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1 Some generalities
First recall that:

Definition 1.1. A random variable denoted by X (one may choose another letter Y , Z, and
so on) is a numerical quantity related with a random experiment; for instance X is a taxpayer’s
income chosen at random. More precisely, a random variable is a map from a probability space
Ω into the set of the real number R.

Remark 1.1. Throughout this chapter one restricts to continuous random variables; that is to
random variables whose possible values may be all real numbers in some intervals. When X is
such a random variable, in contrast with a discrete random variable, it is irrelevant to focus on
P(X = t), the probability that X be equal to some value t, since one has in general P(X = t) = 0.
It is much more relevant to determine P(a ≤ X ≤ b), the probability that X lies between two
arbitrary real numbers a and b such that a < b. Throughout this chapter one always assumes
that this probability is given by the integral:

P(a ≤ X ≤ b) =

∫ b

a

fX(x) dx, (1.1)

where fX is a fonction (depending on the random variable X), with nonnegative values, called
density (function) of the continuous random variable X, and satisfying∫ +∞

−∞
fX(x) dx = 1.

One always assumes that the two integrals∫ +∞

−∞
xfX(x) dx and

∫ +∞

−∞
x2fX(x) dx
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are well-defined and finite. One mentions that the shape of the graph of the density function fX
is rather similar to that of the histogram of the statistical variable which is modeled by the random
variable X. Also, one mentions that the fact that X has a density implies that P(X = t) = 0,
for all real number t, and consequently that

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) . (1.2)

Remark 1.2. (Graphical interpretation of the integral of a nonnegative function)
Let f be a function with nonnegative values defined on R and let a and b be two arbitrary
real numbers such that a < b.

• The integral
∫ b

a

f(x) dx is the area of the surface which lies between the graph of f , the

abscissa axis, and the two vertical lines of equations x = a and x = b.

• The integral
∫ a

−∞
f(x) dx is the area of the surface which lies between the graph of f and

the abscissa axis and is situated at the left side of the vertical line of equation x = a.

• The integral
∫ +∞

b

f(x) dx is the area of the surface which lies between the graph of f and

the abscissa axis and is situated at the right side of the vertical line of equation x = b.

• The integral
∫ +∞

−∞
f(x) dx is the area of the surface which lies between the graph of f and

the abscissa axis .

Thus, one has: ∫ +∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ b

a

f(x) dx+

∫ +∞

b

f(x) dx .

Definition 1.2. (Cumulative function) The cumulative function of a random variable X
is the function with values in the interval [0 ; 1] denoted by FX and defined 1, for all real number
t, by

FX(t) = P(X < t) . (1.3)

Remark 1.3. (Important properties of cumulative function)

(i) The probability P(a ≤ X ≤ b) is connected to the cumulative function FX through the
important formula:

P(a ≤ X ≤ b) = FX(b)− FX(a) ; (1.4)

notice that, in view of the equalities (1.2), the important equality (1.4) remains valid when
P(a ≤ X ≤ b) is replaced by P(a < X ≤ b), P(a ≤ X < b) or P(a < X < b).

(ii) The cumulative function FX is the primitive of the density function fX given, for all real
number t, by the integral

FX(t) =

∫ t

−∞
fX(x) dx .

Thus, for any real number t at which the cumulative function FX is derivable one has

F ′X(t) = fX(t) .
1Many other authors define the cumulative function FX as FX(t) = P(X ≤ t), for all real number t; this slight

difference with respect to our definition is not really important.
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(iii) FX is a non-decreasing function whose limit at −∞ equals to 0 (zero), and whose limit at
+∞ equals to 1 (one).

Definition 1.3. (Expectation) The expectation of the random variable X is denoted by E(X)
and defined as:

E(X) =

∫ +∞

−∞
xfX(x) dx . (1.5)

Roughly speaking E(X) can be viewed as the average value of the random variable X.

