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Abstract—This paper focuses on the full-duplex Gaussian two-
way diamond relay channel (TWDRC), where two users wish
to exchange their messages with the help of two relays, when
one relay performs a lattice-based Compress-and-Forward (CF)
scheme. The other relay performs either Decode-and-Forward
(DF), Amplify-and-Forward (AF) or a lattice-based CF scheme.
We start by proposing a novel lattice-based CF/CF scheme,
where both relays perform CF. As opposed to the single relay
case, two main challenges arise: the quantization rate region
is constrained by two Multiple Access Channel (MAC) rate
regions, and each user has to combine two noisy observations
to decode the sent message. These challenges are tackled by
exploiting MAC techniques and Maximum Ratio Combining
methods, which are used to combine the two noisy observations.
We then characterize a general achievable rate region when one
relay sends a version of both users’ messages (eventually noisy),
which encompasses both AF and DF, and the other relay performs
CF and derive the corresponding achievable rate regions. Finally,
the three proposed relaying schemes are compared via numerical
evaluations. Clearly, the position of both relays has an impact
on the best relaying strategy.

I. INTRODUCTION

With the growing demand for higher data rates and the
increasing number of communicating devices, one widely
accepted solution for the next generation of wireless communi-
cation systems relies on cooperative communication. The relay
channel [13], in which one user wishes to send messages to
a destination with the help of one relay is the easiest exam-
ple of such a cooperative communication. Achievable rates
using Compress-and-Forward (CF) or Decode-and-Forward
(DF) have been characterized for this channel model in [2].
Cooperative two-way communication, in which two users wish
to exchange their messages with the help of one (two-way
relay channel) or more relays is a natural extension of the
relay channel.

Consider a bi-directionnal communication between two
users, where two relays are available to help this communi-
cation. This configuration is known as the two-way diamond
relay channel (TWDRC). In this paper, we assume additive
white Gaussian noise (AWGN) channels with a path loss
proportional to the link distance and consider a full-duplex
case. Previous work has been done on the half-duplex Gaus-
sian diamond relay channel [7], [3]. Authors in [1] provided
some results for the deterministic TWDRC as well as for
the Gaussian TWDRC, where they assumed that the channel
gains on the links from one relay to both users are the same.

To the best of our knowledge, this work is one of the first
attempts to focus on the full-duplex Gaussian model, where
no constraints apply on the channel gains. This study brings us
closer to a general cooperative communication with multiple
users and multiple relays, which could represent a device to
device communication for 5G communications. We propose
to study the case where one relay is not able to decode both
users’ messages, but is able to perform a novel lattice-based
CF scheme. Three achievable rate region are derived: CF/CF,
where the other relay performs a lattice-based CF scheme,
DF/CF, where it performs a DF scheme and AF/CF, where
an AF scheme is used at the second relay. Lattice coding is
an interesting tool, especially for AWGN channels since it
achieves capacity with a low decoding complexity and it has
been shown to achieve various rate regions for the Gaussian
relay channel [5], [12], as well as for the Gaussian two-way
relay channel [4], [9], or for the Gaussian multiway relay
channel with direct links [10].

The rest of the paper is organized as follows: Section II
describes the Gaussian TWDRC model. For the sake of
completeness, Section III introduces some basic notions on
lattice coding. Section IV presents our main results, starting
with the achievable rate region under the lattice-based CF/CF
scheme. Then, a general achievable rate region when one
relay performs CF and when each user has access to both a
compressed version and a noisy observation of the other user’s
message is derived and finally the achievable rate regions
when the other relay performs either DF or AF, is provided.
Section V outlines the proofs of our main results and numerical
results are given in Section VI. Finally, Section VII concludes
the paper.

II. GAUSSIAN TWO-WAY DIAMOND RELAY CHANNEL AND
NOTATION

The studied model, the TWDRC, in which two users want
to exchange their messages with the help of two relays, is
depicted in Fig. 1. In the AWGN case, user Ui, i ∈ {1, 2}
sends Xi of average power Pi and relay Rj , j ∈ {1, 2} sends
XRj of average power PRj . The received signals at relay 1
and relay 2 are

YR1 = h1X1 + h2X2 + ZR1 ,

YR2 = g1X1 + g2X2 + ZR2 ,
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Fig. 1. Diamond relay channel.

and the received signals at user Ui, i ∈ {1, 2} are

Yi = hiXR1
+ giXR2

+ Zi,

where Zi and ZRj are Gaussian noises of variance Ni and
NRj , respectively. We consider restricted encoders, such that
the nodes’ inputs depend only on their own current messages
and not on past symbols.

