
Almost sure approximations in Hölder norms of a general
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Introduction and motivation

Let {σ(s)}s∈R and {X (s)}s∈R be two real-valued stochastic processes indexed by
R and defined on a probability space (Ω,F ,P). We always assume that they
satisfy the following assumption:

Fundamental condition: There are two exponents α, β ∈ (0, 1) satisfying
α + β > 1 such that, for all compact interval K ⊂ R the restrictions of the paths
of σ (resp. X ) to K belong to the Hölder space Cα(K) (resp. Cβ(K)).

This is a very classical condition under which, for each t ∈ R, the pathwise Young
integral

Y (t) :=

∫ t

0

σ(s)dX (s), (1.1)

is a well-defined real-valued random variable. Such kind of process {Y (t)}t∈R is
closely connected to (stochastic) differential equations driven by fractional
Brownian motions and more generally by (random) Hölder functions with
correlated increments (see e.g. Gubinelli, Lejay and Tindel (2007); Gubinelli,
Imkeller and Perkowski (2016); Lejay (2010); Lyons, Caruana and Lévy (2004)).

=⇒ It is useful to find approximation procedures for Y paths which converge at
the fastest possible rate.
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Introduction and motivation

A brief recall on the definition of pathwise Young integral

When t > 0, let
(Dn)n∈Z+ :=

(
{δn0 , δn1 , . . . , δnrn : 0 = δn0 < δn1 < . . . < δnrn = t}

)
n∈Z+

be an arbitrary

sequence of partitions of [0, t], such that |Dn| := max1≤i≤rn(δni − δni−1) −−−−→
n→+∞

0.

Then, under the previous condition, for all ω ∈ Ω, the Riemann-Stieltjes sum:

rn∑
i=1

σ(δni−1, ω)(X (δni , ω)− X (δni−1, ω)) (1.2)

converges, when n→ +∞, to a random finite limit not depending on the choice
of the sequence of partitions. The pathwise Young integral

∫ t

0
σ(s, ω)dX (s, ω) is

simply defined to be this limit. The case where t < 0 is similar except that [0, t]

has to be replaced by [t, 0] and
∫ t

0
means −

∫ 0

t
.

When a compactly supported function f (•, ω) from R to R is α-Hölder continuous
with a support included in a compact interval J, then by convention one sets∫

R
f (s, ω)dX (s, ω) :=

∫
J

f (s, ω)dX (s, ω).
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Introduction and motivation

Of course, Young integral has much less ”good” properties than the usual
Lebesgue integral. Yet, it satisfies the following fundamental inequality, whose
proof can for instance be found in the well-known book Lyons, Caruana and Lévy
(2004) on rough paths.

Proposition 1.1 (Young-Loeve inequality)

There exists a positive finite constant Λα+β , depending only on α + β > 1, such
that the inequality

∣∣∣ ∫ t2

t1

σ(s)dX (s)− σ(s̃)
(
X (t2)− X (t1)

)∣∣∣
≤ Λα+β‖σ‖Cα([t1,t2])‖X‖Cβ([t1,t2])(t2 − t1)α+β (1.3)

holds for all real numbers t1 ≤ s̃ ≤ t2.

=⇒ The restrictions of Y paths to any compact interval K ⊂ R belong to the
Hölder space Cβ(K).
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Introduction and motivation

Appoximation of Y paths through Euler scheme

Let I := [0,T ], where T ∈ N is fixed once and for all. The classical Euler scheme,
corresponding to Riemann-Stieltjes sums associated with dyadic intervals of fixed
length 2−J , J ∈ N, provides a natural method for approximating paths of the
process {Y (t)}t∈I , which can be connected to Haar basis. More precisely, for

every m ∈ {1, . . . , 2JT}, one approximates Y (m/2J) :=
∫ m/2J

0
σ(s)dX (s) by

YJ(m/2J) :=

∫ m/2J

0

(m−1∑
l=0

σ(s̃J,l)1[l/2J ,(l+1)/2J )(s)
)
dX (s) =

m−1∑
l=0

σ(s̃J,l)∆J,l(X ),

(1.4)
where ∆J,l(X ) := X ((l + 1)/2J)− X (l/2J), and s̃J,l ∈ [l/2J , (l + 1)/2J ] can be

chosen arbitrarily. Thus, taking it such that σ(s̃J,l) = 2J
∫ (l+1)/2J

l/2J σ(s)ds, one has

YJ(m/2J) =

∫
R
ProjVH

J
(σ1[0,m/2J ])(s)dX (s), (1.5)

where VH
J := span{1[l/2J ,(l+1)/2J ) : l ∈ Z} is the closed subspace of L2(R) issued

from the multiresolution analysis generating the Haar basis.
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Introduction and motivation

