Continuous Gaussian multifractional processes with random pointwise Hölder regularity

Antoine Ayache
USTL (Lille)
Antoine.Ayache@math.univ-lille1.fr

FARF2 June 2011

Main parts of the seminar

(1) Introduction and motivation

(2) Multifractional Brownian motion (mBm)

(3) Our main result and a sketch of its proof

1-Introduction and motivation

Let $X=\{X(t)\}_{t \in \mathbb{R}}$ be an arbitrary Gaussian process whose trajectories are, with probability 1 , continuous nowhere differentiable functions. \rightarrow The global Hölder regularity of a trajectory $t \mapsto X(t, \omega)$, over a compact interval $J \subset \mathbb{R}$, can be measured through the uniform Hölder exponent:

$$
\begin{equation*}
\beta_{X}(J, \omega)=\sup \left\{\beta \geq 0: \sup _{t^{\prime}, t^{\prime \prime} \in J} \frac{\left|X\left(t^{\prime}, \omega\right)-X\left(t^{\prime \prime}, \omega\right)\right|}{\left|t^{\prime}-t^{\prime \prime}\right|^{\beta}}<\infty\right\} \tag{1}
\end{equation*}
$$

\rightarrow The local Hölder regularity of a trajectory $t \mapsto X(t, \omega)$, in a neighborhood of some fixed point $s \in \mathbb{R}$, can be measured through the pointwise Hölder exponent at s :

$$
\begin{equation*}
\alpha_{X}(s, \omega)=\sup \left\{\alpha \geq 0: \limsup _{h \rightarrow 0} \frac{|X(s+h, \omega)-X(s, \omega)|}{|h|^{\alpha}}=0\right\} . \tag{2}
\end{equation*}
$$

It follows from zero-one law that, the random variables $\beta_{X}(J)$ and $\alpha_{X}(s)$ are in fact deterministic; namely there exist deterministic quantities $b_{X}(J), a_{X}(s) \in[0,1]$ such that

$$
\begin{equation*}
\mathbb{P}\left\{\beta_{X}(J)=b_{X}(J)\right\}=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left\{\alpha_{X}(s)=a_{X}(s)\right\}=1 \tag{4}
\end{equation*}
$$

Thus, the deterministic function a_{X} is a modification of the stochastic process α_{X}. We call this function the deterministic modification of the pointwise Hölder exponent of X.

A natural question: for any arbitrary Gaussian process $X=\{X(t)\}_{t \in \mathbb{R}}$ whose trajectories are, with probability 1 , continuous nowhere differentiable functions; is it true that a_{X} and α_{X} are indistinguishable?

Indistinguishable means that: there is an event of probability 1 , non depending on s, denoted by $\widetilde{\Omega}$, such that,

$$
\begin{equation*}
\text { for all } \omega \in \widetilde{\Omega} \text { and all } s \in \mathbb{R} \text { one has, } \alpha_{X}(s, \omega)=a_{X}(s) \tag{5}
\end{equation*}
$$

The question is non-trivial, since the intersection of the non-countable family of the events of probability $1,\left\{\alpha_{X}(s)=a(s)\right\}, s \in \mathbb{R}$, namely:

$$
\bigcap_{s \in \mathbb{R}}\left\{\omega \in \Omega: \alpha_{X}(s, \omega)=a(s)\right\}
$$

is not necessarily an event of probability 1 and may even not be an event (i.e. a mesurable set).
\rightarrow The goal of our talk is to show that the answer to this question is not always positive.

More precisely, we construct a family of Gaussian multifractional Brownian motions (mBm's) $\{X(t)\}_{t \in \mathbb{R}}$, whose trajectories are, with probability 1 , continuous nowhere differentiable functions satisfying the following property: there exists an event D of strictly positive probability, such that for all $\omega \in D$, one has for some $s_{0}(\omega) \in \mathbb{R}$,

$$
\begin{equation*}
\alpha_{X}\left(s_{0}(\omega), \omega\right) \neq a_{X}\left(s_{0}(\omega)\right) \tag{6}
\end{equation*}
$$

In other words, though the deterministic function a_{X} is a modification of the stochastic process α_{X}, they are not indistinguishable.

Main parts of the seminar

(1) Introduction and motivation

(2) Multifractional Brownian motion (mBm)

(3) Our main result and a sketch of its proof

2-Multifractional Brownian motion (mBm)

2-1-The field B generating mBm

From now on, u and v denotes two fixed reals satisfying: $0<u<v<1$. Let $B=\{B(t, \theta)\}_{(t, \theta) \in \mathbb{R} \times[u, v]}$ be the Gaussian field defined for all $(t, \theta) \in \mathbb{R} \times[u, v]$ as the Wiener integral:

$$
\begin{equation*}
B(t, \theta)=\int_{\mathbb{R}}\left\{(t-x)_{+}^{\theta-1 / 2}-(-x)_{+}^{\theta-1 / 2}\right\} d W(x) \tag{7}
\end{equation*}
$$

with the convention that for every $(y, \theta) \in \mathbb{R} \times[u, v],(y)_{+}^{\theta-1 / 2}=y^{\theta-1 / 2}$ if $y>0$ and $(y)_{+}^{\theta-1 / 2}=0$ else.