Without loss of generality, we assume that relay R2 always
perform a lattice-based CF scheme.

The following notations will be used throughout the paper.
C(x) denotes the capacity function: C(x) = 1

2 log2(1+x).
For i ∈ {1, 2}, i′ = {1, 2} \ i, x denotes x = 1 − x and
σ2
R1

= h2
1P1 + h2

2P2 + NR1
. The received signal at relay Rj

can be written as the sum of an unknown part Uij of power
σ2
ij and an available side information Sij with respect to user
Ui such that:

YR1
= S11 + U11 = S21 + U21,

YR2
= S12 + U12 = S22 + U22, with

Si1 = hiXi, Ui1 = hi′Xi′ + ZR1
, σ2

i1 = h2
i′Pi′ +NR1

,
Si2 = giXi, Ui2 = gi′Xi′ + ZR2

, σ2
i2 = g2

i′Pi′ +NR2
.

III. LATTICE CODING

We start by providing some definitions and notions on lattice
coding, which are needed to derive our lattice-based relaying
scheme. For a full treatment on the topic, the interested reader
is referred to [14].

A lattice Λ ⊂ Rn is a discrete additive subgroup of Rn. The
lattice quantizer QΛ maps any point x ∈ Rn to the nearest
lattice point: QΛ(x) = arg minλ∈Λ ||x−λ||, where ||·|| denotes
the Euclidean norm. The fundamental Voronoi region V of the
lattice Λ is formed by all points that are closer to the origin
than to any other lattice point: V = {x ∈ Rn|QΛ(x) = 0}.
The quantization error, which is ensured to lie in V is obtained
by the modulo Λ operation: x mod Λ = x − QΛ(x). This
operation enjoys the distributivity law: ∀x, y ∈ Rn,[
[x] mod Λ + y

]
mod Λ =

[
x + y

]
mod Λ. The second

moment per dimension σ2(Λ) defines the average power of the
lattice Λ: σ2(Λ) = 1

nV

∫
V ||x||

2dx, where V is the volume of
the fundamental Voronoi region of Λ.

Good lattice codebooks are obtained with the help of two
nested lattices Λ and Λc, where Λ ⊆ Λc. These lattices are
chosen such that Λ is both Rogers [8]- and Poltyrev [6]-good
and Λc is Poltyrev-good.

IV. ACHIEVABLE RATE REGIONS OVER THE GAUSSIAN
TWDRC

In this section, we provide our main results for the TWDRC.

A. Achievable rate region with CF/CF

We first derive an achievable lattice-based CF/CF rate region
over the Gaussian TWDRC.

Proposition 1 For any quantization rates Rq1 and Rq2 sat-
isfying the constraints (2)-(3) given below, the achievable
rate region over the Gaussian TWDRC under a lattice-based
CF/CF scheme is given by

R
CF/CF
i ≤C

 h2
iPi

NR1
+

max{σ2
11,σ

2
21}

22Rq1−1

+
g2
i Pi

NR2
+

max{σ2
12,σ

2
22}

22Rq2−1

 . (1)

The achievable quantization rate region, depicted on Fig. 2,
is given as

Rq1 ≤ C
(
PR1

min
i

h2
i

Ni

)
, Rq2 ≤ C

(
PR2

min
i

g2
i

Ni

)
(2)

Rq1 +Rq2 ≤ C
(

min
i

h2
iPR1

+ g2
i PR2

Ni

)
. (3)

Proof: The proof of the achievable CF/CF rate region is
based on Wyner-Ziv decoding and Maximum Ratio combining
(MRC) and the proof of the achievable quantization rate region
is based on perfect decoding of both quantization indexes at
both users. Both parts will be outlined in Section V-A.
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Fig. 2. Quantization rate region

Note that if the most restricting quantization constraints are
the individual ones (eq. (2)), i.e. if

C

(
PR1

min
i

h2
i

Ni

)
+C

(
PR2 min

j

g2
j

Nj

)
≤C
(
min
k

h2
kPR1+g

2
kPR2

Nk

)
(4)

then the achievable quantization rate region is shaped as a
rectangle with corner point E. If, instead, the most restricting
quantization constraint is the sum-constraint (3), then the
achievable quantization rate region is shaped as a pentagon
with two corner points A and B.



