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1-Introduction and motivation

Let X = {X(t)}+er be an arbitrary Gaussian process whose trajectories
are, with probability 1, continuous nowhere differentiable functions.
— The global Holder regularity of a trajectory t — X(t,w), over a
compact interval J C R, can be measured through the uniform Hdélder
exponent:

ﬁx(J,w)zsup{ﬁzo: sup 'X(t"fj,)__tff/f”’w)‘<oo}- (1)

t't'ed

— The local Hélder regularity of a trajectory t — X(t,w), in a
neighborhood of some fixed point s € R, can be measured through the
pointwise Holder exponent at s:

X h - X
ax(s,w) = sup {a >0 : limsup [(X(s +h,w) (s, )] = O} (@
h—s0 | h|>
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It follows from zero-one law that, the random variables x(J) and
ax(s) are in fact deterministic; namely there exist deterministic
quantities bx(J), ax(s) € [0, 1] such that

P{Bx(J) = bx(J)} =1 (3)

and
P{ax(s) = ax(s)} = L. (4)

Thus, the deterministic function ax is a modification of the stochastic
process ax. We call this function the deterministic modification of the
pointwise Holder exponent of X.

A natural question: for any arbitrary Gaussian process X = {X(t)};ecr
whose trajectories are, with probability 1, continuous nowhere differentiable
functions; is it true that ax and ax are indistinguishable?
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Indistinguishable means that: there is an event of probability 1,
non depending on s, denoted by £, such that,

for all w € Q and all s € R one has, ax(s,w) = ax(s). (5)

The question is non-trivial, since the intersection of the non-countable
family of the events of probability 1, {ax(s) = a(s)}, s € R, namely:

ﬂ {weQ: ax(s,w)=a(s)},
seR
is not necessarily an event of probability 1 and may even not be an

event (i.e. a mesurable set).

— The goal of our talk is to show that the answer to this question is not
always positive.
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More precisely, we construct a family of Gaussian multifractional
Brownian motions (mBm's) {X(t)}:cr, whose trajectories are, with
probability 1, continuous nowhere differentiable functions satisfying the
following property: there exists an event D of strictly positive
probability, such that for all w € D, one has for some sp(w) € R,

ax(so(w),w) # ax(so(w))- (6)

In other words, though the deterministic function ax is a modification
of the stochastic process ax, they are not indistinguishable.
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2-Multifractional Brownian motion (mBm)

2-1-The field B generating mBm

From now on, u and v denotes two fixed reals satisfying:
0<u<v<l Let B={B(t,0)}6)crx[u be the Gaussian field
defined for all (t,0) € R x [u, v] as the Wiener integral:

B(e0) = [ {(t=207" = (077} aw(), (7)
with the convention that for every (y,6) € R x [u, v], (y)ﬂ__l/2 = yf-1/2 if
y >0 and (y)(_fl/2 =0 else.

Remarks:

(a) For all fixed 6 € [u, v], the stochastic process By = {B(t,0)}ter, is
the usual fractional Brownian motion (fBm) of Hurst parameter 6.
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By using Kolmogorov criterion, one can prove that there is a
modification of B whose trajectories are with probability 1, continuous
functions; in all the sequel B will be identified with the latter
modification.

Let v : R — [u, v] be a continuous deterministic function, {X(t)}:cr
the multifractional Brownian motion (mBm) of functional parameter ~,
is defined for all t € R, as,

X(t) = B(t,7(t))- (8)

— MBm has been introduced in Peltier and Lévy-Véhel (1995) and in
Benassi, Jaffard and Roux (1997).

— With probability 1, the trajectories of {X(t)}+cr are continuous
functions.

— When + is a constant, then {X(t)}+cr reduces to the usual fBm.
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2-2-Pointwise Holder regularity of mBm: known results
— Peltier and Lévy-Véhel (1995) and Benassi, Jaffard and Roux (1997): if
J C R is a compact interval such that,

max~(t) < B (J), (*)

ted
B3-(J) being the uniform Holder exponent of ~ over J; then, for all s € J,
Plax(s) = ()} = 1. ©)

— Jaffard, Taqqu and Ayache (2007): when the Condition (x) is satisfied,
then the process {ax(s)},.5 and its deterministic modification {v(s)}
are indistinguishable.

— Herbin (2006): for all s € R such that y(s) # a(s), one has,

P {ax(s) = min (7(s),(s)) } = 1. (10)

sed
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3-Our main result and a sketch of its proof

3-1-Statement of the main result
Before stating our main result, it is important to point out that wavelet
methods (see Ayache and Taqqu (2005)) allow to show that:

@ there is an event Q* of probability 1, such that for all fixed w € Q*
and t € R, the function B(t,-,w) : 0 — B(t,0,w) is continuously
differentiable over [u, v];

o the Gaussian field 9B = {(9yB)(t, 0)}(t 0)cR x [u.v]
represented, for all (¢,0), almost surely, as the Wiener integral:
(808) (t7 9)
= /R (=)0 10g [(t = x)4] = (=3 2 1og [(—x)4] } aw (),
(11)

can be

with the convention that log0 = —oc0 and 0 x (—o0) = 0.
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From now on:
@ we restrict to the interval (0, 1);

@ we assume that the function v and its pointwise Hélder exponent a,
satisfy the following inequalities: for all s € (0, 1),

0 < ay(s) < 7(s) < 2a4(s) < 1. ()

Then, it follows from Herbin's result, that {a,(s)}sc(0,1) is the
deterministic modification of {ax(s)}sc(0,1), the pointwise Holder
exponent of the mBm {X(t)}:c(0,1)-
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— Our main result, draws a connection between {ax(s)}se(0,1)
and the zero-level set:

Ly ={s€(0,1): Y(s) =0},
where the Gaussian process { Y(s)}s¢(o,1) is defined as:

Y(s)
= (99B)(s,(s))

_ /R {(s =019 log [(s — x)+] — (19 2log [(-x)4] } ().

