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Introduction: the intuitive notion of erratic function

In all this talk, g always denotes an arbitrary continuous and deterministic
function from RN to R.

Definition 1.1

Let τ ∈ RN be an arbitrary fixed point. Let B(τ, ρ) be the closed ball centered at
τ and of arbitrary radius ρ > 0. The oscillation of g on B(τ, ρ), is denoted by
oscg ,τ (ρ), and defined as:

oscg ,τ (ρ) := sup
t1,t2∈B(τ,ρ)

|g(t1)− g(t2)| = max
t∈B(τ,ρ)

g(t)− min
t∈B(τ,ρ)

g(t). (1.1)

The continuity of g at τ clearly implies that

oscg ,τ (ρ) −−−−→
ρ→0+

0+ . (1.2)

The rate of convergence depends on the degree of smoothness/roughness of g at
τ . When it is differentiable at τ , then the rate is ρ; when it is rough at τ , then the
rate can be much slower.
The function g is said to be erratic when the convergence in (1.2) holds slowly
(slower than ρ) for all the points τ in RN , or at least for most of them.
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Introduction: the intuitive notion of erratic function
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Figure: Graph of an erratic function

Finely studying the local behavior of an erratic function g consists in finding, for
any τ ∈ RN and small ρ, an optimal explicit ”nice” upper bound Mg ,τ (ρ) for
oscg ,τ (ρ).
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Introduction: the intuitive notion of erratic function

Usually, one looks for an optimal upper bound Mg ,τ (ρ) of the form:

Mg ,τ (ρ) = (power function in ρ)× (logarithmic factor in ρ).

In this issue, the most difficult task is to show the optimality of Mg ,τ (ρ), that is:

lim sup
ρ→0+

oscg ,τ (ρ)

Mg ,τ (ρ)
> 0. (1.3)

A closely related, but less general, issue is whether or not g is a nowhere
differentiable function.
In such kind of problems, loosely speaking, one of the major difficulties comes
from the fact that in Real Analysis, usually, more effort is required in order to
derive lower bounds (even in the sense of some sequence) than for deriving upper
bounds. One reason is that in the case of lower bounds, the use of the triangle
inequality is, in general, ”less natural” than in that of upper bounds.

How can one overcome this difficulty?
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The deterministic notion of local time and the Berman’s principle

The article by Geman and Horowitz ”Occupation densities” (in Annals of
Probability 1980) is a classical and excellent survey on the notions to be presented
in this section and the next one. Throughout the present section, we denote by g
an arbitrary continuous function from RN to R, depending on the
multidimensional variable t ∈ RN , which is nevertheless viewed as a time variable.

Definition 2.1 (occupation measure)

Let T be an arbitrary compact subset of RN . The occupation measure associated
with g on T , is the deterministic positive finite measure µg ,T on B(R), the Borel
σ-field over R, defined as

µg ,T (A) := λN
(
{t ∈ T : g(t) ∈ A}

)
=

∫
T

1A
(
g(t)

)
dt, for all A ∈ B(R), (2.1)

where λN denotes the Lebesgue measure on RN . Observe that the quantity
µg ,T (A) can be viewed as a measure of ”the amout of time t spent by the
function g in the Borel set A during the time period T”.
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The deterministic notion of local time and the Berman’s principle

Remarks 2.2

1 The finite measure µg ,T is supported on the compact
g(T ) :=

{
g(t) : t ∈ T

}
.

2 Assume that f is either a Borel measurable non-negative function on R, or a
Borel measurable bounded complex-valued function on R. Then∫

R
f (x) dµg ,T (x) =

∫
T

f
(
g(t)

)
dt. (2.2)

3 The occupation measure µg ,T is completely determined by its Fourier
transform µ̂g ,T defined as

µ̂g ,T (ξ) :=

∫
R
e−iξx dµg ,T (x), for each ξ ∈ R; (2.3)

also, in view of (2.2), one has

µ̂g ,T (ξ) =

∫
T

e−iξg(t) dt. (2.4)
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The deterministic notion of local time and the Berman’s principle

The notion of local time ”mesure du voisinage” was first introduced by Paul Lévy
(' 1940) in some his pioneering works on Brownian Motion.

