
Fractional and Multifractional fields from a wavelet point

of view

Antoine Ayache

USTL (Lille)

Antoine.Ayache@math.univ-lille1.fr

February 15, 2010

A.Ayache (USTL) Fractional fields and Wavelets methods February 15, 2010 1 / 55



1-Introduction

The goal of our talk: To present the main ideas of the solutions of 3
connected problems in the setting of multivariate Fractional Brownian
Motion (FBM) and multivariate Multifractional Brownian Motion
(MBM).

Though it is rich enough (FBM is non-Markovian nor a semimartingale),
this setting remains simple enough (thus we can avoid some technical
complications).

Wavelet methods will play a crucial role in the solutions of these problems.
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FBM is a quite classical example of a fractal field. It is denoted by
{BH(t)}t∈RN since it depends on a unique parameter H ∈ (0, 1), called the
Hurst parameter. The covariance kernel of this centered Gaussian field
with stationary increments is given, for all s ∈ R

N and t ∈ R
N , by

E
(
BH(s)BH(t)

)
=

cH

2

{
|s|2H + |t|2H − |s − t|2H

}
. (1)

{B1/2(t)}t∈RN is the usual Brownian motion.

Up to a multiplicative constant, FBM can be represented, for all t ∈ R
N , as

BH(t) =

∫

RN

e it·ξ − 1

|ξ|H+N/2
dW (ξ). (2)

It is a fractal objet since, for all a > 0,

{BH(at)}t∈RN
f.d.d.
= {aHBH(t)}t∈RN .
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The first problem: As FBM is a continuous Gaussian field, it can be
represented on any compact K ⊂ R

N as,

BH(t) =
+∞∑

n=1

ǫnfn(t), (3)

where:

The ǫn’s are independent N (0, 1) real-valued Gaussian random
variables.

The fn’s are deterministic real-valued continuous functions over K .

The series in (3) is, with probability 1, uniformly convergent in t ∈ K .

The representation (3) is far from being unique and it seems natural to
look for optimal representations i.e.

E

(
sup
t∈K

∣∣∣
+∞∑

n=m

ǫnfn(t)
∣∣∣
)
−→ 0,

as fast as possible, when m → +∞.

→ In section 2 we will introduce a radom wavelet series represention of
FBM and show that it is optimal.
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Let us now present the main motivations behind the second problem.

Tough, FBM turned out to be very useful in many areas (signal and image
processing, telecommunication, ...) it has some drawbacks; an important
one is that the local Hölder regularity of FBM remains the same all
along its trajectory:
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The local Hölder regularity of a stochastic field {X (t)}t∈RN can be
measured through its pointwise Hölder exponent {αX (t)}t∈RN . When
{X (t)}t∈RN is continuous and nowhere differentiable (this is the case of
FBM) then, for all t ∈ R

N ,

αX (t) = sup
{
α ∈ [0, 1] : lim sup

s→0

|X (t + s) − X (t)|
|s|α = 0

}
.

The local Hölder regularity of FBM remains the same all along its
trajectory since:

P
{
∀t ∈ R

N : αBH
(t) = H

}
= 1. (4)

Basically, (4) is due to the fact that the increments of BH are stationary.

A.Ayache (USTL) Fractional fields and Wavelets methods February 15, 2010 6 / 55



The constancy of the pointwise Hölder exponent of FBM is a strong
limitation in many situations (detection of cancer tumors in medical
images, description of traces of Internet network traffic,...). This is why a
more flexible model called Multifractional Brownian Motion (MBM)
was introduced by Benassi, Jaffard and Roux and also by Lévy Vehel and
Peltier.

We denote MBM by {X (t)}t∈RN . It can be represented, for all t ∈ R
N as,

X (t) =

∫

RN

e it·ξ − 1

|ξ|h(t)+N/2
dW (ξ), (5)

where h(·) is a continuous functional parameter with values in (0, 1).
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Theorem 1 (Lévy Vehel et al. and Benassi et al.)

When h(·) satisfies, on each compact cube K ⊂ R
N , a uniform Hölder

condition of order β = β(K ), i.e. for all s, t ∈ K,

|h(s) − h(t)| ≤ c |s − t|β

and β is such that supt∈K h(t) < β. Then for all t ∈ R
N ,

P
{
αX (t) = h(t)

}
= 1.

The second problem we intend to solve in this talk (see section 3) is to
show that:

P
{
∀t ∈ R

N : αX (t) = h(t)
}

= 1.
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Simulation of a trajectory of MBM

In this simulation the functional parameter of MBM has been chosen such
that h(t) = 0, 6t + 0, 2 for all t ∈ [0, 1]
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The third problem we intend to solve in this talk (see section 4) is to show
that the local time of MBM is jointly continuous. To this end we need
to prove that MBM satisfies the so-called property of local
nondeterminism (LND).