Since both RCF/CF1 and RCF/CF2 are increasing functions
of Rq1 and Rq2 , the quantization rates must be chosen as large
as possible. Thus, if (4) is satisfied, the optimal point in the
quantization rate region is corner point E. The next proposition
provides some conditions for the point E to be achievable as
well as the achievable CF/CF rate region.

Proposition 2 If the system parameters meet one of the three
conditions below, then the corner point E in the quantization
rate region (Fig. 2) is achievable: ∀i ∈ {1, 2},

[C1] : h2
i g

2
i PR1

PR2
Ni′ ≤ PR1

Ni(h
2
i′Ni − h2

iNi′)

+ PR2
Ni(g

2
i′Ni − g2

iNi′)

[C2] : h2
i (Ni′ + g2

i′PR2
) ≤ h2

i′Ni

[C3] : g2
i′(Ni + h2

iPR1) ≤ g2
iNi′ .

The achievable rate region using the lattice-based CF/CF
scheme is thus given by

R
CF/CF
i ≤ C

 h2
iPi

NR1 +
max{σ2

11,σ
2
21}

PR1
min
i

h2
i
Ni

+
g2
i Pi

NR2 +
max{σ2

12,σ
2
22}

PR2
min
j

g2
j
Nj


Proof: The three cases are obtained by considering i =

j 6= k, j = k 6= i and i = k 6= j in (4). The case i = j = k
leads to a contradiction and is thus not possible. Replacing
the quantization rates associated with corner point E into (1)
yields the result.

On the other hand, if the most restricting quantization
constraint is the sum-constraint, the largest CF rates are
achieved for some quantization point lying on the line between
the corner point A and B. However, a specific operating point
cannot be easily determined, since it depends on all channel
gains, noise and signal powers. Working at corner point A,
resp. corner point B, provides an advantage to the quantization
done at relay 1, resp. relay 2 (over the quantization done at
the other relay), but no further conclusion can be made on
R
CF/CF
1 , RCF/CF2 , or their sum, because of the non-trivial

impact/dependence on all system parameters.
Note that having two relays enlarges the achievable rate

region compared to the single relay case. Nevertheless, if only
one relay is available, replacing for instance gi = 0, i ∈
{1, 2} and Rq2 = 0 into Proposition 1, our achievable rate
region reduces to the generalization of the results obtained in
[11] to the full-duplex case.

B. Achievable rate region with DF/CF and AF/CF

We now provide the achievable rate region when a lattice-
based DF/CF, respectively a lattice-based AF/CF, is used
over the Gaussian TWDRC, where relay R1 performs DF,
respectively AF, and relay R2 performs a lattice-based CF.

We start by providing a general achievable rate region when
relay R1 sends a message of the form XR1 = ρ1X1 +
ρ2X2 + ρ3ZR1 , where ρi are scaling factors chosen based
on the relaying scheme performed and are such that the

average power constraint at relay R1 is satisfied, yielding
ρ2

1P1 + ρ2
2P2 + ρ2

3NR1
= PR1

. This specific form of XR1

is a general form encompassing both DF and AF, as we will
see later on.

In the next Proposition, we only assume that the signal sent
by R1 is of the form above, and don’t take into account
additional constraints that could apply on both users’ rate
and/or their sum, in order for relay R1 to be able to send such
a signal. The two following corollaries present the achievable
rate region when relay R1 performs DF, respectively AF.

Proposition 3 If relay R1 sends a signal of the general form
XR1 = ρ1X1+ρ2X2+ρ3ZR1 and relay R2 performs a lattice-
based CF, the following rate region is achievable

Rg1 ≤ C
(

g2
1P1

NR2 +D
+
h2

2ρ
2
1P1

Neq2

)
, Rg2 ≤ C

(
g2

2P2

NR2 +D
+
h2

1ρ
2
2P2

Neq1

)
,

where D and Neqi are defined as Neqi = h2
i ρ

2
3NR1 +Ni and

D =

NR2
+ max

{
g21P1Neq2

h2
2ρ

2
1P1+Neq2

;
g22P2Neq1

h2
1ρ

2
2P2+Neq1

}
min

{
g21PR2

Neq1+h2
1ρ

2
2P2

;
g22PR2

Neq2+h2
2ρ

2
1P1

} .