Definition 1.4. (Variance and Standard Deviation) The variance of the random variable
X is denoted by Var(X) and defined as:

Var(X) = E
[(
X − E(X)

)2]
= E(X2)−

(
E(X)

)2
=

∫ +∞

−∞
x2fX(x) dx−

(∫ +∞

−∞
xfX(x) dx

)2

.

(1.6)
The standard deviation of X is denoted by σ(X) and defined as

σ(X) =
√

Var(X) . (1.7)

Roughly speaking σ(X) can be viewed as the average distance between the values of X and its
expectation E(X).

Definition 1.5. (Independent random variables)
Two random variables X1 et X2 are said to be independent, if for all real numbers a1, b1

and a2, b2 satisfying a1 < b1 and a2 < b2 the two events {a1 ≤ X1 ≤ b1} and {a2 ≤ X2 ≤ b2}
are independent.

More generally, for any integer n ≥ 2, n independent random variables X1, X2, . . . , Xn are
said to be mutually independent, if for all real numbers a1, b1 and a2, b2 and . . . and an, bn
satisfying a1 < b1 and a2 < b2 and . . . and an < bn, the n events

{a1 ≤ X1 ≤ b1} and {a2 ≤ X2 ≤ b2} and . . . and {an ≤ Xn ≤ bn}

are mutually independent.

2 Exponential distribution and Weibull distribution
Definition 2.1. (Exponential distribution) Let λ be a strictly positive real number. One
says that a continuous random variable X has an exponential distribution of parameter λ, if its
density function fX satisfies

fX(x) =

 λ exp(−λx) , for all real number x > 0,

0 for all real number x ≤ 0.
(2.1)

Proposition 2.1. When a random variable X has an exponential distribution of parameter λ
then its expectation and variance are given by the formulas:

E(X) = 1/λ and Var(X) = 1/λ2 (2.2)

Weibull distribution is a generalization of exponential distribution:
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Definition 2.2. (Weibull distribution) Let α and λ be two strictly positive real numbers.
One says that a continuous random variable X has a Weibull distribution with parameters α et
λ, if its density function fX satisfies

fX(x) =

 λαxα−1 exp(−λxα) , for all real number x > 0,

0 for all real number x ≤ 0.
(2.3)

Remark 2.1. Exponential distribution and more generally Weibull distribution are very useful
in modeling of lifetime (human being, appliance, and so on).

When a random variable X has an exponential distribution, or more generally a Weibull
distribution, then X is with positive values, more precisely P(X > 0) = 1. Actually, this is a
consequence of the fact that the density function of X vanishes on the set of the negative real
numbers.

For any random variable X with positive values, the survival function SX is defined as:

SX(t) = P(X ≥ t) , for all real number t ≥ 0. (2.4)

Thus, for all real number t ≥ 0, one has SX(t) = 1−FX(t), where FX is the cumulative function
of X. When a random variable X has a Weibull distribution with parameters α and λ, then its
survival function SX satisfies

SX(t) = exp(−λtα) , for all real number t ≥ 0. (2.5)

Thus, in the particular case of the exponential distribution (where α = 1) one has

SX(t) = exp(−λt) , for all real number t ≥ 0. (2.6)

3 Normal distribution
When a random variable X results from many independent causes such that none of them
dominates the others, then one can consider that X has a normal distribution. This is for
instance the case when X is the total weight of a large packet of sweets since this total weight
mainly results from the addition of the very small independent weights of many sweets.

Definition 3.1. (normal distribution) Let µ (pronounce " mu ") be an arbitrary real number.
Let σ (pronounce " sigma ") be an arbitrary strictly positive real number. One says that a
continuous random variable X has a normal distribution with mean (that is expectation)
µ and standard deviation σ (or variance σ2), if its density function fX satisfies

fX(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
, for all real number x . (3.1)

Observe that the notation X ∼ N (µ, σ2) means that the random variable X has a normal distri-
bution with mean µ and standard deviation σ. Also observe that in the very important particular
case where µ = 0 and σ = 1 the normal distribution is said to be standard.