The concept of LND was first introduced by Berman. Roughly speaking, it
means that the increments are asymptotically independent. Thanks to
it, many of the results on local times of Brownian motion, were extended
to more general stochastic fields.
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2-Optimality of the wavelet series representation of FBM

l-numbers and optimal representations:

A sharp lower bound of the rates of convergence of all the series
representations over a compact K ⊂ R

N of the FBM {BH(t)}t∈K is given
by (lm(BH))m≥1 the sequence of l-numbers of BH , defined as

lm(BH) = inf

{
E sup

t∈K

∣∣∣
+∞∑

n=m

ǫnfn(t)
∣∣∣ : X (t) =

+∞∑

n=1

ǫnfn(t)

}
. (6)

A representation BH(t) =
∑∞

n=1 ǫnfn(t), is said to be optimal, if and only
if, one has when m → +∞,

E sup
t∈K

∣∣∣
+∞∑

n=m

ǫnfn(t)
∣∣∣ = O(lm(BH)).

In this section, from now on we assume that K = [0, 1]N .
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Recently, by using operator theory, Linde and Ayache have obtained the
following sharp estimations of lm(BH): For all m ≥ 2

c2m
−H/N

√
log m ≤ lm(BH) ≤ c1m

−H/N
√

log m,

where 0 < c2 ≤ c1 are two constants.

A natural question one can address is that whether it is possible to
construct explicitly optimal series representation of BH .

We will show that the wavelet series representation of BH , which will soon
be introduced, provides a positive answer to this question.

Note that by using spherical harmonics Malyarenko has recently given
another optimal series representation of BH .

A.Ayache (USTL) Fractional fields and Wavelets methods February 15, 2010 12 / 55



An orthonormal wavelet basis of L2(RN) is a basis of the form:

{
2jN/2ψl (2

jx − k) : 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z
N
}
,

where the functions ψl are called the mother wavelets. We always
assume that:

(i) The ψl ’s belong to the Schwartz class S(RN) i.e. they are infinitely
differentiable and satisfy,

sup
{(

1 + |x |
)p∣∣(∂γψl )(x)| : x ∈ R

N
}
< +∞.

(ii) For all l , ψ̂l (ξ) =
(
2π)−N/2

∫
RN e−iξ·xψl (x) dx , the Fourier transform

of ψl , is compactly supported and vanishes in a neighborhood of
the origin.

The first construction of mother wavelets satisfying (i) and (ii) was given
given by Meyer and Lemarié.
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Wavelet series representation of FBM:

The isometry property of Fourier transform implies that:

{
2−jN/2e i2−jk·ξψ̂l(2−jξ) : 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z

N
}
,

forms an orthonormal basis of L2(RN). By expanding for every fixed

t ∈ R
N and H ∈ (0, 1), the kernel of FBM ξ 7→ e it·ξ−1

|ξ|H+N/2 in the latter basis,

it follows that

e it·ξ − 1

|ξ|H+N/2
=

2N−1∑

l=1

+∞∑

j=−∞

∑

k∈ZN

cl ,j ,k(t,H)2−jN/2e i2−jk·ξψ̂l (2−jξ), (7)

where the series converges in L2(RN) and each of its coefficients is given by

cl ,j ,k(t,H) = 2−jN/2

∫

RN

(e it·ξ − 1)

|ξ|H+N/2
× e−i2−jk·ξψ̂l(2

−jξ) dξ. (8)
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Setting in (8), η = 2−jξ one gets that

cl ,j ,k(t,H) = 2−jH
(
Ψl(2

j t − k ,H) − Ψl(−k ,H)
)
, (9)

where

Ψl(x ,H) =

∫

RN

e ix ·η ψ̂l (η)

|η|H+N/2
dη. (10)

Putting together (7), (9) and the isometry property of Wiener integral one
obtains the wavelet series representation of FBM:

BH(t) =
2N−1∑

l=1

+∞∑

j=−∞

∑

k∈ZN

2−jHǫl ,j ,k
(
Ψl(2

j t − k ,H) − Ψl (−k ,H)
)
, (11)

where the ǫl ,j ,k ’s are the independent N (0, 1) real-valued Gaussian
random variables defined as

ǫl ,j ,k = 2−jN/2

∫

RN

e i2−jk·ξψ̂l (2−jξ) dW (ξ).
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A priori, the wavelet series representation of FBM is, for every fixed (t,H),
convergent in L2(Ω), Ω being the underlying probability space.

We are going to show that it is also almost surely convergent in the
Banach space of continuous functions C(K ) (equipped with the
uniform norm). Here K denotes an arbitrary compact subset of
R

N × (0, 1); for simplicity we assume that K = [0, 1]N × [a, b].

