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From FBM to Multifractional Brownian Motion

Fractional Brownian Motion

Fractional Brownian Motion (FBM) of Hurst parameter H ∈ (0, 1) denoted by
{BH(t) : t ∈ [0, 1]} and defined as

BH(t) =

∫
R

(
(t − s)

H−1/2
+ − (−s)

H−1/2
+

)
Z2 (ds) , (1.1)

is a quite classical random model for real-life fractal signals. Observe that:

for all (x , κ) ∈ R2, one has (x)κ+ = xκ when x > 0 and (x)κ+ = 0 else;

Z2 (ds) denotes an independently scattered Gaussian random measure on R,
with Lebesgue measure as its control measure. That is

∫
R
(
·
)
Z2 (ds) is a

usual Wiener integral.

FBM is an H-self-similar centered Gaussian process with stationary increments
and a covariance function given for all (t1, t2) ∈ [0, 1]2 by

E
(
BH(t1)BH(t2)

)
= 2−1c(H)

(
t2H

1 + t2H
2 − |t1 − t2|2H

)
, (1.2)

where c(H) = E
(
BH(1)

)2
.
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From FBM to Multifractional Brownian Motion

Although this model offers the advantage of simplicity, it lacks flexibility and thus
does not always fit with reality. An important limitation is that local fractal
properties of FBM sample paths are not really allowed to evolve over time:
roughness remains almost the same all along sample paths:
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Figure : Simulation of an FBM sample path with H = 0.2 (left) and with H = 0.8 (right)

This limitation is mainly due to the constancy over time of H the Hurst parameter
governing FBM.
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From FBM to Multifractional Brownian Motion

Multifractional Brownian Motion

In order to overcome this drawback, various multifractional stochastic processes
have been introduced since the 90’s and studied by many authors: Angulo, Anh,
Ayache, Balança, Bardet, Benassi, Bertrand, Bianchi, Biermé, Boufoussi, Clausel,
Coeurjolly, Cohen, Dozzi, Falconer, Guerbaz, Le Guével, Hamonier, Herbin, Istas,
Jaffard, Lacaux, Leonenko, Lévy Véhel, Lifshits, Meerschaert, Pantanella, Peltier,
Peng, Pianese, Ruiz-Medina, Roux, Surgailis, Stoev, Taqqu, Vedel, Wu, Xiao, ...
→ Roughly speaking, the main idea behind this new class of processes is that
Hurst parameter H becomes a function H(t) depending on the time variable t.
→ The paradigmatic example of such processes is the centered Gaussian
Multifractional Brownian Motion (MBM) {BH(t)(t) : t ∈ [0, 1]}, having a
covariance function given for all (t1, t2) ∈ [0, 1]2 by

E
(
BH(t1)(t1)BH(t2)(t2)

)
(1.3)

= c
(
H(t1),H(t2)

)(
t
H(t1)+H(t2)
1 + t

H(t1)+H(t2)
2 − |t1 − t2|H(t1)+H(t2)

)
.

⇒ Although the factor c
(
H(t1),H(t2)

)
can usually be neglected, MBM as well as

the other multifractional processes have complex dependence structures.
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From FBM to Multifractional Brownian Motion
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Figure : Simulation of an MBM sample path with H(t) = 0.6t + 0.2 for all t ∈ [0, 1]
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Estimation of the value H(t0) in the Gaussian case
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Estimation of the value H(t0) in the Gaussian case

Let us now present in the case of MBM the classical strategy for statistical
estimation of H(t0), the value of the Hurst function at an arbitrary fixed time
t0 ∈ [0, 1]. This strategy was introduced in (Benassi, Cohen and Istas 1998).
→ The observations consist in a sample

{
BH(k/N)(k/N) : k ∈ {0, . . . ,N}

}
of an

MBM sample path, where N is an integer large enough. Usually it is assumed that

H(·) is a ρH -Hölder function such that 1 ≥ ρH > supt∈[0,1] H(t). (∗)

