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Introduction and motivations

Stable random variables and stable stochastic integrals

Let Z be a real-valued random variable, and x 7 its characteristic function defined
as: VA € R, xz(\) := E(e*?). Z is said to have a symmetric stable distribution
of stability parameter a € (0, 2] and scale parameter o € R, if:

VAeR, xz(A) =exp(—a®|\|?). (1.1)

— when o = 2, Z reduces to a centered Gaussian random variable of variance 202
— The situation is very different when « € (0,2) and o > 0; the distribution of Z
becomes heavy-tailed:

P(|Z| > z) ~ c(a)o®z™%, when z — +o0. (1.2)
This, in particular, implies that:

E(]Z|") < +co0 when v < a, and E(|Z]|”) = +00 when v > «a. (1.3)
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Introduction and motivations

We denote by M,, a complex-valued rotationally invariant a-stable random
measure on RY with Lebesgue control measure.

The related stable stochastic integral is denoted by fRd ( . ) dA7Ia. It is a linear
map on the Lebesgue space L*(IR?) such that, for any deterministic function

g € L*(R?), the real part Re{ [, &(¢) dl\N/Ia(f)} is a real-valued symmetric
a-stable random variable with a scale parameter satisfying

r(re{ [ @ am9})" = [ ls(c)]" o (14)

The equality (1.4) is reminiscent of the classical isometry property of Wiener
integrals; in particular, it implies that Re{ [, g(£) dM. ()} converges to

Re{ f]Rd g(&) dMa(f)} in probability, when a sequence (g,), converges to g in
L*(R9). This will be useful for us.

A classical reference on stable distributions and related topics, including stable

random measures and their associated stochastic integrals, is the book of
Samorodnitsky and Taqqu (1994).
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Introduction and motivations

Stationary increments harmonizable stable fields

Let us now focus on the definition of {X(t),t € R?}, the class of the real-valued
stationary increments harmonizable stable fields we intend to study.

The main ingredient of the definiton is f, an arbitrary real-valued Lebesgue
measurable even function on R? satisfying the condition:

/Rdmin (L 1E1*) [F(©] d€ < 400, (1.5)

where |-| denotes the Euclidian norm on RY. Notice that, by analogy with the
Gaussian case (see Bonami and Estrade (2003), for instance), the function |f|* is
called the spectral density of the field X.

Thanks to (1.5), for any t € RY, the function & — (e — 1)f(¢) belongs to

L*(R), and thus it is integrable with respect to M,,. The field {X(t),t € R?} is
defined, for all t € R, as

X(t) = X[f](t) := Re {/R (e —1)F(€) dl\N/Ia(f)} , (1.6)

where t - £ denotes the usual inner product of t and &.
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Introduction and motivations

Harmonizable and Linear Fractional Stable Motions

A classical particular case: harmonizable fractional stable motion (hfsm) of Hurst
parameter H € (0,1), denoted by {X"*"(t),t € R} and defined as: V t € R,

X" (t) := Re {/R (e —1)|g| -1/ d/\?la(g)} . (1.7)

X" is one of the two most classical extensions of the well-known fractional
Brownian motion (fBm) to the setting of the heavy-tailed stable distributions.

The other classical extension of fBm to this setting is called linear fractional stable
motion (Ifsm) and denoted by { Y"™"(t),t € R?}. In contrast with X"*", the
process Y™ is not defined through an integral in the frequency domain but
through an integral in the time domain:

Y™ () ::/R(|t+sw*1/af|s|'**1/a) dMa(s), (1.8)

where M, is an a-stable real-valued random measure on R.
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Introduction and motivations

In spite of the fact that the stable processes X"*™ and Y™™ extend the same
Gaussian process (the fBm) there are hudge differences between these two stable
processes. For instance:

— Sample paths of Y™ are continuous functions only when H > 1/a; in the
latter case their critical Holder regularity is H — 1/c. This result can be derived
from Kolmogorov's Holder continuity Theorem, since, for each fixed v € (0, a),
one has:

Vi, th € R, E<| Y‘fsm(fl) — Ylfsm(tz)P) = Caﬁ!tl — t2|1+’y (H- 1/7) (19)

— Sample paths of X" are always continuous functions and their Holder
regularity is H — 7, for any 7 > 0. This result can not be derived from
Kolmogorov's Holder continuity Theorem, even if X" also satisfies (1.9). It was
obtained by Kéno and Maejima (1991) thanks to a LePage type series
representation of X"*m,

Generally speaking there are hudge differences between stable stochastic fields
defined through stochastic integrals in the frequency domain, and those defined
through stochastic integrals in the time domain.
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Our two motivations

In the continuous case, wavelet methods (see Ayache, Roueff and Xiao (2009))
have turned out to be efficient in the fine study of global and directional sample
path behaviour of linear fractional stable sheet; that is the extension to R? of the
process Y'™". Can this methodology be adapted to the general stationary
increments stable field X7 This issue is the main motivation of our talk.