Once one has the YJ(m/2J)’s, using linear interpolation, one gets a random
function, from I to R, t 7→ Y RS

J (t) which approximates the whole path t 7→ Y (t).
More precisely, one sets Y RS

J (0) := 0, Y RS
J (T ) := YJ(T ), and, for every

t ∈ I̊ := (0,T ),

Y RS
J (t) := YJ

(
[2Jt]

2J

)
+
(
2Jt − [2Jt]

)(
YJ

(
[2Jt] + 1

2J

)
− YJ

(
[2Jt]

2J

))
.

The proof of the following proposition manly relies on the Young-Loeve inequality.

Proposition 1.2

There exists a random finite constant c > 0 such that for all γ ∈ [0, β) and
J ∈ N, one has

‖Y − Y RS
J ‖Cγ(I ) ≤ c2−J min(β−γ,α+β−1). (1.6)

Question: Is it possible to find an approximation procedure for {Y (t)}t∈I paths
allowing to have a better rate of convergence than the one provided by (1.6)?

Studying this issue is the main motivation of our talk.
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Approximation of Y paths via wavelets

Our next goal is to provide a generalization of Proposition 1.2 in a wavelet-based
framework (see e.g. Meyer (1990, 1992); Daubechies (1992)). The collection of
functions, from R to itself,{

ϕ(• − l) : l ∈ Z} ∪
{

2j/2ψ(2j • −k) : (j , k) ∈ Z+ × Z
}

(2.1)

satisfies one of the following two hypotheses.
(H1) This collection is simply the Haar basis of L2(R), in other words one has

ϕ := 1[0,1) and ψ := 1[0,1/2) − 1[1/2,1).
(H2) This collection is an arbitrary compactly supported orthonormal wavelet basis

of L2(R) such that the scaling function ϕ and the mother wavelet ψ are
α-Hölder continuous on R with a support included in [−N,N], where N ∈ N.
Thus, setting N−j,k := (k − N)/2j and N+

j,k := (k + N)/2j , one gets that

suppψ(2j • −k) ⊆ [N−j,k ,N
+
j,k ]. (2.2)

It is known that:
∫
R ϕ(x)dx = 1,

∫
R ψ(x)dx = 0, and the integer translates of ϕ

form ”a partition of unity” i.e.
∑

l∈Z ϕ(x − l) = 1, for all x ∈ R.

The increasing sequence (VJ)J∈Z of closed subspaces of L2(R) denotes the
multiresolution analysis associated to this basis, that is

VJ := span{ϕ(2J • −l) : l ∈ Z}, for all J ∈ Z.
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Approximation of Y paths via wavelets

For all fixed J ∈ N, let {YW
J (t)}t∈I be the stochastic process defined, for each

t ∈ I , as

YW
J (t) :=

∫
R
ProjVJ

(σ1[0,t])(s)dX (s) (2.3)

=
∑

l∈LJ,t∪∂LJ,t

(
2J

∫ t

0

σ(s)ϕ(2Js − l)ds
)(∫ N+

J,l

N−J,l

ϕ(2Js − l)dX (s)
)
,

where LJ,t :=
{
l ∈ Z : [N−j,k ,N

+
j,k ] ⊆ [0, t]

}
and

∂LJ,t :=
{
l ∈ Z \ LJ,t : [N−j,k ,N

+
j,k ] ∩ [0, t] 6= ∅

}
. Observe that card(LJ,t) ≤ c2J

and card(∂LJ,t) ≤ c , where the deterministic constant c > 0 does not depend on
(J, t). The following theorem provides a generalization of Proposition 1.2.

Theorem 2.1

There is a finite random constant c > 0 such that, for all γ ∈ [0, β) and J ∈ N,
one has

‖Y − YW
J ‖Cγ(I ) ≤ c 2−J min(β−γ,α+β−1).
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Approximation of Y paths via wavelets

The proof of Theorem 2.1 mainly relies on the following technical lemma.