→ The estimator of H(t0) is built through L-th order discrete variations of the
BH(k/N)(k/N)’s, where the integer L ≥ 2 is arbitrary and fixed.
→ Let us define those variations. For each q ∈ {0, . . . , L}, one sets
aq = (−1)L−q

(
L
q

)
= (−1)L−q L!

q! (L−q)! ; observe that for all m ∈ {0, . . . , L− 1},∑L
q=0 qmaq = 0 and

∑L
q=0 qLaq 6= 0. For any k ∈ {0, . . . ,N − L}, the L-th order

discrete variation of MBM at k/N is denoted by d MBM

N,k and defined as

d MBM

N,k =
L∑

q=0

aqBH((k+q)/N)((k + q)/N) '
L∑

q=0

aqBH(k/N)((k + q)/N). (2.4)

→ From now on d MBM

N,k is identified with
∑L

q=0 aqBH(k/N)((k + q)/N). In doing
so, the approximation error is, almost surely uniformly in k , of the same order as
N−ρH , which can be considered to be negligible thanks to Assumption (∗).

A. Ayache and J. Hamonier (Univ. Lille 1 & Lille 2) Statistical estimation of Hurst functions SAMM May 2015 8 / 29



Estimation of the value H(t0) in the Gaussian case

Thus, one has for all (k1, k2) ∈ {0, . . . ,N − L}2,∣∣∣cov(d MBM

N,k1
, d MBM

N,k2

)∣∣∣
� N−H(k1/N)−H(k2/N)

∣∣∣ ∑
0≤q1,q2≤L

aq1 aq2

∣∣k1 − k2 + q1 − q2

∣∣H(k1/N)+H(k2/N)
∣∣∣

(applying Taylor formula)

� N−H(k1/N)−H(k2/N)
(

1 +
∣∣k1 − k2

∣∣)H(k1/N)+H(k2/N)−2L

; (2.5)

in other words

NH(k1/N)+H(k2/N)
(

1 +
∣∣k1 − k2

∣∣)−H(k1/N)−H(k2/N)+2L∣∣∣cov(d MBM

N,k1
, d MBM

N,k2

)∣∣∣
is bounded from above and from below by positive and finite constants non
depending on N, k1 and k2. Notice that (2.5) implies that ‖d MBM

N,k ‖2 the standard
deviation of the centered Gaussian random variable d MBM

N,k satisfies

‖d MBM

N,k ‖2 � N−H(k/N). (2.6)

In view of (2.6), it turns out that the quantity H(t0) is mainly connected with the
d MBM

N,k ’s located ”near to” t0.
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Estimation of the value H(t0) in the Gaussian case

In order to clearly define the notion of ”near to”. For any non-degenerate
compact interval I ⊆ [0, 1], let νN(I ) be the set

νN(I ) =
{

k ∈ {0, . . . ,N − L} : k/N ∈ I
}

; (2.7)

it is rather denoted by νN(t0, γ) when I = [0, 1] ∩ [t0 − N−γ , t0 + N−γ ], where
γ ∈ (0, 1) is a parameter. Observe that the set νN(t0, γ) is non-empty as soon as
N ≥ (L + 1)1/(1−γ) and that ‖d MBM

N,k ‖2 � N−H(t0) if k ∈ νN(t0, γ).

Theorem 2.1 ((Benassi, Cohen and Istas 1998) and (Coeurjolly 2005 & 2006))

For any N ≥ (L + 1)1/(1−γ), let VN(t0, γ) be the empirical mean defined as

VN(t0, γ) = |νN(t0, γ)|−1
∑

k∈νN (t0,γ)

∣∣dMBM

N,k

∣∣2, (2.8)

where |νN(t0, γ)| is the cardinality of νN(t0, γ). Then

ĤN(t0, γ) = 2−1 log2

(
VN(t0, γ)

V2N(t0, γ)

)
, (2.9)

is an almost surely convergent estimator of H(t0).
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Estimation of the value H(t0) in the Gaussian case

Scketch of the Proof: It is enough to show that ”a strong law of large numbers”
holds for the empirical mean VN(t0, γ), more precisely:

VN(t0, γ)

E
(
VN(t0, γ)

) a.s.−−−−→
n→+∞

1. (2.10)

(2.10) will result from Borel-Cantelli Lemma. One has for any η > 0,

P
(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣ > η

)
= P

(∣∣∣VN(t0, γ)− E
(
VN(t0, γ)

)∣∣∣ > η E
(
VN(t0, γ)

))
.