In view of Itô-Nisio Theorem, it is sufficient to prove that(
{Bn

H(t)}(t,H)∈K

)
n≥1

, the sequence of the partial sums of the series, is

weakly relatively compact in C(K ), which can be obtained (see e.g.
Billingsley) by showing that, for all (t1,H1) ∈ K and (t2,H2) ∈ K ,

E
∣∣Bn

H1
(t1) − Bn

H2
(t2)

∣∣2 ≤ c
(
|t1 − t2|2 + |H1 − H2|2

)a
. (12)

where c > 0 is a constant non depending on n.
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Bn
H(t) can be expressed as

Bn
H(t) =

∑

(l ,j ,k)∈Dn

2−jHǫl ,j ,k
(
Ψl(2

j t − k ,H) − Ψl(−k ,H)
)
,

where Dn is a finite set whose cardinality depends on n. By using the fact
that the ǫl ,j ,k ’s are independent N (0, 1) Gaussian variables, one obtains
that

E
∣∣Bn

H1
(t1) − Bn

H2
(t2)

∣∣2

=
∑

(l ,j ,k)∈Dn

∣∣∣2−jH1
(
Ψl(2

j t1 − k ,H1) − Ψl(−k ,H1)
)

− 2−jH2
(
Ψl(2

j t2 − k ,H2) − Ψl(−k ,H2)
)∣∣∣

2

≤
2N−1∑

l=1

∑

j∈Z

∑

k∈Z

|2−jH1
(
Ψl(2

j t1 − k ,H1) − Ψl(−k ,H1)
)

− 2−jH2
(
Ψl(2

j t2 − k ,H2) − Ψl(−k ,H2)
)∣∣∣

2

= E
∣∣BH1

(t1) − BH2
(t2)

∣∣2.
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Then standard computations allow to show that

E
∣∣BH1

(t1) − BH2
(t2)

∣∣2 ≤ c
(
|t1 − t2|2 + |H1 − H2|2

)a
.

Let us now show that the wavelet series representation of FBM is optimal.

Lemma 1

For every p ∈ N and γ ∈ N
N one has

sup
{(

1 + |x |
)p∣∣(∂γ

x Ψl )(x ,H)
∣∣ : x ∈ R

N and H ∈ (0, 1)
}
< +∞.

In view of Lemma 1, from now on we will make the heuristical
assumption that for all H ∈ (0, 1), one has

supp Ψl(·,H) ⊂ [0, 1)N .
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Proof of Lemma 1: One has for all (x ,H) ∈ R
N × (0, 1),

Ψl(x ,H) =

∫

RN

e ix ·η ψ̂l (η)

|η|H+N/2
dη,

where ψ̂l is a C∞ compactly supported function vanishing in a
neighborhood of the origin. Thus,

(∂γ
x Ψl)(x ,H) = i |γ|

∫

RN

e ix ·η η
γψ̂l (η)

|η|H+N/2
dη,

Finally, several integrations by parts allow to obtain the lemma. �

Lemma 2

There is a random variable C > 0 of finite moment of any order such that

one has almost surely for all l ∈ {1, . . . , 2N − 1}, j ∈ Z and k ∈ Z
N ,

|ǫl ,j ,k | ≤ C

√
log

(
2 + |j | + |k |).
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Theorem 2 (Linde and Ayache)

The wavelet series representation of FBM is optimal on each compact cube

of R
N .

Heuristic proof of Theorem 2: We will show the optimality on the cube
[0, 1]N . Therefore, in view of our heuristical assumption:
supp Ψl(·,H) ⊂ [0, 1)N , many terms in the wavelet series representation of
FBM:

BH(t) =

2N−1∑

l=1

+∞∑

j=−∞

∑

k∈ZN

2−jHǫl ,j ,k
(
Ψl(2

j t − k ,H) − Ψl (−k ,H)
)

vanish and it reduces to

BH(t) =
2N−1∑

l=1

−1∑

j=−∞

2−jHǫl ,j ,kΨl(2
j t,H)

+

2N−1∑

l=1

+∞∑

j=0

∑

k∈{0,...,2j−1}N

2−jHǫl ,j ,kΨl(2
j t − k ,H).
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We approximate the latter series by the finite sum

BJ
H(t) =

2N−1∑

l=1

−1∑

j=−[2J/2]

2−jHǫl ,j ,kΨl(2
j t,H)

+

2N−1∑

l=1

J∑

j=0

∑

k∈{0,...,2j−1}N

2−jHǫl ,j ,kΨl(2
j t − k ,H),

where J is a big enough integer. Up to a multicative constant (only
depending on N) there are 2JN terms in the latter sum. Let us derive a
sharp upper bound of

∥∥BH − BJ
H‖∞ = sup

t∈[0,1]N

∣∣BH(t) − BJ
H(t)

∣∣.
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By using the smoothness of Ψl(·,H) and the fact Ψl(0,H) = 0, it follows
that for all j < 0 and t ∈ [0, 1]N ,

∣∣Ψl(2
j t,H)

∣∣ ≤ c12
j ,

where c1 > 0 is a constant. Then, in view of Lemma 2, one has

∥∥∥
2N−1∑

l=1

−[2J/2]−1∑

j=−∞

2−jHǫl ,j ,kΨl(2
j ·,H)

∥∥∥
∞

≤ C2

−[2J/2]−1∑

j=−∞

2j(1−H)
√

log(2 + |j |)

≤ C32
−(1−H)2J/2√

J,

(13)

where C2 and C3 are two random variables (non depending on J) of finite
moment of any order.
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From the other hand, by using the heuristical assumtion
supp Ψl(·,H) ⊂ [0, 1)N , and Lemma 2, it follows that