Lemma 2.1

There is a random constant not depending on (J, l , t) such that:∣∣∣2J

∫ t

0

σ(s)ϕ(2Js − l)ds
∣∣∣ ≤ c , if l ∈ Z, (2.4)

∣∣∣2J

∫ t

0

σ(s)ϕ(2Js − l)ds − σ(l/2j)
∣∣∣ ≤ c2−Jα, if l ∈ LJ,t , (2.5)

∣∣∣ ∫ N+
J,l

N−J,l

ϕ(2Js − l)dX (s)
∣∣∣ ≤ c2−Jβ , if l ∈ Z, (2.6)

∣∣∣ ∫ t

0

(
σ(s)− σ(l/2j)

)
ϕ(2Js − l)dX (s)

∣∣∣ ≤ c2−J(α+β), if l ∈ LJ,t , (2.7)

and ∣∣∣ ∫ t

0

σ(s)ϕ(2Js − l)dX (s)
∣∣∣ ≤ c2−Jβ , if l ∈ ∂LJ,t . (2.8)
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Approximation of Y paths via wavelets

The main ideas of the proof of Lemma 2.1: The proofs of the first two
inequalities are standard and easy. The proofs of the three others are rather
similar and rely on the Young-Loeve inequality. So, we only give the one which

concerns
∫ N+

J,l

N−J,l
ϕ(2Js − l)dX (s). Using the Young-Loeve inequality, one gets

∣∣∣ ∫ N+
J,l

N−J,l

ϕ(2Js − l)dX (s)− ϕ(2JN−J,l − l)
(
X (N+

J,l)− X (N−J,l)
)∣∣∣

≤ Λα+β

∥∥ϕ(2J • −l)
∥∥
Cα([N−J,l ,N

+
J,l ])
‖X‖Cβ([N−J,l ,N

+
J,l ])

(N+
J,l − N−J,l)

α+β . (2.9)

Next, noticing that ϕ(2JN−J,l − l) = 0 (since suppϕ(2J •− −l) ⊆ [N−J,l ,N
+
J,l ]),∥∥ϕ(2J • −l)

∥∥
Cα([N−J,l ,N

+
J,l ])
≤ 2Jα‖ϕ‖Cα([−N,N])

and N+
J,l − N−J,l = 21−JN, one obtains that

∣∣∣ ∫ N+
J,l

N−J,l

ϕ(2Js − l)dX (s)
∣∣∣ ≤ c2−Jβ . �
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Approximation of Y paths via wavelets

Sketch of the proof of Theorem 2.1 in the case γ = 0: Using the fact that
the integer translates of ϕ form ”a partition of unity”, one gets

Y (t) :=

∫ t

0

σ(s)ds =

∫ t

0

σ(s)
( ∑

l∈LJ,t∪∂LJ,t

ϕ(2Js − l)
)
ds

=
∑

l∈LJ,t∪∂LJ,t

∫ t

0

σ(s)ϕ(2Js − l)ds

'
∑
l∈LJ,t

∫ t

0

σ(s)ϕ(2Js − l)ds. (2.10)

On the other hand, one has

YW
J (t) =

∑
l∈LJ,t∪∂LJ,t

(
2J

∫ t

0

σ(s)ϕ(2Js − l)ds
)(∫ N+

J,l

N−J,l

ϕ(2Js − l)dX (s)
)

'
∑
l∈LJ,t

∫ t

0

σ(l/2j)ϕ(2Js − l)dX (s). (2.11)
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Approximation of Y paths via wavelets

One knows from Lemma 2.1 that the approximation errors in (2.10) and (2.11) for
the norm ‖ · ‖I ,∞ are less than c1 2−J min(β,α+β−1). Finally, using the same lemma
and the inequality card(LJ,T ) ≤ c2 2J , it follows that

‖Y − YW
J ‖I ,∞ '

∥∥∥ ∑
l∈LJ,•

∫ •
0

(
σ(s)− σ(l/2j)

)
ϕ(2Js − l)dX (s)

∥∥∥
I ,∞

≤
∑

l∈LJ,T

∥∥∥∫ •
0

(
σ(s)− σ(l/2j)

)
ϕ(2Js − l)dX (s)

∥∥∥
I ,∞

≤ c3 card(LJ,T ) 2−J(α+β) ≤ c4 2−J(α+β−1). �

One of the main advantages of the wavelet approach is that the difference
Y (t)− YW (t) can be expressed in Hölder spaces in an explicit exploitable way:

Y (t)− YW (t) =
+∞∑
j=J

∑
k∈Lj,t∪∂Lj,t

aj,k(t)λj,k (2.12)

where aj,k(t) := 2j
∫ t

0
σ(s)ψ(2js − k)ds and λj,k :=

∫ N+
j,k

N−j,k
ψ(2Js − l)dX (s).
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A better rate of convergence in Wiener chaos framework

First, it is useful to make some brief recalls on the notion of Wiener chaos; our
presentation of it is inspired by the one in the book Janson (1997).