(2.11)
Next applying Bienaymé-Tchebychev inequality one gets

P
(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣ > η

)
≤ η−2 Var

(
VN(t0, γ)

)(
E
(
VN(t0, γ)

))2 . (2.12)

Let us now try to show that

+∞∑
N≥(L+1)1/(1−γ)

Var
(
VN(t0, γ)

)(
E
(
VN(t0, γ)

))2 < +∞. (2.13)
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Estimation of the value H(t0) in the Gaussian case

One has(
E
(
VN(t0, γ)

))2
= |νN(t0, γ)|−2

( ∑
k∈νN (t0,γ)

‖d MBM

N,k ‖2
2

)2

� N−4H(t0). (2.14)

On the other hand, for any centered 2-D Gaussian vector (Z1,Z2),

cov
(
Z 2

1 ,Z
2
2

)
= 2
(
cov(Z1,Z2)

)2
; (2.15)

therefore, one gets

Var
(
VN(t0, γ)

)
= |νN(t0, γ)|−2

∑
k1,k2∈νN (t0,γ)

cov
(
(d MBM

N,k1
)2, (d MBM

N,k2
)2
)

= 2 |νN(t0, γ)|−2
∑

k1,k2∈νN (t0,γ)

(
cov(d MBM

N,k1
, d MBM

N,k2
)
)2

� |νN(t0, γ)|−2 N−4H(t0)
∑

k1,k2∈νN (t0,γ)

(
1 +

∣∣k1 − k2

∣∣)4(H(t0)−L)

� |νN(t0, γ)|−1 N−4H(t0), (2.16)

since for all fixed k1 ∈ νN(t0, γ),∑
k2∈νN (t0,γ)

(
1 +

∣∣k1 − k2

∣∣)4(H(t0)−L)

≤
∑

n∈Z
(
1 + |n|

)4(H(t0)−L)
< +∞.
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Estimation of the value H(t0) in the Gaussian case

Thus, it follows that

Var
(
VN(t0, γ)

)(
E
(
VN(t0, γ)

))2 � |νN(t0, γ)|−1 � Nγ−1. (2.17)

Unfortunately, the fact that γ ∈ (0, 1) implies that

+∞∑
N≥(L+1)1/(1−γ)

Var
(
VN(t0, γ)

)(
E
(
VN(t0, γ)

))2 = +∞. (2.18)

More effort is necessary for obtaining the theorem! Rather than using

P
(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣ > η

)
≤ η−2 Var

(
VN(t0, γ)

)(
E
(
VN(t0, γ)

))2 , (2.19)

one needs to use

P
(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣ > η

)
= P

(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣4 > η4

)

≤ η−4

E
(∣∣∣VN(t0, γ)− E

(
VN(t0, γ)

)∣∣∣4)(
E
(
VN(t0, γ)

))4 (Markov inequality) (2.20)
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Estimation of the value H(t0) in the Gaussian case

An appropriate upper bound for E
(∣∣∣VN(t0, γ)− E

(
VN(t0, γ)

)∣∣∣4) can be derived

from the following lemma:

Lemma 2.1

There exists a constant c > 0, such that for each positive integer m, and for any
centered non-degenerate Gaussian vector (Z1, . . . ,Zm), one has

E
(∣∣∣ m∑

k=1

(
Z 2
k − E(Z 2

k )
)∣∣∣4) ≤ c

(
Var
( m∑

k=1

Z 2
k

))2

. (2.21)