Remark 3.1. The following two figures show that the graph of the density fX of a normal
distribution looks like a bell curve which is symmetric with respect to the vertical line of equation
x = µ. The larger is the parameter σ the more flat is the curve, and the smaller it is the sharper
is the curve. The function fX reaches its maximum when x = µ and then one has fX(µ) = 1

σ
√
2π
.
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Remark 3.2. When a random variable X has a normal distribution with mean µ and standard
deviation σ > 0, then the random variable

Z =
X − µ
σ

(3.2)

has a standard normal distribution. Moreover FX and FZ , the cumulative functions of X and
Z, are closely connected through the equality

FX(t) = FZ

(
t− µ
σ

)
, for all real number t . (3.3)

On another hand, when a random variable T has a standard normal distribution, then, for
all real number µ and for all strictly positive real number σ, the random variable

Y = σT + µ (3.4)

has a normal distribution with mean µ and standard deviation σ.

Remark 3.3. Let Z be a random variable having a standard normal distribution then its cumu-
lative function FZ satisfies, for all real number t,

FZ(t) = 1− FZ(−t) . (3.5)

As a consequence, one has FZ(0) = 1/2. Let us point out that the equality (3.5) is very useful.
In fact it is derived from symmetry with respect to the ordinate axis (that is the vertical ligne
with equation x = 0) of the graph of fZ the density function of Z.
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STANDARD NORMAL DISTRIBUTION TABLE 

Entries represent Pr(Z ≤ z). The value of z to the first decimal is given in the left column. The second 
decimal is given in the top row. 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
            
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
            
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
            
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
            
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
            
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
            
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
            
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Values of z for selected values of Pr(Z ≤ z) 
z 0.842 1.036 1.282 1.645 1.960 2.326 2.576 

Pr(Z ≤ z) 0.800 0.850 0.900 0.950 0.975 0.990 0.995 
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Example 3.1. The random variable X denotes the profit (expressed in thousands of euros)
which will be realized the next month by a small entreprise. One assumes that X has a normal
distribution with mean 10 and standard deviation 4. By using the standard normal distribution
table calculate the following probabilities: P(X ≤ 12), P(X < 9), P(X > 11), P(X ≥ 6) and
P(−2 < X < 13).

One knows from Remark 3.2 that the random variable

Z =
X − 10

4

has a standard normal distribution, and that its cumulative function FZ satisfies, for all real
number t,

FX(t) = FZ

(
t− 10

4

)
, (3.6)

where FX denotes the cumulative function of X. Using (1.3), the equality P(X = 12) = 0, (3.6)
and the standard normal distribution table, one obtains that

P(X ≤ 12) = FX(12) = FZ

(
12− 10

4

)
= FZ(0, 5) = 0, 6915 .

Using (1.3), (3.6), (3.5) and the standard normal distribution table, one gets that

P(X < 9) = FX(9) = FZ

(
9− 10

4

)
= FZ(−0, 25) = 1− FZ(0, 25) = 1− 0, 5987 = 0, 4013 .

Using {X ≤ 11} = {X > 11} (that is the fact that {X ≤ 11} is the opposite event of {X > 11}),
the equality P(X = 11) = 0, (1.3), (3.6) and the standard normal distribution table, one obtains
that

P(X > 11) = 1− FX(11) = 1− FZ
(

11− 10

4

)
= 1− FZ(0, 25) = 0, 4013 .

Using the equality {X < 6} = {X ≥ 6} , (1.3), (3.6), (3.5) and the standard normal distribution
table, one gets that

P(X ≥ 6) = 1− P(X < 6) = 1− FX(6) = 1− FZ
(

6− 10

4

)
= 1− FZ(−1) = FZ(1) = 0, 8413 .

Using (1.2), (1.4), (3.6), (3.5) and the standard normal distribution table, one obtains that

P(−2 < X < 13) = FX(13)− FX(−2) = FZ

(
13− 10

4

)
− FZ

(
−2− 10

4

)
= FZ(0, 75)− FZ(−3) = FZ(0, 75)− 1 + FZ(3) = 0, 7734− 1 + 0, 9987 = 0, 7721 .