Definition 3.1 (Wiener chaos)

Let G be an arbitrary fixed Gaussian subspace of L2(Ω,F ,P), that is a closed
subspace consisting of real-valued centred Gaussian random variables.
Let n ∈ Z+, the Wiener chaos of order n associated with G is denoted by Pn(G ),
or more simply by Pn.
The space P0 is defined to be the closed subspace of L2(Ω,F ,P) consisting of all
the constant random variables.
When n ≥ 1, the space Pn is defined as the closed subspace of L2(Ω,F ,P)
spanned by the following set of random variables:{

n∏
l=1

gml

l : (g1, . . . , gn) ∈ G n and (m1, . . . ,mn) ∈ Zn
+ with

n∑
l=1

ml ≤ n

}
.
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A better rate of convergence in Wiener chaos framework

Remark 3.1

(a) One clearly has Pn ⊆ Pn+1, for every n ∈ Z+. Moreover, for all fixed
p ∈ (0,+∞), the space P∗ :=

⋃
n∈Z+

Pn is dense in Lp(Ω,F(G ),P).

(b) The Lp(Ω)-norms are equivalent on Pn, for all fixed n ∈ Z+.

(c) For every fixed n ∈ Z+ and for each sequence of random variables in Pn,
convergence in probability is equivalent to convergence in Lp(Ω)-norm, for
any fixed p ∈ (0,+∞).

(d) For all fixed integer n ≥ 1, there exists a positive finite universal constant
c(n), depending only on n, such that, for every random variable χ ∈ Pn and
for each real number y ≥ 2, one has

P
(
|χ| > y‖χ‖L2(Ω)

)
≤ exp

(
− c(n)y2/n

)
. (3.13)
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A better rate of convergence in Wiener chaos framework

Definition 3.2 (the Wiener chaos condition (WC ))

One says that the stochastic process {Y (t)}t∈I satisfies (WC) when, for some
arbitrary integer n ≥ 1, the integrand {σ(s)}s∈R and the integrator {X (s)}s∈R are
two stochastic processes belonging to the Wiener chaos Pn (i.e. σ(s) ∈ Pn and
X (s) ∈ Pn, for all s ∈ R) and possessing the following two properties:

(C1) There exist α0, β0 ∈ (0, 1], satisfying α0 + β0 > 1, such that, on any compact
interval K, {σ(s)}s∈K and {X (s)}s∈K are respectively α0 and β0 Hölder
continuous in the sense of the L2(Ω)-norm.

(C2) The ”wavelet coefficients” aj,k := aj,k(T ) and λj,k have the following
”short-range dependence” property: the inequality∑

k1∈Lj,T

∑
k2∈Lj,T

∣∣∣E[aj,k1λj,k1aj,k2λj,k2

]∣∣∣ ≤ c2−2j(α0+β0−1/2) (3.14)

is satisfied, for some finite deterministic constant c > 0 and for all positive
integer j large enough.
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A better rate of convergence in Wiener chaos framework

Remark 3.2

(a) The condition (C1) implies that paths of σ and X respectively belong to the
Hölder spaces Cα(K) and Cβ(K) for any α ∈ (0, α0) and β ∈ (0, β0)
(Kolmogorov-Čentsov Hölder continuity theorem).

(b) One has Y (t) ∈ P2n for all t, since σ(s) ∈ Pn and X (s) ∈ Pn for every s.

(c) The same argument shows that, for all (t, j , k), the ”wavelet coefficients”
aj,k(t) and λj,k are in Pn; therefore YW

J (t) ∈ P2n.

The main goal of the present section is to obtain the following theorem.