Thus, using (2.21) and (2.16), one gets

E
(∣∣∣VN(t0, γ)− E

(
VN(t0, γ)

)∣∣∣4) ≤ c
(
Var
(
VN(t0, γ)

))2

≤ c1|νN(t0, γ)|−2 N−8H(t0). (2.22)
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Estimation of the value H(t0) in the Gaussian case

Next, (2.22) and (2.14) imply that

E
(∣∣∣VN(t0, γ)− E

(
VN(t0, γ)

)∣∣∣4)(
E
(
VN(t0, γ)

))4 ≤ c2|νN(t0, γ)|−2 � N2(γ−1). (2.23)

Hence, when γ ∈ (0, 1/2), one has, for all η > 0,

+∞∑
N≥(L+1)1/(1−γ)

P
(∣∣∣ VN(t0, γ)

E
(
VN(t0, γ)

) − 1
∣∣∣ > η

)

≤ c3η
−4

+∞∑
N≥(L+1)1/(1−γ)

E
(∣∣∣VN(t0, γ)− E

(
VN(t0, γ)

)∣∣∣4)(
E
(
VN(t0, γ)

))4 < +∞,

which ends the proof of the theorem.
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Estimation of the function H(·) in the stable case
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Estimation of the function H(·) in the stable case

Linear Multifractional Stable Motion

Linear Multifractional Stable Motion (LMSM) denoted by {Y (t) : t ∈ [0, 1]} is a
quite natural extension of MBM to the setting of heavy-tailed stable distributions.
It was introduced in (Stoev and Taqqu 2004) and it is defined as

Y (t) =

∫
R

(
(t − s)

H(t)−1/α
+ − (−s)

H(t)−1/α
+

)
Zα (ds) , (3.24)

where Zα (ds) is an independently scattered symmetric α-stable (SαS) random
measure on R, with Lebesgue measure as its control measure (see the book
Samorodnitsky and Taqqu 1994). We assume that α ∈ (1, 2).
→ The stochastic integral I(f ) =

∫
R f (s)Zα (ds) is defined for any f ∈ Lα(R).

Recall that I(f ) is a real-valued SαS random variable i.e. E(e iξ I(f )) = e−σ
α |ξ|α ,

for all ξ ∈ R. The scale parameter σ is denoted by ‖I(f )‖α and given by

‖I(f )‖α =
(∫

R
|f (s)|α ds

)1/α

= ‖f ‖Lα(R). (3.25)

Also, recall that for any γ > 0, one has E(|I(f )|γ) < +∞ iff γ < α, moreover

E(|I(f )|γ) = c(γ)‖I(f )‖γα, (3.26)

where the constant c(γ) only depends on γ.
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Estimation of the function H(·) in the stable case

→ Let us emphasize that the independently scattered property of Zα (ds) will play
a crucial role in the sequel; it means that: for each positive integer n and all
functions f1, . . . , fn belonging to Lα(R), the coordinates of the SαS random
vector (I(f1), . . . , I(fn)) are independent random variables as soon as the supports
of f1, . . . , fn are disjoint up to Lebesgue-negligible sets.

A natural question: is it possible to extend Theorem 2.1, on the estimation of
H(t0), to the setting of the LMSM {Y (t) : t ∈ [0, 1]}?
More precisely, one assumes that β ∈ (0, 1/4], then one sets

V β
N (t0, γ) = |νN(t0, γ)|−1

∑
k∈νN (t0,γ)

∣∣dN,k

∣∣β , (3.27)

and

Ĥβ
N(t0, γ) = β−1 log2

(
V β
N (t0, γ)

V β
2N(t0, γ)

)
, (3.28)

where dN,k =
∑L

q=0 aqY ((k + q)/N) is the L-th order discrete variation of the
LMSM at k/N.

