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Antoine Ayache (Université de Lille) Monofractality of many stationary Gaussian fields Séminaire PS Lille, le 3 mai 2022 1 / 34
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Introduction: is stationarity an obstacle to multifractality?

All the stochastic fields we will consider will be real-valued and indexed by RN .

A stochastic field {X (t)}t∈RN is stationary iff it has the same finite-dimensional
distributions as the field {X (τ + t)}t∈RN , for any fixed τ ∈ RN .

A stochastic field {Y (t)}t∈RN is with stationary increments iff the two fields
{Y (t)− Y (0)}t∈RN and {Y (τ + t)− Y (τ)}t∈RN have the same finite-dimensional
distributions, for any fixed τ ∈ RN .

If {X (t)}t∈RN is stationary then it is with stationary increments.
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Introduction: is stationarity an obstacle to multifractality?

Let {Z (t)}t∈RN be an arbitrary stochastic field with continuous (or even less
regular) paths. Their local behaviors in neighborhoods of all points of RN are
usually described by the pointwise Hölder exponent random field {αZ (τ)}τ∈RN

defined, for all τ ∈ RN , as:

αZ (τ) := sup
{
α ∈ [0, 1] : lim sup

r>0, r→0

{
r−αOscZ (τ, r)

}
< +∞

}
, (1.1)

where, for any real number r ∈ (0, 1],

OscZ (τ, r) := sup
{∣∣Z (t ′)− Z (t ′′)

∣∣ : (t ′, t ′′) ∈ B(τ, r)2
}

(1.2)

is the oscillation of the field Z on the ball B(τ, r) := {t ∈ RN : |t − τ | ≤ r}.

Remark 1.1

When {Z (t)}t∈RN is a Gaussian and more generally a stable stochastic field then
it follows form zero-one law that, for each fixed τ ∈ RN , the exponent αZ (τ) is
almost surely equal to a deterministic quantity aZ (τ). Yet the equality holds on a
event of probability 1 which a priori depends on τ .
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Introduction: is stationarity an obstacle to multifractality?

Thus a question naturally arises:

Question: Is it true that P
(
∀ τ ∈ RN , αZ (τ) = aZ (τ)

)
= 1?

Three types of counter-examples

(a) Multifractal Lévy processes (Jaffard 1999); they have stationary increments,
but they are non-Gaussian with discontinuous càdlàg paths.

(b) Multifractional Brownian Motions (MBMs) with sufficiently irregular
continuous Hurst function (A. 2013); they are Gaussian with continuous
paths but their increments are non-stationary.

(c) Multifractal Linear Fractional Stable Motions (LFSMs) with large enough
Hurst parameter (Balança 2014); they have stationary increments and
continuous paths but they are non-Gaussian.

Remark 1.2

The type (c) of counter-examples is in some sense more surprising than the two
others since the almost sure deterministic value of the pointwise Hölder exponent
αLFSM(τ) does not even depend on τ . The latter fact is due to continuity of paths
of LFSMs and more importantly to stationarity of their increments.
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Introduction: is stationarity an obstacle to multifractality?

Proposition 1.1 (A. (2018))

Let Y = {Y (t)}t∈RN be an arbitrary stochastic field with stationary increments
and continuous paths. Then the associated pointwise Hölder exponent random
field {αY (τ)}τ∈RN is stationary. Thus, when Y satisfies zero-one law (this is for
instance the case when it is Gaussian or non-Gaussian with stable distribution),
then there exists a deterministic constant aY ∈ [0, 1] not depending on τ such that

P
(
αY (τ) = aY

)
= 1 , for all τ ∈ RN . (1.3)

In view of (1.3) it is natural to wonder whether Y is monofractal or multifractal.

Definition 1.1

The singularity spectrum ρY = {ρY (x)}x∈[0,1] of Y is defined as:

ρY (x) = dimH
(
{τ ∈ RN : αY (τ) = x}

)
. (1.4)

Y is monofractal when the topological support of the random function ρY almost
surely reduces to one deterministic point; typically this is the case when one has

P
(
∀ τ ∈ RN , αY (τ) = aY

)
= 1 . (1.5)
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Stationary continuous Gaussian fields: a convenient framework

Theorem 2.1 (Bochner (1932))

Let X = {X (t)}t∈RN be a centred stationary Gaussian field having a continuous
covariance function on RN × RN . Then, it can be expressed, for all
(t1, t2) ∈ RN × RN , as:

Cov
(
X (t1),X (t2)

)
= E

(
X (t1)X (t2)

)
=

∫
RN

e−i(t
1−t2)·ξ dµ(ξ) , (2.1)

where µ is a symmetric nonnegative finite Borel measure on RN called the
spectral measure of X .