Proof: The proof of this achievable rate region is based
on block Markov coding, Wyner-Ziv coding and MRC and the
outline will be presented in Section V-B.

Corollary 1 The achievable rate region over the Gaussian
TWDRC under a lattice-based DF/CF scheme is given by

R
DF/CF
1 ≤ min

{
C

(
h2

1P1

NR1

)
;C

(
g2

1P1

NR2
+D

+
h2

2γ
2
1PR1

N2

)}
,

R
DF/CF
2 ≤ min

{
C

(
h2

2P2

NR1

)
;C

(
g2

2P2

NR2
+D

+
h2

1γ
2
1PR1

N1

)}
,

R
DF/CF
1 +R

DF/CF
2 ≤ C

(
h2

1P1 + h2
2P2

NR1

)
, where

D =

max

{
g22P2N1

h2
1γ

2
1PR1

+N1

;
g21P1N2

h2
2γ

2
1PR1

+N2

}
+NR2

min

{
g21PR2

N1+h2
1γ

2
1PR1

;
g22PR2

N2+h2
2γ

2
1PR1

} .

0 ≤ γ1 ≤ 1 controls the power trade-off at relay R1 between
the part intended to user U1 and user U2.

Proof: During block b, the relay R1 decodes both
X1(b) and X2(b), yielding the additional MAC constraint on
R
DF/CF
1 and R

DF/CF
2 given in Corollary 1 and allocates a

fraction γ2
1 of its available power for the transmission of X1(b)

and the rest for X2(b) and sends XDF
R1

(b) =
√

γ2
1PR1

P1
X1(b−

1) +

√
γ2
1PR1

P2
X2(b−1). Thus, ρ1 =

√
γ2
1PR1

P1
, ρ2 =

√
γ2
1PR1

P2
,

ρ3 = 0.



Corollary 2 The achievable rate region over the Gaussian
TWDRC under a lattice-based AF/CF scheme is given by

R
AF/CF
i ≤ C

(h2
1h

2
2Pi

PR1

σ2
R1

Neqi′
+

g2
i Pi

NR2 +D

)
,

where Neqi and D are given as Neqi = h2
iPR1

NR1

σ2
R1

+Ni,

D =

NR2
+ maxi∈{1;2}

{
g2i h

2
i′PR1

PiNR1
+Ni′g

2
iPiσ

2
R1

h2
i′PR1

σ2
i′1+Ni′σ

2
R1

}
min

{
g21PR2

h2
1PR1

σ211
σ2
R1

+N1

;
g22PR2

h2
2PR1

σ221
σ2
R1

+N2

} .

Proof: During block b, relay R1 sends a scaled version of
its received signal satisfying its power constraints as XAFR1

(b)=√
PR1

σ2
R1

(
h1X1(b−1)+h2X2(b−1)+ZR1

(b−1)

)
. Thus, ρ1 =

√
PR1

σ2
R1

h1,

ρ2 =

√
PR1

σ2
R1

h2, ρ3 =

√
PR1

σ2
R1

.

V. PROOF OF PROPOSITION 1 AND PROPOSITION 3
Both proofs rely on lattice coding and decoding and are

based on block Markov coding. Lattice-based codebooks are
given as Ci = {Λci ∩ Vi}, where Λi ⊆ Λci for i ∈
{1, 2, Q1, Q2, R1, R2}, where Qi denotes the quantization.
For i ∈ {1, 2, R1, R2}, Λci is Poltyrev-good and Λi is both
Rogers- and Poltyrev-good. ΛQi is Poltyrev-good and ΛcQi
is Rogers-good, i ∈ {1, 2}. The quantization rate is defined
as Rqi = 1

2 log2

(
σ2(ΛQi )

σ2(ΛcQi )

)
. The choice for σ2(ΛcQi) and

σ2(ΛQi) will be specified later in the proofs. Throughout the
proof, ui is a dither uniformly distributed over Vi and known
by all nodes.

Due to space limitation, we only outline the proofs.

