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Abstract—In impulsive noise, the inputs of the belief propa-
gation decoder can be complex to compute or even impossible
when the noise distribution is not known. We propose a simple
approximation of the log-likelihood ratio that maps the channel
output to the input of the error correcting decoder, for instance,
LDPC decoders. This approximation is designed for additive
impulsive noise channels, nevertheless, it is not computationally
demanding and easy to be implemented. It requires the estimation
of three parameters and we propose an efficient way to do
it. Moreover, in terms of performance, our solution is barely
discernible from the optimal receiver which is computationally
prohibitive.

Index Terms—Belief propagation, soft iterative decoding, im-
pulsive interference, alpha-stable distributions.

I. INTRODUCTION

With the denser deployment of wireless networks, the
induced interference becomes the main system performance’s
limitation, due to the collection of undesired signals broad-
casted by other transmitters. If the thermal noise caused by
receiver equipment is well modeled by Gaussian distribution,
it has been shown in many works that interference exhibits
an impulsive behavior [1], [2], [3]. Many works have been
proposed to tackle the modeling question, since the first works
from Middleton [4] until the stochastic geometry solutions or
symmetric alpha-Stable (SαS) distributions [2].

These works often lead to interference distributions that
might be difficult to handle in receivers. Indeed the probability
density function is sometimes expressed as an infinite series
(Middleton) or has no closed-form expression (α-stable).
Receivers frequently need the evaluation of the likelihood
of the received sequence. However, in general, it cannot be
simply evaluated, so that the design of an effective receiver
scheme is complex. In literature, different approaches have
been considered to overcome these issues. For instance, dif-
ferent demapping function or distance metrics like, p-norm [5],
Hubber metric [6] or saturated likelihood [7]. If they improve
performance, they remain difficult to implement, which induce
much complexity.

The contribution of this paper is to propose a simple, fast
and easy way to implement an approximation of the log likeli-
hood ratio (LLR). In order to narrow the search space of such
an approximation, we focus only on parametrized functions.
Moreover, in order to avoid a noise-model decision step, we
focus only on noise-model blind functions which can thus
adapt between Gaussian or impulsive noise. More specifically,
we propose a new parametrized function with three parameters

to perform the LLR approximation which performs very close
to the much more complex true LLR calculation. It also
outperforms the most used LLR approximations, for instance,
clipping demapper [8], soft limiter receivers, hole puncher
and piecewise linear function [9] and the approximated LLR
receiver [10]. This is illustrated using Low-Density Parity
Check (LDPC) codes. They are associated with the Belief
Propagation (BP) decoding algorithm, whose inputs are the
LLR.

The rest of this paper is organized as follows: Section II
presents the system model. Section III details our proposal.
Section IV gives some simulation results using a regular LDPC
code under impulsive noise and finally, Section V concludes
the paper.

II. SYSTEM MODEL AND BACKGROUND

A. System model

The system model comprises a transmitter, an additive
impulsive noise channel and a receiver. The channel output Y ,
denotes the received message over a memoryless binary input
symmetric-output channel (MBISO) that can be described by
its conditional probability density function (pdf) fY |X(y|x)
with fY |X(y|x = +1) = fY |X(−y|x = −1). Y is modeled
by

Y = X +N (1)

where X denotes the input message and N the additive noise.
The information source is first encoded using an LDPC

encoder and is then mapped to a binary phase shift keying
(BPSK) constellation. Throughout the paper, X is assumed
to take its values in the alphabet {+1,−1} with equal
probability. N represents the interference that is assumed to
be independent of X . In the remaining of the paper, N is
modeled by an additive independent samples symmetric α-
stable noise (AISαSN). In various environment types, the
heavy tail property of the SαS has been shown coincide with
the impulsive nature of network interference [11], [12], [2],
[13]. At the receiver, different demappers are employed to
mitigate the impulses in the received signal and generate LLRs
used by the soft decision decoder.

The α-stable distribution can be seen as a generalization
of the Gaussian distribution that accommodates for impulsive
characteristics. One strong motivation of α-stable distribution
models is provided by the Generalized Central Limit Theorem
[14]. Moreover, the α-stable distributions family is stable



Fig. 1: Pdfs of SαS distributions for different values of α and
γ = 0.5.

under linear combination for a given α, just like Gaussian
variables which is the special case α = 2. [15].