When µ is absolutely continuous with a spectral density (g)2. Then, denoting by
F−1(g) the inverse Fourier transform of g (the square root of the spectral
density), one has, for all t ∈ RN ,

X (t) =

∫
RN

e−it·ξg(ξ) dŴ (ξ) = (2π)N/2

∫
RN

F−1(g)(x − t) dW (x) , (2.2)

where
∫
RN (·) dW is the classical Wiener stochastic integral on RN .
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Stationary continuous Gaussian fields: a convenient framework

Theorem 2.2 (Yaglom (1954))

Let Y = {Y (t)}t∈RN be a centred Gaussian field with stationary increments such
that Y (0) = 0 and the covariance function of Y is continuous on RN × RN .
Then, one has

Cov
(
Y (t1),Y (t2)

)
=

∫
RN

(e−it
1·ξ − 1)(e it

2·ξ − 1) d µ̃(ξ) , (2.3)

where µ̃ is a symmetric nonnegative Borel measure on RN (called the spectral
measure) s.t. ∫

RN

(
1 ∧ |ξ|2

)
d µ̃(ξ) < +∞ . (2.4)

Let B1 := {|ξ| ≤ 1} and B1 := {|ξ| > 1}. Then, for all (t1, t2) ∈ RN × RN ,

Cov
(
Y (t1),Y (t2)

)
=

∫
B1

(e−it
1·ξ − 1)(e it

2·ξ − 1) d µ̃(ξ) +

∫
B1

(e−it
1·ξ − 1)(e it

2·ξ − 1) d µ̃(ξ)

= Cov
(
R(t1),R(t2)

)
+ Cov

(
X (t1)− X (0),X (t2)− X (0)

)
, (2.5)
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Stationary continuous Gaussian fields: a convenient framework

where:

{R(t)}t∈RN is a smooth centred Gaussian field with stationary increments
having the spectral measure µ̃(• ∩B1).

{X (t)}t∈RN is a centred stationary Gaussian field independent on {R(t)}t∈RN

and having the spectral measure µ̃(• ∩B1).

It follows from (2.5) that {Y (t)}t∈RN is equal in distribution to the sum of the
two fields {R(t)}t∈RN and {X (t)− X (0)}t∈RN . Then, it results from the
smoothness of {R(t)}t∈RN that {Y (t)}t∈RN and {X (t)}t∈RN have exactly the
same local path behavior.

Thus, for proving that the random function τ 7→ αY (τ) reduces to a deterministic
constant, it is enough to prove that this is the case for the random function
τ 7→ αX (τ).
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Stationary continuous Gaussian fields: a convenient framework

From now on, we focus on the centred real-valued stationary Gaussian field
{X (t)}t∈RN of the general form:

X (t) =

∫
RN

e−it·ξg(ξ) dŴ (ξ) = (2π)N/2

∫
RN

F−1(g)(x − t) dW (x) , (2.6)

where g is any arbitrary deterministic even and nonnegative function belonging to
L2(RN); thus, its inverse Fourier transform F−1(g) is even, real-valued and
belongs to L2(RN).

One knows from e.g. Ledoux and Talagrand (1991) that path properties of any
real-valued Gaussian process Z = {Z (t)}t∈T (the set T is arbitrary) are closely
connected with dZ , the natural pseudo-metric on T associated with {Z (t)}t∈T
defined as: dZ (t ′, t ′′)2 := E

(
|Z (t ′)− Z (t ′′)|2

)
, for all (t ′, t ′′) ∈ T × T .

In the case of {X (t)}t∈RN , dX (t ′, t ′′)2 = E
(
|X (t ′ − t ′′)− X (0)|2

)
= VX (t ′ − t ′′);

the bounded function VX is called the variogram and defined, for all h ∈ RN , as:

VX (h) := E
(
|X (h)−X (0)|2

)
= (2π)N

∫
RN

∣∣F−1(g)(x+h)−F−1(g)(x)
∣∣2 dx . (2.7)

The last equality in (2.7) follows from the isometry property of the Wiener
integral in (2.6).
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Stationary continuous Gaussian fields: a convenient framework

1st reason for which our framework is convenient: the asymptotic behavior of
VX (h), when |h| → 0, is closely related to Besov regularity of F−1(g).

