Almost sure approximations in Hölder norms of a general stochastic process defined by a Young integral

Antoine Ayache, Céline Esser and Qidi Peng

Univ. of Lille (LPP), Univ. of Liège (Math. Dept.) and Claremont Univ. (Inst. Math. Sci.)

Organization of the talk

(1) Introduction and motivation
(2) Approximation of Y paths via wavelets
(3) A better rate of convergence in Wiener chaos framework
(4) Some classes of examples

Let $\{\sigma(s)\}_{s \in \mathbb{R}}$ and $\{X(s)\}_{s \in \mathbb{R}}$ be two real-valued stochastic processes indexed by \mathbb{R} and defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We always assume that they satisfy the following assumption:

Fundamental condition: There are two exponents $\alpha, \beta \in(0,1)$ satisfying $\alpha+\beta>1$ such that, for all compact interval $\mathcal{K} \subset \mathbb{R}$ the restrictions of the paths of $\sigma($ resp. $X)$ to \mathcal{K} belong to the Hölder space $C^{\alpha}(\mathcal{K})\left(\right.$ resp. $\left.C^{\beta}(\mathcal{K})\right)$.

This is a very classical condition under which, for each $t \in \mathbb{R}$, the pathwise Young integral

$$
\begin{equation*}
Y(t):=\int_{0}^{t} \sigma(s) \mathrm{d} X(s) \tag{1.1}
\end{equation*}
$$

is a well-defined real-valued random variable. Such kind of process $\{Y(t)\}_{t \in \mathbb{R}}$ is closely connected to (stochastic) differential equations driven by fractional Brownian motions and more generally by (random) Hölder functions with correlated increments (see e.g. Gubinelli, Lejay and Tindel (2007); Gubinelli, Imkeller and Perkowski (2016); Lejay (2010); Lyons, Caruana and Lévy (2004)).
$\Longrightarrow I t$ is useful to find approximation procedures for Y paths which converge at the fastest possible rate.

A brief recall on the definition of pathwise Young integral

When $t>0$, let
$\left(\mathcal{D}_{n}\right)_{n \in \mathbb{Z}_{+}}:=\left(\left\{\delta_{0}^{n}, \delta_{1}^{n}, \ldots, \delta_{r_{n}}^{n}: 0=\delta_{0}^{n}<\delta_{1}^{n}<\ldots<\delta_{r_{n}}^{n}=t\right\}\right)_{n \in \mathbb{Z}_{+}}$be an arbitrary sequence of partitions of $[0, t]$, such that $\left|\mathcal{D}_{n}\right|:=\max _{1 \leq i \leq r_{n}}\left(\delta_{i}^{n}-\delta_{i-1}^{n}\right) \xrightarrow[n \rightarrow+\infty]{ } 0$. Then, under the previous condition, for all $\omega \in \Omega$, the Riemann-Stieltjes sum:

$$
\begin{equation*}
\sum_{i=1}^{r_{n}} \sigma\left(\delta_{i-1}^{n}, \omega\right)\left(X\left(\delta_{i}^{n}, \omega\right)-X\left(\delta_{i-1}^{n}, \omega\right)\right) \tag{1.2}
\end{equation*}
$$

converges, when $n \rightarrow+\infty$, to a random finite limit not depending on the choice of the sequence of partitions. The pathwise Young integral $\int_{0}^{t} \sigma(s, \omega) \mathrm{d} X(s, \omega)$ is simply defined to be this limit. The case where $t<0$ is similar except that $[0, t]$ has to be replaced by $[t, 0]$ and \int_{0}^{t} means $-\int_{t}^{0}$.
When a compactly supported function $f(\bullet, \omega)$ from \mathbb{R} to \mathbb{R} is α-Hölder continuous with a support included in a compact interval J, then by convention one sets

$$
\int_{\mathbb{R}} f(s, \omega) \mathrm{d} X(s, \omega):=\int_{J} f(s, \omega) \mathrm{d} X(s, \omega)
$$

Of course, Young integral has much less "good" properties than the usual Lebesgue integral. Yet, it satisfies the following fundamental inequality, whose proof can for instance be found in the well-known book Lyons, Caruana and Lévy (2004) on rough paths.

Proposition 1.1 (Young-Loeve inequality)

There exists a positive finite constant $\Lambda_{\alpha+\beta}$, depending only on $\alpha+\beta>1$, such that the inequality

$$
\begin{align*}
\mid \int_{t_{1}}^{t_{2}} \sigma(s) \mathrm{d} X(s)-\sigma(\tilde{s})(& \left.X\left(t_{2}\right)-X\left(t_{1}\right)\right) \mid \\
& \leq \Lambda_{\alpha+\beta}\|\sigma\|_{C^{\alpha}\left(\left[t_{1}, t_{2}\right]\right)}\|X\|_{C^{\beta}\left(\left[t_{1}, t_{2}\right]\right)}\left(t_{2}-t_{1}\right)^{\alpha+\beta} \tag{1.3}
\end{align*}
$$

holds for all real numbers $t_{1} \leq \tilde{s} \leq t_{2}$.
\Longrightarrow The restrictions of Y paths to any compact interval $\mathcal{K} \subset \mathbb{R}$ belong to the Hölder space $C^{\beta}(\mathcal{K})$.

Appoximation of Y paths through Euler scheme

Let $I:=[0, T]$, where $T \in \mathbb{N}$ is fixed once and for all. The classical Euler scheme, corresponding to Riemann-Stieltjes sums associated with dyadic intervals of fixed length $2^{-J}, J \in \mathbb{N}$, provides a natural method for approximating paths of the process $\{Y(t)\}_{t \in l}$, which can be connected to Haar basis. More precisely, for every $m \in\left\{1, \ldots, 2^{J} T\right\}$, one approximates $Y\left(m / 2^{J}\right):=\int_{0}^{m / 2^{J}} \sigma(s) \mathrm{d} X(s)$ by

$$
\begin{equation*}
Y_{J}\left(m / 2^{J}\right):=\int_{0}^{m / 2^{J}}\left(\sum_{l=0}^{m-1} \sigma\left(\tilde{s}_{J, I}\right) \mathbb{1}_{\left[I / 2^{J},(I+1) / 2^{J}\right)}(s)\right) \mathrm{d} X(s)=\sum_{l=0}^{m-1} \sigma\left(\tilde{s}_{J, l}\right) \Delta_{J, I}(X) \tag{1.4}
\end{equation*}
$$

