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Introduction and motivation

Hermite processes are a very classical class of non-Gaussian chaotic stochastic
processes. In contrast with stable stochastic processes they have finite moment of
any order. They play important roles in probability and statistics. Indeed, several
decades ago, the seminal articles (Taqqu 1975 and 1979) and (Dobrushin and
Major 1979) drew fundamental connections between them and Non-Central Limit
Theorems. First, we will briefly present some of these connections. To this end,
we need to begin with some recalls on Hermite polynomials and the notion of
Hermite rank.

The sequence {Hn(x)}n∈Z+ of the Hermite polynomials over R can be defined as:
H0(x) = 1 and, for all n ≥ 1,

(−1)nex2/2 dn

dxn
(e−x

2/2). (1.1)

For instance, one has:

H0(x) = 1 , H1(x) = x , H2(x) = x2 − 1 , H3(x) = x3 − 3x .

Antoine Ayache (Université de Lille) On the oscillations of Hermite processes Univ. Luxembourg, 21 April 2022 3 / 30



Introduction and motivation

The sequence {Hn(x)}n∈Z+ is an orthogonal basis of L2
(
R, e−x2/2dx

)
. For any

deterministic nonconstant function G belonging to L2
(
R, e−x2/2dx

)
the Hermite

rank N = N(G ) ≥ 1 is the positive integer defined as:

N := min
{

n ≥ 1 :

∫
R

G (x)Hn(x)e−x
2/2 dx 6= 0

}
. (1.2)

The main motivation of Dobrushin, Major and Taqqu was to obtain limit theorems
associated with a time series of the form {G (Yn)}n∈N, where {Yn}n∈N is a centred
stationary time series sequence of Gaussian random variables having the long
range dependence property: for some exponent H ∈ (1/2, 1), and for all n, q ∈ N,∣∣cov(Yn+q,Yn)

∣∣ = q2H−2L(q) ; (1.3)

the function L : (0,+∞)→ (0,+∞) is a slowly varying function at infinity i.e.

lim
x→+∞

L(ax)

L(x)
= 1 , for all fixed a ∈ (0,+∞). (1.4)
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Introduction and motivation

Theorem 1.1 (Dobrushin, Major and Taqqu)

For all fixed m ∈ N, let {Sm(t)}t∈R+ be the stochastic process defined as:

Sm(t) :=
κ(G )

mN(H−1)+1LN/2(m)

[mt]∑
n=1

(
G (Yn)− E

(
G (Yn)

))
, for each t ∈ R+,

(1.5)
where [ · ] is the integer part function and κ(G ) a well-chosen constant not
depending on m and t. Then, under the condition that H ∈

(
1− 1/(2N), 1

)
,

when m goes to +∞, the process {Sm(t)}t∈R+ converges in the sense of the
finite-dimensional distributions to {XN,H(t)}t∈R; the Hermite process of rank N
and parameter H, defined, for all t ∈ R+, through the following multiple Wiener
integral with respect to a fixed real-valued Brownian motion {B(x)}x∈R:

XN,H(t) :=

∫
RN

(∫ t

0

N∏
p=1

(s − xp)
H−3/2
+ ds

)
dB(x1) . . . dB(xN) , (1.6)

where, for each (y , α) ∈ R2, yα+ := yα if y > 0, and yα+ := 0 else. Notice that
X 1,H is the fractional Brownian motion and X 2,H the Rosenblatt process.
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Introduction and motivation

Recalls on multiple Wiener integral and Wiener chaoses

Let [ul , vl ], l = 1, . . . ,N, be N arbitrary nonempty compact intervals of R such
that for some σ ∈ SN (the set of the permutations of {1, . . . ,N}) one has

uσ(1) < vσ(1) < uσ(2) < vσ(2) < . . . < uσ(N) < vσ(N) ; (1.7)

which is equivalent to say that these intervals are disjoint. Then, the multiple
Wiener integral of the indicator function 1∏N

l=1[ul ,vl ]
is defined as:

IN(1∏N
l=1[ul ,vl ]

) =

∫ ′
RN

1∏N
l=1[ul ,vl ]

(x1, . . . , xN) dB(x1) . . . dB(xN)

:=
N∏
l=1

(
B(vl)− B(ul)

)
=

N∏
l=1

(
B(vσ(l))− B(uσ(l))

)
. (1.8)

The definition is extended in the natural way to the elementary functions, that is
to the linear combinations of indicator functions satisfying (1.7). Finally, for any
f ∈ L2(RN), the random variable IN(f ) is defined as the limit in L2(Ω) of the
multiple Wiener integrals of elementary functions which approximate f in L2(RN).
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Introduction and motivation

One always has that IN(f ) := IN(f̃ ), where f̃ denotes the symmetrization of f :

f̃ (x1, . . . , xN) :=
1

N!