∥∥∥
2N−1∑

l=1

+∞∑

j=J+1

∑

k∈{0,...,2j−1}N

2−jHǫl ,j ,kΨl(2
j · −k ,H)

∥∥∥
∞

≤ C4

∥∥∥
+∞∑

j=J+1

∑

k∈{0,...,2j−1}N

2−jH
1lQN

q=1[2
−jkq ,2−j (kq+1))(·)

√
log(2 + j + |k |)

∥∥∥
∞

≤ C5

+∞∑

j=J+1

2−jH
√

j ≤ C62
−JH

√
J,

(14)

where C4, C5 and C6 are random variables (non depending J) of finite
moment of any order. Finally combining (13) with (14) one obtains the
theorem. �
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3-Local Hölder regularity of MBM

The MBM {X (t)}t∈RN is defined for every t ∈ R
N as

X (t) = Bh(t)(t) =

∫

RN

e it·ξ − 1

|ξ|h(t)+N/2
dW (ξ),

where h(·) is a deterministic funtion with values in (0, 1) which satisfies on
each compact cube K ⊂ R

N a uniform Hölder condition of order
β > maxt∈K h(t).

The local Hölder regularity of {X (t)}t∈RN can be measured through its
pointwise Hölder exponent {αX (t)}t∈RN which is defined for all t ∈ R

N as,

αX (t) = sup
{
α ∈ [0, 1] : lim sup

s→0

|X (t + s) − X (t)|
|s|α = 0

}
.

The goal of this section is to show that

Theorem 3 (Jaffard, Taqqu and Ayache)

P
{
∀t ∈ R

N : αX (t) = h(t)
}

= 1.
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It not very difficult to prove that

P
{
∀t ∈ R

N : αX (t) ≥ h(t)
}

= 1. (15)

Indeed, one has for all ω ∈ Ω and t ∈ R
N ,

αX (t, ω) ≥ sup
{
βX (K , ω) : K is a cube s.t. t ∈ K̊

}
,

where

βX (K ) = sup
{
β ∈ [0, 1] : sup

t,t+s∈K

|X (t + s) − X (t)|
|s|β < +∞

}
,

is the uniform Hölder exponent of {X (t)}t∈RN over K . Therefore to

derive (15), it is sufficient to obtain a convenient lower bound of βX (K ); to
this end we will use a strong version of Kolmogorov criterion.
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Proposition 1 (Taqqu and Ayache)

The uniform Hölder exponent of MBM satisfies

P

{
βX (K ) = min

x∈K
h(x) : for all cube K

}
= 1.

In view of the continuity of h(·), Proposition 1 implies that

P

{
∀t ∈ R

N : h(t) = sup
{
βX (K ) : K is a cube s.t. t ∈ K̊

}}
= 1.

Proof of Proposition 1: Let K be an arbitrary cube. Standard
computations allow to show that for all t, t + s ∈ K

E
∣∣X (t+s)−X (t)

∣∣2 =

∫

RN

∣∣∣
e i(t+s)·ξ − 1

|ξ|h(t+s)+N/2
− e it·ξ − 1

|ξ|h(t)+N/2

∣∣∣
2
dξ ≤ |s|2minx∈K h(x),

where c > 0 is a constant only depending on K . Then it follows from a
strong version of Kolmogorov criterion (see for example Karatzas and
Shreve) that

P

{
βX (K ) = min

x∈K
h(x)

}
= 1.
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A straightforward consequence is that

P

{
βX (K ) = min

x∈K
h(x) : for all cube K with rational vertices

}
= 1.

Finally by the continuity of h(·) and the decreaseness of βX (·), one obtains
the proposition. �

The fact that
P
{
∀t ∈ R

N : αX (t) ≤ h(t)
}

= 1. (16)

is more difficult to prove. This will result from the following two lemmas.

Lemma 3

For all compact cube K and all reals 0 < a < b < 1, there is a random

variable C > 0 of finite moment of any order, such that one has almost

surely for all H1,H2 ∈ [a, b],

sup
t∈K

|BH1
(t) − BH2

(t)| ≤ C |H1 − H2|. (17)
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Lemma 4

{αBH
(t)}t∈RN the pointwise Hölder exponent of the FBM {BH(t)}t∈RN

satisfies

P
{
αBH

(t) ≤ H : ∀ t ∈ R
N and H ∈ (0, 1)

}
= 1.

Proof of (16): Let K be a compact cube. The increments of the MBM
{X (t)}t∈K = {Bh(t)(t)}t∈K satisfy

|X (t + s)−X (t)| ≥
∣∣Bh(t)(t + s)−Bh(t)(t)

∣∣− sup
x∈K

∣∣Bh(t+s)(x)−Bh(t)(x)
∣∣.