Definition 2.1 (see e.g. Bergh and Löfström (1976))

Let p ∈ [1,+∞], s ∈ [0,+∞) and m ∈ N ∩ (s,+∞) be arbitrary and fixed. A
real-valued (or more generally complex-valued) function f on RN belongs to the
Besov space Bs

p,∞(RN) if and only if f is in the space Lp(RN) and satisfies

sup
h∈RN

{
|h|−s

(∫
RN

∣∣∆m
h f (x)

∣∣p dx)1/p
}
< +∞ , (2.8)

where, for all h, x ∈ RN , ∆m
h f (x) is the m-th order increment of f defined as:

∆m
h f (x) :=

m∑
n=0

(
m

n

)
(−1)nf (x + nh) . (2.9)

Remark 2.1

B0
p,∞(RN) = Lp(RN) and Bs

∞,∞(RN) is the usual Hölder space of order s.
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Stationary continuous Gaussian fields: a convenient framework

Assumption on the asymptotic behavior of the variogram VX at 0:

(H0) There is a constant critical exponent s ∈ (0, 1) such that one has

sup
h∈RN

{
|h|−2s VX (h)

}
< +∞ , for all s ∈ (0, s), (2.10)

and
sup
h∈RN

{
|h|−2s VX (h)

}
= +∞ , for all s ∈ (s, 1). (2.11)

Remark 2.2

The critical exponent s in the condition (H0) can be expressed in terms of critical
Besov regularity of the function F−1(g) as follows:

s = sup
{
s ∈ [0,+∞) : F−1(g) ∈ Bs

2,∞(RN)
}
. (2.12)
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Stationary continuous Gaussian fields: a convenient framework

One knows from (2.10) that, for any arbitrary fixed s ∈ (0, s), there is a constant
cs such that, for all t ′, t ′′ ∈ RN ,

E
(
|X (t ′)− X (t ′′)|2

)
≤ cs |t ′ − t ′′|2s . (2.13)

Thus (Kolmogorov Hölder continuity Theorem), paths of the field X are with
probability 1 Hölder continuous functions of any arbitrary order s ′ ∈ (0, s) on each
compact subset of RN . This implies that

P
(
∀ τ ∈ RN , αX (τ) ≥ s

)
= 1 . (2.14)

On another hand (2.11) entails that

∀ τ ∈ RN , ∀ s ∈ (s, 1) lim
t→τ

E
(
|X (t)− X (τ)|2

)
|t − τ |2s

= +∞ , (2.15)

and consequently that

∀ τ ∈ RN , P
(
αX (τ) ≤ s

)
= 1 . (2.16)
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Stationary continuous Gaussian fields: a convenient framework

In some particular cases (essentially fractional Brownian fields and related fields) it
was shown since a long time (see Berman (1972, 1973), Pitt (1978) and Xiao
(1997)) that

P
(
∀ τ ∈ RN , αX (τ) ≤ s

)
= 1. (∗)

The intuition is that everywhere irregularity of paths comes from some weak
forms of independence of increments. Berman and Pitt introduced the concept of
Local Non Determinism (LND) for proposing a formalization of this intuition.
Thus, according to their point of view, a sufficient condition for (∗) holds is that
X satisfies the LND property: for each fixed s ∈ (s, 1), compact rectangle I ⊂ RN

and integer m ≥ 2, there exists a constant c > 0 such that one has

Var
(
X (tm)|X (t1), . . . ,X (tm−1

)
≥ c min

1≤q<m
|tm − tq|2s , (2.17)

for all distinct points t1, . . . , tm ∈ I sufficiently close together. The known proofs
of (2.17) require to impose to g (the square root of the spectral density of X )
restrictive conditions, as for instance:

lim inf
|ξ|→+∞

{
|ξ|s+N/2 |g(ξ)|

}
> 0 , for all s ∈ (s, 1). (2.18)
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Stationary continuous Gaussian fields: a convenient framework

Our goal is to try to find the weakest possible conditions on g under which (∗)
holds. Therefore, we will avoid to make use of the concept of LND and try to
express the intuitive idea of weakly independent increments in two other different
ways which will be presented in Sections 3 and 4.