∑
σ∈SN

f (xσ(1), . . . , xσ(N)), for all (x1, . . . , xN) ∈ RN . (1.9)

Moreover, the following isometry type property holds:

E
(∣∣IN(f )

∣∣2) = N!

∫
RN

∣∣f̃ (x1, . . . , xN)
∣∣2 dx1 . . . dxN . (1.10)

The random variable IN(f ) belongs to HN the homogeneous Wiener chaos of
order N that we are now going to precisely define. Our presentation of it is
inspired by the one in the book Janson (1997). G denotes the Gaussian subspace

of L2(Ω) defined as: G :=
{
I1(g), g ∈ L2(R)

}
.

The (inhomogeneous) Wiener chaos of an arbitrary order N ∈ Z+ is denoted by
PN . The space P0 is defined to be the closed subspace of L2(Ω) consisting of all
the constant random variables. When N ≥ 1, the space PN is defined as the
closed subspace of L2(Ω) spanned by the following set of random variables:{

N∏
l=1

ξml

l : (ξ1, . . . , ξN) ∈ GN and (m1, . . . ,mN) ∈ ZN
+ with

N∑
l=1

ml ≤ N

}
.
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Introduction and motivation

One clearly has PN−1 ⊆ PN , for all N ∈ N. One sets H0 := P0. If N ≥ 1, the
homogeneous Wiener chaos HN is defined as: PN = PN−1⊕⊥HN ,

Some nice fundamental properties:

(a) Let F be the smallest σ-algebra for which the underlying Brownian motion B
is measurable. Then, for all fixed p ∈ (0,+∞), the space P∗ :=

⋃
N∈Z+

PN is

dense in Lp(Ω,F). Hence: L2(Ω,F) =
⊕⊥

N∈Z+
HN .

(b) For all N ∈ Z+ and p ∈ (0,+∞), the Lp(Ω)-(quasi-)norms are equivalent on
PN . Moreover, for each sequence of random variables in PN convergence in
probability is equivalent to convergence in any Lp(Ω)-(quasi-)norm.

(c) For all N ≥ 1, there is an universal constant c(N) > 0, depending only on N,
such that, for every random variable χ ∈ PN and y ∈ [2,+∞), one has

P
(
|χ| > y‖χ‖L2(Ω)

)
≤ exp

(
− c(N)y 2/N

)
. (1.11)

A bad news: In contrast with Gaussian and stable random variables, there is no
explicit and easy exploitable formula for the characteristic function of a chaotic
random variable in HN , even in the simplest non-Gaussian case N = 2.
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Introduction and motivation

Uniform modulus of continuity of a Hermite process XN,H

Using the definition of the multiple Wiener integral defining {XN,H(t)}t∈R+ , one
can show that this process satisfies the following two fundamental properties:

(i) It is self-similar with exponent N(H − 1) + 1 ∈ (1/2, 1), that is, for each fixed
positive real number a, the two processes

{
XN,H(at)

}
t∈R+

and{
aN(H−1)+1XN,H(t)

}
t∈R+

have the same finite-dimensional distributions.

(ii) It has stationary increments, which means that, for every fixed t0 ∈ R+, the
two processes

{
XN,H(t0 + t)− XN,H(t0)

}
t∈R+

and
{

XN,H(t)
}
t∈R+

have the

same finite-dimensional distributions.

