements.

A very usual way for describing a set consists in listing its elements between
two braces. For example the possible outcomes resulting from an experiment which
consists in rolling a dice form the set of the six numbers {1, 2, 3, 4, 5, 6} which can
more concisely be denoted {1, . . . , 6}.

Remark 1.1. The empty set is defined to be the set having no elements; it is
denoted by ∅. For example the set consisting in the French cities with more than
30 millions inhabitants is the empty set.

Operations on sets
One denotes by A and B two subsets of a set Ω. For example one can consider
that:

Ω = {a, b, c, d, e, f, g} A = {a, c, d, g} and B = {a, b, c, f, g} (1.1)
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• The union of A and B is denoted by A∪B and defined as the subset of Ω
whose elements belong to A or B. Thus, when Ω, A and B are as in (1.1)
one has A ∪B = {a, b, c, d, f, g}.

• The intersection of A and B is denoted by A ∩ B and defined as the
subset of Ω whose elements belong to A and B. Thus, when Ω, A and B
are as in (1.1) one has A ∩B = {a, c, g}.

• The complement of A is denoted by A and defined as the subset of Ω
whose elements do not belong to A. Thus, when Ω and A are as in (1.1)
one has A = {b, e, f}.

Problem 1.1. Let Ω, A and B be as in (1.1). Determine B, A ∪B and A ∩B.
What do you notice ?

Definition 1.2. A set is said to be infinite if it contains infinitely many elements.

Examples 1.1. The set N of the non-negative integer and the set R of the real
numbers are two very natural examples of infinite sets. Let us also give an example
of an infinite set related with a waiting time: A coin is flipped repeatedly until
the first time a "Head" appears; one is interested in the random number of times it
is thrown. The set of the possible outcomes of this random experiment is infinite,
namely it is N∗ = {1, 2, 3, . . .} the set of all the (strictly) positive integers.

Definition 1.3. A set denoted by S is said to be finite if it only contains finitely
many elements; the number of these elements is called the cardinality of S and
denoted by Card(S). For instance when S = {a, b, c} one has Card(S) = 3. By
convention the cardinality of the empty set ∅ is assumed to be equal to 0 (zero).

Theorem 1.1. Let A and B be two subsets of a finite set Ω. One has

Card(A ∪B) = Card(A) + Card(B)− Card(A ∩B) . (1.2)

It results from (1.2) that:

Proposition 1.1. Let A be a subset of a finite set Ω and let A be the complement
of A. One has

Card(A) = Card(Ω)− Card(A) . (1.3)

2 Counting
Fundamental Principle of Counting: When an experiment E is composed of
k experiments E1, E2, . . . , Ek which respectively have N1, N2, . . . , Nk possible out-
comes, then the global number N of the possible outcomes of the experiment E is
N = N1 ×N2 × . . .×Nk .
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Example 2.1. You will have a diner in a restaurant which is composed of a
starter, a main dish and a dessert. In the menu there are N1 = 15 possibilities for
the starter, N2 = 12 possibilities for the main dish and N3 = 10 for the dessert.
Thus, the global number N of choices for your diner is N = N1 × N2 × N3 =
15× 12× 10 = 1800 .

Definition 2.1 (arrangement). An arrangement is an ordered sequence of p
elements which are chosen among n available elements.

Example 2.2. The sequence of the four digits which is the code of a credit card.

Theorem 2.1.

(a) When repetitions of the same choice of an element are allowed, the
number of the arrangements of p elements chosen among n elements is np;
notice that in this case one may have p > n.

(b) When repetitions of the same choice of an element are not allowed,
the number of the arrangements of p elements chosen among n elements is
denoted by Ap

n and satisfies

Ap
n =

n!

(n− p)!
= n× (n− 1)× (n− 2)× . . .× (n− p + 1) ;

notice that in this case one necessarily has p ≤ n.

Remarks 2.1.

(i) When k is an arbitrary strictly positive integer , the number k! , called "fac-
torial k" , is the strictly positive integer defined as k! = 1 × 2 × . . . × k .
Moreover 0! "factorial zero" is defined as 0! = 1.

(ii) For all non-negative integer n, one has A0
n = 1 .

(iii) When repetitions are not allowed, an arrangement of n elements chosen
among n elements is more commonly called a permutation of n elements.
In this case one has An

n = n!.