Theorem 3.1

Under the condition (WC), for any fixed real numbers α ∈ (0, α0), β ∈ (0, β0) and
γ ≥ 0 satisfying α+ β > 1 and γ < min(β, 1/2), there is a finite random constant
c > 0 such that the following inequality holds almost surely and for each J ∈ N.

‖Y − YW
J ‖Cγ(I ) ≤ c 2−J min(β−γ,α+β−1/2−γ). (3.15)
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A better rate of convergence in Wiener chaos framework

We focus on the case γ = 0, that is:

‖Y − YW
J ‖I ,∞ ≤ c 2−J min(β,α+β−1/2). (3.16)

In the rest of the section, one presents the main lines of the strategy allowing to
derive (3.16).

For each fixed j ∈ N, one denotes by Zj := {Zj(t)}t∈I the stochastic process in
P2n with Lipschitz continuous paths defined, for all t ∈ I , as

Zj(t) :=
∑

k∈Lj,t∪∂Lj,t

aj,k(t)λj,k . (3.17)

One already knows from Theorem 2.1 that:

Y (•, ω)− YW
J (•, ω) =

+∞∑
j=J

Zj(•, ω),

where the convergence of the series holds in the Hölder space Cγ(I ), for any
γ ∈ [0, β).
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A better rate of convergence in Wiener chaos framework

Therefore, using the triangle inequality, one has

∥∥Y (•, ω)− YW
J (•, ω)

∥∥
I ,∞ ≤

+∞∑
j=J

∥∥Zj(•, ω)
∥∥
I ,∞. (3.18)

Thus, in order to derive ‖Y − YW
J ‖I ,∞ ≤ c 2−J min(β,α+β−1/2), it is enough to

obtain the following lemma.

Lemma 3.1

One has almost surely

sup
j∈N

{
2j min(β,α+β−1/2)‖Zj‖I ,∞

}
< +∞ . (3.19)

Next, let us point out that ‖Zj‖I ,∞ := supt∈I |Zj(t)| is the supremum of infinitely
many random variables. Actually, it is more convenient to work with a supremum
of finite number of them; this can be done thanks to the following lemma.
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A better rate of convergence in Wiener chaos framework

Lemma 3.2

For each j ∈ N, one sets

ν(Zj) := sup
2−j l∈I

|Zj(2−j l)|.

Then, one has almost surely

sup
j∈N

{
2jβ
∣∣‖Zj‖I ,∞ − ν(Zj)

∣∣} < +∞ . (3.20)

Proof of Lemma 3.2: For all t ∈ I , let dj(t) be the dyadic number of order j
such that t ∈ [dj(t), dj(t) + 2−j).
Then, one has Lj,t = Lj,dj (t) and aj,k(t) = aj,k(dj(t)) for any k ∈ Lj,t . Therefore∣∣Zj(t)− Zj(dj(t))

∣∣ ≤ ∑
k∈∂Lj,t

∣∣aj,k(t)− aj,k(dj(t))
∣∣|λj,k |

≤ c12−jβ
∑

k∈∂Lj,t

2j

∫ t

dj (t)

∣∣σ(s)ψ(2js − k)
∣∣ ds

≤ c12−jβ‖σ‖I ,∞‖ψ‖∞card(∂Lj,t) ≤ c22−jβ . �
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A better rate of convergence in Wiener chaos framework

In view of the previous lemma, it turns out that for deriving the theorem it is
enough to show that

sup
j∈N

{
2j min(β,α+β−1/2)ν(Zj)

}
< +∞ . (3.21)

Notice that if one shows that

+∞∑
j=1

P
(

2j min(β,α+β−1/2)ν(Zj) > 1
)
< +∞ , (3.22)

then the Borel-Cantelli lemma entails that (3.21) holds.

Using the Markov inequality, one has, for every j ∈ N,

P
(

2j min(β,α+β−1/2)ν(Zj) > 1
)
≤ 2j min(β,α+β−1/2) E

(
ν(Zj)

)
. (3.23)
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A better rate of convergence in Wiener chaos framework

Lemma 3.3

There is a constant c(n), only depending on n the order of the chaos, such that
for every j ∈ N, one has

E
(
ν(Zj)

)
≤ c(n) jn/2 sup

2−j l∈I

(
E
(
|Zj(2−j l)|2

))1/2

. (3.24)

Roughly speaking, the proof of the lemma mainly relies on the fact that one has,
for some constant c ′, not depending on (j , l), and for all τ > 0 large enough