Is it true that Ĥβ
N(t0, γ) converges almost surely to H(t0) when N goes to +∞?
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Estimation of the function H(·) in the stable case

From now on, in addition to the ρH -Hölder condition (∗) already imposed to H(·),
one assumes that the latter function is with values in a compact interval
[H,H] ⊂ (1/α, ρH). Then, for each k ∈ {0, . . . ,N − L},

dN,k ' N−(H(k/N)−1/α)

∫ N−1(k+L)

−∞
Φα

(
Ns − k ,H(k/N)

)
Zα (ds) , (3.29)

where Φα(u, v) =
∑L

l=0 al(l − u)
v−1/α
+ , for all (u, v) ∈ R× (1/α, 1). Notice that,

similarly to the Gaussian case α = 2, the approximation error in (3.29), is, almost
surely uniformly in k , of the same order as N−ρH , which can be considered to be
negligible thanks to Assumption (∗).
→ The continuous function Φα has the following useful localization properties:

supp
(
Φα(·, v)

)
=]−∞, L], for all fixed v ∈ (1/α, 1) (3.30)

and

sup
{(

1 + |u|
)L+1/α−v ∣∣Φα(u, v)

∣∣ : (u, v) ∈]−∞, L]× (1/α, 1)
}
< +∞.

(3.31)
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Estimation of the function H(·) in the stable case

Let us now try to rewrite the proof of Theorem 2.1 in the case of LMSM. First,

notice that one has E
((

V β
N (t0, γ)

)4)
< +∞ since β ∈ (0, 1/4]. Let us try to make

use of Borel-Cantelli Lemma in order to show that

V β
N (t0, γ)

E
(
V β
N (t0, γ)

) a.s.−−−−→
n→+∞

1. (3.32)

Similarly to the Gaussian case, the inequality

P
(∣∣∣ V β

N (t0, γ)

E
(
V β
N (t0, γ)

) − 1
∣∣∣ > η

)
≤ η−4

E
(∣∣∣V β

N (t0, γ)− E
(
V β
N (t0, γ)

)∣∣∣4)(
E
(
V β
N (t0, γ)

))4 , (3.33)

holds for any η > 0. The integral representation of dN,k , allows to show that

‖dN,k‖α � N−H(k/N), (3.34)

which in turns allows to obtain that

E
(
V β
N (t0, γ)

)
� N−βH(t0). (3.35)
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Estimation of the function H(·) in the stable case

Yet, in contrast with the Gaussian case, it is not clear how one can do in order to
obtain a convenient upper bound for

E
(∣∣∣V β

N (t0, γ)− E
(
V β
N (t0, γ)

)∣∣∣4).
Indeed, this would require to look for an appropriate extension of Lemma 2.1 to

the setting of heavy-tailed SαS distributions, as for instance to provide a positive
answer to the following question.

A question: is it true that there exists a constant c > 0, such that for each positive
integer m and for any non-degenerate SαS random vector (S1, . . . ,Sm), one has

E
(∣∣∣ m∑

k=1

(
Sβk − E(Sβk )

)∣∣∣4) ≤ c

(
Var
( m∑

k=1

Sβk

))2

? (3.36)

We have not found such an extension of Lemma 2.1 in the literature. Let us now
explain how to overcome this difficulty.
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Estimation of the function H(·) in the stable case

An important decomposition of dN,k

Assume that δ ∈ (0, 1) is fixed and that eN = eN(δ) is the positive integer

eN =
[
Nδ
]
, (3.37)

where [ · ] denotes the integer part function. One has

dN,k' N−(H(k/N)−1/α)

∫ N−1(k+L)

−∞
Φα

(
Ns − k ,H(k/N)

)
Zα (ds)= d 1,δ

N,k + d 2,δ
N,k ,

(3.38)
where

d 1,δ
N,k = N−(H(k/N)−1/α)

∫ N−1(k+L)

N−1(k−eN+L)

Φα

(
Ns − k ,H(k/N)

)
Zα (ds) (3.39)

and

d 2,δ
N,k = N−(H(k/N)−1/α)

∫ N−1(k−eN+L)

−∞
Φα

(
Ns − k ,H(k/N)

)
Zα (ds) . (3.40)
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Estimation of the function H(·) in the stable case

This decomposition of dN,k is important for two reasons

→ First reason: Roughly speaking, one has d 1,δ
N,k ' dN,k .