Example 2.3. A building consists in a ground floor and of 8 other floors, 5 persons
take together its elevator at the ground floor and then each one of them chooses
the floor at which he will go.
1) If each one of the 8 floors can be chosen by several persons, then the number of
the possible ways for the five persons of choosing the floors equals to 85 = 32768 .
2) If each one the 8 floors can be chosen by at most one person, then the number
of the possible ways for the five persons of choosing the floors equals to A5

8 =
8× 7× 6× 5× 4 = 6720 . (much less than in the previous case !)

3



Definition 2.2 (combination). A combination is a collection of non-ordered
p elements which are chosen among n available elements without repeating the
same choice of an element (thus one necessarily has p ≤ n).

Theorem 2.2. The number of the combinations of p elements chosen among n
elements is denoted by Cp

n and satisfies

Cp
n =

Ap
n

p!
=

n!

p!× (n− p)!
.

Example 2.4. One has to choose 3 representatives in a group of 100 students;
each representative will have the same role as the two others. The number of the
possible choices is:

C3
100 =

100!

3!× 97!
=

100× 99× 98

6
= 50× 33× 98 = 161700 .

Remark 2.1. For the sake of convenience for all non-negative integers n and p
satisfying p > n one sets Cp

n = 0.

Proposition 2.1 (two important properties of combinations).

(a) For all p = 0, 1, . . . , n, one has

Cp
n = Cn−p

n .

(b) For all integers n ≥ 1 and p = 1, . . . , n, one has

Cp
n = Cp−1

n−1 + Cp
n−1 .

Remarks 2.2.

(i) For all n ≥ 0, one has C0
n = Cn

n = 1 .

(ii) For all n ≥ 1, one has C1
n = Cn−1

n = n .

(iii) For all n ≥ 2, one has C2
n = Cn−2

n = n(n− 1)/2 .

(iv) Thanks to the property (b) in Proposition 2.1 the so called "Pascal’s triangle"
can be obtained. It consists in a step by step method for computing the values
of the combinations for all non-negative integers n and p such that p ≤ n:

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
n = 0 1 0 0 0 0 0
n = 1 1 1 0 0 0 0
n = 2 1 2 1 0 0 0
n = 3 1 3 3 1 0 0
n = 4 1 4 6 4 1 0
n = 5 1 5 10 10 5 1
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3 Calculus of Probabilities

3.1 Probabilities on a finite set

General framework: One performs a random experiment having a finite number
n of possible (different) outcomes (two of them can not happen at the same time).
Usually, they are called the elementary events and denoted by ω1, . . . , ωn. The
finite set {ω1, . . . , ωn} of all possible outcomes is called the probability space
related with the random experiment, and denoted by Ω. The subsets of Ω, for
instance A = {ω2, ω3, ω5}, are called the events.

Example 3.1. A large group of tourists is composed of people from 6 different
countries: Germany, England, France, India, Japan and Morocco (no one of them
can be related to two different countries). One of these tourists is randomly se-
lected and his country is the outcome of this random experiment.
→ The elementary events associated to this random experiment are ω1 ="Germany",
ω2 ="England", ω3 ="France", ω4 ="India", ω5 ="Japan" and ω6 ="Morocco".
→ One respectively denotes by U , F and G the events U ="the selected tourist is
from Europa", F ="the selected tourist is from Asia", and G ="the selected tourist
is from Africa". These three events can be expressed in terms of elementary events
in the following ways: U = {ω1, ω2, ω3}, F = {ω4, ω5} and G = {ω6}.

Definition 3.1. Let Ω = {ω1, . . . , ωn} be the probability space associated with some
random experiment. For all k = 1, . . . , n, one can associate to the elementary
event ωk a weight called probability of ωk and denoted by P({ωk}). This number
P({ωk}), which lies between 0 and 1, provides an estimate of the level of plausibility
that one associates to ωk (when P({ωk}) is close to 0 this means that there is little
possibility that ωk be realized, when P({ωk}) is close to 1 this means that there is
strong possibility that ωk be realized). Having weighted the elementary events, one
can then associate to any event A ⊆ Ω a probability given by the formula

P(A) =
∑
ωk∈A

P({ωk}) . (3.1)