where $\Delta_{J, I}(X):=X\left((I+1) / 2^{J}\right)-X\left(I / 2^{J}\right)$, and $\tilde{s}_{J, I} \in\left[I / 2^{J},(I+1) / 2^{J}\right]$ can be chosen arbitrarily. Thus, taking it such that $\sigma\left(\tilde{s}_{J, I}\right)=2^{J} \int_{I / 2^{J}}^{(I+1) / 2^{J}} \sigma(s) \mathrm{d} s$, one has

$$
\begin{equation*}
Y_{J}\left(m / 2^{J}\right)=\int_{\mathbb{R}} \operatorname{Proj}_{V_{J}^{\mathrm{H}}}\left(\sigma \mathbb{1}_{\left[0, m / 2^{J}\right]}\right)(s) \mathrm{d} X(s), \tag{1.5}
\end{equation*}
$$

where $V_{J}^{\mathrm{H}}:=\overline{\operatorname{span}\left\{\mathbb{1}_{\left[I / 2^{J},(I+1) / 2^{J}\right)}: I \in \mathbb{Z}\right\}}$ is the closed subspace of $L^{2}(\mathbb{R})$ issued from the multiresolution analysis generating the Haar basis.

Once one has the $Y_{J}\left(m / 2^{J}\right)$'s, using linear interpolation, one gets a random function, from I to $\mathbb{R}, t \mapsto Y_{J}^{R S}(t)$ which approximates the whole path $t \mapsto Y(t)$. More precisely, one sets $Y_{J}^{R S}(0):=0, Y_{J}^{R S}(T):=Y_{J}(T)$, and, for every $t \in i \quad:=(0, T)$,

$$
Y_{J}^{R S}(t):=Y_{J}\left(\frac{\left[2^{J} t\right]}{2^{J}}\right)+\left(2^{J} t-\left[2^{J} t\right]\right)\left(Y_{J}\left(\frac{\left[2^{J} t\right]+1}{2^{J}}\right)-Y_{J}\left(\frac{\left[2^{J} t\right]}{2^{J}}\right)\right) .
$$

The proof of the following proposition manly relies on the Young-Loeve inequality.

Proposition 1.2

There exists a random finite constant $c>0$ such that for all $\gamma \in[0, \beta)$ and $J \in \mathbb{N}$, one has

$$
\begin{equation*}
\left\|Y-Y_{J}^{R S}\right\|_{C^{\gamma}(I)} \leq c 2^{-J \min (\beta-\gamma, \alpha+\beta-1)} . \tag{1.6}
\end{equation*}
$$

Question: Is it possible to find an approximation procedure for $\{Y(t)\}_{t \in I}$ paths allowing to have a better rate of convergence than the one provided by (1.6)?

Studying this issue is the main motivation of our talk.

Organization of the talk

(1) Introduction and motivation
(2) Approximation of Y paths via wavelets
(3) A better rate of convergence in Wiener chaos framework

4 Some classes of examples

Our next goal is to provide a generalization of Proposition 1.2 in a wavelet-based framework (see e.g. Meyer (1990, 1992); Daubechies (1992)). The collection of functions, from \mathbb{R} to itself,

$$
\begin{equation*}
\{\varphi(\bullet-I): I \in \mathbb{Z}\} \cup\left\{2^{j / 2} \psi\left(2^{j} \bullet-k\right):(j, k) \in \mathbb{Z}_{+} \times \mathbb{Z}\right\} \tag{2.1}
\end{equation*}
$$

satisfies one of the following two hypotheses.
$\left(\mathcal{H}_{1}\right)$ This collection is simply the Haar basis of $L^{2}(\mathbb{R})$, in other words one has $\varphi:=\mathbb{1}_{[0,1)}$ and $\psi:=\mathbb{1}_{[0,1 / 2)}-\mathbb{1}_{[1 / 2,1)}$.
$\left(\mathcal{H}_{2}\right)$ This collection is an arbitrary compactly supported orthonormal wavelet basis of $L^{2}(\mathbb{R})$ such that the scaling function φ and the mother wavelet ψ are α-Hölder continuous on \mathbb{R} with a support included in $[-N, N]$, where $N \in \mathbb{N}$. Thus, setting $N_{j, k}^{-}:=(k-N) / 2^{j}$ and $N_{j, k}^{+}:=(k+N) / 2^{j}$, one gets that

$$
\begin{equation*}
\operatorname{supp} \psi\left(2^{j} \bullet-k\right) \subseteq\left[N_{j, k}^{-}, N_{j, k}^{+}\right] . \tag{2.2}
\end{equation*}
$$

It is known that: $\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=1, \int_{\mathbb{R}} \psi(x) \mathrm{d} x=0$, and the integer translates of φ form "a partition of unity" i.e. $\sum_{l \in \mathbb{Z}} \varphi(x-l)=1$, for all $x \in \mathbb{R}$.

The increasing sequence $\left(V_{J}\right)_{J \in \mathbb{Z}}$ of closed subspaces of $L^{2}(\mathbb{R})$ denotes the multiresolution analysis associated to this basis, that is

$$
V_{J}:=\overline{\operatorname{span}\left\{\varphi\left(2^{J} \bullet-I\right): I \in \mathbb{Z}\right\}}, \quad \text { for all } J \in \mathbb{Z} .
$$

For all fixed $J \in \mathbb{N}$, let $\left\{Y_{J}^{W}(t)\right\}_{t \in I}$ be the stochastic process defined, for each $t \in I$, as

$$
\begin{align*}
& Y_{J}^{W}(t):=\int_{\mathbb{R}} \operatorname{Proj}_{V_{J}}\left(\sigma \mathbb{1}_{[0, t]}\right)(s) \mathrm{d} X(s) \tag{2.3}\\
& =\sum_{l \in \mathbb{L}_{J, t} \cup \partial \mathbb{L} J, t}\left(2^{J} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s\right)\left(\int_{N_{J, l}^{-}}^{N_{J, l}^{+}} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right),
\end{align*}
$$

where $\mathbb{L}_{J, t}:=\left\{I \in \mathbb{Z}:\left[N_{j, k}^{-}, N_{j, k}^{+}\right] \subseteq[0, t]\right\}$ and
$\partial \mathbb{L}_{J, t}:=\left\{1 \in \mathbb{Z} \backslash \mathbb{L}_{J, t}:\left[N_{j, k}^{-}, N_{j, k}^{+}\right] \cap[0, t] \neq \emptyset\right\}$. Observe that $\operatorname{card}\left(\mathbb{L}_{J, t}\right) \leq c 2^{J}$
and $\operatorname{card}\left(\partial \mathbb{L}_{\mu, t}\right) \leq c$, where the deterministic constant $c>0$ does not depend on (J, t). The following theorem provides a generalization of Proposition 1.2.