Remarks:

(a) For all fixed $\theta \in[u, v]$, the stochastic process $B_{\theta}=\{B(t, \theta)\}_{t \in \mathbb{R}}$, is the usual fractional Brownian motion (fBm) of Hurst parameter θ.
(b) By using Kolmogorov criterion, one can prove that there is a modification of B whose trajectories are with probability 1 , continuous functions; in all the sequel B will be identified with the latter modification.

Let $\gamma: \mathbb{R} \rightarrow[u, v]$ be a continuous deterministic function, $\{X(t)\}_{t \in \mathbb{R}}$ the multifractional Brownian motion (mBm) of functional parameter γ, is defined for all $t \in \mathbb{R}$, as,

$$
\begin{equation*}
X(t)=B(t, \gamma(t)) \tag{8}
\end{equation*}
$$

$\rightarrow \mathrm{MBm}$ has been introduced in Peltier and Lévy-Véhel (1995) and in Benassi, Jaffard and Roux (1997).
\rightarrow With probability 1 , the trajectories of $\{X(t)\}_{t \in \mathbb{R}}$ are continuous functions.
\rightarrow When γ is a constant, then $\{X(t)\}_{t \in \mathbb{R}}$ reduces to the usual fBm .

2-2-Pointwise Hölder regularity of mBm : known results \rightarrow Peltier and Lévy-Véhel (1995) and Benassi, Jaffard and Roux (1997): if $J \subset \mathbb{R}$ is a compact interval such that,

$$
\begin{equation*}
\max _{t \in J} \gamma(t)<\beta_{\gamma}(J) \tag{*}
\end{equation*}
$$

$\beta_{\gamma}(J)$ being the uniform Hölder exponent of γ over J; then, for all $s \in J$,

$$
\begin{equation*}
\mathbb{P}\left\{\alpha_{X}(s)=\gamma(s)\right\}=1 \tag{9}
\end{equation*}
$$

\rightarrow Jaffard, Taqqu and Ayache (2007): when the Condition $(*)$ is satisfied, then the process $\left\{\alpha_{X}(s)\right\}_{s \in \mathcal{J}}$ and its deterministic modification $\{\gamma(s)\}_{s \in \mathcal{J}}$ are indistinguishable.
\rightarrow Herbin (2006): for all $s \in \mathbb{R}$ such that $\gamma(s) \neq \alpha_{\gamma}(s)$, one has,

$$
\begin{equation*}
\mathbb{P}\left\{\alpha_{X}(s)=\min \left(\gamma(s), \alpha_{\gamma}(s)\right)\right\}=1 \tag{10}
\end{equation*}
$$

Main parts of the seminar

(1) Introduction and motivation

(2) Multifractional Brownian motion (mBm)

(3) Our main result and a sketch of its proof

3-Our main result and a sketch of its proof

3-1-Statement of the main result

Before stating our main result, it is important to point out that wavelet methods (see Ayache and Taqqu (2005)) allow to show that:

- there is an event Ω^{*} of probability 1 , such that for all fixed $\omega \in \Omega^{*}$ and $t \in \mathbb{R}$, the function $B(t, \cdot, \omega): \theta \mapsto B(t, \theta, \omega)$ is continuously differentiable over $[u, v]$;
- the Gaussian field $\partial_{\theta} B=\left\{\left(\partial_{\theta} B\right)(t, \theta)\right\}_{(t, \theta) \in \mathbb{R} \times[u, v]}$ can be represented, for all (t, θ), almost surely, as the Wiener integral:

$$
\begin{align*}
& \left(\partial_{\theta} B\right)(t, \theta) \\
& =\int_{\mathbb{R}}\left\{(t-x)_{+}^{\theta-1 / 2} \log \left[(t-x)_{+}\right]-(-x)_{+}^{\theta-1 / 2} \log \left[(-x)_{+}\right]\right\} d W(x) \tag{11}
\end{align*}
$$

with the convention that $\log 0=-\infty$ and $0 \times(-\infty)=0$.