Heuristic explanation: Using the integral representations of d 1,δ
N,k and d 2,δ

N,k , more
particularly the localization properties of the function Φα in them, one can show
that

‖d 1,δ
N,k‖α � N−H(k/N) � ‖dN,k‖α (3.41)

and
‖d 2,δ

N,k‖α = O
(
N−(1−δ)H(k/N)−δL) = o(‖d 1,δ

N,k‖α). (3.42)

→ Second reason: Let I ⊆ [0, 1] be an arbitrary non-degenerate compact interval,
and, as previously, let νN(I ) =

{
k ∈ {0, . . . ,N − L} : k/N ∈ I

}
. For each fixed

r ∈ {0, . . . , eN − 1}, denote by JN,r the set

JN,r =
{

k ∈ νN(I ) : ∃ q ∈ Z+ s.t. k = qeN + r
}
. (3.43)

Then {d̃ 1,δ
N,k : k ∈ JN,r} is a finite sequence of independent SαS random variables.

Also, observe that

νN(I ) =

eN−1⋃
r=0

JN,r (disjoint union). (3.44)
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Estimation of the function H(·) in the stable case

Thus, setting

V β,1,δ
N (I ) = |νN(I )|−1

∑
k∈νN (I )

|d 1,δ
N,k |

β , (3.45)

one has
V β,1,δ
N (I ) ' V β

N (I ) = |νN(I )|−1
∑

k∈νN (I )

|dN,k |β . (3.46)

It seems to be less difficult to obtain ”a strong law of large numbers” for the
empirical mean V β,1,δ

N (I ), than for the empirical mean V β
N (I ). Indeed, in view of

the independence of the d 1,δ
N,k ’s, k ∈ JN,r , it is much less difficult to find, for all

η > 0, an appropriate upper bound for the probability

p1
N(η) = P

(∣∣∣ V β,1,δ
N (I )

E
(
V β,1,δ
N (I )

) − 1
∣∣∣ > η

)
, (3.47)

than for the probability

pN(η) = P

(∣∣∣ V β
N (I )

E
(
V β
N (I )

) − 1
∣∣∣ > η

)
. (3.48)
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Estimation of the function H(·) in the stable case

More precisely, for finding an appropriate upper bound for the probability p1
N(η),

the main thing to do is to conveniently bound from above the quantity

AN = E
(∣∣∣V β,1,δ

N (I )− E
(
V β,1,δ
N (I )

)∣∣∣4)
= |νN(I )|−4 E

(( ∑
k∈νN (I )

∆N,k

)4
)
, (3.49)

where the ∆N,k ’s are the centered random variables defined as

∆N,k = |d 1,δ
N,k |

β − E
(
|d 1,δ

N,k |
β
)
. (3.50)

The fact that

νN(I ) =

eN−1⋃
r=0

JN,r (disjoint union)

and the convexity property of the function x 7→ x4 imply that

E
(( ∑

k∈νN (I )

∆N,k

)4
)
≤ e3

N

eN−1∑
r=0

E
(( ∑

k∈JN,r

∆N,k

)4
)
. (3.51)
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Estimation of the function H(·) in the stable case

Next, using the fact that for each fixed r ∈ {0, . . . , eN − 1}, {∆N,k : k ∈ JN,r} is
a finite sequence of independent centered random variables, one gets,

E
(( ∑

k∈JN,r

∆N,k

)4
)

(3.52)

=
∑

k∈JN,r

E
((

∆N,k

)4
)

+
∑

(k′,k′′)∈J 2
N,r , k

′ 6=k′′

E
((

∆N,k′
)2
)
E
((

∆N,k′′
)2
)
.