Definition 2.3 (local time)

For having the existence of Lg (•,T ), the local time on T of the function g , the
occupation measure µg ,T (•) needs to be absolutely continuous with respect to λ,
the Lebesgue measure on R. When this condition is fulfilled, then Lg (•,T ) is
defined as the Radon-Nikodým derivative of µg ,T (•) with respect to λ. In other
words, Lg (•,T ) is defined as the unique (up to a Lebesgue negligible set)
non-negative function in the Lebesgue space L1(R), such that the equality∫

R
f (x) dµg ,T (x) =

∫
R
f (x)Lg (x ,T ) dx , (2.5)

holds for any f , which is either a Borel measurable non-negative function on R, or
a Borel measurable bounded complex-valued function on R.

Notice that the fact that µg ,T is supported on g(T ) implies that Lg (•,T ) is
supported on g(T ) as well.
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The deterministic notion of local time and the Berman’s principle

Proposition 2.4

A sufficient condition for the local time Lg (•,T ) to exist is that the Fourier
transform µ̂g ,T belongs to the Lebesgue Hilbert space L2(R). Notice that, under
this condition, one also has Lg (•,T ) ∈ L2(R).

Proof: We denote by F(·) the Fourier transform map. It is a bijection from the
Schwartz class S(R) into itself; also it is a bijective ”isometry” (Plancherel’s
formula) from L2(R) into itself. Let ϕ ∈ S(R) be arbitrary; we have, for all x ∈ R,
ϕ(x) = 1

2π

∫
R e iξx ϕ̂(ξ) dξ. Thus, using Fubini-Tonelli’s theorem, we get that∫

R
ϕ(x) dµg ,T (x) =

1

2π

∫
R
ϕ̂(ξ)

(∫
R
e iξx dµg ,T (x)

)
dξ

=
1

2π

∫
R
ϕ̂(ξ)µ̂g ,T (ξ) dξ

=

∫
R
ϕ(x)F−1(µ̂g ,T )(x) dx (Plancherel’s formula)

which means that F−1(µ̂g ,T ) is the local time we are looking for. �
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The deterministic notion of local time and the Berman’s principle

Notice that when Lg (•,T ) exists then Lg (•,S) also exists for any compact
S ⊆ T ; this a consequence of the Radon-Nikodým Theorem (see for instance the
well-known Rudin’s book). Thus, Lg can be viewed as a function of 2 variables:
the space variable x ∈ R and the set variable (or time variable) S ⊆ T .

The Berman’s principle (' 1970): The more regular (smooth) is the local time Lg
the more irregular (rough) is the associated function g . This principle is somehow
clarified by the following lemma.

Lemma 2.5

Let τ ∈ RN be a fixed point such that, for some ρ > 0 small enough (or
equivalently for all ρ small enough), the local time of g on the closed ball B(τ, ρ),
that is Lg (•,B(τ, ρ)), exists. One sets

L∗g (B(τ, ρ)) := sup
x∈R

Lg (x ,B(τ, ρ)) = sup
x∈g(B(τ,ρ))

Lg (x ,B(τ, ρ)). (2.6)

Then, assuming that the constant c > 0 is the Lebesgue measure of the unit ball
of RN , one has

cρN ≤ oscg ,τ (ρ)L∗g (B(τ, ρ)). (2.7)
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The deterministic notion of local time and the Berman’s principle

Thus, it turns out that in order to show that Mg ,τ (ρ) is ”a lower bound” for the
oscillation oscg ,τ (ρ), it is enough to prove that the ratio ρN/Mg ,τ (ρ) is ”an upper
bound” for L∗g (B(τ, ρ)), more precisely:

lim sup
ρ→0+

ρN

Mg ,τ (ρ)L∗g (B(τ, ρ))
> 0 =⇒ lim sup

ρ→0+

oscg ,τ (ρ)

Mg ,τ (ρ)
> 0.