P
(
|Zj(2−j l)| > τ) ≤ exp(−c ′τ 2/n). (3.25)

In view of Lemma 3.3 and of the fact that α ∈ (0, α0) and β ∈ (0, β0), it turns
out that for proving the theorem it is enough that

sup
j∈N

sup
2−j l∈I

{
22j min(β0,α0+β0−1/2) E

(
|Zj(2−j l)|2

)}
< +∞ . (3.26)
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A better rate of convergence in Wiener chaos framework

End of the proof of Theorem 3.1

Finally, observe that

E
(
|Zj(2−j l)|2

)
= E

(∣∣∣ ∑
k∈Lj,t∪∂Lj,t

aj,k(t)λj,k

∣∣∣2)
'
∑

k1∈Lj,t

∑
k2∈Lj,t

E
[
aj,k1λj,k1aj,k2λj,k2

]
≤

∑
k1∈Lj,T

∑
k2∈Lj,T

∣∣∣E[aj,k1λj,k1aj,k2λj,k2

]∣∣∣. (3.27)

Using the inequality (3.27) and the condition∑
k1∈Lj,T

∑
k2∈Lj,T

∣∣∣E[aj,k1λj,k1aj,k2λj,k2

]∣∣∣ ≤ c2−2j(α0+β0−1/2) (C2)

one gets the theorem.
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Organization of the talk

1 Introduction and motivation

2 Approximation of Y paths via wavelets

3 A better rate of convergence in Wiener chaos framework

4 Some classes of examples
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Some classes of examples

This section involves constructing wide classes of examples of real-valued
stochastic processes σ and X satisfying the Wiener chaos condition (WC ).

For the sake of convenience, one assumes that these two processes are
independent, centred and given by multiple Itô-Wiener integrals. More precisely,
for µ = σ or µ = X , one has, for some Nµ ∈ N and for all s ∈ R,

µ(s) =

∫
RNµ

(
e is(η1+...+ηNµ ) − 1

)
gµ
(
η1, . . . , ηNµ

)
dŴµ(η1) . . . dŴµ(ηNµ) , (4.1)

where dŴµ is the ”Fourier transform” of a Brownian measure dWµ on R, and
gµ is an arbitrary symmectric complex-valued Borel function such that

g(η) = g(−η), for all η ∈ RNµ , and∫
RNµ

min
(
1, (η1 + . . .+ ηNµ)2

)∣∣g(η1, . . . , ηNµ
)∣∣2 dη1 . . . dηNµ < +∞ . (4.2)

These properties of gµ guarantee the existence of the multiple Itô-Wiener integral
in (4.1) and the fact that it is real-valued.
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Some classes of examples

Remark 4.1

It is worth mentioning that the well-known Gaussian fractional Brownian
motion (fBm) of an arbitrary Hurst parameter H ∈ (0, 1) belongs to this class
of processes µ: in its case one has Nµ = 1 and

g fBm
µ (η) = c |η|−H−1/2, for almost all η ∈ R, (4.3)

where c is an arbitrary nonvanishing constant.

Also we mention that the non-Gaussian Rosenblatt process of an arbitrary
parameter d ∈ (1/4, 1/2) belongs to this same class of processes: in its case
one has Nµ = 2 (second order chaos) and

gRos
µ (η1, η2) = −i(η1 + η2)−1|η1η2|−d , for almost all (η1, η2) ∈ R2. (4.4)

Ayache, Esser, Peng (U. Lille, Liège, Claremont) Approximations of stochastic Young integrals Journées 18 GDR Analyse Multifractale 28 / 36



Some classes of examples

Next, one denotes by fµ the even and positive Borel function defined, for each
ξ ∈ R, as

fµ(ξ) := (Nµ)!