Also we mention that the study of global and directional sample path behaviour of
X may have an impact on future development of new applications related with
modelling of anisotropic materials in frames of heavy-tailed stable distributions. It
is worthwhile to note that in Gaussian frames such a modelling has already proved
to be useful, in particular for detecting osteoporosis in human bones through the
analysis of their radiographic images (see for instance Bonami and Estrade (2003)
or Biermé, Richard, Rachidi and Benhamou (2009)).

Typically, X is an anisotropic model when the rate of vanishing at infinity of the
corresponding spectral density |£|* changes from one axis of R? to another;
therefore, we focus on the class A of the so-called admissible functions f, defined
in the following way.
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Introduction and motivations
We set p, := max {2, [1/a] + 1}.
A function f belongs to A when it satisfies (#1), (#2) and (H3).
(H1) For all multi-index p := (p1, p2,.-.,pd) € {0, 1,2,..., p*}d, the partial
derivative function

oPLOP2 . QP4
(0€1)P1(9€2)P2 . .. (0€q)
is well-defined and continuous on the open set (R '\ {O})d; that is the

Cartesian product of R\ {0} with itself d times.
(H2) There are a positive constant ¢’ and an exponent &’ € (0,1) such that, for

each p € {0,1,2,...,p*}d, and £ € (R\{O})d,

OPf =

- f  (with the convention that 9% := f)

lel < 1= [0PF(E)| < ¢ ]~ /"), (1.10)
where 1(p) := p1 + p2 + - - - + pqg is the length of the multi-index p.
(H3) There exist a positive constant ¢ and d positive exponents ay, ..., aq such
that for every p € {0, 1,2,...7p*}d, and € € (R\{O})d,
d
€] > 1= |07F(&)] < e [J(L+ &)~ Ve (111)
I=1
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Wavelet type random series representation

The Gaussian case o = 2

We denote by {t; x : (J,K) € Z9 x Z?} the orthonormal basis of L?(R?) defined
in the following way: for all (J,K) := (j1,---,jd, ki, .., kq) € Z¢ x Z9 and
x = (x1,...,x4) €ERY

Yk (x Hzﬂ/2 (2x — ki), (2.1)

where 9! denotes an usual 1D Lemarié-Meyer mother wavelet. We refer to the
book of Meyer (1990) and to that of Daubechies (1992) for a complete
description of the wavelet tools used in the present section. It is worthwhile noting
that 1! is a real-valued function belonging to the Schwartz class S(R), and that

its Fourier transform 1)1 is a compactly supported C* function on R, such that

suppi)\lg{)\eR <|)\|<87r} (2.2)
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Wavelet type random series representation

The fact that the Fourier transform map is an isometry from L?(R?) into itself
implies that "the Fourier transform of the basis {1k : (J,K) € Z9 x Z}", that

is {'l//;J’K 1 (J,K) € Z9 x 29}, is also an orthonormal basis of L?(R?). Thus, for
any fixed t € RY, the kernel function & — (™€ — 1)f(€), associated with X(t),
can be expressed as:

(- 1)fE)= Y sx(®iux©)  (n 2RY).  (23)

(J,K)eZ9 x 24

The coefficients sy k(t) are given by
sik(t) = /d (€™ —1) F(E)Puk(€)dE =V, (27t — K) =W, (=K), (24)
R
where, for all x € RY,

V() 1= 202 [ (206) e, 25)

R

with the convention that 27¢ := (21£y, ..., 20¢,).
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Wavelet type random series representation

Therefore, we get that

. ; —~ -
X(t)=R /Rd ((J,K)Eezd: . (LUJ (2 t— K) -V, (—K))?/JJ,K(f)) dM,(&)
(2.6)

Finally, in view of the isometry property of the stochastic integral [, () dMs, it
turns out that one can interchange in (2.6) the integration and the summation.
Thus, we obtain that

X(t)y= > (Vy(2t=K) =V, (=K))esk, (2.7)
(J,K)ezd x 24

where the series converges in L?(2), and the ¢, k's are the independent N/(0, 1)
Gaussian random variables

€1k = Re { /R d«%(é)d/%(&)} . (2.8)
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Wavelet type random series representation

The general case o € (0,2)

The arguments, we have used in the "convenient” framework of the Hilbert space
L2(R?), have to be adapted to the "more hostile” framework of the space L (Rd).