Proof of Lemma 2.5: On one hand, one has

µg ,B(τ,ρ)(R) := λN
(
{t ∈ B(τ, ρ) : g(t) ∈ R}

)
= λN

(
B(τ, ρ)

)
= cρN . (2.8)

On the other hand, one has

µg ,B(τ,ρ)(R) =

∫
g(B(τ,ρ))

Lg (x ,B(τ, ρ)) dx

≤ λ
(
g(B(τ, ρ)

)
sup

x∈g(B(τ,ρ))

Lg (x ,B(τ, ρ))

= oscg ,τ (ρ)L∗g (B(τ, ρ)). (2.9)

Combining (2.8) and (2.9) one gets the lemma. �
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The deterministic notion of local time and the Berman’s principle

Yet, Lemma 2.5 is of no interest when L∗g (B(τ, ρ)) = +∞ ! In fact, it becomes to
be interesting, when one has, at least, that

lim
ρ→0+

L∗g (B(τ, ρ)) = 0. (2.10)

Notice that if N = 1 and (2.10) is satisfied, then one has
limρ→0+ ρ

−1oscg ,τ (ρ) = +∞, which entails that g is not differentiable at τ .

Let us now provide a sufficient condition on the local time Lg under which (2.10)
is valid. To this end, we assume, for a while, that N = 1, thus the ball B(τ, ρ)
reduces to the compact interval [τ − ρ, τ + ρ] ⊂ R.

Condition (joint continuity (JC)):There exists ρ0 > 0, such that the function from
R× [τ − ρ0, τ + ρ0] into R+, (x , s) 7→ Lg (x , [τ − ρ0, s]) is continuous. The
continuity is then uniform since the function is compactly supported.

The condition (JC) implies that (2.10) holds; since one has, for all 0 < ρ ≤ ρ0,

L∗g (B(τ, ρ)) = sup
x∈R

(
Lg (x , [τ − ρ0, τ + ρ])− Lg (x , [τ − ρ0, τ − ρ])

)
. (2.11)
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The deterministic notion of local time and the Berman’s principle

This argumentation can be extended to the general case where N ≥ 1 is arbitrary;
the condition (JC) is then defined as follows:

Definition 2.6 (jointly continuous local time)

The function g is said to have a jointly continuous local time on a fixed compact
rectangle

∏N
l=1[al , bl ] of RN , if Lg (•,

∏N
l=1[al , bl ]) exists, and the function from

R×
∏N

l=1[al , bl ] into R+, (x , s1, . . . , sN) 7→ Lg (x ,
∏N

l=1[al , sl ]) is continuous.

Studying local behavior of erratic deterministic functions via their local times is
very unusual. This strategy is much more adapted to the random framework of
stochastic processes and fields.
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Stochastic fields and random local times
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Stochastic fields and random local times

SαS random variables

Let (Ω,A,P) be a probability space; the integral
∫

Ω
(·) dP, with respect to the

probability measure P, is called the expectation operator and denoted by E(·).

A real-valued random variable Z on Ω is a measurable function from (Ω,A) into
(R,B(R)). Z is (almost) completely determined by its characteristic function:

ΦZ (ξ) := E(e iξZ ), for all ξ ∈ R. (3.1)

Let α ∈ (0, 2] be a parameter (called the stability parameter), one says that Z is
Symmetric α-Stable (SαS), if there exists σ(Z ) ≥ 0 (called the scale parameter
of Z ), such that

ΦZ (ξ) = exp
(
− |σ(Z )ξ|α), for any ξ ∈ R. (3.2)

→ When α = 2, Z reduces to a centered Gaussian random variable with
Var(Z ) = E(Z 2) = 2σ(Z )2; observe that E(|Z |γ) < +∞, for every γ ∈ R+.
→ The situation is different when α ∈ (0, 2); Z has a heavy-tailed distribution,
which, in particular implies that E(|Z |γ) = +∞, as soon as γ ≥ α.
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Stochastic fields and random local times

Local times of sample paths

A stochastic field Y on Ω is a collection {Y (t), t ∈ RN} of real-valued random
variables on Ω; when N = 1, then Y is called a stochastic process.

For all fixed ω ∈ Ω, the function Y (·, ω), from RN to R, t 7→ Y (t, ω) is called a
sample path of the field Y . In the setting of this talk, any sample path is always a
continuous on RN . Each Y (·, ω) plays the same role as the function g in the
previous section. The associated occupation measure, on an arbitrary compact
T ⊂ RN , is denoted by µY ,T (•, ω), instead of µY (·,ω),T (•). Thus, when it exists,
the corresponding local time is denoted by LY (•,T , ω).