→ Since one knows that the event Ω will certainly happen whatever the outcome of
the random experiment might be, one says that Ω is a sure event, and one always
associates to it the probability P(Ω) = 1. This means that one always imposes to
the weights P({ω1}), . . . ,P({ωn}) to satisfy the condition:

n∑
k=1

P({ωk}) = P({ω1}) + . . . + P({ωn}) = 1 . (3.2)

→ The empty set ∅ is called an impossible event, and one always associates to
it the probability P(∅) = 0.
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Example 3.1. (revisited) The following table provides the proportion of tourist
from each country

Country Germany England France India Japan Morocco
Proportion 30% 25% 5% 15% 23% 2%

1) Determine P({ω1}), . . . ,P({ω6}).
2) Compute P(U), P(F ) and P(G) the probabilities of the events U , F and G.

Proposition 3.1 (main property of a probability). Let A and B be two events
in a probability space Ω. One has

P(A ∪B) = P(A) + P(B)− P(A ∩B) . (3.3)

Remarks 3.1.

• When the events A and B are incompatible (that is A and B can not be
realized simultaneously which can be translated by A ∩B = ∅), then one has

P(A ∪B) = P(A) + P(B) . (3.4)

• Let A be an event and A the opposite event (that is A is the complement of
A), then one has

P(A) = 1− P(A) ; (3.5)

in fact (3.5) is a consequence of (3.4).

Definition 3.2. Let Ω = {ω1, . . . , ωn} be the probability space associated with
some random experiment. One says that the elementary events ω1, . . . , ωn are
equiprobable when they all have same probability to be realized that is one has

P({ω1}) = P({ω2}) = . . . = P({ωn}) =
1

n
.

Example 3.2. If the experiment consists in rolling a fair dice. Then one has
Ω = {1, 2, 3, 4, 5, 6} = {1, . . . , 6} and, for all k = 1, . . . , 6, P({k}) = 1/6.

Proposition 3.2. Let Ω be a finite probability space that is the set of the possible
outcomes of some random experiment. When the outcomes are equiprobable,
then the probability of any event A ⊆ Ω is given by the formula:

P(A) =
Card(A)

Card(Ω)
. (3.6)

Thus, computing probability P(A) can be done by counting the number of outcomes
in the event A and then dividing it by the total number of outcomes in the probability
space Ω.

6



Example 3.2. (revisited) The probability of the event

A = "the outcome is an even number" = {2, 4, 6}

equals to P(A) = 3/6 = 1/2.

Definition 3.3. One says that two events A and B in the same probability space
Ω are independent if one has

P(A ∩B) = P(A)P(B) .

Roughly speaking this means that the realization of A has no influence on that of
B and vice versa.

Problem 3.1. In a population of young people having less than 25 years old, 80%
of the individuals are students, 70% of the individuals are vaccinated against the
hepatitis B, and 10% of the individuals have motorcycles. Moreover, 56% of the
individuals are students who are vaccinated against the hepatitis B, and 8% of the
individuals have motorcycles and are vaccinated against the hepatitis B.

One randomly selects an individual in this population and one denotes by E, V
and M the following events: E ="the selected individual is a student", V ="the
selected individual is vaccinated against the hepatitis B" and M ="the selected
individual has a motocycle".

1) Are the events E and V independent ?
2) Are the events M and V independent ?

Definitions 3.1. Let A1, A2 and A3 be 3 events in the same probability space. One
says that they are pairwise independent if one has: P(A1 ∩A2) = P(A1)P(A2),
P(A1 ∩ A3) = P(A1)P(A3) and P(A2 ∩ A3) = P(A2)P(A3). Moreover, when they
satisfy in addition to these three equalities the fourth equality P(A1 ∩ A2 ∩ A3) =
P(A1)P(A2)P(A3) then one says that they are mutually independent.

Problem 3.2. 1) Let A1, A2, A3 and A4 be 4 events in the same probability space.
According to you when are they said to be pairwise independent ? According to you
when are they said to be mutually independent ?
2) Similarly to what has be done in Problem 3.1,

(a) provide an example of 3 events which are pairwise independent,

(b) provide an example of 3 events which are mutually independent,

(c) provide an example of 3 events which are pairwise independent without being
mutually independent.
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3.2 Probabilities on an infinite set

A random experiment may have an infinity of possible outcomes. Imagine that
one is interested in a random experiment whose outcome is a waiting time; as for
instance the number of days someone has to wait for finding a buyer for his house
he has just offered for sale. There are infinitely many possible outcomes for such
an experiment since one can not ensure with absolute certainty that the house will
be sold even after a very long period of time. More precisely the set of the possible
outcomes is Ω = {1, 2, 3, . . .} = N∗ = the set of the strictly positive integers.