Rather than working with usual increments of X we will work with its generalized
increments consisting in its wavelet coefficients χj,k , j ∈ Z+ and k ∈ ZN , defined
almost surely (a.s.) as the pathwise Lebesgue integral:

χj,k :=

∫
RN

2jNψ0(2j t − k)X (t) dt . (2.19)

j is called the dilation index and k the translation index. The real-valued mother
wavelet ψ0 belongs to the Schwartz class S(RN). The following lemma shows that
the pathwise Lebesgue integral in (2.19) is a.s. well-defined and finite.

Lemma 2.1

One has a.s.
sup
t∈RN

{
log−1/2(3 + |t|)|X (t)|

}
< +∞ . (2.20)
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Stationary continuous Gaussian fields: a convenient framework

Proof of Lemma 2.1: Let I := [0, 1]N , For all k ∈ ZN , one sets

µk := sup
s∈I
|X (k + s)| and σ2

k := sup
s∈I

E
(
|X (k + s)|2

)
. (2.21)

Using a Borell type inequality one gets, for all k ∈ ZN and z > 0 that

P
(∣∣µk − E(µk)

∣∣ > z
)
≤ 2 exp

(
− 2z2/π2σ2

k

)
. (2.22)

The stationarity of X implies that µk
d
= µ0 and σ2

k = σ2
0 = E

(
|X (0)|2

)
. Thus,

one can derive from (2.22) that

P
(∣∣µk − E(µ0)

∣∣ > πσX

√
N log

(
3 + |k |

))
≤ 2
(
3 + |k|

)−2N
, (2.23)

and consequently that∑
k∈ZN

P
(∣∣µk − E(µ0)

∣∣ > πσX

√
N log

(
3 + |k |

))
< +∞. (2.24)

Thus Lemma 2.1 results from Borel-Cantelli Lemma. �
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Stationary continuous Gaussian fields: a convenient framework

Remark 2.3

Let I ⊂ RN be an arbitrary dyadic cube, that is there exists a unique couple
(jI , kI ) = (jI , kI ,1, . . . , kI ,N) ∈ Z+ × ZN such that

I = IJI ,kI :=
N∏

n=1

[
2−jI kI ,n, 2

−jI (kI ,n + 1)
] abusive

= [2−jI kI , 2
−jI (kI + 1)]; (2.25)

for simplicity the random variable χjI ,kI will sometimes be denoted by χI .

Lemma 2.2

For all τ ∈ RN and ρ ∈ (0, 1]. One sets B(τ, ρ) := {t ∈ RN : |t − τ | ≤ ρ} and

Mχ(τ, ρ) := sup
{
|χI | : I dyadic cube s.t. I ⊆ B(τ, ρ)} . (2.26)

Then, for every fixed α ∈ [0, 1] and γ > 1, the following inequality holds:

‖ψ0‖L1(RN ) lim sup
r>0, r→0

{
r−αOscX (τ, r)

}
≥ lim sup

r>0, r→0

{
r−αMχ(τ, rγ)

}
. (2.27)
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Stationary continuous Gaussian fields: a convenient framework

2nd reason for which our framework is convenient: the wavelet coefficients

χj,k :=

∫
RN

2jNψ0(2j t−k)X (t) dt =

∫
RN

2jNψ0(2j t−k)
(∫

RN

e−it·ξg(ξ) dŴ (ξ)
)
dt

(2.28)
can be very conveniently expressed. By interchanging the integrals

∫
RN (·) dt and∫

RN (·) dŴ (ξ) one obtains the following lemma:

Lemma 2.3

For all j ∈ Z+ and k ∈ ZN , one has a.s.

χj,k =

∫
RN

e−i2
−jk·ξ ψ̂j(ξ)g(ξ) dŴ (ξ) , (2.29)

where ψj(·) = 2jNψ0(2j ·). Thus, {χj,k}(j,k)∈Z+×ZN is a centred real-valued
Gaussian process. Moreover, it follows from (2.29) and the isometry property of

the stochastic integral
∫
RN (·) dŴ that, for all (j , k) ∈ Z+ × ZN ,

Var(χj,k) = Vj =
∥∥g · ψ̂j

∥∥2

L2(RN )
= (2π)N

∥∥F−1(g) ∗ ψj

∥∥2

L2(RN )
. (2.30)
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Littlewood-Paley methods invite themselves
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Littlewood-Paley methods invite themselves

Our next goal is to connect, when j → +∞, the rate of convergence to zero of

Vj = (2π)N
∥∥F−1(g) ∗ ψj

∥∥2

L2(RN )
(the common variance of wavelet coefficients at

level j) to s = sup
{
s ∈ (0, 1) : F−1(g) ∈ Bs

2,∞(RN)
}

. To this end, we will use
characterization of Besov spaces through Littlewood-Paley decomposition for
tempered distributions.