→ One of the main messages, we would like to deliver, is the following:
”Basically, it is a less difficult problem to obtain a generic result on P-almost all
local times LY (•,T , ω) (that is an almost sure result on LY (•,T )), than a result
on a unique specified local time Lg (•,T )”. We mention that the Fubini-Tonelli’s
theorem plays an important role in this issue.
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Stochastic fields and random local times

Existence and integrability of local times of SαS fields

One says that {Y (t), t ∈ RN} is a SαS field, iff any linear combination of the
random variables Y (t)’s is a SαS random variable: ∀m ∈ N, ∀ a1, . . . , am ∈ R
and ∀ t1, . . . , tm ∈ RN , the random variable

∑m
l=1 alY (t l) is SαS.

σ
(∑m

l=1 alY (t l)
)

denotes the scale parameter of
∑m

l=1 alY (t l).

Theorem 3.1

Let {Y (t), t ∈ RN} be a SαS field and T a compact of RN . A ”simple” sufficient
condition for the local time LY (•,T ) to exist almost surely is that∫

T 2

σ
(
Y (t1)− Y (t2)

)−1
dt1dt2 < +∞. (3.3)

Notice that, under this condition, one also has (x , ω) 7→ LY (x ,T , ω) ∈ L2(R×Ω).
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Stochastic fields and random local times

Proof: For each ω ∈ Ω, the Fourier transform of the occupation measure
µY ,T (•, ω), is given by

µ̂Y ,T (ξ, ω) =

∫
T

e−iξY (t,ω) dt, for all ξ ∈ R. (3.4)

Therefore∫
Ω

∫
R

∣∣µ̂Y ,T (ξ, ω)
∣∣2 dξdP(ω) =

∫
Ω

∫
R

∫
T 2

e iξ(Y (t1,ω)−(Y (t2,ω)) dt1dt2dξdP(ω)

=

∫
T 2

∫
R

∫
Ω

e iξ(Y (t1,ω)−(Y (t2,ω)) dP(ω)dξdt1dt2 (Fubini-Tonelli)

=

∫
T 2

∫
R

ΦY (t1)−Y (t2)(ξ) dξdt1dt2

=

∫
T 2

∫
R

exp
(
− |σ(Y (t1)− Y (t2))ξ|α) dξdt1dt2 (set η = σ(Y (t1)− Y (t2))ξ)

=
(∫

R
e−|η|

α

dη
)(∫

T 2

σ
(
Y (t1)− Y (t2)

)−1
dt1dt2

)
.

�
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Stochastic fields and random local times

Remark 3.2

For all f ∈ Lα(RN), the stochastic integral
∫
RN f (ξ) M̃α(dξ) is a complex-valued

random variable whose real part is SαS with a scale parameter equals to the

(quasi) norm ‖f ‖Lα(R) :=
( ∫

RN

∣∣f (ξ)
∣∣α dξ)1/α

.

Definition 3.3 (Harmonizable Fractional Stable Field (HFSF))

The HFSF, of Hurst parameter H ∈ (0, 1) and of stability parameter α ∈ (0, 2], is
the SαS stochastic field denoted by X = {X (t), t ∈ RN} and given by

X (t) := Re

∫
RN

e it·ξ − 1

|ξ|H+N/α
M̃α(dξ), for all t ∈ RN , (3.5)

where |ξ| is the Euclidian norm of ξ, and t · ξ the classical inner product of t and ξ.

HFSF generalizes classical processes and fields:

1 Brownian Motion (α = 2, N = 1, and H = 1/2);

2 Fractional Brownian Motion (α = 2, N = 1, and H arbitrary);

3 Fractional Brownian Field (α = 2 and N and H arbitrary).
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Stochastic fields and random local times

Proposition 3.4

Let X be a HFSF of arbitrary parameters, and T a compact of RN . Then the
local time LX (•,T ) exists almost surely, moreover the function
(x , ω) 7→ LX (x ,T , ω) belongs to L2(R× Ω).