Theorem 2.1

There is a finite random constant $c>0$ such that, for all $\gamma \in[0, \beta)$ and $J \in \mathbb{N}$, one has

$$
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \leq c 2^{-J \min (\beta-\gamma, \alpha+\beta-1)}
$$

The proof of Theorem 2.1 mainly relies on the following technical lemma.

Lemma 2.1

There is a random constant not depending on (J, I, t) such that:

$$
\begin{gather*}
\left|2^{J} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s\right| \leq c, \quad \text { if } I \in \mathbb{Z}, \tag{2.4}\\
\left|2^{J} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s-\sigma\left(I / 2^{j}\right)\right| \leq c 2^{-J \alpha}, \quad \text { if } I \in \mathbb{L}_{J, t}, \tag{2.5}\\
\left|\int_{N_{J, I}^{-}}^{N_{J, I}^{\prime}} \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right| \leq c 2^{-J \beta}, \quad \text { if } I \in \mathbb{Z}, \tag{2.6}\\
\left|\int_{0}^{t}\left(\sigma(s)-\sigma\left(I / 2^{j}\right)\right) \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right| \leq c 2^{-J(\alpha+\beta)}, \quad \text { if } I \in \mathbb{L}_{J, t},
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right| \leq c 2^{-J \beta}, \quad \text { if } I \in \partial \mathbb{L}_{J, t} . \tag{2.8}
\end{equation*}
$$

The main ideas of the proof of Lemma 2.1: The proofs of the first two inequalities are standard and easy. The proofs of the three others are rather similar and rely on the Young-Loeve inequality. So, we only give the one which concerns $\int_{N_{J, I}^{\prime}}^{N_{J, I}^{+}} \varphi\left(2^{\lrcorner} s-I\right) \mathrm{d} X(s)$. Using the Young-Loeve inequality, one gets

$$
\begin{align*}
& \left|\int_{N_{J, l}^{-}}^{N_{J, l}^{+}} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)-\varphi\left(2^{J} N_{J, l}^{-}-l\right)\left(X\left(N_{J, l}^{+}\right)-X\left(N_{J, l}^{-}\right)\right)\right| \\
& \quad \leq \Lambda_{\alpha+\beta}\left\|\varphi\left(2^{J} \bullet-l\right)\right\|_{C^{\alpha}\left(\left[N_{J, l}^{-}, N_{J, l}^{+}\right)\right.}\|X\|_{C^{\beta}\left(\left[N_{J, l}^{-}, N_{J, l}^{+}\right)\right.}\left(N_{J, l}^{+}-N_{J, l}^{-}\right)^{\alpha+\beta} . \tag{2.9}
\end{align*}
$$

Next, noticing that $\varphi\left(2^{J} N_{J, I}^{-}-I\right)=0\left(\right.$ since $\left.\operatorname{supp} \varphi\left(2^{\lrcorner} \bullet^{-}-I\right) \subseteq\left[N_{J, I}^{-}, N_{J, l}^{+}\right]\right)$,

$$
\left\|\varphi\left(2^{J} \bullet-l\right)\right\|_{C^{\alpha}\left(\left[N_{J, l}^{-}, N_{j, l}, l\right)\right.} \leq 2^{J \alpha}\|\varphi\|_{C^{\alpha}([-N, N])}
$$

and $N_{J, l}^{+}-N_{J, l}^{-}=2^{1-J} N$, one obtains that

$$
\left|\int_{N_{J, I}^{-}}^{N_{J, I}^{+}} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right| \leq c 2^{-J \beta} .
$$

\square

Sketch of the proof of Theorem 2.1 in the case $\gamma=0$: Using the fact that the integer translates of φ form "a partition of unity", one gets

$$
\begin{align*}
Y(t) & :=\int_{0}^{t} \sigma(s) \mathrm{d} s=\int_{0}^{t} \sigma(s)\left(\sum_{I \in \mathbb{L}_{J, t} \cup \partial \mathbb{L}, t} \varphi\left(2^{J} s-l\right)\right) \mathrm{d} s \\
& =\sum_{I \in \mathbb{L}_{J, t} \cup \partial \mathbb{L}_{J, t}} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s \\
& \simeq \sum_{I \in \mathbb{L}_{J, t}} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s . \tag{2.10}
\end{align*}
$$

On the other hand, one has

$$
\begin{align*}
& Y_{J}^{W}(t)=\sum_{l \in \mathbb{L}_{, t} \cup \partial \mathbb{L}_{J, t}}\left(2^{J} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-I\right) \mathrm{d} s\right)\left(\int_{N_{J, I}^{-}}^{N_{J, I}^{+}} \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right) \\
& \simeq \sum_{I \in \mathbb{L}_{J, t}} \int_{0}^{t} \sigma\left(I / 2^{j}\right) \varphi\left(2^{J} s-I\right) \mathrm{d} X(s) . \tag{2.11}
\end{align*}
$$

One knows from Lemma 2.1 that the approximation errors in (2.10) and (2.11) for the norm $\|\cdot\|_{I, \infty}$ are less than $c_{1} 2^{-J \min (\beta, \alpha+\beta-1)}$. Finally, using the same lemma and the inequality $\operatorname{card}\left(\mathbb{L}_{J, T}\right) \leq c_{2} 2^{J}$, it follows that

$$
\begin{aligned}
\left\|Y-Y_{J}^{W}\right\|_{I, \infty} & \simeq\left\|\sum_{I \in \mathbb{L}_{J, \bullet}} \int_{0}^{\bullet}\left(\sigma(s)-\sigma\left(I / 2^{j}\right)\right) \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right\|_{I, \infty} \\
& \leq \sum_{I \in \mathbb{L}_{J, T}}\left\|\int_{0}^{\bullet}\left(\sigma(s)-\sigma\left(I / 2^{j}\right)\right) \varphi\left(2^{J} s-I\right) \mathrm{d} X(s)\right\|_{I, \infty} \\
& \leq c_{3} \operatorname{card}\left(\mathbb{L}_{J, T}\right) 2^{-J(\alpha+\beta)} \leq c_{4} 2^{-J(\alpha+\beta-1)}
\end{aligned}
$$