The main difficulty comes from the fact that {'IQJ\‘LK 1 (J,K) € 29 x Zd} is no
longer a basis of L% (Rd).

The function 9,y x = 20+ Ha)(1/2=1/a) 4, denotes the renormalized version
of the function v k so that 9o, k|| Lo(rey does not depend on (J, K).

Thus setting W, j = 20t +Hi)(1/a=1/2)y |, it follows that for every
(J,K) € Z¢ x Z% and (t,€&) € RY x RY, one has

sik(t)0sk(E) = (W, (27t = K) — v, (*K))%,K(f) (2.9)
= (Vo (2/t—K) =V, (—K) )QZa,J,K(g)-
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Recall that L*(R9) is a complete metric space for the distance

o 1/«
||g1—g2||La(Rd):(J’Rd|g1(f)—g2(s)| ae) ", ifaz1,

D.(g1, &) =

||g1 82

Also, notice D, (g1,82) = Du(g1 — £2,0).

The proof of the fact that, for any fixed ¢ € RY, the kernel function
& (e™€ —1)f(€), associated with X(t), can be expressed as:

(€ —1)fE)= > sik()dux(©)  (in L°R)),

(J,K)€Zd x 24

is divided in two steps.

Lo(rd) = Jpa l81(E) — &2(8)[" dE,  else.

(2.10)

(2.11)
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Wavelet type random series representation

Step 1. We show that

S D (sJ,K(t)qza,J,K(-),o) < too. (2.12)

(J,K)eZIx 72

Notice that, in view of the completeness of L* (Rd), (2.12) implies that
there exists F(t,-) in L%(R?) such that

FitO= > six(tux(€)  (in L(RY)). (2.13)
(J,K)ezd x 24
Step 2. We show that, for all t € R? and almost all ¢ € RY,
F(t,&) = (e™* = 1)£ (). (2.14)

Basically the Step 2 is derived from the fact that, for any fixed arbitrarily small
n > 0, the function & — (e™* — 1) (¢&) H7:1 1{i¢, >y belongs to L2(RY).
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Basically, the Step 1 is derived from the following proposition.
Proposition 2.1

WV, is infinitely differentiable on RY. Moreover, all the functions abwa, J,
b€ 74, are well-localized:
(i) There is a positive constant c, such that for all J € Z4, and
x=(x,...,xq) €RY,

. . —a/—d/a d .
|8b\|la _J(X)| “e (2 ST Jd) I, 2 il e (2.15)
T IT, (1 + bal)™ ’

(i) Foreach ¢ = (C1,---,Cd) € {0,139\ {(O,...,0)}, there exists a positive
constant c, such that for every J € Hle Z¢, (Zy =N and Zo = Z_) and
x=(x,...,xq) € RY,

o(1=C1ii/ e p—jiiar
b
’a wa’_j < CH W (216)

Recall that p, := max {2, [1/a] +1}.
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Wavelet type random series representation

Next, using arguments rather similar to those in the Gaussian case, we can show
that:

Proposition 2.2 (Wavelet representation of X)
The field {X(t),t € R?} can be expressed, for each fixed t € RY, as

X()= Y. (Yau(2t—K) = Vo, (—K))ea sk, (2.17)
(J,K)ezIx 74

where the series converges in probability, and the €, j k's are the identically
distributed symmetric a-stable random variables

€a, ),k = Re {/Rd "Za,J,K(f)d/\N/la(g)} . (2.18)

— The convergence of the series in (2.17) can be strenghtened to almost sure
uniform convergence in t belonging to any compact subset of R9.

— In contrast with the Gaussian case, the €, j 's are not independent, they even
have a complicated dependence structure.

A. Ayache and G. Boutard (Université Lille 1) Behaviour of harmonizable stable fields Workshop Fractality and Fractionality 18 / 30



= o 0000
Organization of the talk

© Introduction and motivations

© Wavelet type random series representation

© Results on path behaviour

«O> «F>r «=» «E» Q>



Results on path behaviour

Basically, path behaviour of X is determined by asymptotic behaviour of the
sequence {€q sk : (J,K) € Z9 x Z?}. Let us state three crucial lemmas on this
latter one.