Proof: using the definition of X and elementary properties of the stochastic
integral in it, one can show that, for some constant c > 0, one for has

σ
(
X (t1)− X (t2)

)
= c |t1 − t2|H , for all t1, t2 ∈ RN . (3.6)

Therefore ∫
T 2

σ
(
X (t1)− X (t2)

)−1
dt1dt2 < +∞. (3.7)

�
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Joint continuity of random local times and local nondeterminism
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Joint continuity of random local times and local nondeterminism

Theorem 4.1 (Kolmogorov’s continuity theorem)

Let Q ∈ N, J a compact rectangle of RQ , and {Z (θ), θ ∈ J} a stochastic field. A
sufficient condition for its sample paths to be, almost surely, continuous functions
on J is the following: there exist 3 positive constants β, c , and ν such that

E
(
|Z (θ′)− Z (θ′′)|β

)
≤ c |θ′ − θ′′|Q+ν , for all θ′, θ′′ ∈ J. (4.1)

Let I :=
∏N

l=1[al , bl ] be a compact rectangle of RN ; for any s = (s1, . . . , sN) ∈ I

we set I (s) :=
∏N

l=1[al , sl ] ⊆ I . Let {Y (t), t ∈ RN} be a stochastic field such that
the local time LY (•, I ) exists almost surely, and belongs to L2(R× Ω). To say
that LY is almost surely jointly continuous on I means that, for any fixed r > 0,
the stochastic field

{
LY (x , I (s)), (x , s) ∈ [−r , r ]× I

}
has, almost surely,

continuous paths. To derive such a result, the classical strategy consists in trying
to use Theorem 4.1, when Q = N + 1, J = [−r , r ]× I , θ = (x , s), and
Z (θ) = LY (x , I (s)). Thus, one has to find, for some fixed well-chosen even integer
k = β ≥ 2, an upper bound, of the same form as in (4.1), for the quantity

∆k(x ′, x ′′; s ′, s ′′) := E
(∣∣LY (x ′, I (s ′))− LY (x ′′, I (s ′′))

∣∣k) , (4.2)

where (x ′, x ′′) ∈ [−r , r ]2 and (s ′, s ′′) ∈ I 2 are arbitrary.
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Joint continuity of random local times and local nondeterminism

Let us ”separate” the increment in s from that in x . One has

∆k(x ′, x ′′; s ′, s ′′) ≤ 2k−1
(
∆̃k(x ′; s ′, s ′′) + ∆̌k(x ′, x ′′; s ′′)

)
. (4.3)

Notice that

∆̃k(x ′; s ′, s ′′) := E
(∣∣LY (x ′, I (s ′))− LY (x ′, I (s ′′))

∣∣k)
≤ E

(
LY
(
x ′, I (s ′) \ I (s ′′)

)k)
+ E

(
LY
(
x ′, I (s ′′) \ I (s ′)

)k)
≤ 2
(
card(S)

)k−1∑
j∈S

E
(
LY (x ′,Bj)

k
)
, (4.4)

where S is a finite set such that card(S) � |s ′ − s ′′|1−N , and each Bj is a cube
included in I satisfying diam(Bj) � |s ′ − s ′′|.
Also, notice that

∆̌k(x ′, x ′′; s ′′) := E
((

LY (x ′, I (s ′′))− LY (x ′′, I (s ′′))
)k)

. (4.5)
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Joint continuity of random local times and local nondeterminism

Thus, it is useful to obtain convenient upper estimates for:

1 the kth moment of the local time Uk(x ,B) := E
(
LY (x ,B)k

)
, where x ∈ R

and the cube B ⊆ I are abitrary;

2 the kth moment of its increments
Wk(x , y ,R) := E

((
LY (x ,R)− LY (y ,R)

)k)
, where (x , y) ∈ R2 and the

rectangle R ⊆ I are abitrary.