One of the main advantages of the wavelet approach is that the difference $Y(t)-Y^{W}(t)$ can be expressed in Hölder spaces in an explicit exploitable way:

$$
\begin{equation*}
Y(t)-Y^{W}(t)=\sum_{j=J}^{+\infty} \sum_{k \in \mathbb{L}_{j, t} \cup \partial \mathbb{L}_{j, t}} a_{j, k}(t) \lambda_{j, k} \tag{2.12}
\end{equation*}
$$

where $a_{j, k}(t):=2^{j} \int_{0}^{t} \sigma(s) \psi\left(2^{j} s-k\right) \mathrm{d} s$ and $\lambda_{j, k}:=\int_{N_{j, k}^{-,}}^{N_{j, k}^{+}} \psi\left(2^{j} s-I\right) \mathrm{d} X(s)$.

Organization of the talk

(1) Introduction and motivation
(2) Approximation of Y paths via wavelets
(3) A better rate of convergence in Wiener chaos framework
(4) Some classes of examples

First, it is useful to make some brief recalls on the notion of Wiener chaos; our presentation of it is inspired by the one in the book Janson (1997).

Definition 3.1 (Wiener chaos)

Let G be an arbitrary fixed Gaussian subspace of $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$, that is a closed subspace consisting of real-valued centred Gaussian random variables.
Let $n \in \mathbb{Z}_{+}$, the Wiener chaos of order n associated with G is denoted by $\overline{\mathcal{P}}_{n}(G)$, or more simply by $\overline{\mathcal{P}}_{n}$.
The space $\overline{\mathcal{P}}_{0}$ is defined to be the closed subspace of $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ consisting of all the constant random variables.
When $n \geq 1$, the space $\overline{\mathcal{P}}_{n}$ is defined as the closed subspace of $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ spanned by the following set of random variables:

$$
\left\{\prod_{l=1}^{n} g_{l}^{m_{l}}:\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \text { and }\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{+}^{n} \text { with } \sum_{l=1}^{n} m_{l} \leq n\right\}
$$

Remark 3.1

(a) One clearly has $\overline{\mathcal{P}}_{n} \subseteq \overline{\mathcal{P}}_{n+1}$, for every $n \in \mathbb{Z}_{+}$. Moreover, for all fixed $p \in(0,+\infty)$, the space $\overline{\mathcal{P}}_{*}:=\bigcup_{n \in \mathbb{Z}_{+}} \overline{\mathcal{P}}_{n}$ is dense in $L^{p}(\Omega, \mathcal{F}(G), \mathbb{P})$.
(b) The $L^{p}(\Omega)$-norms are equivalent on $\overline{\mathcal{P}}_{n}$, for all fixed $n \in \mathbb{Z}_{+}$.
(c) For every fixed $n \in \mathbb{Z}_{+}$and for each sequence of random variables in $\overline{\mathcal{P}}_{n}$, convergence in probability is equivalent to convergence in $L^{p}(\Omega)$-norm, for any fixed $p \in(0,+\infty)$.
(d) For all fixed integer $n \geq 1$, there exists a positive finite universal constant $c(n)$, depending only on n, such that, for every random variable $\chi \in \overline{\mathcal{P}}_{n}$ and for each real number $y \geq 2$, one has

$$
\begin{equation*}
\mathbb{P}\left(|\chi|>y\|\chi\|_{L^{2}(\Omega)}\right) \leq \exp \left(-c(n) y^{2 / n}\right) \tag{3.13}
\end{equation*}
$$

Definition 3.2 (the Wiener chaos condition $(\mathcal{W C})$)

One says that the stochastic process $\{Y(t)\}_{t \in I}$ satisfies $(\mathcal{W C})$ when, for some arbitrary integer $n \geq 1$, the integrand $\{\sigma(s)\}_{s \in \mathbb{R}}$ and the integrator $\{X(s)\}_{s \in \mathbb{R}}$ are two stochastic processes belonging to the Wiener chaos $\overline{\mathcal{P}}_{n}$ (i.e. $\sigma(s) \in \overline{\mathcal{P}}_{n}$ and $X(s) \in \overline{\mathcal{P}}_{n}$, for all $s \in \mathbb{R}$) and possessing the following two properties:
$\left(\mathcal{C}_{1}\right)$ There exist $\alpha_{0}, \beta_{0} \in(0,1]$, satisfying $\alpha_{0}+\beta_{0}>1$, such that, on any compact interval $\mathcal{K},\{\sigma(s)\}_{s \in \mathcal{K}}$ and $\{X(s)\}_{s \in \mathcal{K}}$ are respectively α_{0} and β_{0} Hölder continuous in the sense of the $L^{2}(\Omega)$-norm.
$\left(\mathcal{C}_{2}\right)$ The "wavelet coefficients" $a_{j, k}:=a_{j, k}(T)$ and $\lambda_{j, k}$ have the following "short-range dependence" property: the inequality

$$
\begin{equation*}
\sum_{k_{1} \in \mathbb{L}_{j, T}} \sum_{k_{2} \in \mathbb{L}_{j, T}}\left|\mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right]\right| \leq c 2^{-2 j\left(\alpha_{0}+\beta_{0}-1 / 2\right)} \tag{3.14}
\end{equation*}
$$

is satisfied, for some finite deterministic constant $c>0$ and for all positive integer j large enough.

Remark 3.2

(a) The condition $\left(\mathcal{C}_{1}\right)$ implies that paths of σ and X respectively belong to the Hölder spaces $C^{\alpha}(\mathcal{K})$ and $C^{\beta}(\mathcal{K})$ for any $\alpha \in\left(0, \alpha_{0}\right)$ and $\beta \in\left(0, \beta_{0}\right)$ (Kolmogorov-Čentsov Hölder continuity theorem).
(b) One has $Y(t) \in \overline{\mathcal{P}}_{2 n}$ for all t, since $\sigma(s) \in \overline{\mathcal{P}}_{n}$ and $X(s) \in \overline{\mathcal{P}}_{n}$ for every s.
(c) The same argument shows that, for all (t, j, k), the "wavelet coefficients" $a_{j, k}(t)$ and $\lambda_{j, k}$ are in $\overline{\mathcal{P}}_{n}$; therefore $Y_{j}^{W}(t) \in \overline{\mathcal{P}}_{2 n}$.

