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1-Introduction and motivation

→ Let (hn)n∈N be an arbitrary sequence of Lipschitz functions de�ned on

[0, 1] and with values in [a, b] ⊂ (0, 1) which satis�es ‖hn‖Lip = O(n). We

set h(t) = lim infn→+∞ hn(t).
→ Let (widehatfn)n∈N be a sequence of Cd (R) with values in [0, 1], such
that:

f̂0(ξ) = 1 when |ξ| ≤ 2π/3 and f̂0(ξ) = 0 when |ξ| ≥ π;
for all n ≥ 1 and ξ, f̂n(ξ) = f̂ (2−nξ)− f̂ (2−(n−1)ξ).

{X (t)}t∈[0,1] the GMBM of parameter (hn)n∈N is de�ned as

X (t) =

∫
R

( +∞∑
n=0

e itξ − 1

|ξ|hn(t)+1/2
f̂n(ξ)

)
dŴ (ξ). (1)
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Recall that it has been shown by Ja�ard, Taqqu and Ayache that

P
{
∀t ∈ [0, 1] : αX (t) = h(t)

}
= 1, (2)

which means that {αX (t)}t∈[0,1] the pointwise Hölder exponent of

{X (t)}t∈[0,1] may exhibit very irregular behavior.
⇒ A natural question which can be addressed is that, whether or not, in
this case, it is possible to construct α̂X ,N(t) a statistical estimator of
αX (t) at a given point t, starting from the observation of X (p∆N),
p = 0, . . . , [∆−1N ] a discretized path of {X (t)}t∈[0,1]; here ∆N denotes the

discretization mesh, of course limN→+∞∆N = 0.

→ In this seminar, we will see that under the mild condition that
(hn(t))n∈N be a convergent sequence, the answer to this question is
(theoretically speaking) positive.
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In the case of FBM several approaches have already been proposed
in order to estimate the Hurst parameter H (recall that this parameter

equals to the pointwise Hölder exponent of FBM). Let us mention some of

these approaches.

Hall and Wood (1994): Box dimension;

Hall, Wood and Feuerverger (1994): number of crossings;

Lévy Véhel and Peltier (1994): maximum likelihood;

Abry, Flandrin, Taqqu and Veitch (1998): Wavelets.

The approach developed by Guyon and Léon (1987) and that

developed by Istas and Land (1994) will be of particular interest to us.

The �rst of these two approaches is base on Quadratic Variations and
the second one on Generalized Quadratic Variations.
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One observes {BH(p/N)}p=0,...,N a discretized of FBM.

→ Quadratic Variation (VQ):

ṼN =
N−1∑
p=0

(
BH

(k + 1

N

)
− BH

( k
N

))2

. (3)

Guyon and Léon have shown that N2H−1ṼN coverges a.s. to a strictly

positive deterministic constant c when N → +∞; therefore

H̃N =
1

2

(
1 +

log ṼN

logN

)
, (4)

converges, a.s., to H when N → +∞.
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Speed of convergence:

when 0 < H < 3/4, a standard Central Limit Theorem (i.e. with a

rate of convergence
√
N and a Gaussian limit) holds for the Quadratic

Variations;

when 3/4 < H < 1, a non standard Central Limit Theorem (i.e. with

a rate of convergence N2−2H and a non Gaussian limit) holds for the

Quadratic Variations.

In order to obtain a standard Central Limit Theorem for all the values of

H ∈ (0, 1), Istas and Lang have proposed to replace the Quadratic

Variation ṼN by a Generalized Quadratic Variation, for example,

VN =
N−2∑
p=0

(
BH

(p + 2

N

)
− 2BH

(p + 1

N

)
+ BH

( p
N

))2

. (5)
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→ By making use of Generalized Quadratic Variations, Istas and Lang have

constructed asymptotically normal estimators of Hölder exponents of a wide

class of stationary increments Gaussian processes, which includes FBM.

→ Later, in 1998, by localizing Generalized Quadratic Variations, Benassi,

Cohen and Istas have extended this estimation method to the non

stationary increments setting of Multifractional Brownian Motion (MBM).
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Estimation of pointwise Hölder exponent of MBM
Let t ∈ [0, 1] be an arbitrary �xed point.