(18)
Moreover, Lemma 3 and the fact that h(·) is a β-Hölder function, imply
that

sup
x∈K

∣∣Bh(t+s)(x) − Bh(t)(x)
∣∣ ≤ C

∣∣h(t + s) − h(t)
∣∣ ≤ C ′|s|β . (19)

where β > h(t). Putting together (18), (19) and Lemma 4, it follows that
almost surely, for all θ ∈

(
h(t), β

)
,

lim sup
s→0

|X (t + s) − X (t)|
|s|θ = +∞.
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Proof of Lemma 3: We have to show that a.s. for all
H1,H2 ∈ [a, b] ⊂ (0, 1) one has

sup
t∈K

|BH1
(t) − BH2

(t)| ≤ C |H1 − H2|. (20)

For simplicity, we assume that K = [0, 1]N . By using the wavelet
representation of FBM, one has

BH1
(t) − BH2

(t) =

2N−1∑

l=1

−1∑

j=−∞

ǫl ,j ,0
(
2−jH1Ψl(2

j t,H1) − 2−jH2Ψl(2
j t,H2)

)

+
2N−1∑

l=1

+∞∑

j=0

∑

k∈{0,...,2j−1}N

ǫl ,j ,k
(
2−jH1Ψl(2

j t − k ,H1) − 2−jH2Ψl (2
j t − k ,H2)

)
.

(21)
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It follows from the Mean Value Theorem That there is a constant c1 > 0
such that for all 1 ≤ l ≤ 2N − 1, j < 0, H1, H2 and t ∈ [0, 1]N ,

∣∣2−jH1Ψl (2
j t,H1) − 2−jH2Ψl(2

j t,H2)
∣∣ ≤ c1|j |2j(1−b)|H1 − H2|. (22)

By using again this theorem and our heuristical assumption that for all
1 ≤ l ≤ 2N − 1 and H ∈ (0, 1), supp Ψl(·,H) ⊂ [0, 1)N , one can show that
there is a constant c2 > 0 such that for all 1 ≤ l ≤ 2N − 1, j ≥ 0
k ∈ {0, . . . , 2j − 1}N , H1, H2 and t ∈ [0, 1]N ,

∣∣2−jH1Ψl(2
j t − k ,H1) − 2−jH2Ψl(2

j t − k ,H2)
∣∣

≤ c2|j |2−ja|H1 − H2|1lQN
q=1[2

−jkq ,2−j (kq+1))(t).
(23)

Putting together (21), (22), (23) and the fact that
|ǫl ,j ,k | ≤ C3

√
log(2 + |j | + |k |) one obtains (20). �
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Now, our aim will be to prove Lemma 4. Let us set for each x ∈ R
N and

H ∈ (0, 1),

Ψ̃1(x ,H) =
1

(
2π

)N

∫

RN

e ix ·ξ|ξ|H+N/2ψ̂1(ξ) dξ. (24)

The function Ψ̃1 is C∞ over R
N × (0, 1) and satisfies:

(i)

sup
{(

1 + |x |
)p∣∣(∂γ

x Ψ̃1)(x ,H)
∣∣ : x ∈ R

N and H ∈ (0, 1)
}
< +∞.

(ii) For every H ∈ (0, 1), the first moment of Ψ̃1(·,H) vanishes i.e.

∫

RN

Ψ̃1(x ,H) dx = 0.
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The following proposition allows us to understand the motivation behind
the introduction of the function Ψ̃1

Proposition 2 (Taqqu and Ayache)

Recall that the FBM {BH(t)}t∈RN can be expressed as

BH(t) =

2N−1∑

l=1

+∞∑

j=−∞

∑

k∈ZN

2−jHǫl ,j ,k
(
Ψl(2

j t − k ,H) − Ψl(−k ,H)
)
.

One has, almost surely for all H ∈ (0, 1) and (j , k) ∈ Z × Z
N ,

2(N+H)j

∫

RN

BH(t)Ψ̃1(2
j t − k ,H) dt = ǫ1,j ,k .
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Proposition 2 is a straightforward consequence of the following lemma.

Lemma 5

For every H ∈ (0, 1) the sequences of functions

{
2jN/2Ψ̃1(2

j · −k ,H) : j ∈ Z, k ∈ Z
N
}
,

and {
2jN/2Ψl(2

j · −k ,H) : 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z
N
}
,

are biorthogonal i.e.

2(j+j ′)N/2

∫

RN

Ψl(2
j t−k ,H)Ψ̃1(2

j ′t−k ′,H) dt =

{
1 if (l , j , k) = (1, j ′, k ′)
0 else.
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Proof of Lemma 5: It follows from Plancherel formula and from the
definitions of Ψl and Ψ̃1 that

2(j+j ′)N/2

∫

RN

Ψl(2
j t − k ,H)Ψ̃1(2

j ′t − k ′,H) dt =

2−(j+j ′)N/2

∫

RN

(
e−i2−jk·ξ ψ̂l(2

−jξ)

|2−jξ|H+N/2

)(
e i2−j′k′·ξ|2−j ′ξ|H+N/2ψ̂l (2−j ′ξ)

)
dξ

= 2(H+N/2)(j−j ′)−(j+j ′)N/2

∫

RN

(
e−i2−jk·ξψ̂l (2

−jξ)
) (

e i2−j′k′·ξψ̂l(2−jξ)
)

dξ

= 2(H+N/2)(j−j ′)−(j+j ′)N/2

∫

RN

ψl (2
j t − k)ψl(2

j ′t − k ′) dt.