Thus, for any fixed p ∈ [1,+∞), there is a constant c = c(N,H, p) such that

E
(∣∣XN,H(t ′)−XN,H(t ′′)

∣∣p) = c |t ′−t ′′|pN(H−1)+p , for all (t ′, t ′′) ∈ R2
+. (1.12)
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Introduction and motivation

Therefore, a strong version of the Kolmogorov’s continuity Theorem and the fact
that p can be taken arbitrarily large imply that XN,H has a modification whose
paths are, with probability 1, on each compact interval K, Hölder functions of any
arbitrary order γ < N(H − 1) + 1. This uniform modulus of continuity can be
improved thanks to results of (Viens and Vizcarra 2007): one has almost surely

sup
(t′,t′′)∈K2, t′ 6=t′′

{ ∣∣XN,H(t ′)− XN,H(t ′′)
∣∣

|t ′ − t ′′|N(H−1)+1 logN/2
(
1 + |t ′ − t ′′|−1)

}
< +∞ . (1.13)

For all ω ∈ Ω, τ ∈ (0,+∞) and r ∈ (0, τ ], the oscillation on the compact interval
[τ − r , τ + r ] of the path XN,H(ω) is defined as:

Osc
(
XN,H(ω), τ, r

)
:= sup

{∣∣XN,H(t ′, ω)−XN,H(t ′′, ω)
∣∣ : (t ′, t ′′) ∈ [τ−r , τ+r ]2

}
.

(1.14)
It easily follows from (1.13) that, for almost all ω ∈ Ω,

lim sup
r→0+

{
r−N(H−1)−1 | log2 r |−N/2 sup

τ∈K̃
Osc

(
XN,H(ω), τ, r

)}
< +∞ , (1.15)

where K̃ ⊂ (0,+∞) denotes an arbitrary deterministic compact interval.
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Introduction and motivation

It seems natural to look for a non-trivial almost sure lower bound for the
asymptotic behavior of Osc

(
XN,H(ω), τ, r

)
, as r goes to 0. It is important that

such a lower bound be valid on an event of probability 1 not depending on τ
(nowhere differentiability of paths, monofractality of Hermite processes, ...).

A general and powerful strategy for dealing with this type of problems on
everywhere irregularity of paths was first introduced in the early 70’s by Berman in
the Gaussian frame and was later extended by (Nolan 1989) to the frame of stable
distributions. It relies on a very clever intuitive idea called the Berman’s principle:
”the more regular is a local time in the time variable, uniformly in the space
variable, the more irregular is the associated stochastic process”.

Many more or less recent important developments of this classical and powerful
strategy relying on local times are due to Xiao.

Unfortunately, this strategy can hardly be used in the framework of the Hermite
process XN,H since, in contrast with Gaussian and stable processes, there is no
explicit and easy exploitable formulas for the characteristic functions of the
finite-dimensional distributions of XN,H , even in the most simple non-Gaussian
case of the Rosenblatt process where N = 2.
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Introduction and motivation

Fractional Brownian motion, Rosenblatt process and more generally Hermite
processes are usually viewed as stochastic processes with strongly correlated
increments. Our new strategy relies on a different and maybe new way to view
their increments in the setting of the study of their path behavior: ”many of the
increments are independent random variables up to negligible remainders”.

Theorem 1.2

There exist Ω∗, a universal event of probability 1 not depending on τ , and c∗N,H a
(strictly) positive deterministic finite constant only depending (N,H), such that,
for all ω ∈ Ω∗ and for every τ ∈ (0,+∞), one has

lim inf
r→0+

{(
r−1 | log2 r |S

(
| log2 r |

))N(H−1)+1

Osc
(
XN,H(ω), τ, r

)}
≥ c∗N,H > 0 ,

(1.16)
where S : R+ → [2,+∞) is any increasing continuous function satisfying, for all
fixed ε > 0 and α > 0,

lim
r→+∞

z
N

2(1−H)

S(z)
= 0 , lim

r→+∞

z
N

2(1−H) +ε

S(z)
= +∞ , sup

z∈R+

S
(
z + α log2(2 + z)

)
S(z)

< +∞ .

(1.17)
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Introduction and motivation

Remarks 1.1

(i) One can assume that S is with values in (0,+∞) instead of [2,+∞).

(ii) There are many classes of examples of increasing continuous functions S on
R+ which satisfy the condition of the previous theorem; a natural one of
them is

S(z) := (2 + z)
N

2(1−H)
(

log2(3 + z)
)β
, for all z ∈ R+, (1.18)

where the positive real number β is arbitrary and fixed.

(iii) The lower estimate of Osc
(
XN,H(ω), τ, r

)
, provided by Theorem 1.2, is

quasi-optimal since the quantity r in it is raised at the same power as the one
in the upper estimate of Osc

(
XN,H(ω), τ, r

)
, namely N(H − 1) + 1.