The main goal of the present section is to obtain the following theorem.

Theorem 3.1

Under the condition $(\mathcal{W C})$, for any fixed real numbers $\alpha \in\left(0, \alpha_{0}\right), \beta \in\left(0, \beta_{0}\right)$ and $\gamma \geq 0$ satisfying $\alpha+\beta>1$ and $\gamma<\min (\beta, 1 / 2)$, there is a finite random constant $c>0$ such that the following inequality holds almost surely and for each $J \in \mathbb{N}$.

$$
\begin{equation*}
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \leq c 2^{-J \min (\beta-\gamma, \alpha+\beta-1 / 2-\gamma)} . \tag{3.15}
\end{equation*}
$$

We focus on the case $\gamma=0$, that is:

$$
\begin{equation*}
\left\|Y-Y_{J}^{W}\right\|_{I, \infty} \leq c 2^{-J \min (\beta, \alpha+\beta-1 / 2)} \tag{3.16}
\end{equation*}
$$

In the rest of the section, one presents the main lines of the strategy allowing to derive (3.16).

For each fixed $j \in \mathbb{N}$, one denotes by $Z_{j}:=\left\{Z_{j}(t)\right\}_{t \in I}$ the stochastic process in $\overline{\mathcal{P}}_{2 n}$ with Lipschitz continuous paths defined, for all $t \in I$, as

$$
\begin{equation*}
Z_{j}(t):=\sum_{k \in \mathbb{L}_{j, t} \cup \partial \mathbb{L}_{j, t}} a_{j, k}(t) \lambda_{j, k} \tag{3.17}
\end{equation*}
$$

One already knows from Theorem 2.1 that:

$$
Y(\bullet, \omega)-Y_{j}^{W}(\bullet, \omega)=\sum_{j=J}^{+\infty} Z_{j}(\bullet, \omega)
$$

where the convergence of the series holds in the Hölder space $C^{\gamma}(I)$, for any $\gamma \in[0, \beta)$.

Therefore, using the triangle inequality, one has

$$
\begin{equation*}
\left\|Y(\bullet, \omega)-Y_{j}^{W}(\bullet, \omega)\right\|_{I, \infty} \leq \sum_{j=J}^{+\infty}\left\|Z_{j}(\bullet, \omega)\right\|_{I, \infty} \tag{3.18}
\end{equation*}
$$

Thus, in order to derive $\left\|Y-Y_{J}^{W}\right\|_{I, \infty} \leq c 2^{-J \min (\beta, \alpha+\beta-1 / 2)}$, it is enough to obtain the following lemma.

Lemma 3.1

One has almost surely

$$
\begin{equation*}
\sup _{j \in \mathbb{N}}\left\{2^{j \min (\beta, \alpha+\beta-1 / 2)}\left\|Z_{j}\right\|_{I, \infty}\right\}<+\infty \tag{3.19}
\end{equation*}
$$

Next, let us point out that $\left\|Z_{j}\right\|_{I, \infty}:=\sup _{t \in I}\left|Z_{j}(t)\right|$ is the supremum of infinitely many random variables. Actually, it is more convenient to work with a supremum of finite number of them; this can be done thanks to the following lemma.

Lemma 3.2

For each $j \in \mathbb{N}$, one sets

$$
\nu\left(Z_{j}\right):=\sup _{2^{-j} \mid \in I}\left|Z_{j}\left(2^{-j} I\right)\right| .
$$

Then, one has almost surely

$$
\begin{equation*}
\sup _{j \in \mathbb{N}}\left\{2^{j \beta}\left|\left\|Z_{j}\right\|_{I, \infty}-\nu\left(Z_{j}\right)\right|\right\}<+\infty . \tag{3.20}
\end{equation*}
$$

Proof of Lemma 3.2: For all $t \in I$, let $d_{j}(t)$ be the dyadic number of order j such that $t \in\left[d_{j}(t), d_{j}(t)+2^{-j}\right)$.
Then, one has $\mathbb{L}_{j, t}=\mathbb{L}_{j, d_{j}(t)}$ and $a_{j, k}(t)=a_{j, k}\left(d_{j}(t)\right)$ for any $k \in \mathbb{L}_{j, t}$. Therefore

$$
\begin{aligned}
& \left|Z_{j}(t)-Z_{j}\left(d_{j}(t)\right)\right| \leq \sum_{k \in \partial \mathbb{L}_{j, t}}\left|a_{j, k}(t)-a_{j, k}\left(d_{j}(t)\right)\right|\left|\lambda_{j, k}\right| \\
& \leq c_{1} 2^{-j \beta} \sum_{k \in \partial \mathbb{L}_{j, t}} 2^{j} \int_{d_{j}(t)}^{t}\left|\sigma(s) \psi\left(2^{j} s-k\right)\right| \mathrm{d} s \\
& \leq c_{1} 2^{-j \beta}\|\sigma\|_{I, \infty}\|\psi\|_{\infty} \operatorname{card}\left(\partial \mathbb{L}_{j, t}\right) \leq c_{2} 2^{-j \beta}
\end{aligned}
$$

In view of the previous lemma, it turns out that for deriving the theorem it is enough to show that

$$
\begin{equation*}
\sup _{j \in \mathbb{N}}\left\{2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)\right\}<+\infty . \tag{3.21}
\end{equation*}
$$

Notice that if one shows that

$$
\begin{equation*}
\sum_{j=1}^{+\infty} \mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right)<+\infty \tag{3.22}
\end{equation*}
$$

then the Borel-Cantelli lemma entails that (3.21) holds.
Using the Markov inequality, one has, for every $j \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right) \leq 2^{j \min (\beta, \alpha+\beta-1 / 2)} \mathbb{E}\left(\nu\left(Z_{j}\right)\right) . \tag{3.23}
\end{equation*}
$$

Lemma 3.3

There is a constant $c(n)$, only depending on n the order of the chaos, such that for every $j \in \mathbb{N}$, one has

$$
\begin{equation*}
\mathbb{E}\left(\nu\left(Z_{j}\right)\right) \leq c(n) j^{n / 2} \sup _{2^{-j} I \in I}\left(\mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)\right)^{1 / 2} \tag{3.24}
\end{equation*}
$$