So, from now on, we assume that ψ̂0(ξ) = ϕ̂(2−1ξ)− ϕ̂(ξ), for all ξ ∈ RN , where
ϕ̂ is an even function, infinitely differentiable on RN , with values in [0, 1], which
satisfies: Supp ϕ̂ ⊆ B(0, 1) := {ξ ∈ RN : |ξ| ≤ 1} and ϕ̂(ξ) = 1, for every

ξ ∈ B(0, 2−1) := {ξ ∈ RN : |ξ| ≤ 2−1}. Thus, for each j ∈ Z+, ψ̂j(·) = ψ̂0(2−j ·)
is with values in [0, 1], Supp ψ̂j ⊆ Rj :=

{
ξ ∈ RN : 2j−1 ≤ |ξ| ≤ 2j+1

}
, and

ϕ̂(ξ) +
∑+∞

j=0 ψ̂j(ξ) = 1, for all ξ ∈ RN . Therefore, each tempered distribution f

can be expressed in S ′(RN) as:

f = f ∗ ϕ+
+∞∑
j=0

f ∗ ψj . (3.1)

The Littlewood-Paley components f ∗ ϕ and f ∗ ψj , j ∈ Z+, are infinitely
differentiable functions on RN bounded by some polynomial functions.
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Littlewood-Paley methods invite themselves

Remark 3.1 (very important)

The nice framework of Littlewood-Paley decomposition gives us the opportunity
to interpret the intuitive idea of weakly independent increments in two different
ways which are of another nature than the rather constraining notion of local
nondeterminism. The 1st one is an independence property of wavelet coefficients
with respect to dilation index: for l = 0 or l = 1, the sequences of random
variables

{
χ2p+l,k ; k ∈ ZN

}
, p ∈ Z+, are independent. The 2nd interpretation

concerns their translation index and will be presented in the next section.

Proof of Remark 3.1: Using the equality χj,k =
∫
RN e

−i2−jk·ξ ψ̂j(ξ)g(ξ) dŴ (ξ)

and the isometry property of
∫
RN (·) dŴ , one gets, for all p′, p′′ ∈ Z+ with

p′ 6= p′′ and for every k ′, k ′′ ∈ ZN , that

Cov(χ2p′+l,k′ , χ2p′′+l,k′′) =

∫
RN

e i(2−2p′′−lk′′−2−2p′−lk′)·ξ ψ̂2p′+l(ξ)ψ̂2p′′+l(ξ)g(ξ) dξ

= 0 (3.2)

since Supp ψ̂2p′+l ∩ Supp ψ̂2p′′+l is included in

{22p′+l−1 ≤ |ξ| ≤ 22p′+l+1
}
∩
{

22p′′+l−1 ≤ |ξ| ≤ 22p′′+l+1
}

which has a vanishing
Lebesgue measure. �
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Littlewood-Paley methods invite themselves

Characterization of Besov spaces through Littlewood-Paley decomposition:

Theorem 3.1 (see e.g. Bergh and Löfström (1976))

Let p ∈ [1,+∞] and s ∈ (0,+∞) be arbitrary and fixed. A necessary and
sufficient condition for a tempered distribution f to be a function belonging to the
Besov space Bs

p,∞(RN) is that its Littlewood-Paley components f ∗ ϕ and f ∗ ψj ,

j ∈ Z+, belong to Lp(RN) and satisfy

lim sup
j→+∞

{
2js‖f ∗ ψj‖Lp(RN )

}
< +∞ . (3.3)

Theorem 3.1 implies that Vj = (2π)N
∥∥F−1(g) ∗ ψj

∥∥2

L2(RN )
= O(2−2js), for any

fixed s ∈ (0, s).

More importantly, it also entails that 2−2j(m)s = O(Vj(m)), for any fixed s ∈ (s, 1),
where (j(m))m∈N is an increasing sequence of positive integers which a priori
depends on the choice of s.

The fact that one has no information on the sequence (j(m))m∈N is a difficulty.
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Littlewood-Paley methods invite themselves

One way to overcome this difficulty is to impose to g the condition:

(H1) There are a constant a0 ∈ (0, 1] and an integer j0 ≥ 1 such that, for every
j ≥ j0 and a.a. η ∈ R0 :=

{
η ∈ RN : 2−1 ≤ |η| ≤ 2

}
, a0 g(2j+1η) ≤ g(2jη).