From now on:

- we restrict to the interval $(0,1)$;
- we assume that the function γ and its pointwise Hölder exponent α_{γ} satisfy the following inequalities: for all $s \in(0,1)$,

$$
\begin{equation*}
0<\alpha_{\gamma}(s)<\gamma(s)<2 \alpha_{\gamma}(s)<1 \tag{K}
\end{equation*}
$$

Then, it follows from Herbin's result, that $\left\{\alpha_{\gamma}(s)\right\}_{s \in(0,1)}$ is the deterministic modification of $\left\{\alpha_{X}(s)\right\}_{s \in(0,1)}$, the pointwise Holder exponent of the $\mathbf{m B m}\{X(t)\}_{t \in(0,1)}$.
\rightarrow Our main result, draws a connection between $\left\{\alpha_{X}(s)\right\}_{s \in(0,1)}$ and the zero-level set:

$$
\mathcal{L}_{Y}=\{s \in(0,1): Y(s)=0\}
$$

where the Gaussian process $\{Y(s)\}_{s \in(0,1)}$ is defined as:
$Y(s)$
$:=\left(\partial_{\theta} B\right)(s, \gamma(s))$
$=\int_{\mathbb{R}}\left\{(s-x)_{+}^{\gamma(s)-1 / 2} \log \left[(s-x)_{+}\right]-(-x)_{+}^{\gamma(s)-1 / 2} \log \left[(-x)_{+}\right]\right\} d W(x)$.
\rightarrow It implies that $\left\{\alpha_{\gamma}(s)\right\}_{s \in(0,1)}$ and $\left\{\alpha_{X}(s)\right\}_{s \in(0,1)}$ are not indistinguishable.

Theorem (main result)

There exists an event Ω_{0} of probability 1 satisfying the following property: for all $\omega \in \Omega_{0}$ and all $s \in(0,1)$, one has,

$$
\alpha_{s}(s, \omega)=\left\{\begin{array}{l}
\gamma(s) \text { if } s \in \mathcal{L}_{Y}(\omega) \tag{12}\\
\alpha_{\gamma}(s) \text { else }
\end{array}\right.
$$

Moreover, there is an event of strictly positive probability $D \subset \Omega_{0}$, such that for all $\omega \in D$,

$$
\begin{equation*}
\operatorname{dim}_{\mathcal{H}}\left(\mathcal{L}_{Y}(\omega)\right) \geq 1-v>0, \tag{13}
\end{equation*}
$$

where $\operatorname{dim}_{\mathcal{H}}(\cdot)$ denotes the Hausdorff dimension.

3-2-Scketch of the proof
The increment at s of the $\mathrm{mBm} X$:

$$
\Delta_{s} X(h)=X(s+h)-X(s),
$$

can be bounded as follows:

$$
\begin{equation*}
\left|\left|\Delta_{s} B_{\gamma(s)}(h)\right|-\left|M_{s}(h)\right|\right| \leq\left|\Delta_{s} X(h)\right| \leq\left|\left|\Delta_{s} B_{\gamma(s)}(h)\right|+\left|M_{s}(h)\right|\right| \tag{14}
\end{equation*}
$$

where:

$$
\Delta_{s} B_{\gamma(s)}(h)=B_{\gamma(s)}(s+h)-B_{\gamma(s)}(s)
$$

is the increment at s of $B_{\gamma(s)}$, the $\mathbf{f B m}$ of Hurst parameter $\gamma(s)$, and

$$
M_{s}(h)=B(s+h, \gamma(s+h))-B(s+h, \gamma(s)) .
$$

A useful notation

Let f and g be two nonnegative functions defined on a neighborhood of 0 , which do not vanish except on 0 , the notation:

$$
f(h) \sim g(h),
$$

means that: for all arbitrarily small $\epsilon>0$, one has,

$$
\limsup _{h \rightarrow 0} \frac{f(h)}{|h|^{-\epsilon} g(h)}=0
$$

and

$$
\limsup _{h \rightarrow 0} \frac{f(h)}{|h|^{\epsilon} g(h)}=+\infty .
$$

The Mean Value Theorem entails that

$$
\begin{equation*}
M_{s}(h)=\left(\partial_{\theta} B\right)(s+h, \kappa(s, h)) \times(\gamma(s+h)-\gamma(s)), \tag{15}
\end{equation*}
$$

where

$$
\kappa(s, h) \in(\min \{\gamma(s), \gamma(s+h)\}, \max \{\gamma(s), \gamma(s+h)\}) .
$$

Next, (15) implies that,

$$
\begin{equation*}
\left|M_{s}(h)\right| \sim\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right| \times|h|^{\alpha_{\gamma}(s)} \tag{16}
\end{equation*}
$$

On the other hand, one has,

$$
\begin{equation*}
\left|\Delta_{s} B_{\gamma(s)}(h)\right| \sim|h|^{\gamma(s)} . \tag{17}
\end{equation*}
$$

Combining (16) with (17), it follows that,

$$
\begin{equation*}
\left|\Delta_{s} X(h)\right| \sim \max \left\{|h|^{\gamma(s)},\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right| \times|h|^{\alpha_{\gamma}(s)}\right\} . \tag{18}
\end{equation*}
$$

It remains to estimate

$$
\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right| .
$$

To this end, we need the following lemma, which can be proved by using wavelet methods.