Then using the fact that

{
2jN/2ψl(2

j · −k ,H) : 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z
N
}
,

is an orthonormal sequence, we obtain the lemma. �
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Proof of Lemma 4: We have to show that

P
{
αBH

(t) ≤ H : ∀ t ∈ R
N and H ∈ (0, 1)

}
= 1. (25)

Suppose ad absurdum that P(A) > 0 where

A =
{
ω ∈ Ω : there is (t0,H0) ∈ R

N × (0, 1) s.t. αBH0
(t0, ω) > H0

}
.

Let ω ∈ A, it follows from the definition of αBH0
(t0), that there are two

constants θ0 > H0 and c0 > 0 such that for all t close to t0 one has

∣∣BH0
(t, ω) − BH0

(t0, ω)
∣∣ ≤ c0|t − t0|θ0 . (26)

Note that (26) remains valid for all t ∈ R
N because of the continuity of

FBM and the slowness of its increase at infinity.
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By using Proposition 2, the fact that
∫

RN Ψ̃1(x ,H0) dx = 0, (26), the
change of variable s = 2j t − k and the triangle inequality, one has for all
j , k ,

|ǫ1,j ,k(ω)| = 2(N+H0)j
∣∣∣
∫

RN

BH0
(t, ω)Ψ̃1(2

j t − k ,H0) dt
∣∣∣

= 2(N+H0)j
∣∣∣
∫

RN

(
BH0

(t, ω) − BH0
(t0, ω)

)
Ψ̃1(2

j t − k ,H0) dt
∣∣∣

≤ c02
(N+H0)j

∫

RN

|t − t0|θ0
∣∣Ψ̃1(2

j t − k ,H0)
∣∣dt

= c02
jH0

∫

RN

|2−j s + 2−jk − t0|θ0 |Ψ̃1(s,H0)
∣∣ ds

≤ c12
−j(θ0−H0)

(
1 + |2j t0 − k |

)θ0 .

(27)

where c1 > 0 is a constant non depending on j , k .
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Finally (27) implies that

lim
j→+∞

sup
{
|ǫ1,j ,k(ω)| : k ∈ Z

N and
∣∣2j t0 − k

∣∣ ≤ j
}

= 0,

but this is impossible (Borell-Cantelli Lemma) since {ǫ1,j ,k}j∈Z,k∈ZN is a
sequence of independent standard Gaussian random variables. �
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4-Joint continuity of the local time of MBM

The easy part in the problem we solved in the previous section, was to
show that the MBM {X (t)}t∈RN has everywhere, locally, a certain degree

of regularity i.e. αX (t) ≥ h(t); whereas the difficult part in this problem
was to to show that it has everywhere, locally, a certain degree of

irregularity i.e. αX (t) ≤ h(t).

Generally speaking, it is often a tricky problem to prove that, with
probability 1, the trajectories of a Gaussian field are everywhere
locally irregular as for example they are nowhere differentiable.

→ The notion of local time is very useful in such a problem: “When
the local time of a field is regular then the field is irregular”
(Berman). For example, when a field has a jointly continuous local time
then, with probability 1, the trajectories of the field are nowhere
differentiable functions.
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It is worth noticing that another method to solve the difficult part of the
problem we study in the previous section consists in showing that the local
time of MBM satisfies appropriate Hölder conditions.

In this section, we will content ourself with presenting the main ideas to
show that the local time of MBM is jointly continuous.
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Let {X (t)}t∈RN be a Gaussian field and I ⊆ R
N a fixed Borel set.

µI the occupation measure of X on I , is defined for each borel set
B ⊆ R as

µI (B) = λN

{
t ∈ I : X (t) ∈ B

}
,

where λN denotes the Lebesgue measure on R
N .

If µI is absolutely continuous with respect to λ, then X is said to have a
local time on I and its local time L(·, I ) is defined as the Radon–Nikodým
derivative of µI with respect to λ, i.e. for all x ∈ R,

L(x , I ) =
dµ

I

dλ
(x).

x is the space variable, and I is the time variable. Sometimes, we write
L(x , t) in place of L

(
x ,

∏N
l=1[0, tl ]

)
.

If L(x , I ) exists, then for all Borel set J ⊂ I , L(x , J) also exists.
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Suppose we fix a rectangle I =
∏N

l=1[dl , dl + hl ]. If there is a version of the

local time, still denoted by L
(
x ,

∏N
l=1[dl , dl + tl ]

)
such that it is, almost

surely, a continuous function of (x , t1, . . . , tN) ∈ R × ∏N
l=1[0, hl ], X is said

to have a jointly continuous local time on I.