Under (H1) the sequence of variances (Vj)j≥j0 becomes ”non-increasing”:

2−N a2
0 Vj+1 ≤ Vj , for all j ≥ j0. (3.4)

Indeed, it results from the Plancherel formula, the change of variable η = 2−jξ,
(H1) and the change of variable ξ′ = 2j+1η that:

Vj := (2π)N
∥∥F−1(g) ∗ ψj

∥∥2

L2(RN )
=
∥∥F(F−1(g) ∗ ψj)

∥∥2

L2(RN )

=

∫
RN

∣∣g(ξ)ψ̂0(2−jξ)
∣∣2 dξ = 2jN

∫
R0

∣∣g(2jη)ψ̂0(η)
∣∣2 dη

≥ 2jNa2
0

∫
R0

∣∣g(2j+1η)ψ̂0(η)
∣∣2 dη = 2−Na2

0

∫
RN

∣∣g(ξ′)ψ̂0(2−j−1ξ′)
∣∣2 dξ′

= 2−N a2
0 (2π)N

∥∥F−1(g) ∗ ψj+1

∥∥2

L2(RN )
= 2−N a2

0 Vj+1 .
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Littlewood-Paley methods invite themselves

Theorem 3.2

Assume that the conditions (H0) and (H1) hold then one has

P
(
∀ τ ∈ RN , αX (τ) = s

)
= 1 . (3.5)

The following lemma, inspired from Kahane (1985), which results from
Borel-Cantelli Lemma and independence property of wavelet coefficients with
respect to dilation index, is the main ingredient of the proof of the theorem.

Lemma 3.1

For any ε > 0, there exists n0(ε) ∈ N such that one has a.s. for all p ∈ ZN

lim inf
j→+∞

{
22εj V

−1/2
j inf

k∈Kp,j

sup
{
|χI| ; I ∈ A

n0(ε)
j,k

}}
= +∞ , (3.6)

where Kp,j := 2jp + {0, . . . , 2j − 1}N and A
n0(ε)
j,k is the set of ”ancestors” of

Ij,k = [2−jk, 2−j(k + 1)] consisting in the dyadic cubes In, 0 ≤ n < n0(ε), such
that Ij,k = I0 ⊂ I1 ⊂ . . . ⊂ In0(ε)−1 and λ(In) = 2−(j−2n)N , for all n.
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Hausdorff-Young inequality invites itself

Organization of the talk

1 Introduction: is stationarity an obstacle to multifractality?

2 Stationary continuous Gaussian fields: a convenient framework

3 Littlewood-Paley methods invite themselves

4 Hausdorff-Young inequality invites itself
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Hausdorff-Young inequality invites itself

In the previous section we presented our 1st interpretation of the intuitive idea of
weakly independent increments of the stationary Gaussian field X ; this 1st
interpretation was related with the dilation index j of its wavelet coefficients χj,k .
Let us now present our 2nd interpretation of this intuitive idea; this 2nd
interpretation will be related with the translation index k of χj,k ’s.
Recall that in frameworks of limit theorems in statistics a stationary sequence of
Gaussian random variables (Gk)k∈ZN is said to have a short-range dependence
property when the sequence

(
Cov(Gk ,G0)

)
k∈ZN belongs to the space l1(ZN) i.e.∑

k∈ZN

∣∣Cov(Gk ,G0)
∣∣ < +∞ . (4.1)

In the same spirit, our 2nd interpretation of this intuitive idea will be to say that
increments of X are weakly independent if, for some θ ∈ [2,+∞) and for all fixed
j big enough, the sequence

(
Cov(χj,k , χj,0)

)
k∈ZN belongs to the space lθ(ZN) i.e.∑

k∈ZN

∣∣Cov(χj,k , χj,0)
∣∣θ < +∞ . (4.2)

The condition (4.2) is weaker than the condition (4.1) since l1(ZN) ⊂ lθ(ZN).
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Hausdorff-Young inequality invites itself

Our next goal is to connect the condition (4.2) to an Lp norm of Littlewood-Paley
component F−1(g) ∗ ψj .

In fact, up to a multiplicative factor, Cov(χj,k , χj,0) can be interpreted as a
Fourier coefficient.