The characteristic function of a SαS random variable φSα
given as φSα(t) = exp(−|γt|α), depends on two parameters,
the characteristic exponent α, where (0 < α ≤ 2), and
the dispersion γ, such that γ > 0. α sets the degree of
impulsiveness of the distribution. The smaller the value of α,
the heavier the tail of the pdf, which increases the likelihood
of having impulses with large amplitudes and far from the
central location. In wireless context, α is directly associated
with the path loss exponent of the radio channel [16]. The
dispersion γ is a scale parameter that measures the spread of
the samples around the mean, similarly to the variance in the
Gaussian case.

Several pdf of SαS distributions are plotted in Fig. 1 with
a log-scale in the y-axis. Clearly, the smaller the value of the
exponent α the heavier the tail becomes. The case where α = 2
is the Gaussian case and the only to present an exponential
decreasing tail which explains the very fast decrease of the
probability of the extreme events.

Some realization of the noise distributed α-stable model
for different values of α are given in Fig. 2 where the y-axis
range is fixed to ease the comparison. It is clearly seen that
this model is able to represent noises where large events are
present and that decreasing α increases the importance of these
large events.

B. Optimal and Suboptimal receivers

The LLR of the binary channel input X associated with the
channel output Y under an additive noise channel is given by:

LLR(y) = log
Pr(Y = y|X = +1)

Pr(Y = y|X = −1)
= log

f(y − 1)

f(y + 1)
(2)

where f(·) is the pdf of the noise N . If the noise is modeled
by a SαS variable, unfortunately, no closed-form expression
of its pdf exists, consequently, the extraction of a simple
metric based on the noise pdf in the decoding algorithm is
not feasible.

Fig. 2: Noise samples of SαS distributions γ = 0.5.

The LLR can still be computed numerically, even if the
pdf cannot be found in a closed-form expression, for instance,
by numerical integration of the inverse Fourier transform of
the characteristic function. The pdf of SαS random variable
x ∼ S(α, γ) is defined as:

fα(x; γ) =
1

2π

∞∫
−∞

exp(−γα|t|α)e−jtx dt. (3)

However, the integral in (3), induces a prohibitive computation
and the evaluation of the LLR requires the knowledge of the
noise parameters. Hence, a suboptimal receiver is then salutary
to reduce the complexity.

In the literature, different implementations of suboptimal
receivers have been proposed, as for example, Cauchy receiver
[2] clipping demapper [8], piecewise linear solution [9] and
the approximated LLR receiver [10]. The latter, which will
be taken as the reference to compare with our proposed ap-
proximation gives the best performance overall approximations
[17], [18].

A previous approximated LLR receiver which will be called
thereafter Lab, decomposes it into two parts: a linear part
and an asymptotic part. The linear part is related to the noise
dispersion γ and the asymptotic part reflects the heaviness of
the tail,

Lab(y) = sign(y)min

(
a|y|, b

|y|

)
. (4)

The main problem behind such approximations is the rough
transition between the linear part and the asymptotic part, aris-
ing with a wrong LLR selection. Fig. 3 where Pr(Y |X = +1)
and Pr(Y |X = −1) are plotted, indicates the problem raised
by this transition, where roughly half of the received samples
fall within this region. Consequently, to solve this problem
we propose a new approximation based on three parameters
expecting to have an approximation that fits the true LLR to
a high degree without adding much complexity.



Fig. 3: Comparison of the LLR shapes under the effect of the
estimated a and b parameters with γ = 0.45 and α = 1.4, in
the Lab and Labc approximations with the LLR obtained by
numerical integration.

III. RECEIVER DESIGN

A. LLR approximation

In this Section, we will present our new proposed demapper
Labc that decomposes the LLR into three regions:
• First, when the channel output y is small the linear

approximation of the LLR around zero is given by:

LLR(y) = log
f(y − 1)

f(y + 1)

= log
f(−1) + f ′(−1)y +O(y2)

f(1) + f ′(1)y +O(y2)

= −2f
′(1)

f(1)
y +O(y3) ≈ ay.

(5)

• Second, the asymptotic expansion of α-stable distribution
given in [19, p. 16] provides a LLR approximation for
large values of the channel output y,

LLR(y) = log
Pr(Y |X = +1)

Pr(Y |X = −1)
= log

f(y−1γ )

f(y+1
γ )

≈ log
(y − 1)−(α+1)

(y + 1)−(α+1)

≈ 2
α+ 1

y
≈ b

y
.