∫
RNµ−1

∣∣gµ(ξ − η2 − . . .− ηNµ , η2, . . . , ηNµ
)∣∣2 dη2 . . . dηNµ , (4.5)

with the convention that fµ(ξ) := |gµ(ξ)|2, when Nµ = 1. It can be derived from
the properties of gµ, the change of variable ξ = η1 + η2 + . . .+ ηNµ and the
”isometry property” of the multiple Itô-Wiener integral that∫

R
min

(
1, ξ2

)
fµ(ξ) dξ < +∞ (4.6)

and, for all s1, s2 ∈ R

E
[
µ(s1)µ(s2)

]
=

∫ +∞

−∞
(e is1ξ − 1)(e−is2ξ − 1)fµ(ξ)dξ . (4.7)

Thus the function fµ can be viewed as a spectral density.
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Some classes of examples

Notice that (4.7) is equivalent to

E
[∣∣µ(s1)− µ(s2)

∣∣2] = E
[∣∣µ(|s1 − s2|)

∣∣2] = 4

∫ +∞

−∞
sin2

(
|s1 − s2|ξ

2

)
fµ(ξ)dξ .

(4.8)

Remark 4.2

Assume that the process {µ(s)}s∈R is self-similar of order γ0 ∈ (0, 1), that is the
processes {µ(as)}s∈R and {aγ0µ(s)}s∈R have the same finite-dimensional
distributions, for any fixed positive real number a. Then, the corresponding
spectral density fµ satisfies

fµ(ξ) = c |ξ|−2γ0−1, for almost all ξ ∈ R, (4.9)

where c is some positive constant. We recall in passing that the Gaussian
fractional Brownian motion of Hurst parameter H ∈ (0, 1) is self-similar of order
γ0 = H. Also, we recall that the non-Gaussian Rosenblatt process of parameter
d ∈ (1/4, 1/2) is self-similar of order γ0 = 2d.
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Some classes of examples

Remark 4.3

A sufficient condition for the processes σ and X to satisfy (C1) i.e. to be, on any
compact interval K, α0 and β0 Hölder continuous for the norm ‖ · ‖L2(Ω) is the
following: there exist two positive finite deterministic constants c and ξ0, such
that the inequalities

fσ(ξ) ≤ c |ξ|−2α0−1 and fX (ξ) ≤ c |ξ|−2β0−1 (4.10)

hold for almost all real number ξ satisfying |ξ| ≥ ξ0.

Remark 4.4

Suppose there are a finite constant c > 0 and two nonnegative integers U0 and V0

satisfying U0 +V0 = 2, such that, for every j ∈ N and for all k1, k2 ∈ Lj,T , one has∣∣E [aj,k1aj,k2 ]
∣∣ ≤ c2−2jα0

(
1 + |k1 − k2|

)−U0 (4.11)

and ∣∣E [λj,k1λj,k2 ]
∣∣ ≤ c2−2jβ0

(
1 + |k1 − k2|

)−V0
. (4.12)

Then (C2) is satisfied.
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Some classes of examples

Proof of Remark 4.4: The fact that σ and X are independent implies that the
associated sequences of ”wavelet coefficients” (aj,k)j,k and (λj,k)j,k are
independent as well. This together with the inequalities (4.11), (4.12) and the
fact that U0 + V0 = 2 yields∣∣∣E[aj,k1λj,k1aj,k2λj,k2

]∣∣∣ =
∣∣∣E[aj,k1aj,k2

]∣∣∣∣∣∣E[λj,k1λj,k2

]∣∣∣
≤
(
c2−2jα0

(
1 + |k1 − k2|

)−U0
)(

c2−2jβ0
(
1 + |k1 − k2|

)−V0
)

≤ c22−2j(α0+β0)
(
1 + |k1 − k2|

)−2
, (4.13)

for all k1, k2 ∈ Lj,T . Then setting c1 := 2c2
∑

q∈N q−2 and using (4.13) and the

inequality card(Lj,T ) ≤ c22j , one gets:∑
k1∈Lj,T

∑
k2∈Lj,T

∣∣∣E[aj,k1λj,k1aj,k2λj,k2

]∣∣∣
≤ c22−2j(α0+β0)

∑
k1∈Lj,T

∑
k2∈Lj,T

(
1 + |k1 − k2|

)−2

≤ c1card(Lj,T )2−2j(α0+β0) ≤ c1c22−2j(α0+β0−1/2). �
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Proposition 4.1

Assume that the wavelet ψ is the Haar function, that is ψ := 1[0,1/2) − 1[1/2,1).
Then (4.12) holds as soon as fX is V0 times continuously differentiable on R \ {0}
and satisfies the following condition: There exist two finite deterministic constants
β′0 ∈ [β0, 1) and c > 0 such that, for all n ∈ {0, . . . ,V0} and ξ ∈ R \ {0}, one has∣∣f (n)