Lemma 3.1 (the case a € (0, 1))

There exists an event Q* of probability 1 which depends on o and satisfies the
following property: for all fixed § € (0,+00) and w € Q*, there is a finite constant
C(w) > 0 (depending on o, § and w), such that, for every J = (j1,...,j4) € Z4
and K € 79, one has

d

lea sk (@) < Cw) TT(L+ L) (3.1)
=1

A rather surprising fact is that |e,, s k(w)| can be bounded independently on K
when « € (0,1).
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Results on path behaviour

The previous lemma and the next one are obtained by using a LePage series
representation of the complex-valued a-stable process

{ [ Ve (€ AMa(€) - (4, K) € 27 x zd}.

Lemma 3.2 (the case « € [1,2))

There exists an event Q2* of probability 1 which depends on o and satisfies the
following property: for each fixed ¢ € (0,400) and w € Q, there is a finite
constant C(w) > 0 (depending on «, 6 and w), such that for all

(J,K) = (jla---;jd,k17~-~7kd) € 79 x Zd,

d d
|€a,s.k(W)] < C(w), | log <3+ > (Ll + Il )) [T+ (32

=1 =1
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Results on path behaviour

In contrast with the previous two lemmas, the following one is a rather classical
result.

Lemma 3.3 (the Gaussian case o = 2)

There exists an event Q* of probability 1 satisfying the following property: for
every fixed w € Q*, there is a finite constant C(w) > 0 (depending on w), such
that for each (J,K) = (j1,---,jd, ki, ---, kq) € Z9 x Z¢,

d
les,k(W)] = le2,,k(w)| < C(w), | log (3 +) (il + |k/|)>- (33)

=1

Notice that in the three crucial lemmas, we have just stated, the events of full
probability 2* are universal in the sense that they do not depend on the particular
choice of the function f associated with the field X. The results, we will obtain,
on path behaviour of X are valid on these universal events.
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Results on path behaviour

Sketch of the proof of Lemma 3.1: Let {x": me N}, {[,, : m € N}, and
{gm : m € N} be three arbitrary mutually independent sequences of random
variables having the following three properties.

@ The k™'s, m € N, are Rvalued, independent, identically distributed and
absolutely continuous, with a probability density function, denoted by ¢, such
that the measure ¢(¢)d¢ is equivalent to the Lebesgue measure d¢ on RY.

@ Thel,'s, meN, are Poisson arrival times with unit rate.

© The gn's, m € N, are complex-valued, independent, identically distributed,
rotationally invariant and satisfy E[|Re(gm)|"] = 1.

LePage representation: there is a deterministic constant a(«) > 0 such that

{/}Rdwd%(ozu,mezd xzd}

has the same distribution as

+oo -
{a(a) ngr;l/a¢(“m)71/a %Za,J,K(Ii’") - (4,K) e z9 x Zd} .
m=1
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Results on path behaviour

From now on, these two processes are identified, also, we assume that the g,,'s,
m € N, are complex-valued centred Gaussian random variables, and that the
probability density function ¢ is such that, for all £ = (&1,...,&4) € RY\ {0},

d d
o) = (3) TTlel™ (@ + gl ™", (34)

where 1 > 0 is arbitrary fixed.
— Using the fact that, for all (J,K) € Z9 x Z9 and &€ € R,

d i —_ .
&LJ’K(@ — HQ—j//ae—if“k/&/ wl(Q—J/&), (3_5)

I=1

we get, for some deterministic constant ¢;, not depending on (J, K) and m, that

O™ Do ()
ny —9/a d . 1/a . (14n)/a |~ .
< (7)) TIRr™ (Ll + Jrog |2y ) [0 (27w
=1
d
<a@+Lh*me. (3.6)
=1
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Results on path behaviour

— In view of the Gaussianity assumption on the g,,'s, m € N, it can be derived
from the Borel-Cantelli's Lemma that, almost surely, for all m € N, one has

lgm| < C2v/log (3 + m), (3.7)

where G, is a finite random variable not depending on (J, K) and m.