The notions we have presented in the frameworks of finite probability spaces
can be generalized to infinite probability spaces. Let us mention the following
points.

Let (Al)l∈N be an infinite sequence of events in a (infinite) probability space Ω.

• One denotes by
+∞⋂
l=1

Al the intersection of the Al’s that is the set of the

possible outcomes which belong to all the events Al.

• One denotes by
+∞⋃
l=1

Al the union of the Al’s that is the set of the possible

outcomes which belong to at least one of the events Al.

Proposition 3.3. When the events Al are pairwise incompatible, that is they
satisfy Ai ∩ Aj = ∅ as soon as i 6= j, then one has

P
( +∞⋃

l=1

Al

)
=

+∞∑
l=1

P(Al) = lim
L→+∞

L∑
l=1

P(Al) . (3.7)

3.3 Conditional probabilities

How should one modify the probability associated to an event when an additional
information related to it is available ? The concept of conditional probability
allows to answer to this question.

Definition 3.4. Let Ω be a probability space and let B ⊆ Ω be an event such that
P(B) 6= 0. For any event A in Ω, the conditional probability of A given B
is denoted by P(A/B) and defined as:

P(A/B) =
P(A ∩B)

P(B)
. (3.8)
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What makes the concept of conditional probability to be useful is that often
one can associate a value to P(A/B) in a direct way, and then deduce from it the
value of P(A ∩B) thanks to the formula

P(A ∩B) = P(A/B)P(B) . (3.9)

Example 3.3. 10 keys are almost identical but only one of them allows to open
some gate. Somebody who can not identify this good key wants to open the gate.
He decides to try the keys one after the other, each key which does not work is set
aside just after its trial.

Let us calculate the probability that he opens the door at the second attempt.
For i = 1, . . . , 10, let the event Ai ="he opens the gate at the i-th attempt".
Thus, the probability we want to compute can be expressed as P(A1 ∩ A2). One
has P(A1) = 9/10 since at the beginning of the first attempt, only one among
the 10 keys allows to open the gate. Moreover, one has P(A2/A1) = 1/9 since
at the beginning of the second attempt there remain 9 keys and only one among
them allows to open the gate. Finally, using (3.9) one gets that P(A1 ∩ A2) =
P(A2/A1)P(A1) = 1/9× 9/10 = 1/10 = 0, 1.

The formula (3.9) can be generalized in the following way:

Proposition 3.4. Let an integer m ≥ 2 and let A1, A2, . . . , Am be m events in the
same probability space Ω which satisfy P(A1∩A2∩ . . .∩Am−1) 6= 0. Then, one has

P(A1 ∩ A2 ∩ . . . ∩ Am) (3.10)
= P(A1)× P(A2/A1)× P(A3/A1 ∩ A2)× . . .× P(Am/A1 ∩ A2 ∩ . . . ∩ Am−1)

Example 3.3. (revisited) Let us calculate the probability that he opens the door
at the 5-th attempt. The probability we want to compute is in fact

P(A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) .

It follows from (3.10) that the latter probability is equal to

P(A1)× P(A2/A1)× P(A3/A1 ∩A2)× P(A4/A1 ∩A2 ∩A3)× P(A5/A1 ∩A2 ∩A3 ∩A4)

9

10
× 8

9
× 7

8
× 6

7
× 1

6
=

1

10
= 0, 1

Remark 3.1. Let A and B be two events in the same probability space. One
assumes that P(B) 6= 0. When A and B are independent then one has that
P(A/B) = P(A). Conversely, when P(A/B) = P(A) then A and B are inde-
pendent.

Definition 3.5. One says that events B1, . . . , Bm form a partition of a probability
space Ω when they satisfy the following 3 properties.
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(i) None of the events B1, . . . , Bm is an impossible event, that is one has Bi 6= ∅
for all i = 1, . . . ,m.

(ii) The events B1, . . . , Bm are pairwise incompatible, that is one has Bi∩Bi′ = ∅
as soon as i 6= i′.

(iii) One of the events B1, . . . , Bm will necessarily be realized, that is one has

Ω = B1 ∪ . . . ∪Bm =
m⋃
i=1

Bi.