The joint continuity of the local time is quite useful when one studies the
path behavior of X , for example when this property is satisfied then (see
Adler) L(x , ·) can be extended to be a finite measure supported on the
level set

X−1(x) ∩ I = {t ∈ I : X (t) = x},
which allows to obtain a sharp lower bound of the Hausdorff dimension of
this set (Frostman Lemma).
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From now on we assume that I = [ǫ, 1]N , where ǫ > 0 is fixed.

Theorem 4 (Shieh, Xiao and Ayache)

The MBM X has a local time L(·, I ) on I . Moreover, one has almost surely∫
R

(
L(x , I )

)2
dx < +∞.

Proof of Theorem 4: In view of Plancherel Theorem, it is sufficient to
show that

ΦµI
(ξ) =

∫

R

e iξx dµI (x) =

∫

I

e iξX (t) dt, (28)

the characteristic function of the occupation measure µI of the MBM,
satisfies

E

( ∫

R

∣∣ΦµI
(ξ)

∣∣2 dξ
)
< +∞. (29)
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It follows from Tonelli Theorem and (28) that

E

( ∫

R

∣∣ΦµI
(ξ)

∣∣2 dξ
)

=

∫

I

∫

I

∫

R

E
(
e iξ(X (t)−X (s))

)
dξ ds dt.

Observe that ξ 7→ E
(
e iξ(X (t)−X (s))

)
is the characteristic function of the

centered Gaussian random variable X (t) − X (s). One has therefore

E
(
e iξ(X (t)−X (s))

)
= exp

{
−1

2

(
σ
(
X (t) − X (s)

)
ξ
)2

}
.

where σ
(
X (t) − X (s)

)
=

(
E

∣∣X (t) − X (s)
∣∣2

)1/2
. Setting

η = σ
(
X (t) − X (s)

)
ξ, it follows that

∫

R

E
(
e iξ(X (t)−X (s))

)
dξ = σ

(
X (t) − X (s)

)−1
∫

R

e−η2/2 dη.
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Thus, in order to show that

E

( ∫

R

∣∣ΦµI
(ξ)

∣∣2 dξ
)
< +∞,

it is sufficient to prove that

∫

I

∫

I

σ
(
X (t) − X (s)

)−1
ds dt < +∞.

The finiteness of the latter integral is a straightforward consequence of the
fact that

σ
(
X (t) − X (s)

)
≥ c |t − s|b,

where b = maxt∈I h(t) < 1 < N. �
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The proof of the joint continuity of the local time of MBM mainly relies on
the following two lemmas.

Lemma 6

For every integer m ≥ 1, there exists a constant c > 0, only depending on

m, N, b = maxt∈I h(t) and I , such that for all x ∈ R and all cube T ⊆ I ,

one has

E [L(x ,T )m] ≤ c (Diam T )m(N−b) .

Lemma 7

For every even integer m ≥ 1, there exists a constant c > 0, only

depending on m, N, b and I , such that for all cube T ⊆ I , all x , y ∈ R

satisfying |x − y | ≤ 1 and all γ ∈ (0, 1) small enough, one has

E [(L(x ,T ) − L(y ,T ))m] ≤ c |x − y |mγ × (Diam T )m(N−b−γ) .
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Theorem 5 (Shieh, Xiao and Ayache)

MBM has a jointly continuous local time over I = [ǫ, 1]N .

Proof of Theorem 5: We will use Kolmogorov criterion. For simplicity,
we suppose that N = 1. Denote by m ≥ 2 an arbitrary even integer. One
has for all reals x , y , s, t satisfying |x − y | ≤ 1 and ǫ ≤ s < t ≤ 1,

E [(L(x , [ǫ, t]) − L(y , [ǫ, s]))m]

≤ c1E [(L(x , [s, t]))m] + c1E [(L(x , [ǫ, s]) − L(y , [ǫ, s]))m]

≤ c2|s − t|m(N−b) + c2|x − y |mγ × |s − t|m(N−b−γ).

Thus, assuming that m is big enough, it follows that

E [(L(x , [ǫ, t]) − L(y , [ǫ, s]))m] ≤ c4 (|s − t| + |x − y |)3 .

Finally, applying Kolmogorov criterion, one gets the joint continuity of the
local time. �
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We will only give the proof of Lemma 6 since that of Lemma 7 is in the
same spirit. The notion of local nondeterminism, which will be soon
defined, will play a crucial role in this proof.