— It results from the strong law of large number, that almost surely, for any
m € N, the Poisson arrival time [, satisfies

Gm<T,<Cm, (3.8)

where C3 and (4 are two positive finite random variables not depending on (J, K)
and m.
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Results on path behaviour

Finally, it follows from (3.6) to (3.8) that, almost surely, for all (J, K) € Z9 x Z9,
one has

_ +00 -
| [ P @aMa(@)] < ala) Y laml oM 65 D)
m=1
d
< GIIa+uptre, (3.9)
I=1

where the random variable
+o00
G = a(0)a GG Z m~Y/log (3 + m) (3.10)
m=1
is almost surely finite since « € (0,1). O

Let us now turn to the statements of our results on path behaviour of X. First,
we mention that we will consider directional increments of X in a generalized
sense, more precisely:

A. Ayache and G. Boutard (Université Lille 1) Behaviour of harmonizable stable fields Workshop Fractality and Fractionality 26 / 30



Results on path behaviour

For every fixed k € {1,...,d}, and hy € R, we denote by Akk, the operator from
the space of the real-valued functions on RY, into itself; so that, when g is such a
function, Aﬁkg is then the function defined, for all x € R as,

(Ak8)(x) = g(x + heex) — g(x), (311)

ex being the vector of R whose k-th coordinate equals 1 and the others vanish.

Notice that the operators A are commutative, in the sense that, for all
(k, k") € {1,...,d}? and (hk, h},) € R?, one has,

k' k _ Ak K
A 2 oAp = Ay, oAh;,,

where the symbole "o" denotes the usual composition of operators. For every
h=(h,...,hg) € RY and multi-index B = (b1, ..., by) € Z9, we denote by
Aﬁ), the operator from the space of the real-valued functions on R?, into itself,

defined by

Afy =Dy o o AR (3.12)
where, for all k € {1,...,d}, Az;bk is Aﬁk composed with itself by times, with the

convention that Aﬁ;o is the identity.
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Results on path behaviour

Definition 3.1 (it concerns powers of logarithmic factors in the next theorem)
(i) We denote by L5 the function defined, for each (a, b) € R?, as
Lr(a,b) :=1/211p>5) + Lip—s}- (3.13)
More precisely, one has: Ly(a,b) =0 ifa> b, L3(a,b) =3/2 ifa= b, and
Ly(a,b) =1/2 ifa< b.

(ii) For any fixed o € (0,2), we denote by L, the function defined, for each
(a,b,6) € R%, as

Lo(a,b,6) = (1/a+ [a]/2+6)Lip>ay + Lip=al, (3.14)

where |« is the integer part of a. More precisely,
e when « € (0,1), one has: L.(a,b,0) =0ifa> b, Lo(a,b,0)=1/a+1+0
ifa=b, and L(a,b,6) =1/a+ 46 ifa< b;
o when « € [1,2), one has: Lo(a,b,0) =0 ifa> b, Lo(a,b,0) =1/a+3/2+¢
ifa=b, and Lo(a,b,0) =1/a+1/2+6 ifa< b.
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Results on path behaviour

Theorem 3.1 (directional behaviour of X)
Let a1, ...,ay be the exponents governing the asymptotic behaviour at infinity of
f along the axes of R?. Moreover we assume that B € Z9, T € (0, +oc) and

w € Q* are arbitrary an fixed.

(i) When oo = 2, one has

HAFh)X(, W) H T ,00

d . La(a,b1)
H |hl|m|n(b/,a/) <|Og (3+ ‘hl‘_1)> 204/, by

P < +oo. (3.15)
e[-T,

(i) When o € (0,2), for all arbitrarily small positive real number ¢, one has

[agxte),
sup

d

he[-T,T]¢ min(hr 3 _1\\ Lelanbrd)
[T 1607 (10g (34 Im 7)) ™
=1

< 4o00. (3.16)
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Results on path behaviour

Theorem 3.2 (behaviour of X at infinity)

Let a’ € (0,1) be the exponent governing the behaviour of f in the vicinity of
zero. Moreover we assume § € (0,+00) and w € Q* are arbitrary and fixed.

@ When o € (0,1) one has

ufrfl{ 617 (log 3+ 1¢1)) ™/ IX(t.w)l } <400 (317)

@ When « € [1,2) one has

.ﬁﬁ’fl{ 617 (log 3+ 1¢1)) ™/~ IX(t,w)| | < +oo. (3.18)

©@ When o« = 2 one has

sup { 1¢1 (loglog (3+ 1¢1)) /2

X(t,w)| } < +oo. (3.19)
Jel>1
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