Roughly speaking, the proof of the lemma mainly relies on the fact that one has, for some constant c^{\prime}, not depending on (j, I), and for all $\tau>0$ large enough

$$
\begin{equation*}
\mathbb{P}\left(\left|Z_{j}\left(2^{-j} l\right)\right|>\tau\right) \leq \exp \left(-c^{\prime} \tau^{2 / n}\right) \tag{3.25}
\end{equation*}
$$

In view of Lemma 3.3 and of the fact that $\alpha \in\left(0, \alpha_{0}\right)$ and $\beta \in\left(0, \beta_{0}\right)$, it turns out that for proving the theorem it is enough that

$$
\begin{equation*}
\sup _{j \in \mathbb{N}} \sup _{2^{-j} \mid \in I}\left\{2^{2 j \min \left(\beta_{0}, \alpha_{0}+\beta_{0}-1 / 2\right)} \mathbb{E}\left(\left|Z_{j}\left(2^{-j} /\right)\right|^{2}\right)\right\}<+\infty . \tag{3.26}
\end{equation*}
$$

End of the proof of Theorem 3.1

Finally, observe that

$$
\begin{align*}
& \mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)=\mathbb{E}\left(\left|\sum_{k \in \mathbb{L}_{j, t} \cup \partial \mathbb{L}_{j, t}} a_{j, k}(t) \lambda_{j, k}\right|^{2}\right) \\
& \simeq \sum_{k_{1} \in \mathbb{L}_{j, t}} \sum_{k_{2} \in \mathbb{L}_{j, t}} \mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right] \\
& \leq \sum_{k_{1} \in \mathbb{L}_{j, T}} \sum_{k_{2} \in \mathbb{L}_{j, T}}\left|\mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right]\right| . \tag{3.27}
\end{align*}
$$

Using the inequality (3.27) and the condition

$$
\begin{equation*}
\sum_{k_{1} \in \mathbb{L}_{j, T}} \sum_{k_{2} \in \mathbb{L}_{j, T}}\left|\mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right]\right| \leq c 2^{-2 j\left(\alpha_{0}+\beta_{0}-1 / 2\right)} \tag{2}
\end{equation*}
$$

one gets the theorem.

Organization of the talk

(1) Introduction and motivation
(2) Approximation of Y paths via wavelets
(3) A better rate of convergence in Wiener chaos framework

4 Some classes of examples

This section involves constructing wide classes of examples of real-valued stochastic processes σ and X satisfying the Wiener chaos condition ($\mathcal{W} C$).

For the sake of convenience, one assumes that these two processes are independent, centred and given by multiple Itô-Wiener integrals. More precisely, for $\mu=\sigma$ or $\mu=X$, one has, for some $N_{\mu} \in \mathbb{N}$ and for all $s \in \mathbb{R}$,

$$
\begin{equation*}
\mu(s)=\int_{\mathbb{R}^{N_{\mu}}}\left(e^{i s\left(\eta_{1}+\ldots+\eta_{N_{\mu}}\right)}-1\right) g_{\mu}\left(\eta_{1}, \ldots, \eta_{N_{\mu}}\right) \mathrm{d} \widehat{\mathbb{W}}_{\mu}\left(\eta_{1}\right) \ldots \mathrm{d} \widehat{\mathbb{W}}_{\mu}\left(\eta_{N_{\mu}}\right), \tag{4.1}
\end{equation*}
$$

where $d \widehat{\mathbb{W}}_{\mu}$ is the "Fourier transform" of a Brownian measure $d \mathbb{W}_{\mu}$ on \mathbb{R}, and g_{μ} is an arbitrary symmectric complex-valued Borel function such that $\overline{g(\eta)}=g(-\eta)$, for all $\eta \in \mathbb{R}^{N_{\mu}}$, and

$$
\begin{equation*}
\int_{\mathbb{R}^{N_{\mu}}} \min \left(1,\left(\eta_{1}+\ldots+\eta_{N_{\mu}}\right)^{2}\right)\left|g\left(\eta_{1}, \ldots, \eta_{N_{\mu}}\right)\right|^{2} \mathrm{~d} \eta_{1} \ldots \mathrm{~d} \eta_{N_{\mu}}<+\infty . \tag{4.2}
\end{equation*}
$$

These properties of g_{μ} guarantee the existence of the multiple Itô-Wiener integral in (4.1) and the fact that it is real-valued.

Remark 4.1

- It is worth mentioning that the well-known Gaussian fractional Brownian motion (fBm) of an arbitrary Hurst parameter $H \in(0,1)$ belongs to this class of processes μ : in its case one has $N_{\mu}=1$ and

$$
\begin{equation*}
g_{\mu}^{\mathrm{fBm}}(\eta)=c|\eta|^{-H-1 / 2}, \quad \text { for almost all } \eta \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

where c is an arbitrary nonvanishing constant.

- Also we mention that the non-Gaussian Rosenblatt process of an arbitrary parameter $d \in(1 / 4,1 / 2)$ belongs to this same class of processes: in its case one has $N_{\mu}=2$ (second order chaos) and

$$
\begin{equation*}
g_{\mu}^{\operatorname{Ros}}\left(\eta_{1}, \eta_{2}\right)=-i\left(\eta_{1}+\eta_{2}\right)^{-1}\left|\eta_{1} \eta_{2}\right|^{-d}, \quad \text { for almost all }\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2} \tag{4.4}
\end{equation*}
$$