— It implies that {a,(s)}se(0,1) @and {ax(s)}se,1) are not
indistinguishable.
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Theorem (main result)

There exists an event Qg of probability 1 satisfying the following property:
for all w € Qg and all s € (0,1), one has,

v(s) ifs € Ly(w),
as(s,w) = (12)
a(s) else.

Moreover, there is an event of strictly positive probability D C Qq, such
that for all w € D,
dim,, (Ly(w)) >1—v >0, (13)

where dim,, (-) denotes the Hausdorff dimension.
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3-2-Scketch of the proof
The increment at s of the mBm X:

A X(h) = X(s+ h) — X(s),
can be bounded as follows:

“ASB’}/(S)(h)} - ‘Ms(h)” < ‘Asx(h)‘ < “ASB’Y(S)(h)‘ + ‘Ms(h)

, (14)

where:
AsBy(5)(h) = Bys)(s + h) = Bys)(s),

is the increment at s of B, (), the fBm of Hurst parameter 7(s), and

My(h) = B(s + h,A(s + h)) — B(s + h,1(s)).
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A useful notation

Let f and g be two nonnegative functions defined on a neighborhood of 0,
which do not vanish except on 0, the notation:

f(h) ~ g(h),
means that: for all arbitrarily small ¢ > 0, one has,
) f(h)
limsup ———=——~ =0
b h[<g(h)
and
lims f(h) +
imsup ———— = 400.
hoo hl<g(h)

A.Ayache (USTL) Gaussian mBm with random regularity FARF2 June 2011 17 / 22



The Mean Value Theorem entails that
Ms(h) = (96B) (s + h, k(s h)) x (v(s + h) —(s)), (15)
where
a(s,h) € (min{2(s),7(s + h)}, max{3(s), (s + h)}).
Next, (15) implies that,
|Ms(h)| ~ [ (99B) (s + b, (s, h))| x |h]*"®). (16)
On the other hand, one has,
|AsB sy ()| ~ A7), (17)
Combining (16) with (17), it follows that,

|AX(h)| ~ max{\hw(S), 1(86B) (s + h, x(s, h))| x \h{“w(s)}. (18)
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It remains to estimate
|(89B) (s + h, (s, h))]| -

To this end, we need the following lemma, which can be proved by using
wavelet methods.

Lemma 1

For every arbitrarily small € > 0, there is a random variable C of finite
moment of any order (only depending on u, v and €) such that one has,
almost surely, for all (t1,61) and (t2,62) in [0,1] X [u, v],

‘(393)(1’1,91) — (898)(1’2,92)‘ < C(‘tl = tg‘max{el’GZ}_e + |91 — 92‘).
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Thus, using the lemma, |h] <1 and Y(s) = (89B)(s,7(s)) one has, a.s.

‘(698) (5 + h7 "{‘7(57 h)) - Y(S)’ S C(’h‘max{ﬁ(svh)ﬂ(s)}_f + ’H(S, h) _ 7(5)|>
< C(|h!7(s)_ﬁ + |y(s + h) — 7(5)]) < C/(|h|v(s)—e n ‘h|aw(s)—e)

< C//|h"y(s)fe’
(19)

where:

@ the 2-nd inequality, follows from

(s, h) € (min{(s).7(s + )} max{x(s). 7(s + )});

@ while, the 4-th inequality, results from the assumtion, v(s) < ax(s).
Then (19) implies that, a.s.,

](a@B)(s + b, #(s, h))‘ — | Y(s)| + O(|h[)). (20)
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Putting together,
[(00B) (s + h. (s, )| = | Y(s)] + O(1AP)),

[AX(B)] ~ max { [P, [(80B)(s + h,i(s, h))| < [A[*)},

and the assumption a(s) < v(s) < 2a,(s), we get:
e when Y(s) # 0,

AX(h)| ~ max{[A7), [ = |plea(s), 21
(h) {Ih] |l (21)

@ else,

| AsX(h)| ~ max{|A[¢), [n[**} = |pp©). (22)
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At last, the fact that with a strictly positive probability,
dim,, ({s €(0,1) : Y(s)=0}) >1—v,

follows from capacity arguments (Frostman Theorem), as well as from
the fact that the process Y satisfies on R, the property of one sided
strong local nondeterminism: there exists a constant ¢ > 0 which only
depends on v, such that for all integer n > 2, and all real numbers

sl ..., s" satisfying

0<st<...<s", (23)

one has,
Var(Y(s")/Y(sY),..., Y(s" 1)) > c(s" — s" 1), (24)
where Var(Y(s")/Y(s'),..., Y(s"™!)) denotes the conditional variance of

Y(s") given Y(s!),...,Y(s"1).
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