Proposition 3.1. (Approximation of a binomial distribution by a normal distribution)
Let Y be a discrete random variable having a binomial distribution of parameters n and p. Assume
that at least one of the following three conditions hold:

(i) n ≥ 30 and p close to 0, 5 ,

(ii) np > 15 and n(1− p) > 15 ,

(iii) np(1− p) > 10 .
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Then one can approximate the binomial distribution of Y by a normal distribution with mean np
et and standard deviation

√
np(1− p).

Proposition 3.2. (Approximation of a Poisson distribution by a normal distribution)
Let Y be a discrete random variable having a Poisson distribution of parameter λ. When λ > 10,
one can approximate the Poisson distribution of Y by the normal distribution with mean λ and
standard deviation

√
λ.

Remark 3.4. (Sum of independent random variables with normal distributions)
Let X1 and X2 be two independent random variables with normal distributions N (µ1, σ

2
1) and

N (µ2, σ
2
2). Let a1, a2 and b be 3 real numbers. Then, the random variable

Y = a1X1 + a2X2 + b

has a normal distribution with mean µ = a1µ1 + a2µ2 + b and variance σ2 = a21σ
2
1 + a22σ

2
2.

More generally, let X1, X2, . . . , Xn be n mutually independent random variables with normal
distributions N (µ1, σ

2
1), N (µ2, σ

2
2), . . . , N (µn, σ

2
n). Let a1, a2, . . . , an and b be n+1 real numbers.

Then, the random variable

Y = a1X1 + a2X2 + . . .+ anXn + b

has a normal distribution with mean

µ = a1µ1 + a2µ2 + . . .+ anµn + b

and variance
σ2 = a21σ

2
1 + a22σ

2
2 + . . .+ a2nσ

2
n .

4 Problems
Problem 4.1. A light bulb has been selected at random. The random variable X denotes its
lifetime measured in decimal number of days. One assumes that X has an exponential distribution
of parameter the strictly positive real number λ.
1) Calculate the expected lifetime of this light bulb in the particular case where λ = 1/1000 .
2) In the general case where the λ is an arbitrary strictly positive real number, show that, for
any nonnegative real numbers t and s the conditional probability P(X ≥ t+ s/X ≥ t) satisfies

P(X ≥ t+ s/X ≥ t) = P(X ≥ s) .

3) Do you think that this result remains true in the more general case where X has a Weibull
distribution whose parameters α and λ are arbitrary strictly positive real numbers ?

Problem 4.2. In some country a study realized by the National Highway Traffic Safety has
shown that the random number of the fatal road traffic accidents caused by sleep deprivation is a
random variable Y having a normal distribution with mean equals to 1550 and standard deviation
equals to 300.
1) By using the standard normal distribution table, calculate in terms of percentages the following
two probabilities: P(Y < 1000) and P(1000 ≤ Y ≤ 2000).
2) By using the results obtained in your answer to question 1), calculate in terms of percentage
the probability P(Y > 2000).
3) By using the standard normal distribution table, find the number a such that P(Y ≥ a) = 0, 025.
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Problem 4.3. A fair coin is tossed 1000 times. One denotes by Y the total number of heads
find approximative values for the probabilities: P(480 ≤ Y ≤ 520), P(Y > 510) and P(Y ≤ 470).

Problem 4.4. Mister Smith is the owner of 3 cinemas A, B, and C in 3 different small cities.
The total fixed cost per week he has to support for making the 3 cinemas work is 5500 euros.
While the price of a ticket for seeing a movie in any one of them is 8 euros. The independent
random variables X1, X2 and X3 respectively denote the numbers of tickets per week sold by
the cinemas A, B and C. One assumes they have Poisson distributions of parameters λ1 = 223,
λ2 = 254 and λ3 = 279.

The random variable B denotes Mister Smith’s total profit per week due to the 3 cinemas.
Find approximative values for the probabilities: P(B > 500), P(B ≤ 800) and P(350 < B ≤ 650).