Example 3.4. The probability space Ω consists in the video cards available to a
laptop manufacturer. 20% of these cards come from the supplier 1, 40% from the
supplier 2 and 40% from the supplier 3. For i = 1, 2, 3 the event Bi consists in
the video cards coming from the supplier i. The three events B1, B2 and B3 form
a partition of Ω.

A statistical survey has shown that the proportions of defective cards are 2%
for those coming from the supplier 1, 5% for those coming from the supplier 2, and
7% for those coming from the supplier 3.

A quality inspection is made on the assembly line of this laptop manufacturer
by randomly selecting a laptop.
1) Calculate the probability that the video card of the selected laptop be defective.
2) If it turns out that this card is defective, what is then the probability that it
comes from the supplier 1 ?
3) Same question as 2) but for the supplier 2.
4) Same question as 2) but for the supplier 3.

There are two successive levels of randomness in the experiment related with
quality inspection described in Example 3.4; the first level consists in the choice
of a supplier and the second level in that of a video card. For dealing with such
type of random experiment one often has to make use of conditional probabilities;
more precisely one needs to use the following fundamental theorem:

Theorem 3.1. Let Ω be a probability space and B1, B2, . . . , Bm events forming a
partition of Ω. The following fundamental two results hold.

(a) (Formula of total probability) For each event A ⊆ Ω,

P(A) = P(A/B1)P(B1) + P(A/B2)P(B2) + . . . + P(A/Bm)P(Bm)

=
m∑
i=1

P(A/Bi)P(Bi) . (3.11)
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(b) (Bayes Formula) For each event A ⊆ Ω such that P(A) 6= 0, one has, for
all j = 1, 2, . . . ,m,

P(Bj/A) =
P(A/Bj)P(Bj)

P(A)

=
P(A/Bj)P(Bj)∑m
i=1 P(A/Bi)P(Bi)

. (3.12)

Answers to the questions in Example 3.4 1) Let the event A ="the video card
of the selected laptop is defective". It follows from the formula of total probability
given in (3.11) that

P(A) = P(A/B1)P(B1) + P(A/B2)P(B2) + P(A/B3)P(B3)

= 0, 02× 0, 2 + 0, 05× 0, 4 + 0, 07× 0, 4

= 0, 052 (5, 2%)

2), 3) and 4) Using the Bayes formula given in (3.12) one gets that

P(B1/A) =
P(A/B1)P(B1)

P(A)
=

0, 02× 0, 2

0, 052
' 0, 077 (7, 7%)

P(B2/A) =
P(A/B2)P(B2)

P(A)
=

0, 05× 0, 4

0, 052
' 0, 385 (38, 5%)

P(B3/A) =
P(A/B3)P(B3)

P(A)
=

0, 07× 0, 4

0, 052
' 0, 538 (53, 8%)

4 Problems on counting
Problem 4.1. 1) In how many ways can 7 differently colored balls be arranged in
a row ?
2) In how many ways can 12 people be seated on a bench if only 4 seats are avail-
able ?
3) A committee of 3 members is to be formed consisting of one representative each
from labor, management, and the public. If there are 2 possible representatives
from labor, 4 from management, and 6 from the public, determine how many dif-
ferent committees can be formed.
4) It is required to seat 7 men and 6 women in a row so that the women occupy
the even places. How many such arrangements are possible ?
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Problem 4.2. Calculate how many 4-digit numbers can be formed with the 10
digits 0, 1, 2, ... , 9 in each one of the following three cases.
(a) The first digit must not be zero and repetitions are allowed.
(b) The last digit must be even and repetitions are not allowed.
(c) The first digit must be odd, the last digit must be even and repetitions are not
allowed.

Problem 4.3. Mister Smith has to arrange on a shelf 5 different science books,
6 different history books, and 2 different statistics books. Calculate how many
different dispositions are possible in each one of the following two cases.
(a) The books in each particular subject must all stand together.
(b) Only the science books must stand together.

Problem 4.4. One intends to arrange 5 red balls, 2 white balls, and 3 blue balls
in a row. How many different dispositions are possible, knowing that all the balls
of the same color are not distinguishable from each other ?

Problem 4.5. Compute the number of possible ways that 7 people can be seated
at a round table in each one of the following three cases.
(a) They can sit anywhere.
(b) Two particular people must sit next to each other.
(c) Two particular people must not sit next to each other.