(iv) Last but not least, in the proof of Theorem 1.2, it is implicitly shown that on
any compact interval the variation of XN,H of order γ is almost surely infinite
as soon as 1/γ > N(H − 1) + 1. The latter inequality is valid when γ = 1 for
instance.
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Introduction and motivation

An important straightforward consequence of Theorem 1.2 is that there is no
point in (0,+∞) at which a typical path of the Hermite process XN,H satisfies a
pointwise Hölder condition of order strictly larger than N(H − 1) + 1. More
precisely:

Corollary 1.1

Let Ω∗ be the same event of probability 1 as in Theorem 1.2. Let an arbitrary real
number µ ∈

(
N(H − 1) + 1, 1). Then, for all ω ∈ Ω∗ and for each τ ∈ (0,+∞),

one has that

lim sup
t→τ

∣∣XN,H(t, ω)− XN,H(τ, ω)
∣∣

|t − τ |µ
= +∞ .

This clearly implies that, for any ω ∈ Ω∗, the path XN,H(ω) is nowhere
differentiable on the interval (0,+∞).
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Proof of the main result

For the sake of simplicity, one assumes that τ is arbitrary but such that τ ∈ (0, 1).

For any integers j ≥ 1 and k ∈ {0, . . . , 2j − 1}, one denotes by ∆(j , k) the
increment of the process XN,H such that

∆(j , k) := XN,H(dj,k+1)− XN,H(dj,k) , (2.1)

where dj,k+1 and dj,k are the two dyadic numbers in the interval [0, 1] defined as:

dj,k+1 := (k + 1)/2j and dj,k := k/2j . (2.2)

Roughly speaking, the proof consists in showing that, almost surely, for all
τ ∈ (0, 1) and for each j large enough, the amplitudes of ”many” of these dyadic
increments are ”rather large”; more precisely there is a deterministic constant
c > 0, not depending on (j , k), such that, for every j big enough, the following
inequality holds:∣∣∆(j , k)

∣∣ ≥ c 2−j(N(H−1)+1) , for many dj,k ’s ”near to τ”. (2.3)

To this end, it would be very nice to have, for each fixed j , the independence of
the random variables ∆(j , k), 0 ≤ k < 2j . Unfortunately, this is not the case.
How can one overcome this difficulty?
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Proof of the main result

Using the definitions of ∆(j , k) and XN,H one has

∆(j , k) =

∫
RN

(∫ dj,k+1

dj,k

N∏
p=1

(s − xp)
H−3/2
+ ds

)
dB(x1) . . . dB(xN) (2.4)

=

∫
RN

(
1Ij,k (x1, . . . , xN)

∫ dj,k+1

dj,k

N∏
p=1

(s − xp)
H−3/2
+ ds

)
dB(x1) . . . dB(xN) ,

where 1Ij,k is the indicator function of the unbounded rectangle of RN :

Ij,k := (−∞, dj,k+1]N . (2.5)

The last equality in (2.4) follows from the fact that∫ dj,k+1

dj,k

N∏
p=1

(s − xp)
H−3/2
+ ds = 0, if xp > dj,k+1 for some p ∈ {1, . . . ,N}. (2.6)
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Proof of the main result

In order to explain the idea which will allow us to get independent increments, let
us assume for a while that N = 1. Then, one clearly has that

∆(j , k) =

∫ dj,k+1

−∞

(∫ dj,k+1

dj,k

(s − x)
H−3/2
+ ds

)
dB(x)

=

∫ dj,k+1

dj,k

(∫ dj,k+1

dj,k

(s − x)
H−3/2
+ ds

)
dB(x) (2.7)

+

∫ dj,k

−∞

(∫ dj,k+1

dj,k

(s − x)H−3/2 ds
)

dB(x).

It is tempting to work with the independent random variables∫ dj,k+1

dj,k

(∫ dj,k+1

dj,k

(s − x)
H−3/2
+ ds

)
dB(x), 0 ≤ k < 2j (2.8)

instead of the random variables ∆(j , k), 0 ≤ k < 2j . This is our initial idea for
proving the theorem.
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Proof of the main result

Unfortunately, one cannot neglect the other parts of the ∆(j , k)’s, that is the
random variables∫ dj,k

−∞

(∫ dj,k+1

dj,k

(s − x)H−3/2 ds
)

dB(x), 0 ≤ k < 2j . (2.9)

One cannot neglect them, mainly because of the fact that on the interval

(−∞, dj,k ] the kernel function x 7→
∫ dj,k+1

dj,k
(s − x)H−3/2 ds has a singularity in dj,k .