Problem 4.5. Stephan is a waiter in a restaurant located in the downtown of Lille; his net
monthly income consists in a fixed salary of 1565 euros and in tips whose total amount in euros
is a random variable X1 having a normal distribution with mean equals to 190 and standard
deviation equals to 36. His wife Virginia is a waitress in a restaurant located in a suburb of Lille;
her monthly income consists in a fixed salary of 1460 euros and in tips whose total amount in
euros is a random variable X2 having a normal distribution with mean equals to 244 and standard
deviation equals to 22. The two random variables X1 and X2 are independent.
1) By using the standard normal distribution table, calculate in terms of percentages the following
six probabilities:

(a) P(X1 < 125) , (b) P(X1 ≥ 265) , (c) P(265 > X1 ≥ 125) ,
(d) P(211 ≥ X2) , (e) P(X2 ≥ 280) , (f) P(211 ≤ X2 ≤ 280).

2) Let Y be the random variable defined as Y = X2−X1. Determine the probability distribution
of Y and the values of its parameters (justify your answer).
3) By using the standard normal distribution table, calculate in terms of percentage the probability
that the net monthly income of Virginia be higher than that of her hunsband.
4) The random variable T denotes the total net monthly income of the couple Virginia and
Stephan.

(a) Determine the probability distribution of T and the values of its parameters (justify your
answer).

(b) By using the standard normal distribution table, calculate in terms of percentage the
probability P(T > 3500).

Problem 4.6. A dressmaker works in the ready-to-wear industry. She manufactures in series
cooking aprons. One assumes that the manufacturing time in minutes of such an apron is a
random variable X having a normal distribution with mean equals to 22 and standard deviation
equals to 2.
1) Calculate the probability that the manufacturing time of such an apron be:

a) less than 23 minutes;
b) less than 20 minutes;
c) more than 25 minutes;
d) between 20 and 25 minutes.

2) The dressmaker has to manufacture 8 aprons per half-day. Except for the last one, each
time she finishes to manufacture one of them she takes a break of 5 minutes. The random
variable Xi denotes the manufacturing time in minutes of the i-th apron of a half-day. One
assumes that thanks to breaks she takes the dressmaker has no fatigue. Thus, the random vari-
ables X1, X2, . . . , X8 can be assumed to be mutually independent and with the same normal
distribution as X.

a) Let us consider the random variable Y = X1 + X2 + . . . + X8 + 35. Give a concrete
interpretation of Y .
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b) Determine the probability distribution of Y (justify your answer).
c) Tomorrow in the afternoon the dressmaker will begin to work at 2 : 00 pm; calculate the

probability that she will still be working after 5 : 40 pm.
d) Calculate the probability that the dressmaker will take more than 20 minutes for manufac-

turing each one of the 8 aprons.
e) Calculate the probability that there will be a difference of more than 2 minutes between the

time which will be taken by the dressmaker for manufacturing the first apron of the afternoon
and the time for manufacturing the last one.

Problem 4.7. A batch of sugar packets consists in 500 packets placed in a box whose tare weight 2

is 30 kilograms (kg). The weight in grams (g) of a packet is a random variable having a normal
distribution with mean 1000 g and standard deviation 100 g. One assumes that the weights of
the packets are independent of each other. For delivering a batch one needs to use a lift which
can not work if the weight of this batch is more than 535 kg. Calculate the probability that the
lift not work.

Problem 4.8. For a basketball player chosen at random the size of a sharp spring measured in
centimeters (cm) is a random variable X with normal distribution; its mean µ > 0 is unknown,
yet its standard deviation σ is known to be equal to 2, 3. One chooses at random independently
of each other 6 basketball players. For each one of them the size in cm of a sharp spring has been
measured. The 6 sizes for the 6 basketball players are: 59, 4 57, 7 60, 5 58, 2 58, 6 61, 0.
One can consider that these 6 sizes are 6 values of 6 independent random variables X1, . . . , X6

having the distribution as X.
Derive from these data a confidence interval for µ at the confidence level α = 98%; the size

of this interval should be as small as possible.

2This is the weight of the box when it is empty.
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