We only study Uk(x ,B) since Wk(x , y ,R) can be studied in a rather similar way.
Using the heuristic computations

LY (x ,B) = F−1(µ̂Y ,B)(x) =
1

2π

∫
R
e−ixξ µ̂Y ,B(ξ) dξ =

1

2π

∫
R
e−ixξ

∫
B

e iξY (t) dtdξ

and Fubini-Tonelli’s theorem, we get (see Geman and Horowitz, 1980), that

Uk(x ,B) =
1

(2π)k

∫
Bk

∫
Rk

exp
(
− ix

k∑
l=1

ξl

)
E
(

exp
(
i

k∑
l=1

ξlY (t l)
))

dξdt , (4.6)

where ξ = (ξ1, . . . , ξk) and t = (t1, . . . , tk). The quantity E
(
e i

∑k
l=1 ξlY (t l )

)
is the

value at 1 of the characteristic function of the random variable
∑k

l=1 ξlY (t l).
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Joint continuity of random local times and local nondeterminism

Thus, when Y is a centered Gaussian field, one has that

E
(

exp
(
i

k∑
l=1

ξlY (t l)
))

= exp

(
− 2−1 Var

( k∑
l=1

ξlY (t l)
))

(4.7)

and consequently that∫
Rk

E
(

exp
(
i

k∑
l=1

ξlY (t l)
))

dξ =

√
(2π)k

det
(
CovMat(Y (t1), . . . ,Y (tk))

) . (4.8)

Thus, the problem of finding a convenient upper estimate for the kth moment of
the local time Uk(x ,B), reduces to that of finding a convenient lower estimate for
det
(
CovMat(Y (t1), . . . ,Y (tk))

)
. This is in fact a Gram determinant. Therefore

det
(
CovMat(Y (t1), . . . ,Y (tk))

)
= Var

(
Y (t1)

) k∏
m=2

Var
(
Y (tm)|Y (t1), . . . ,Y (tm−1

)
,

(4.9)
where√
Var
(
Y (tm)|Y (t1), . . . ,Y (tm−1

)
:= distL2(Ω)

(
Y (tm), span

{
Y (t1), . . . ,Y (tm−1)

})
.

(4.10)

A. Ayache (Univ. Lille 1, LPP) Erratic random functions Colloquium LAMFA, October 14, 2015 26 / 38



Joint continuity of random local times and local nondeterminism

The concept of local nondeterminism (LND) was first introduced by Berman
(1973) in the framework of Gaussian processes. Pitt (1978) extended it to the
framework of Gaussian fields, and Nolan (1989) to that of SαS fields.

Definition 4.2 (LND for Gaussian stochastic fields)

A centered Gaussian field {Y (t), t ∈ RN} is said to be LND on a compact
rectangle I ⊂ RN , if for any fixed integer m ≥ 2, and for all points t1, . . . , tm ∈ I
sufficiently close together, one has

Var
(
Y (tm)|Y (t1), . . . ,Y (tm−1

)
≥ c min

1≤q<m
Var
(
Y (tm)− Y (tq)

)
, (4.11)

where c > 0 is a constant which may only depend on I and m.
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Joint continuity of random local times and local nondeterminism

Remark 4.3

When the centered Gaussian field {Y (t), t ∈ RN} has a stochastic integral
representation of the form: for all t ∈ RN ,

Y (t) = Re

∫
RN

K(t, ξ) M̃2(dξ), where K(t, ·) ∈ L2
ξ(RN). (4.12)

Then, thanks to the isometry property (from L2
ξ(RN) into L2(Ω)) of this

stochastic integral, the inequality

Var
(
Y (tm)|Y (t1), . . . ,Y (tm−1

)
≥ c min

1≤q<m
Var
(
Y (tm)− Y (tq)

)
,

can be expressed in terms of the deterministic kernel function K:

distL2
ξ(RN )

(
K(tm, ·), span

{
K(t1, ·), . . . ,K(tm−1, ·)

})
(4.13)

≥
√
c min

1≤q<m

∥∥K(tm, ·)−K(tq, ·)
∥∥
L2
ξ(RN )

.
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Joint continuity of random local times and local nondeterminism

Definition 4.4 (LND for SαS stochastic fields)

Let α ∈ (0, 2] and {Y (t), t ∈ RN} a SαS field having a stochastic integral
representation of the form: for all t ∈ RN ,

Y (t) = Re

∫
RN

K(t, ξ) M̃α(dξ), where K(t, ·) ∈ Lαξ (RN). (4.14)

Such a field is said to be LND on a compact rectangle I ⊂ RN , if for any fixed
integer m ≥ 2, and for all points t1, . . . , tm ∈ I sufficiently close together, one has

distLα
ξ (RN )