Indeed, using the equality χj,k =

∫
RN

e−i2
−jk·ξ ψ̂0(2−jξ)g(ξ) dŴ (ξ), the isometry

property of the stochastic integral
∫
RN (·) dŴ , the change of variable η = 2jξ, and

the fact that η 7→ e−ik·η is a (2πZ)N -periodic function, one gets that

Cov(χj,k , χj,0) =

∫
RN

e−i2
−jk·ξ ∣∣ψ̂0(2−jξ)g(ξ)

∣∣2 dξ
= 2jN

∫
RN

e−ik·η
∣∣ψ̂0(η)g(2jη)

∣∣2 dη
= 2jN

∫
TN

e−ik·η Gj(η) dη =: 2jNCk(Gj) , (4.3)

where TN := [0, 2π]N is the N-dimensional torus and Gj ∈ L1(TN) is s.t.

Gj(η) :=
∑
κ∈ZN

∣∣ψ̂0(η + 2πκ)g
(
2j(η + 2πκ)

)∣∣2 , for a.a. η ∈ RN . (4.4)
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Hausdorff-Young inequality invites itself

Proposition 4.1

For each θ ∈ [2,+∞), the exponent p(θ) ∈ [4/3,+∞) is s.t.

p(θ) := 2θ/(θ + 1) . (4.5)

Then, one has, for some constant c and for all j ∈ Z+,∥∥∥(Cov(χj,•, χj,0)
)∥∥∥

lθ(ZN )
= 2jN

∥∥C(Gj)
∥∥
lθ(ZN )

≤ c 2−jN/θ
∥∥F−1(g) ∗ ψj

∥∥2

Lp(θ)(RN )
.

(4.6)

The main two ingredients of the proof of Proposition 4.1 are ”discrete and
continuous versions” of the Hausdorff-Young inequality which are recalled in the
sequel.

These two crucial inequalities can be derived from the Riesz-Thorin interpolation
(see e.g. Bergh and Löfström (1976)).
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Hausdorff-Young inequality invites itself

Proposition 4.2 (Hausdorff-Young inequality)

Let β ∈ [2,+∞) and β′ ∈ (1, 2] be arbitrary and s.t. 1/β + 1/β′ = 1.

Discrete version: for all function F ∈ Lβ
′
(TN), the sequence of the Fourier

coefficients C(F ) = (Ck(F ))k∈ZN belongs to lβ(ZN) and satisfies:∥∥C(F )
∥∥
lβ(ZN )

≤ (2π)N/β
∥∥F∥∥

Lβ′ (TN )
. (4.7)

Continuous version: for all function f ∈ Lβ
′
(RN), the Fourier transform f̂

belongs to Lβ(RN) and satisfies:

‖f̂ ‖Lβ(RN ) ≤ (2π)N/β ‖f ‖Lβ′ (RN ) . (4.8)
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Hausdorff-Young inequality invites itself

Lemma 4.1

One assumes that θ ∈ [2,+∞) and j ∈ Z+ are s.t.
∥∥F−1(g) ∗ ψj

∥∥
Lp(θ)(RN )

< +∞;

recall that p(θ) := 2θ/(θ + 1). Let Γ ⊂ RN be an arbitrary non-degenerate
compact rectangle. One sets νj(Γ) := {k ∈ ZN ; 2−jk ∈ Γ}, nj,Γ := Card

(
νj(Γ)

)
and Aj(Γ) := supk∈νj (Γ) |χj,k |2. Then, for any fixed q ∈ N, there is a constant
c(q), not depending on Γ and j , s.t.

P
(
Aj(Γ) ≤ 2−1Vj

)
≤ c(q)

(
n
−1/2θ
j,Γ ×

2jνN,p(θ)
∥∥F−1(g) ∗ ψj

∥∥
Lp(θ)(RN )∥∥F−1(g) ∗ ψj

∥∥
L2(RN )

)4q

, (4.9)

where Vj = (2π)N
∥∥F−1(g) ∗ ψj

∥∥2

L2(RN )
is the common variance of the wavelet

coefficients χj,k , k ∈ ZN , and where νN,p(θ) := N(2− p(θ))/2p(θ).

If for some ξ0 > 0, F−1(g1l{|ξ|≥ξ0}) ∈
⋃

p∈[4/3,2)

⋂
s∈(0,s) B

s+νN,p
p,∞ (RN). Then for

any fixed ε > 0 and q ∈ N, there are 2 positive constants bε and cε,q s.t. for all Γ
with λ(Γ) � 2−j(m)(N−ε) one has P

(
Aj(m)(Γ) ≤ 2−1Vj(m)

)
≤ cε,q2−j(m)qbε .