5 Problems on calculus of probabilities
Problem 5.1. A box contains 12 marbles: 5 red and 7 blue. Consider an exper-
iment that consists in taking one marble from the box then replacing it in the box
and drawing a second marble from the box.
1) What is the probability that the first marble which is taken be red and the second
one be blue ?
2) What is the probability that the two marbles which are successively taken be of
the same color ?

Problem 5.2. Repeat Problem 5.1 when the second marble is drawn without re-
placing the first marble.

Problem 5.3. M&M sweets are of varying colors and the different colors occur in
different proportions. The table below gives the probability that a randomly chosen
M&M has each color, but the value for tan candies is missing.

Color Brown Red Yellow Green Orange Tan
Probability 0,3 0,2 0,2 0,1 0,1 ?
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1) What value must the missing probability be ?
2) You draw an M&M at random from a packet. What is the probability of each
of the following events ?
(i) You get a brown one or a red one.
(ii)You don’t get a yellow one.
(iii) You don’t get either an orange one or a tan one.
(iv) You get one that is brown or red or yellow or green or orange or tan.

Problem 5.4. Two sisters maintain that they can communicate telepathically. To
test this assertion, you place the sisters in separate rooms and show the sister
A three cards one after the other. Each card is equally likely to depict either a
circle or a star or a square. For each card presented to the sister A, the sister
B writes down "circle", or "star" or "square", depending on what she believes
the sister A to be looking at. Under the assumptions that the two sisters can
not communicate telepathically and that successive attempts at matching cards are
mutually independent, calculate the probabilities of the following events.
(i) The sister B does not correctly match any one of the 3 cards.
(ii) The sister B correctly matches at least 1 of the 3 cards.
(iii) The sister B correctly matches only 1 of the 3 cards.
(iv) The sister B correctly matches at least 2 of the 3 cards.

Problem 5.5. Stores A, B, and C have 50, 75, and 100 employees, and respectively
50, 60, and 70 percent of these are women. Resignations are equally likely among
all employees, regardless of sex. One employe resigns and this is a woman. What
is the probability that she works in store C ?

Problem 5.6. A deck of 52 playing cards, containing all 4 aces, is randomly
divided into 2 piles of 26 cards each. What is the probability that each pile has
exactly 2 aces ?

Problem 5.7. An examination consists of multiple-choice questions, each having
five possible answers. Suppose you are a student taking the exam. Also suppose
that you reckon you have probability 0,75 of knowing the answer to any question
that may be asked and that, if you do not know, you intend to guess an answer with
probability 1/5 of being correct. What is the probability you will give the correct
answer to a question ?

Problem 5.8. I have in my pocket ten coins. Nine of them are ordinary coins
with equal chances of coming up head and tail when tossed and the tenth has two
heads. I take one of the coins at random from my pocket and toss it one time.
1) What is the probability that this coin comes up tail ?
2) If this coin comes up head, what is then the probability that it be the coin with
two heads?
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3) If I toss this coin two times (instead of one time), what is the probability that
it comes up head the first time and tail the second time ?

Problem 5.9. Bill and George go to target shooting together. Both shoot at a
target at the same time. Suppose Bill hits the target with probability 0,7, whereas
George, independently, hits the target with probability 0,4.
1) What is the probability that no shot hits the target ?
2) What is the probability that at least one shot hits the target ?
3) What is the probability that exactly one shot hits the target ?
4) Given that one shot hit the target, what is the probability that it was George’s
shot ?
5) Given that the target is hit, what is the probability that George hit it ?

Problem 5.10. Three prisoners are informed by their jailer that one of them has
been chosen at random to be executed, and the other two are to be freed. Prisoner
A asks the jailer to tell him privately which of his fellow prisoners will be free,
claiming that their would be no harm in divulging this information, since he already
knows that at least one will go free. The jailer refuses to answer this question,
pointing out that if A knew which of his fellows were to be set free, then his own
probability of being executed would rise from 1/3 to 1/2, since he would then be
one of two prisoners. What do you think of the jailer’s reasoning ?

Problem 5.11. 60% of the families in a certain community own their own car,
30% own their own home, and 20% own both their own car and their own home.
If a family is randomly chosen, what is the probability that this family own a car
or a house but not both ?
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