Next, one denotes by f_{μ} the even and positive Borel function defined, for each $\xi \in \mathbb{R}$, as

$$
\begin{equation*}
f_{\mu}(\xi):=\left(N_{\mu}\right)!\int_{\mathbb{R}^{N_{\mu}-1}}\left|g_{\mu}\left(\xi-\eta_{2}-\ldots-\eta_{N_{\mu}}, \eta_{2}, \ldots, \eta_{N_{\mu}}\right)\right|^{2} \mathrm{~d} \eta_{2} \ldots \mathrm{~d} \eta_{N_{\mu}} \tag{4.5}
\end{equation*}
$$

with the convention that $f_{\mu}(\xi):=\left|g_{\mu}(\xi)\right|^{2}$, when $N_{\mu}=1$. It can be derived from the properties of g_{μ}, the change of variable $\xi=\eta_{1}+\eta_{2}+\ldots+\eta_{N_{\mu}}$ and the " isometry property" of the multiple Itô-Wiener integral that

$$
\begin{equation*}
\int_{\mathbb{R}} \min \left(1, \xi^{2}\right) f_{\mu}(\xi) d \xi<+\infty \tag{4.6}
\end{equation*}
$$

and, for all $s_{1}, s_{2} \in \mathbb{R}$

$$
\begin{equation*}
\mathbb{E}\left[\mu\left(s_{1}\right) \mu\left(s_{2}\right)\right]=\int_{-\infty}^{+\infty}\left(e^{i s_{1} \xi}-1\right)\left(e^{-i s_{2} \xi}-1\right) f_{\mu}(\xi) \mathrm{d} \xi \tag{4.7}
\end{equation*}
$$

Thus the function f_{μ} can be viewed as a spectral density.

Notice that (4.7) is equivalent to

$$
\begin{equation*}
\mathbb{E}\left[\left|\mu\left(s_{1}\right)-\mu\left(s_{2}\right)\right|^{2}\right]=\mathbb{E}\left[\left|\mu\left(\left|s_{1}-s_{2}\right|\right)\right|^{2}\right]=4 \int_{-\infty}^{+\infty} \sin ^{2}\left(\frac{\left|s_{1}-s_{2}\right| \xi}{2}\right) f_{\mu}(\xi) \mathrm{d} \xi . \tag{4.8}
\end{equation*}
$$

Remark 4.2

Assume that the process $\{\mu(s)\}_{s \in \mathbb{R}}$ is self-similar of order $\gamma_{0} \in(0,1)$, that is the processes $\{\mu(a s)\}_{s \in \mathbb{R}}$ and $\left\{a^{\gamma_{0}} \mu(s)\right\}_{s \in \mathbb{R}}$ have the same finite-dimensional distributions, for any fixed positive real number a. Then, the corresponding spectral density f_{μ} satisfies

$$
\begin{equation*}
f_{\mu}(\xi)=c|\xi|^{-2 \gamma_{0}-1}, \quad \text { for almost all } \xi \in \mathbb{R} \tag{4.9}
\end{equation*}
$$

where c is some positive constant. We recall in passing that the Gaussian fractional Brownian motion of Hurst parameter $H \in(0,1)$ is self-similar of order $\gamma_{0}=H$. Also, we recall that the non-Gaussian Rosenblatt process of parameter $d \in(1 / 4,1 / 2)$ is self-similar of order $\gamma_{0}=2 d$.

Remark 4.3

A sufficient condition for the processes σ and X to satisfy $\left(\mathcal{C}_{1}\right)$ i.e. to be, on any compact interval \mathcal{K}, α_{0} and β_{0} Hölder continuous for the norm $\|\cdot\|_{L^{2}(\Omega)}$ is the following: there exist two positive finite deterministic constants c and ξ_{0}, such that the inequalities

$$
\begin{equation*}
f_{\sigma}(\xi) \leq c|\xi|^{-2 \alpha_{0}-1} \quad \text { and } \quad f_{X}(\xi) \leq c|\xi|^{-2 \beta_{0}-1} \tag{4.10}
\end{equation*}
$$

hold for almost all real number ξ satisfying $|\xi| \geq \xi_{0}$.

Remark 4.4

Suppose there are a finite constant $c>0$ and two nonnegative integers U_{0} and V_{0} satisfying $U_{0}+V_{0}=2$, such that, for every $j \in \mathbb{N}$ and for all $k_{1}, k_{2} \in \mathbb{L}_{j, T}$, one has

$$
\begin{equation*}
\left|\mathbb{E}\left[a_{j, k_{1}} a_{j, k_{2}}\right]\right| \leq c 2^{-2 j \alpha_{0}}\left(1+\left|k_{1}-k_{2}\right|\right)^{-U_{0}} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathbb{E}\left[\lambda_{j, k_{1}} \lambda_{j, k_{2}}\right]\right| \leq c 2^{-2 j \beta_{0}}\left(1+\left|k_{1}-k_{2}\right|\right)^{-V_{0}} . \tag{4.12}
\end{equation*}
$$

Then (C2) is satisfied.

Proof of Remark 4.4: The fact that σ and X are independent implies that the associated sequences of "wavelet coefficients" $\left(a_{j, k}\right)_{j, k}$ and $\left(\lambda_{j, k}\right)_{j, k}$ are independent as well. This together with the inequalities (4.11), (4.12) and the fact that $U_{0}+V_{0}=2$ yields

$$
\begin{align*}
& \left|\mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right]\right|=\left|\mathbb{E}\left[a_{j, k_{1}} a_{j, k_{2}}\right]\right|\left|\mathbb{E}\left[\lambda_{j, k_{1}} \lambda_{j, k_{2}}\right]\right| \\
& \leq\left(c 2^{-2 j \alpha_{0}}\left(1+\left|k_{1}-k_{2}\right|\right)^{-U_{0}}\right)\left(c 2^{-2 j \beta_{0}}\left(1+\left|k_{1}-k_{2}\right|\right)^{-V_{0}}\right) \\
& \leq c^{2} 2^{-2 j\left(\alpha_{0}+\beta_{0}\right)}\left(1+\left|k_{1}-k_{2}\right|\right)^{-2}, \tag{4.13}
\end{align*}
$$

for all $k_{1}, k_{2} \in \mathbb{L}_{j, T}$. Then setting $c_{1}:=2 c^{2} \sum_{q \in \mathbb{N}} q^{-2}$ and using (4.13) and the inequality $\operatorname{card}\left(\mathbb{L}_{j, T}\right) \leq c_{2} 2^{j}$, one gets:

$$
\begin{aligned}
& \sum_{k_{1} \in \mathbb{L}_{j, T}} \sum_{k_{2} \in \mathbb{L}_{j, T}}\left|\mathbb{E}\left[a_{j, k_{1}} \lambda_{j, k_{1}} a_{j, k_{2}} \lambda_{j, k_{2}}\right]\right| \\
& \leq c^{2} 2^{-2 j\left(\alpha_{0}+\beta_{0}\right)} \sum_{k_{1} \in \mathbb{L}_{j, T}} \sum_{k_{2} \in \mathbb{L}_{j, T}}\left(1+\left|k_{1}-k_{2}\right|\right)^{-2} \\
& \leq c_{1} \operatorname{card}\left(\mathbb{L}_{j, T}\right) 2^{-2 j\left(\alpha_{0}+\beta_{0}\right)} \leq c_{1} c_{2} 2^{-2 j\left(\alpha_{0}+\beta_{0}-1 / 2\right)}
\end{aligned}
$$