Thus, when m→ +∞, the latter probability converges to 0, uniformly in Γ, in a
very fact way!
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Hausdorff-Young inequality invites itself

Sketch of the proof of Lemma 4.1: Let the centred empirical mean

Sj(Γ) := n−1
j,Γ

∑
k∈νj (Γ)

(
|χj,k |2 − Vj

)
= −Vj + n−1

j,Γ

∑
k∈νj (Γ)

|χj,k |2 . (4.10)

Thus, one has

P
(
Aj(Γ) ≤ 2−1Vj

)
≤ P

(
Sj(Γ) ≤ −2−1Vj

)
≤ P

(∣∣Sj(Γ)
∣∣ ≥ 2−1Vj

)
. (4.11)

One reason for which Sj(Γ) is more convenient than Aj(Γ) is that Sj(Γ) belongs
to the 2nd order Wiener chaos; thus it has some properties reminiscent to that of
a Gaussian random variable. In particular, for any fixed q ∈ N, one has for some
constant c0(q), only depending on q, that

E
(∣∣Sj(Γ)

∣∣2q) ≤ c0(q)

(
E
(∣∣Sj(Γ)

∣∣2))q

. (4.12)

Combining (4.11) and (4.12) with Markov inequality one gets that

P
(
Aj(Γ) ≤ 2−1Vj

)
≤ c1(q)

(
V−2
j E

(∣∣Sj(Γ)
∣∣2))q

. (4.13)
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Hausdorff-Young inequality invites itself

Moreover, using the definition of Sj(Γ), the stationarity of the sequence

{χj,k}k∈ZN , Cov(χ2
j,k′−k′′ , χ

2
j,0) = 2

∣∣Cov(χj,k′−k′′ , χj,0)
∣∣2, Hölder inequality,

Proposition 4.1, θ = p(θ)/(2− p(θ)) and νN,p(θ) := N(2− p(θ))/2p(θ),
one has that

E
(∣∣Sj(Γ)

∣∣2) = 2n−1
j,Γ

∑
k′∈νj (Γ)

(
n−1
j,Γ

∑
k′′∈νj (Γ)

∣∣Cov(χj,k′−k′′ , χj,0)
∣∣2)

≤ 2n−1
j,Γ

∑
k′∈νj (Γ)

(
n−1
j,Γ

∑
k′′∈νj (Γ)

∣∣Cov(χj,k′−k′′ , χj,0)
∣∣θ)2/θ

≤ 2n
−2/θ
j,Γ

( ∑
k∈ZN

∣∣Cov(χj,k , χj,0)
∣∣θ)2/θ

≤ c2n
−2/θ
j,Γ

(
2jN/2θ

∥∥F−1(g) ∗ ψj

∥∥
Lp(θ)(RN )

)4

≤ c2n
−2/θ
j,Γ

(
2jνN,p(θ)

∥∥F−1(g) ∗ ψj

∥∥
Lp(θ)(RN )

)4

. (4.14)

Finally, combining (4.13) and (4.14) one obtains the lemma. �
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Hausdorff-Young inequality invites itself

One can derive from Lemma 4.1 and Borel-Cantelli Lemma that:

Theorem 4.1

Assume that the condition (H0) holds i.e. the critical Besov exponent of F−1(g)
s = sup

{
s ∈ [0,+∞) : F−1(g) ∈ Bs

2,∞(RN)
}

belongs to the open interval (0, 1).
Also, assume that:

for some ξ0 > 0, F−1(g1l{|ξ|≥ξ0}) ∈
⋃

p∈[4/3,2)

⋂
s∈(0,s)

B
s+νN,p
p,∞ (RN) , (H2)

where νN,p := N(2− p)/2p. Then one has

P
(
∀ τ ∈ RN , αX (τ) = s

)
= 1 . (4.15)

One knows (see e.g. Bergh and Löfström (1976)) that, for all s > 0 and

3/4 ≤ p1 ≤ p2 < 2, B
s+νN,p1
p1,∞ (RN) ⊆ B

s+νN,p2
p2,∞ (RN) ⊂ Bs

2,∞(RN), and consequently

that
⋃

p∈[4/3,2)

⋂
s∈(0,s)

B
s+νN,p
p,∞ (RN) ⊂

⋂
s∈(0,s)

Bs
2,∞(RN).

It remains an open question to know whether (4.15) is true under the sole
condition (H0).
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