(
K(tm, ·), span

{
K(t1, ·), . . . ,K(tm−1, ·)

})
(4.15)

≥ c min
1≤q<m

∥∥K(tm, ·)−K(tq, ·)
∥∥
Lα
ξ (RN )

,

where c > 0 is a constant which may only depend on I and m.
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Joint continuity of random local times and local nondeterminism

Definition 4.5 (Nolan (1989), locally appoximately independent increments)

Let {Y (t), t ∈ RN} be a SαS field which has the same stochastic integral
representation, through a kernel function K, as in Definition 4.4. Such a field is
said to have locally appoximately independent increments on a compact rectangle
I ⊂ RN , if for any fixed integer m ≥ 2, for every real numbers b1, . . . , bm, and for
all points t1, . . . , tm ∈ I sufficiently close together, one has

c−1

(∥∥b1K(t1, ·)
∥∥
Lα
ξ (RN )

+
m∑
j=2

∥∥bj(K(t j , ·)−K(t j−1, ·)
)∥∥

Lα
ξ (RN )

)

≤
∥∥∥∥b1K(t1, ·) +

m∑
j=2

bj
(
K(t j , ·)−K(t j−1, ·)

)∥∥∥∥
Lα
ξ (RN )

(4.16)

≤ c

(∥∥b1K(t1, ·)
∥∥
Lα
ξ (RN )

+
m∑
j=2

∥∥bj(K(t j , ·)−K(t j−1, ·)
)∥∥

Lα
ξ (RN )

)
,

where c > 0 is a constant which may only depend on I and m.
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Joint continuity of random local times and local nondeterminism

Theorem 4.6 (Nolan (1989))

Let {Y (t), t ∈ RN} be a SαS field which has the same stochastic integral
representation as in Definition 4.4. Then this field is LND on a compact rectangle
I ⊂ RN if and only if it has locally appoximately independent increments on I .

For proving this theorem Nolan made use of arguments from Linear Algebra
relying on a generalization of the notion of Gram determinant.
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Harmonizable Fractional Stable Field is locally nondeterministic

Organization of the talk

1 Introduction: the intuitive notion of erratic function

2 The deterministic notion of local time and the Berman’s principle

3 Stochastic fields and random local times

4 Joint continuity of random local times and local nondeterminism

5 Harmonizable Fractional Stable Field is locally nondeterministic
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Harmonizable Fractional Stable Field is locally nondeterministic

Recall that the Harmonizable Fractional Stable Field (HFSF), of Hurst parameter
H ∈ (0, 1) and of stability parameter α ∈ (0, 2], is the SαS stochastic field
denoted by {X (t), t ∈ RN} and given by

X (t) := Re

∫
RN

e it·ξ − 1

|ξ|H+N/α
M̃α(dξ), for all t ∈ RN , (5.1)

where |ξ| is the Euclidian norm of ξ, and t · ξ the classical inner product of t and ξ.

Theorem 5.1

Let I be a compact rectangle of RN such that 0 /∈ I . Then the HFSF
{X (t), t ∈ RN} is LND on I .

This theorem was obtained by:

Pitt (1978) in the Gaussian case α = 2;

Nolan (1989) in the SαS case, where α ∈ [1, 2);

Ayache and Xiao (recently) in the SαS case, where α ∈ (0, 1).

Notice that, in the Gaussian case, an alternative proof for Theorem 5.1 was
proposed by Kahane. Actually, the method used by Ayache and Xiao, in their
SαS setting, is, to a certain extent, inspired by this Kahane’s proof.
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Harmonizable Fractional Stable Field is locally nondeterministic

Proof when α = 2 (Kahane): The integer m ≥ 2 is arbitrary an fixed. One has
to show that for every real numbers a1, . . . , am−1, and for all points t1, . . . , tm ∈ I
(sufficiently close together), the following inequality holds∫

RN

∣∣∣e itm·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)∣∣∣2 dξ

|ξ|2H+N
≥ c min

1≤q<m
|tm − tq|2H , (5.2)

where c > 0 is a constant which may only depend on I and m.
We suppose that I := [ε, 1]N , ε ∈ (0, 1) being arbitrary. We set

r := min
1≤q<m

|tm − tq| and ρ = ρ(r , |tm|) := min
(
r , |tm|

)
. (5.3)