X (ξ)
∣∣ ≤ c max

(
|ξ|−2β0−n−1, |ξ|−2β′0−n−1

)
. (D1,X )

Proposition 4.2

Let M ∈ N be arbitrary and fixed. Assume that the wavelet ψ is continuously
differentiable on the real line and has at least M vanishing moments.Then (4.12)
holds as soon as fX is V0 times continuously differentiable on R \ {0} and satisfies
the following condition (DM,X ), which is weaker than (D1,X ): There exist two
finite deterministic constants β′0 ∈ [β0, 1) and c > 0 such that, for all
n ∈ {0, . . . ,V0} and ξ ∈ R \ {0}, one has∣∣f (n)

X (ξ)
∣∣ ≤ c max

(
|ξ|−2β0−n−1, |ξ|−2β′0−nM−1

)
. (DM,X )
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Proposition 4.3

Assume that the wavelet ψ is the Haar function. Also assume that the integer U0

in (4.11) belongs to the set {0, 1}. Then (4.11) holds as soon as fσ is U0 times
continuously differentiable on R \ {0} and satisfies the following condition: There
exist two finite deterministic constants α′0 ∈ [α0, 1) and c > 0 such that, for all
n ∈ {0, . . . ,U0} and ξ ∈ R \ {0}, one has∣∣f (n)

σ (ξ)
∣∣ ≤ c max

(
|ξ|−2α0−n−1, |ξ|−2α′0−n−1

)
. (D1,σ)

Proposition 4.4

Let M ∈ N be arbitrary and fixed. Assume that the wavelet ψ is continuously
differentiable on the real line and has at least M + 1 vanishing moments. Then
(4.11) holds as soon as fσ is U0 times continuously differentiable on R \ {0} and
satisfies the following condition (DM,σ), which is weaker than (D1,σ): There exist
two finite deterministic constants α′0 ∈ [α0, 1) and c > 0 such that, for all
n ∈ {0, . . . ,U0} and ξ ∈ R \ {0}, one has∣∣f (n)

σ (ξ)
∣∣ ≤ c max

(
|ξ|−2α0−n−1, |ξ|−2α′0−nM−1

)
. (DM,σ)
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Remark 4.5

For µ = σ or µ = X, it is clear that (D1,µ) holds when the process µ is self-similar
of order γ0 = α0 or γ0 = β0.

Remark 4.6

A major motivation for weakening the condition (D1,µ) to the condition (DM,µ) is
the following: the behavior of fµ in the neighborhood of 0 can then be much more
singular, namely fµ can have infinitely many oscillations in the vicinity of 0. This
is for instance the case, when fµ is the ”chirp function”: for all ξ ∈ R \ {0},

fµ(ξ) = |ξ|−2u−1 + |ξ|−2v−1 sin2
(
|ξ|−w

)
, (4.14)

where the three parameters u, v and w are arbitrary real numbers such that
0 < u ≤ v < 1 and w > 0. Observe that the larger is w the more oscillating is
this function fµ in the neighborhood of 0. Also observe that this function fails to
satisfy (D1,µ); yet, for any integer M ≥ 1 + w, it satisfies (DM,µ), with β0 = u
and β′0 = v.
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Conclusion

Remark 4.7

Assume for instance that the integrand σ and the integrator X are two
independent Gaussian fractional Brownian motions whose Hurst parameters satisfy
H1 ≥ 1/2 and H1 + H2 > 1. Then, one has α0 = H1, β0 = H2 and
H2 = min(β0, α0 + β0 − 1/2). Thus, it results from Theorem 3.1 that, for all fixed
γ ∈ [0,min(H2, 1/2)) and for every ε > 0 small enough, one has almost surely

lim sup
J→+∞

2J(H2−γ−ε)‖Y − YW
J ‖Cγ(I ) < +∞ . (4.15)

Proposition 4.5

The rate of convergence provided by (4.15) is optimal, namely: for all fixed
γ ∈ [0,min(H2, 1/2)) and for every ε > 0 small enough, one has almost surely

lim sup
J→+∞

2J(H2−γ+ε)‖Y − YW
J ‖Cγ(I ) = +∞ . (4.16)

Proposition 4.5 can be extended to a general framework.
Ayache, Esser, Peng (U. Lille, Liège, Claremont) Approximations of stochastic Young integrals Journées 18 GDR Analyse Multifractale 36 / 36