Assume that one observe {X (p/N)}p=0,...N a discretized path of

{X (s)}s∈[0,1] the MBM of functional parameter h.

→ By localizing Generalized Quadratic Variations of MBM around t, one

can build an estimator of its pointwise Hölder exponent h(t). More

precisely, let γ ∈ (0, 1) be �xed let WN(t) be set de�ned as,

WN(t) =
{
p ∈ {0, . . . ,N − 2} :

∣∣∣t − p

N

∣∣∣ ≤ N−γ
}
. (6)

In fact WN(t) plays the role of a localizing window whose size can be

controled via the parameter γ.
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The Generalized Quadratic Variations of MBM loaclized around t, are

de�ned as

VN(t) =
∑

p∈WN(t)

(
X
(p + 2

N

)
− 2X

(p + 1

N

)
+ X

( p
N

))2

. (7)

Theorem 1 (Benassi, Cohen and Istas)

When h is a continuously di�erentiable function, then

ĥN(t) =
1

2

(
1− γ − logVN(t)

logN

)
, (8)

is a strongly consistent and asymptotically normal estimator of h(t).
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2-Main results

→ We denote by {X (s)}s∈[0,1] a GMBM of parameter (hn)n∈N (recall that

the functions hn are with values in [a, b] ⊂ (0, 1)).
→ Let t ∈ [0, 1] be a �xed point, we denote by VNδ(t) the localized

Generalized Quadratic Variations of GMBM, de�ned as

VNδ(t) =
∑

p∈W
Nδ (t)

(
X
(p + 2

Nδ

)
− 2X

(p + 1

Nδ

)
+ X

( p

Nδ

))2

, (9)

where

WNδ(t) =
{
p ∈ {0, . . . , [Nδ]− 2} :

∣∣∣t − p

Nδ

∣∣∣ ≤ N−γ
}
. (10)

Here δ ≥ 1 and γ ∈ (0, 1) are two �xed real numbers.
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Theorem 2 (Lévy Véhel and Ayache)

Assume that the sequence (hn(t))n∈N is convergent to h(t). Also assume

that δ and γ satisfy 0 < δb < γ < δ − 1/2. Then

ĥNδ(t) =
1

2δ

(
δ − γ − logVNδ(t)

logN

)
, (11)

is a strongly consistent estimator h(t). It is worth noticing on can take

δ = 1 when h(t) ∈ (0, 1/2).

Shetch of the proof: Let {Y (u, v)}(u,v)∈[0,1]2 generating the GMBM

{X (s)}t∈[0,1], namely the �eld de�ned as,

Y (u, v) =

∫
R

( +∞∑
n=0

e iuξ − 1

|ξ|hn(v)+1/2
f̂n(ξ)

)
dŴ (ξ). (12)
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One has for all s ∈ [0, 1],

X (t) = Y (s, s). (13)

Recall that there is a random variable C of �nite moment of any order,

such that one has, a.s., for all v1, v2 ∈ [0, 1],

sup
u∈[0,1]

∣∣Y (u, v1)− Y (u, v2)
∣∣ ≤ C |v1 − v2|. (14)

Let {Z (u)}u∈[0,1] be the stationary increments process de�ned for all

u ∈ [0, 1] as
Z (u) = Y (u, t), (15)

By using, (13) and (14), the Generalized Quadratic Variation of GMBM,

VNδ(t), can be expressed as,

VNδ(t) = TNδ(t) + RNδ(t), (16)
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where TNδ(t) is the Generalized Quadratic Variation of {Z (u)}u∈[0,1] and
RNδ(t) a negligible term. In fact, {Z (u)}u∈[0,1] is almost an FBM of Hurst

parameter h(t); therefore N2δH+γ−δTNδ(t) a.s. converges to a positivie

constant, when N → +∞.

�
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Figure: simulated path of a GMBM such that h = 0.31l[0,0.6) + 0.71l[0.6,1]
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Figure: Estimated pointwise Hölder exponents
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Figure: Simulated path of a GMBM such that h = 0.21l[0,1]\{0.6} + 0.81l{0.6}
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Figure: Estimated pointwise Hölder exponents
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Figure: Simulated path of a GMBM such that h = 0.71l[0,1]\{0.6} + 0.251l{0.6}
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Figure: Estimated pointwise Hölder exponents
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