The inequality |tm| ≥ ε
√
N implies that one has, for some constant c1 > 0, only

depending on ε,
ρ(r , |tm|) ≥ c1 r . (5.4)
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Harmonizable Fractional Stable Field is locally nondeterministic

Next, let ϕ be an arbitrary fixed infinitely differentiable function from RN into the
compact interval [0, 1] of the real line, such that

ϕ(0) = 1 and Suppϕ ⊆
{
x ∈ RN : |x | ≤ 1

}
. (5.5)

We denote by ϕρ the function from RN into the compact interval [0, 1], defined as

ϕρ(s) = ρ−Nϕ
(
ρ−1s

)
for all s ∈ RN . (5.6)

Observe that (5.5) and (5.6) entail that

ϕρ(0) = ρ−N and Suppϕρ ⊆
{
s ∈ RN : |s| ≤ ρ

}
. (5.7)

Next, let Λ = Λ
(
a1, . . . , am−1; t1, . . . , tm

)
be the integral defined as

Λ :=

∫
RN

e−it
m·ξϕ̂ρ(ξ)

(
e it

m·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
))

dξ, (5.8)

where ϕ̂ρ denotes the Fourier transform of ϕρ.
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Harmonizable Fractional Stable Field is locally nondeterministic

Using (5.8) and the equality

ϕρ(s) := (2π)−N
∫
RN

e is·ξϕ̂ρ(ξ) ds, for all s ∈ RN ,

one gets that

Λ =

∫
RN

ϕ̂ρ(ξ) dξ +
(
− 1 +

m−1∑
l=1

al
)∫

RN

e−it
m·ξϕ̂ρ(ξ) dξ

−
(m−1∑

l=1

al
)∫

RN

e−i(t
l−tm)·ξϕ̂ρ(ξ) dξ

= (2π)−Nϕρ(0) + (2π)−N/2
(
− 1 +

m−1∑
l=1

al
)
ϕρ(−tm) + (2π)−Nϕρ

(
tm − t l

)
.

Therefore, the equality ϕρ(0) = ρ−N and the inequalities |tm| ≥ ρ and
min1≤l<m |tm − t l | ≥ ρ imply that Λ = (2π)−Nρ−N .
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Harmonizable Fractional Stable Field is locally nondeterministic

On the other hand, using Cauchy-Schwarz inequality, one obtains that

|Λ|2 =

∣∣∣∣ ∫
RN

e−it
m·ξϕ̂ρ(ξ)|ξ|H+N/2

(
e it

m·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)) dξ

|ξ|H+N/2

∣∣∣∣2

≤
∫
RN

∣∣ϕ̂ρ(ξ)
∣∣2|ξ|2H+N dξ ×

∫
RN

∣∣∣e itm·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)∣∣∣2 dξ

|ξ|2H+N
.

Therefore,

(2π)−2Nρ−2N

≤
∫
RN

∣∣ϕ̂(ρξ)
∣∣2|ξ|2H+N dξ ×

∫
RN

∣∣∣e itm·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)∣∣∣2 dξ

|ξ|2H+N

= ρ−2(H+N)

∫
RN

∣∣ϕ̂(η)
∣∣2|η|2H+N dη

×
∫
RN

∣∣∣e itm·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)∣∣∣2 dξ

|ξ|2H+N
.
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Harmonizable Fractional Stable Field is locally nondeterministic

Finally, one gets that∫
RN

∣∣∣e itm·ξ − 1−
m−1∑
l=1

al
(
e it

l ·ξ − 1
)∣∣∣2 dξ

|ξ|2H+N
≥ c2ρ

2H ≥ c3r
2H , (5.9)

where c2 > 0 and c3 > 0 are two constants only depending on H and N.
�

A. Ayache (Univ. Lille 1, LPP) Erratic random functions Colloquium LAMFA, October 14, 2015 38 / 38


	Introduction: the intuitive notion of erratic function
	The deterministic notion of local time and the Berman's principle
	Stochastic fields and random local times
	Joint continuity of random local times and local nondeterminism
	Harmonizable Fractional Stable Field is locally nondeterministic