In order to avoid it, (−∞, dj,k ] has to be replaced by
(
−∞, dj,k+1 − ej2

−j],
where (ej)j∈N is some increasing sequence of integers (bigger than 2) which goes
to +∞ at a ”slow” rate. The optimal choice for ej is

ej := bS(j)c . (2.10)

Having explained the idea for getting independent increments, from now on one
drops our previous convient hypothesis that N = 1, and one assumes as usual that
the integer N ≥ 2 is arbitrary.
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Proof of the main result

One focuses on the indices k which are multiple of ej that is of the form k = lej ,
where

l ∈ Lj := N ∩
[
1, (2j/ej)− 1

]
. (2.11)

For each l ∈ Lj , one denotes by
{
Dj,lej ,Dj,lej

}
the partition of the integration

domain Ij,lej := (−∞, dj,lej+1]N defined as:

Dj,lej := [dj,(l−1)ej+1, dj,lej+1]N (2.12)

and
Dj,lej := Ij,lej \ Dj,lej =

{
x ∈ Ij,lej : x /∈ Dj,lej

}
. (2.13)

Then, one expresses the increment ∆(j , lej) as:

∆(j , lej) = ∆̃(j , lej) + ∆̆(j , lej) , (2.14)
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Proof of the main result

where

∆̃(j , lej) =

∫
RN

(
1Dj,lej

(x1, . . . , xN)

∫ dj,lej +1

dj,lej

N∏
p=1

(s − xp)
H−3/2
+ ds

)
dB(x1) . . . dB(xN)

(2.15)
and

∆̆(j , lej) =

∫
RN

(
1Dj,lej

(x1, . . . , xN)

∫ dj,lej +1

dj,lej

N∏
p=1

(s−xp)
H−3/2
+ ds

)
dB(x1) . . . dB(xN) .

(2.16)

Remark 2.1

Using (2.15), the definition of multiple Wiener integral and the equality

Dj,lej := [dj,(l−1)ej+1, dj,lej+1]N , it can be shown that ∆̃(j , lej) is measurable with

respect to the σ-algebra σ
(
B(x)− B(y) : x , y ∈ (dj,(l−1)ej+1, dj,lej+1)

)
.

Thus, for each fixed integer j, the random variables ∆̃(j , lej), l ∈ Lj , are
independent since the increments of the Brownian motion B are independent and
the intervals (dj,(l−1)ej+1, dj,lej+1), l ∈ Lj , are disjoint.

Antoine Ayache (Université de Lille) On the oscillations of Hermite processes Univ. Luxembourg, 21 April 2022 21 / 30



Proof of the main result

Basically, the following two lemmas show that, when j goes +∞, the L2(Ω)-norm

of the random variable ∆̆(j , lej) is negligible with respect to that of ∆̃(j , lej),
uniformly in l ∈ Lj .

Lemma 2.1

There is a (strictly) positive constant c̃0 such that, for all j large enough, one has

inf
l∈Lj

∥∥∆̃(j , lej)
∥∥
L2(Ω)

≥ c̃0 2−j(N(H−1)+1) . (2.17)

Lemma 2.2

There exists a positive (finite) constant c̆0 such that, for all j large enough, one
has

sup
l∈Lj

∥∥∆̆(j , lej)
∥∥
L2(Ω)

≤ c̆0 2−j(N(H−1)+1) eH−1
j . (2.18)

Notice that limj→+∞ eH−1
j = 0 since H < 1 and limj→+∞ ej = +∞.

Antoine Ayache (Université de Lille) On the oscillations of Hermite processes Univ. Luxembourg, 21 April 2022 22 / 30



Proof of the main result

Proof of Lemma 2.1: The integrand associated with ∆̃(j , lej) being a symmetric
function, using the ”isometry” property of multiple Wiener integral one gets that∥∥∆̃(j , lej)

∥∥2

L2(Ω)
= N!