Lemma 1

For every arbitrarily small $\epsilon>0$, there is a random variable C of finite moment of any order (only depending on u, v and ϵ) such that one has, almost surely, for all $\left(t_{1}, \theta_{1}\right)$ and $\left(t_{2}, \theta_{2}\right)$ in $[0,1] \times[u, v]$,
$\left|\left(\partial_{\theta} B\right)\left(t_{1}, \theta_{1}\right)-\left(\partial_{\theta} B\right)\left(t_{2}, \theta_{2}\right)\right| \leq C\left(\left|t_{1}-t_{2}\right|^{\max \left\{\theta_{1}, \theta_{2}\right\}-\epsilon}+\left|\theta_{1}-\theta_{2}\right|\right)$.

Thus, using the lemma, $|h| \leq 1$ and $Y(s)=\left(\partial_{\theta} B\right)(s, \gamma(s))$ one has, a.s.

$$
\begin{align*}
& \left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))-Y(s)\right| \leq C\left(|h|^{\max \{\kappa(s, h), \gamma(s)\}-\epsilon}+|\kappa(s, h)-\gamma(s)|\right) \\
& \leq C\left(|h|^{\gamma(s)-\epsilon}+|\gamma(s+h)-\gamma(s)|\right) \leq C^{\prime}\left(|h|^{\gamma(s)-\epsilon}+|h|^{\alpha_{\gamma}(s)-\epsilon}\right) \\
& \leq C^{\prime \prime}|h|^{\gamma(s)-\epsilon}, \tag{19}
\end{align*}
$$

where:

- the 2-nd inequality, follows from

$$
\kappa(s, h) \in(\min \{\gamma(s), \gamma(s+h)\}, \max \{\gamma(s), \gamma(s+h)\}) ;
$$

- while, the 4-th inequality, results from the assumtion, $\gamma(s)<\alpha_{\gamma}(s)$.

Then (19) implies that, a.s.,

$$
\begin{equation*}
\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right|=|Y(s)|+\mathcal{O}\left(|h|^{\gamma(s)-\epsilon}\right) . \tag{20}
\end{equation*}
$$

Putting together,

$$
\begin{gathered}
\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right|=|Y(s)|+\mathcal{O}\left(|h|^{\gamma(s)-\epsilon}\right) \\
\left|\Delta_{s} X(h)\right| \sim \max \left\{|h|^{\gamma(s)},\left|\left(\partial_{\theta} B\right)(s+h, \kappa(s, h))\right| \times|h|^{\alpha_{\gamma}(s)}\right\}
\end{gathered}
$$

and the assumption $\alpha_{\gamma}(s)<\gamma(s)<2 \alpha_{\gamma}(s)$, we get:

- when $Y(s) \neq 0$,

$$
\begin{equation*}
\left|\Delta_{s} X(h)\right| \sim \max \left\{|h|^{\gamma(s)},|h|^{\alpha_{\gamma}(s)}\right\}=|h|^{\alpha_{\gamma}(s)} \tag{21}
\end{equation*}
$$

- else,

$$
\begin{equation*}
\left|\Delta_{s} X(h)\right| \sim \max \left\{|h|^{\gamma(s)},|h|^{\alpha_{\gamma}(s)}\right\}=|h|^{\gamma(s)} \tag{22}
\end{equation*}
$$

At last, the fact that with a strictly positive probability,

$$
\operatorname{dim}_{\mathcal{H}}(\{s \in(0,1): Y(s)=0\}) \geq 1-v
$$

follows from capacity arguments (Frostman Theorem), as well as from the fact that the process Y satisfies on \mathbb{R}_{+}, the property of one sided strong local nondeterminism: there exists a constant $c>0$ which only depends on v, such that for all integer $n \geq 2$, and all real numbers s^{1}, \ldots, s^{n} satisfying

$$
\begin{equation*}
0 \leq s^{1}<\ldots<s^{n} \tag{23}
\end{equation*}
$$

one has,

$$
\begin{equation*}
\operatorname{Var}\left(Y\left(s^{n}\right) / Y\left(s^{1}\right), \ldots, Y\left(s^{n-1}\right)\right) \geq c\left(s^{n}-s^{n-1}\right)^{2 v} \tag{24}
\end{equation*}
$$

where $\operatorname{Var}\left(Y\left(s^{n}\right) / Y\left(s^{1}\right), \ldots, Y\left(s^{n-1}\right)\right)$ denotes the conditional variance of $Y\left(s^{n}\right)$ given $Y\left(s^{1}\right), \ldots, Y\left(s^{n-1}\right)$.