(6)

• The third part makes the transition between the linear
and the asymptotic parts. As shown in Fig. 3, the true
LLR behaves smoothly in this regions, whereas with the
two aforementioned parts, the transition is rather sharp. In
order to keep the simplicity and easy implementation of
our demapper, we propose to introduce a new parameter
c in order to introduce a saturation of the LLR.

Since almost half of the channel outputs fall around the
transition region, improving the accuracy of the approximation
in this area could significantly improve the performance.
Moreover, the new parameter c avoids the cross point between
the linear and asymptotic part, which allows a better fit of these
two parts.
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Fig. 4: Supervised LLR demapper.

The three aforementioned points lead to the demapping
function

Labc(y) =


ay if |y| <

√
b/a,

c if a|y| > c or b/|y| > c,

b/y otherwise.

(7)

B. Parameter estimation

To match the channel situation, the receiver must be tuned
by the optimised parameters θ∗ = (a, b, c).

In order to avoid direct estimation of the channel state
to compute θ, we prefer to design the shape of the LLR
directly from the channel output. The parameter optimization
is performed using a mutual information maximization, since
we have shown in [20], that this method achieves good
performance compared to direct estimation and kernel density
estimation. Supposing equally likely inputs, the capacity of
MBISO channel is given by the mutual information between
the input X and the channel output Y as C = I(X,Y ). For
MBISO channel, the mutual information can be expressed as:

IL(X,Y ) = 1− E
[
log2(1 + e−XL(Y ))

]
. (8)

where L denotes the LLR. By Replacing L with an approxi-
mated LLR Lθ, we get a lower bounded mutual information
criterion which is given as:

ÎLθ (X,Y ) = 1− E
[
log2(1 + e−XLθ(Y ))

]
. (9)

Authors in [21] proved that (9) reaches its maximum when
the pdf of Lθ is equal to the pdf of true L.

Theoretically, finding the optimum LLR from the mutual
information can be achieved by maximizing ÎLθ (X;Y ). To
narrow the search space of the best function, we look for
the parametrized function Lθ as we just proposed, moreover,
it gives us more flexibility to adapt for Gaussian and non-
Gaussian channels. Thus, our objective is to fit the optimal L
by finding θ that maximizes Î as:

θ∗ = argmax
θ
ÎLθ (X;Y ) (10)

Since we do not make any assumption on the noise model,
we cannot compute directly the expectation in (9); instead we
propose to replace the expectation operator by an empirical



Fig. 5: Comparison of the mean evolution of the probability to
fall within the a, b and c regions, as a function of the dispersion
γ of a SαS noise with α = 1.8 for the Labc.

average. If the number of samples N is large enough, our
approximation is known to be performant. Our optimization
problem can thus be rewritten as

θ∗ ≈ argmax
θ

1− 1

N

N∑
n=1

log2

(
1 + e−xnLθ(yn)

)
≈ argmin

θ

1

N

N∑
n=1

log2

(
1 + e−xnLθ(yn)

)
︸ ︷︷ ︸

fopt(xn; yn)

,
(11)

where xn and yn are samples that represent the input and
output of the channel respectively.

The minimization of fopt(·) will be tackled in our imple-
mentation via simplex method based algorithm [22]. Since one
needs both an input sequence and the corresponding channel
output in order to compute the mutual information, one can
either perform a supervised optimization, where the input
sequence is the training sequence [20] or a blind optimization,
where an input sequence is build based on the channel output
[23]. In this paper, we only consider the supervised optimiza-
tion, so that the input sequence X is given as a learning
sequence, but using the same arguments as in [23], it can be
easily extended to the blind optimization. In order to study the
degradation due to the estimation step, we will use a learning
sequence of the size of the LDPC code.

Once the optimized parameter θ∗ has been obtained, it will
allow to obtain the estimated LLR that will feed the BP-
algorithm as shown in Fig. 4.

Fig. 3 compares the LLR shapes obtained under supervised
optimization with training sequence of 20000 sample, for Lab
(a = 3.64, b = 5.19) and Labc (a = 3.86, b = 5.5, c = 3.31)
to the true LLR obtained via numerical integration for a SαS
noise of parameters α = 1.4 and γ = 0.45, where this specific
γ represents the waterfall region for such α. This comparison
shows the convergence between the Labc and the true LLR,
and clearly show the improvement in term of LLR shapes
compared to the demapper Lab.