Moreover, one can derive from the equality ∆N,k = |d 1,δ
N,k |β − E

(
|d 1,δ

N,k |β
)

and the

convexity property of the functions x 7→ x4 and x 7→ x2, that

E
((

∆N,k

)4
)
≤ 8E

(
|d 1,δ

N,k |
4β
)

+ 8
(
E
(
|d 1,δ

N,k |
β
))4

≤ c2N−4βH(k/N) (3.53)

and

E
((

∆N,k

)2
)
≤ 2E

(
|d 1,δ

N,k |
2β
)

+ 2
(
E
(
|d 1,δ

N,k |
β
))2

≤ cN−2βH(k/N), (3.54)

where c is a constant non depending on N and k .

A. Ayache and J. Hamonier (Univ. Lille 1 & Lille 2) Statistical estimation of Hurst functions SAMM May 2015 26 / 29



Estimation of the function H(·) in the stable case

In conclusion: Our computations allow to get a convenient upper bound for AN ,
which is the main ingredient of the proofs of our two main results that we are now
going to state.

Theorem 3.1

Assume that β ∈ (0, 1/4] and L are arbitrary and such that

L >
2

β
+ 1. (3.55)

Let I ⊆ [0, 1] be an arbitrary fixed compact interval with a positive Lebesgue
measure λ(I ). For each integer N ≥ (L + 1)λ(I )−1, we set

Ĥβ
N(I ) = β−1 log2

(
V β
N (I )

V β
2N(I )

)
. (3.56)

Then, there exists an almost surely finite random variable C > 0, such that one
has almost surely for all N ≥ (L + 1)λ(I )−1,

∣∣Ĥβ
N(I )−min

t∈I
H(t)

∣∣ ≤ C
log log N

log N
. (3.57)
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Estimation of the function H(·) in the stable case

Construction of an estimator for the function H(·)

→ One splits, for any large integer N, the interval [0, 1], into a finite sequence
(IN,n)0≤n≤MN

of MN + 1 compact subintervals with the same length θN , except
the last one IN,MN

having a length between θN and 2θN .

→ Then, one denotes by
{

H̃β
N,θN

(t) : t ∈ [0, 1]
}

the stochastic process with
piecewise linear sample paths obtained as a linear interpolation between the
MN + 2 random points given by the coordinates(
0, ĤβN

(
IN,0

))
; . . . ;

(
(MN − 1)θN , Ĥ

β
N

(
IN,MN−1

))
;
(
MNθN , Ĥ

β
N

(
IN,MN

))
;
(
1, ĤβN

(
IN,MN

))
;

where for all n ∈ {0, . . . ,Mn}, Ĥβ
N

(
IN,n

)
is the estimator of mint∈IN,n H(t)

provided by the previous theorem.

Notice that Bardet and Surgailis (2013) gave, in a general Gaussian multifractional
frame, uniformly and strongly consistent estimators for Hurst functions.
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Estimation of the function H(·) in the stable case

Theorem 3.2

Assume that β ∈ (0, 1/4] and L are arbitrary and such that L > 2
β + 1. Also,

assume that

lim
N→+∞

N
β(L−1)−2
4β(L−1)+2 θN = +∞. (3.58)

Then, there exists an almost surely finite random variable C > 0, such that one
has almost surely for all integer N big enough,∥∥H − H̃β

N,θN

∥∥
∞ = sup

t∈[0,1]

∣∣H(t)− H̃β
N,θN

(t)
∣∣ (3.59)

≤ C

(
θ−1
N N−

β(L−1)−2
4β(L−1)+2 + N−β(ρH−supt∈[0,1] H(t))(log N)2 + θρHN

)
.

Condition (3.58) means that the length θN of the intervals IN,n must not go very
fast to zero, namely, its rate of convergence has to be at least slower than N−1/4.
On the other hand, even if this rate is extremely slow, H̃β

N,θN
(·) remains an almost

surely uniformly convergent estimator of H(·); yet, it is absurd to choose θN in

this way! A reasonable choice for θN , would be θN = a N−
ζ(β(L−1)−2)

4β(L−1)+2 , where a > 0
and ζ ∈ (0, 1) are two parameters to adjust according to situation.
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