Proposition 4.1

Assume that the wavelet ψ is the Haar function, that is $\psi:=\mathbb{1}_{[0,1 / 2)}-\mathbb{1}_{[1 / 2,1)}$. Then (4.12) holds as soon as f_{X} is V_{0} times continuously differentiable on $\mathbb{R} \backslash\{0\}$ and satisfies the following condition: There exist two finite deterministic constants $\beta_{0}^{\prime} \in\left[\beta_{0}, 1\right)$ and $c>0$ such that, for all $n \in\left\{0, \ldots, V_{0}\right\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\begin{equation*}
\left|f_{X}^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \beta_{0}-n-1},|\xi|^{-2 \beta_{0}^{\prime}-n-1}\right) \tag{1,X}
\end{equation*}
$$

Proposition 4.2

Let $M \in \mathbb{N}$ be arbitrary and fixed. Assume that the wavelet ψ is continuously differentiable on the real line and has at least M vanishing moments. Then (4.12) holds as soon as f_{X} is V_{0} times continuously differentiable on $\mathbb{R} \backslash\{0\}$ and satisfies the following condition $\left(\mathcal{D}_{M, X}\right)$, which is weaker than $\left(\mathcal{D}_{1, X}\right)$: There exist two finite deterministic constants $\beta_{0}^{\prime} \in\left[\beta_{0}, 1\right)$ and $c>0$ such that, for all $n \in\left\{0, \ldots, V_{0}\right\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\left|f_{X}^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \beta_{0}-n-1},|\xi|^{-2 \beta_{0}^{\prime}-n M-1}\right)
$$

Proposition 4.3

Assume that the wavelet ψ is the Haar function. Also assume that the integer U_{0} in (4.11) belongs to the set $\{0,1\}$. Then (4.11) holds as soon as f_{σ} is U_{0} times continuously differentiable on $\mathbb{R} \backslash\{0\}$ and satisfies the following condition: There exist two finite deterministic constants $\alpha_{0}^{\prime} \in\left[\alpha_{0}, 1\right)$ and $c>0$ such that, for all $n \in\left\{0, \ldots, U_{0}\right\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\left|f_{\sigma}^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \alpha_{0}-n-1},|\xi|^{-2 \alpha_{0}^{\prime}-n-1}\right)
$$

Proposition 4.4

Let $M \in \mathbb{N}$ be arbitrary and fixed. Assume that the wavelet ψ is continuously differentiable on the real line and has at least $M+1$ vanishing moments. Then (4.11) holds as soon as f_{σ} is U_{0} times continuously differentiable on $\mathbb{R} \backslash\{0\}$ and satisfies the following condition ($\mathcal{D}_{M, \sigma}$), which is weaker than $\left(\mathcal{D}_{1, \sigma}\right)$: There exist two finite deterministic constants $\alpha_{0}^{\prime} \in\left[\alpha_{0}, 1\right)$ and $c>0$ such that, for all $n \in\left\{0, \ldots, U_{0}\right\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\left|f_{\sigma}^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \alpha_{0}-n-1},|\xi|^{-2 \alpha_{0}^{\prime}-n M-1}\right)
$$

Remark 4.5

For $\mu=\sigma$ or $\mu=X$, it is clear that $\left(\mathcal{D}_{1, \mu}\right)$ holds when the process μ is self-similar of order $\gamma_{0}=\alpha_{0}$ or $\gamma_{0}=\beta_{0}$.

Remark 4.6

A major motivation for weakening the condition ($\mathcal{D}_{1, \mu}$) to the condition ($\mathcal{D}_{M, \mu}$) is the following: the behavior of f_{μ} in the neighborhood of 0 can then be much more singular, namely f_{μ} can have infinitely many oscillations in the vicinity of 0 . This is for instance the case, when f_{μ} is the "chirp function": for all $\xi \in \mathbb{R} \backslash\{0\}$,

$$
\begin{equation*}
f_{\mu}(\xi)=|\xi|^{-2 u-1}+|\xi|^{-2 v-1} \sin ^{2}\left(|\xi|^{-w}\right), \tag{4.14}
\end{equation*}
$$

where the three parameters u, v and w are arbitrary real numbers such that $0<u \leq v<1$ and $w>0$. Observe that the larger is w the more oscillating is this function f_{μ} in the neighborhood of 0 . Also observe that this function fails to satisfy ($\mathcal{D}_{1, \mu}$); yet, for any integer $M \geq 1+w$, it satisfies ($\mathcal{D}_{M, \mu}$), with $\beta_{0}=u$ and $\beta_{0}^{\prime}=v$.

Conclusion

Remark 4.7

Assume for instance that the integrand σ and the integrator X are two independent Gaussian fractional Brownian motions whose Hurst parameters satisfy $H_{1} \geq 1 / 2$ and $H_{1}+H_{2}>1$. Then, one has $\alpha_{0}=H_{1}, \beta_{0}=H_{2}$ and $H_{2}=\min \left(\beta_{0}, \alpha_{0}+\beta_{0}-1 / 2\right)$. Thus, it results from Theorem 3.1 that, for all fixed $\gamma \in\left[0, \min \left(H_{2}, 1 / 2\right)\right)$ and for every $\varepsilon>0$ small enough, one has almost surely

$$
\limsup _{J \rightarrow+\infty} 2^{J\left(H_{2}-\gamma-\varepsilon\right)}\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)}<+\infty
$$

Proposition 4.5

The rate of convergence provided by (4.15) is optimal, namely: for all fixed $\gamma \in\left[0, \min \left(H_{2}, 1 / 2\right)\right)$ and for every $\varepsilon>0$ small enough, one has almost surely

$$
\begin{equation*}
\limsup _{J \rightarrow+\infty} 2^{J\left(H_{2}-\gamma+\varepsilon\right)}\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)}=+\infty . \tag{4.16}
\end{equation*}
$$

Proposition 4.5 can be extended to a general framework.