Moreover, Fig. 3 shows that the majority of the samples
will fall within this part as can be seen from the pdf of the

Fig. 6: Comparison of the mean and standard deviation evo-
lution for parameter a, b and c as a function of the dispersion
γ of a SαS noise with α = 1.4 for the demapper Labc.

Fig. 7: Comparison of the mean and standard deviation evo-
lution for parameter a, b and c as a function of the dispersion
γ of a SαS noise with α = 1.8 for the demapper Labc.

received samples, for instance, for α = 1.4 and γ = 0.45 the
percentage error is (44±4)%. This percentage error is able to
increase for different γ. In Fig. 5, we study the probability
of receiving a sample within each region Sa (linear part), Sb
(asymptotic part), or Sc (saturated part). For our simulation we
use highly impulsive SαS noise where α = 1.8. Fig. 5 shows
that receiving a sample that falls within the transition phase
depicted by the c parameter is highly probable. Furthermore,
those samples highly influence the selection of the optimized
parameters as well as the decoder performance in terms of
BER and FER.

Fig. 6 , repsectively Fig. 7, compares the evolution of the
mean and variance of the optimized parameters θ = (a, b, c)
as a function of the dispersion γ, for less or more impulsive
SαS noise, respectively. For each channel state, we ran 10000
experiments. The error bars indicate the small impact of
different realizations in which we can infer the robustness of
the parameter estimation method. Fig. 8 compares the shape
of the true LLR, and the one obtained with the demapper
Lab and Labc. Note that by adding a third parameter c, the
obtained demapper Labc allows a better fit to the true LLR
than only with the two parameters describing the linear and
asymptotic regions. Moreover, note that even in the linear and
asymptotic parts, the fitting to the true LLR is better when



Fig. 8: Comparison of the LLR shapes obtained by numerical
integration (true LLR) or with the approximation Lab and Labc
under an SαS noise with γ = 0.4, α = 1.4.

three optimization parameters are used instead of only two.
This can be justified by the fact that θ∗ is subject of change
depending on the pdf of the channel output Y . For instance, the
samples that fall within the linear region will be represented
by the optimal a. By using the Lab demapper, we show that
roughly half of the received samples will be treated as samples
related to linear or asymptotic parts. Consequently, this will
lead to a bad estimation compared to the Labc demapping,
where the c part releases the mismatch region sample selection.
Eventually, each region will be depicted by a better estimated
parameter that reflects the samples that fall in.

IV. SIMULATION RESULTS

Fig. 9: Comparison of the BER and FER as a function of the
dispersion γ of a SαS noise in less impulsive environment
with α = 1.8, between Lab, Labc and the LLR obtained by
numerical integration.

To investigate the performance of different receivers, simu-
lation results of Mackay’s (3, 6) LDPC code with block size
nb = 20000 bits are presented. The demapping function will
be adjusted by the optimal parameters θ. In order to ensure
a good estimation, we use a very long learning sequence of
20000 samples. The conventional noise power measurement
is meaningless, since stable distributions do not have finite

Fig. 10: Comparison of the BER and FER as a function of the
dispersion γ of a SαS noise in more impulsive environment
with α = 1.4, between Lab, Labc and the LLR obtained by
numerical integration.

second-order moments when α ≤ 2 [11, Theorem 3]. There-
fore, the following simulations will be presented as a function
of the dispersion parameter γ, which is used as a measurement
of the strength of the α-stable noise.

In Fig. 9 and Fig. 10 we present the BER and FER perfor-
mance of different receivers for α = 1.8 and α = 1.4 which
represent less and more impulsive channels, respectively. For
each γ, the demapping functions Lab and Labc are compared
with the optimal receiver. Our proposed solution improves the
performance over the Lab demapping function and matches
the performance of the optimum receiver to the extent in both
less and more impulsive channels, as it was expected, since
the shape of the demapping function Labc is quite the same
as the shape of the true LLR as shown in Fig. 3.

V. CONCLUSION

In this paper, we proposed a new LLR demapper based on a
parameterized approximation function with three optimization
parameters. Having such an approximated LLR function is of
crucial matter when the noise exhibits an impulsive nature
and when the decoder relies on LLRs, such as LDPC, con-
volutional codes, turbo codes... Numerical simulations shown
that the performance achieved with our proposed demapper
match to the extent the one obtained with the true LLR and
outperform the one obtained with previous proposed solutions.
Moreover, our demapper feartures an easy implementation,
whereas the true demapper is computationally burdened.
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