∫
Dj,lej

∣∣∣ ∫ dj,lej +1

dj,lej

N∏
p=1

(s − xp)
H−3/2
+ ds

∣∣∣2 dx1 . . . dxN . (2.19)

Next, making the change of variable s = dj,lej + 2−ju, one obtains that

∥∥∆̃(j , lej)
∥∥2

L2(Ω)
= N! 2−2j

∫
Dj,lej

∣∣∣ ∫ 1

0

N∏
p=1

(dj,lej + 2−ju − xp)
H−3/2
+ du

∣∣∣2 dx1 . . . dxN .

Then, the equalities

Dj,lej := [dj,(l−1)ej+1, dj,lej+1]N =
[
dj,lej + (1− ej)2−j , dj,lej + 2−j

]N
(2.20)

and the change of variables xp = dj,lej + 2−jyp, for all p ∈ {1, . . . ,N}, imply that∥∥∆̃(j , lej)
∥∥2

L2(Ω)

= N! 2−(N+2)j

∫
[1−ej ,1]N

∣∣∣ ∫ 1

0

N∏
p=1

(2−ju − 2−jyp)
H−3/2
+ du

∣∣∣2 dy1 . . . dyN

≥ c̃ 2 2−2j(N(H−1)+1) . � (2.21)
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Proof of the main result

Proof of Lemma 2.2: The integrand associated with ∆̆(j , lej) being a symmetric
function, using the ”isometry” property of multiple Wiener integral, the equality

Dj,lej :=
{

(x1, . . . , xN) ∈ (−∞, dj,lej+1]N : xp < dj,(l−1)ej+1 for some p
}
, (2.22)

and the fact that z 7→ zH−3/2 is a decreasing function on (0,+∞), one gets that

∥∥∆̆(j , lej)
∥∥2

L2(Ω)
= N!

∫
Dj,lej

∣∣∣ ∫ dj,lej +1

dj,lej

N∏
p=1

(s − xp)
H−3/2
+ ds

∣∣∣2 dx1 . . . dxN

≤ N · N!

∫ dj,(l−1)ej +1

−∞

(
∫
RN−1

∣∣∣ ∫ dj,lej +1

dj,lej

(s − xN)H−3/2
N−1∏
p=1

(s − xp)
H−3/2
+ ds

∣∣∣2 dx1 . . . dxN−1

)
dxN

≤ N · N!

∫ dj,(l−1)ej +1

−∞
(dj,lej − xN)2H−3 dxN (2.23)

×
∫
RN−1

∣∣∣ ∫ dj,lej +1

dj,lej

N−1∏
p=1

(s − xp)
H−3/2
+ ds

∣∣∣2 dx1 . . . dxN−1 .
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Proof of the main result

It is clear that∫ dj,(l−1)ej +1

−∞
(dj,lej − xN)2H−3 dxN =

(dj,lej − dj,(l−1)ej+1)2H−2

2− 2H

=
(dj,ej−1)2H−2

2− 2H
≤

e2H−2
j 2−2(j+1)(H−1)

2− 2H
. (2.24)

On the other hand, the ”isometry” property of multiple Wiener integral imply that

(N − 1)!

∫
RN−1

∣∣∣ ∫ dj,lej +1

dj,lej

N−1∏
p=1

(s − xp)
H−3/2
+ ds

∣∣∣2 dx1 . . . dxN−1 (2.25)

= E
(∣∣XN−1,H(dj,lej+1)− XN−1,H(dj,lej )

∣∣2) = cN−1,H 2−2j((N−1)(H−1)+1) .

Then combining (2.24) and (2.25) one obtains the lemma. �
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Proof of the main result

In which ways the estimates for inf l∈Lj

∥∥∆̃(j , lej)
∥∥
L2(Ω)

and supl∈Lj

∥∥∆̆(j , lej)
∥∥
L2(Ω)

(provided be the previous two lemmas) could be almost surely extended to the

random variables inf l∈Lj

∣∣∆̃(j , lej)
∣∣ and supl∈Lj

∣∣∆̆(j , lej)
∣∣?