Proof of Lemma 6: By using a classical result on local times (see for
instance Geman and Horowitz)

E [L(x ,T )m] = (2π)−m

∫

Tm

∫

Rm

exp

(
− ix

m∑

j=1

uj

)

× E exp

(
i

m∑

j=1

ujX (t j)

)
du dt

(30)

where u = (u1, . . . , um) ∈ R
m and t = (t1, . . . , tm) ∈ Tm.
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By using the fact that u 7→ E exp

(
i
∑m

j=1 ujX (t j)

)
is the characteristic

function of the centered Gaussian vector
(
X (t1), . . . ,X (tm)

)
, it follows

that

E exp

(
i

m∑

j=1

ujX (t j)

)
= exp

(
−1

2
u′ΓX (t)u

)
,

where ΓX (t) denotes the covariance matrix of this Gaussian vector.
Therefore one has that

∫

Rm

E exp

(
i

m∑

j=1

ujX (t j)

)
du = (2π)m/2 [det(ΓX (t))]−1/2

and as a consequence

E [L(x ,T )m] ≤ (2π)−m/2

∫

Tm

[det(ΓX (t))]−1/2
dt.
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From the other hand, the determinant of ΓZ the covariance matrix of an
arbitrary Gaussian vector Z = (Z1, . . . ,Zm) can be expressed as,

det(ΓZ ) = Var(Z1)
m∏

n=2

Var(Zn|Zn, . . . ,Zn−1).

Thus one needs to find a convenient lower bound of

Var
(
X (tn)|X (t1), . . . ,X (tn−1)

)
.

The concept of local nondeterminism (LND) was introduced to this end.
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A Gaussian field {X (t)}t∈RN is said to be LND over a cube I , if for all
integer n ≥ 2, there exist two constants c > 0 and δ > 0, only depending
on n, such that one has,

Var
(
X (tn)|X (t1), . . . ,X (tn−1)

)
≥ c min

1≤p≤n−1

{
Var

(
X (tn) − X (tp)

)}
,

(31)
for all t1, . . . , tn ∈ I satisfying |t i − t j | ≤ δ for every i , j ∈ {1, . . . , n}.

(31) suggests that the increments of X over I are asymptotically
independent.
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Theorem 6 (Shieh, Xiao and Ayache)

The MBM {X (t)}t∈RN is LND over the cube I = [ǫ, 1]N .

Heuristic proof of Theorem 6: Standard computations allow to show
that

c1|s − t|2max{h(s),h(t)} ≤ Var
(
X (s) − X (t)

)

≤ c2|s − t|2max{h(s),h(t)} ,
(32)

where 0 < c1 ≤ c2 are two constants. Thus it is sufficient to prove that

Var
(
X (tn)|X (t1), . . . ,X (tn−1)

)

≥ c3 min
{
|tn − tp|2h(tn) : 1 ≤ p ≤ n − 1

}
,

(33)

for all t1, . . . , tn ∈ I ,
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or equivalently that

E

∣∣∣X (tn) −
n−1∑

p=1

λpX (tp)
∣∣∣
2

≥ c3 min
{
|tn − tp|2h(tn) : 1 ≤ p ≤ n − 1

}
,

(34)

for all λ1, . . . , λn−1 ∈ R. We will use the wavelet series representation of
MBM derived from that of FBM:

X (t) = Bh(t)(t)

=

2N−1∑

l=1

+∞∑

j=−∞

∑

k∈ZN

2−jh(t)ǫl ,j ,k
(
Ψl(2

j t − k , h(t)) − Ψl(−k , h(t))
)
.
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As the functions Ψl(x , θ) are well-localized in x uniformly in θ, we suppose
heuristically that, for all (x , θ) ∈ R

N × (0, 1),

Ψl(x , θ) = 1l[0,1)N (x). (35)

Let j0 be the unique integer such that

2−j0−1 < 2−1ǫN−1/2 min {|tn − tp| : 1 ≤ p ≤ n − 1} ≤ 2−j0 . (36)

It follows from (35) and (36) that there is a unique kn ∈ Z
N which satisfies

Ψl(2
j0tn − kn, h(tn)) = 1, (37)

Ψl(−kn, h(tp)) = 0, for every p = 0, 1, . . . , n (38)

and
Ψl(2

j0tp − kn, h(tp)) = 0, for every p = 1, . . . ,m. (39)
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From the other hand, by using the wavelet series representation of MBM
and the fact that the random variables ǫl ,j ,k in it, are independent N (0, 1)
Gaussian random variables, one obtains that

E

∣∣∣∣X (tn) −
n−1∑

p=1

λpX (tp)

∣∣∣∣
2

=
2N−1∑

l=1

∑

j∈Z

∑

k∈ZN

∣∣∣∣2
−jh(tn)

(
Ψl(2

j tn − k , h(tn)) − Ψl(−k , h(tn))
)

−
n−1∑

p=1

2−jh(tp)λp

(
Ψl(2

j tp − k , h(tp)) − Ψl(−k , h(tp))
)∣∣∣∣

2

≥
∣∣∣∣2

−j0h(tn)
(
Ψ1(2

j0tn − kn, h(tn)) − Ψ1(−kn, h(tn))
)

−
n−1∑

p=1

2−j0h(tp)λp

(
Ψ1(2

j0tn − k0, h(tp)) − Ψ1(−k0, h(tp))
)∣∣∣∣

2

(40)
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Finally, it follows from (36), (37), (38), (39) and (40) that

E

∣∣∣∣X (tn) −
n−1∑

p=1

λpX (tp)

∣∣∣∣
2

= 2−2j0h(tn)

≥ c3 min
{
|tn − tp|2h(tn) : 1 ≤ p ≤ n − 1

}
.
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