For supl∈Lj

∣∣∆̆(j , lej)
∣∣ a logarithmic correction (that is the factor jN/2) is needed:

Lemma 2.3

There are c̆ a positive (finite) deterministic constant and Ω̆ an event of
probability 1 such that on Ω̆, for every integer j large enough, one has

sup
l∈Lj

∣∣∆̆(j , lej)
∣∣ ≤ c̆ 2−j(N(H−1)+1) eH−1

j jN/2 . (2.26)
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Proof of the main result

Sketch of the proof of Lemma 2.3: The main two ingredients of the proof are
Borel-Cantelli’s Lemma and the fact that there exists a positive, finite,
deterministic, universal constant c(N), depending only on N, such that, for every
random variable χ in the Wiener chaos of order N and for each real number
y ≥ 2, one has

P
(
|χ| > y‖χ‖L2(Ω)

)
≤ exp

(
− c(N)y 2/N

)
. (2.27)

�
The issue becomes more tricky in the case of inf l∈Lj

∣∣∆̃(j , lej)
∣∣ since, for almost all

ω ∈ Ω, some of the realizations
∣∣∆̃(j , lej , ω)

∣∣, l ∈ Lj , can be much smaller than

c̃0 2−j(N(H−1)+1) while inf l∈Lj

∥∥∆̃(j , lej)
∥∥
L2(Ω)

≥ c̃0 2−j(N(H−1)+1).

In order to overcome this difficulty the
∣∣∆̃(j , lej)

∣∣’s, l ∈ Lj , have to be replaced by
suprema of some them.
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Proof of the main result

Namely, the
∣∣∆̃(j , lej)

∣∣’s, l ∈ Lj := N ∩
[
1, (2j/ej)− 1

]
, have to be replaced by

the random variables Λ̃j
m, m ∈ {1, . . . ,Mj}, defined, for all m, as:

Λ̃j
m := sup

{∣∣∆̃(j , lej)
∣∣ : l ∈ Lj

m := N ∩
[
U j
m−1,U

j
m

]}
, (2.28)

where (U j
m)m∈{0,1,...,Mj} is the subdivision of the interval

[
1, (2j/ej)− 1

]
by the

Mj + 1 points such that:

U j
Mj

:= (2j/ej)− 1 and U j
m := 1 + m(n0j) , for all m ∈ {0, 1, . . . ,Mj − 1};

(2.29)
n0 being a well-chosen fixed positive integer. Observe that

Mj = O
(
2j/(jej)

)
. (2.30)
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Proof of the main result

Lemma 2.4

There are c̃ a (strictly) positive deterministic constant and Ω̃ an event of

probability 1 such that on Ω̃ one has

lim inf
j→+∞

{
2j(N(H−1)+1) inf

1≤m≤Mj

Λ̃j
m

}
≥ c̃ > 0 . (2.31)

Sketch of the proof of Lemma 2.4: The main two ingredients of the proof are
Borel-Cantelli’s Lemma and the following lemma which, roughly speaking, provides
an universal non-trivial upper bound for the probability that the absolute values of
a centred chaotic random variable be significantly smaller than its standard
deviation. �

Lemma 2.5

For any fixed integer N ≥ 1, there exists an universal nonnegative deterministic
constant γN strictly smaller than 1, such that, for each random variable χ
belonging to the Wiener chaos of order N one has

P
(
|χ| < 2−1‖χ‖L2(Ω)

)
≤ γN < 1 . (2.32)

Antoine Ayache (Université de Lille) On the oscillations of Hermite processes Univ. Luxembourg, 21 April 2022 29 / 30



Proof of the main result

Conclusion

Recall that ∆(j , lej) = ∆̃(j , lej) + ∆̆(j , lej). Roughly speaking, the following
lemma shows almost surely that in any very small part of the interval [0, 1] there
are many dyadic increments ∆(j , k) such that

∣∣∆(j , k)
∣∣ ≥ c̃ 2−j(N(H−1)+1).

Lemma 2.6

One lets (Λj
m)m∈{1,...,Mj} be the sequence of the nonnegative finite random

variables defined, for all m ∈ {1, . . . ,Mj}, as:

Λj
m := sup

{∣∣∆(j , lej)
∣∣ : l ∈ Lj

m

}
. (2.33)

One denotes by Ω∗ the event of probability 1 defined as the intersection of the
events of probability 1 Ω̆ and Ω̃ introduced in Lemmas 2.3 and 2.4. Then,
assuming that c̃ is the same strictly positive deterministic constant as in
Lemma 2.4, one has on Ω∗

lim inf
j→+∞

{
2j(N(H−1)+1) inf

1≤m≤Mj

Λj
m

}
≥ c̃ > 0 . (2.34)
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