A. Proof of Proposition 1

The proof and Proposition 1 is inspired from [11], in which
the authors proposed a lattice-based two-way CF scheme for
the half-duplex two-way relay channel, assuming that only
one relay helps the communication. The main differences here
are the full-duplex nodes and the presence of a second relay.
Thus, one key challenge is how to combine the two noisy
observations obtained from the two relays. We propose to
combine the two using MRC since it is known to be the
optimal combiner under AWGN.

1) Encoding at each user: Codebooks Ci are build on
nested lattices, where to ensure the power constraints, we
choose σ2(Λi) = Pi and Λci such that |Ci| = 2nR

CF/CF
i . Dur-

ing block b, each user sends Xi(b) = [ci(b) + ui(b)] mod Λi.
2) Encoding at each relay: The quantization codebooks are

given by Cqi . The codebooks for each relay are given by CRi ,
where in order to ensure the power constraints, we choose
σ2(ΛRi) = PRi . Each compression index ji is mapped to one
codeword cRi , thus ΛRi is chosen such that |CRi | = 2nRqi .
During transmission block b, the relays send

XRi(b) = [cRi(ji(b−1)) + uRi(b)] mod ΛRi .

3) Quantization: As depicted in Fig. 3, relay quantizes
YRi(b) to ji(b) = [βiYRi(b) + ucQi(b) + EcQi(b)] mod ΛQi ,
where βi is a scaling factor and EcQi(b) is the quantization
error.

YRi βi

ucQi

+
+ QcQi

( ) [ ] mod ΛQi

Ji

Fig. 3. Quantization at the relay.

4) Decoding at user U1: During block b, user U1 starts by
decoding both quantization indexes as long as

Rq1≤C
(
h2

1PR1

N1

)
,Rq2≤C

(
g2

1PR2

N1

)
,Rq1+Rq2≤C

(
h2

1PR1+g
2
1PR2

N1

)
.

The decoding of X2(b−1) is performed in a Wyner-Ziv fash-
ion as depicted in Fig. 4. User U1 estimates Û1i(b−1) using the
decoded quantization index ji(b−1) and the side information
S1i(b−1) as Û1i(b−1) = γ1iβiU1i(b−1) + γ1iEcQi(b−1),
which requires that σ2(ΛQi) ≥ β2

i σ
2
1i+σ2(ΛcQi). In order to

recover X2(b−1), user U1 combines Û11(b−1) and Û12(b−1)
using MRC and perfect decoding is possible as long as

R
CF/CF
2 ≤ C

(
β2

1h
2
2P2

β2
1NR1+σ

2(ΛcQ1)
+

β2
2g

2
2P2

β2
2NR2+σ

2(ΛcQ2)

)
. (5)

J1

ucQ1

−
+

β1S11

−
+ [ ] mod ΛQ1

γ11
Û11

ξ1

J2

ucQ2

+
−

β2S12

+
− [ ] mod ΛQ2

γ12
Û12

ξ2

+

+

MRC

X̂2

Fig. 4. Decoding step at user U1.

5) Decoding at user U2: Following the same arguments as
for user U1, perfect decoding at user U2 requires that

Rq1≤C
(
h2

2PR1

N2

)
,Rq2≤C

(
g2

2PR2

N2

)
,Rq1+Rq2≤C

(
h2

2PR1
+g2

2PR2

N2

)
σ2(ΛQi) ≥ β2

i σ
2
2i + σ2(ΛcQi) and

R
CF/CF
1 ≤ C

(
β2

1h
2
1P1

β2
1NR1

+σ2(ΛcQ1
)
+

β2
2g

2
1P1

β2
2NR2

+σ2(ΛcQ2
)

)
. (6)

6) Summary of the obtained constraints: The constraints
on σ2(ΛQi) and Rqi reduce to the achievable quantization
rate region given by (2)-(3) and

σ2(ΛQi)=β2
i max{σ2

1i, σ
2
2i}+σ2(ΛcQi). (7)

Let (R∗q1 , R
∗
q2) be a quantization rate couple satisfying the

constraints (2)-(3). Using the definition of Rqi and (7), one
obtains σ2(ΛcQi) =

β2
i max{σ2

1i,σ
2
2i}

2
2R∗qi−1

. Replacing these values
into (6) and (5) concludes the proof of Proposition 1.

Note that the obtained results are independent from the
choice of the γi and βj parameters. However, these parameters
impact the lattice choice.



7) Tunning γi and βi: If we consider the analog signal
transmission, since each relay performs compression, one has
to minimize the obtained distortion at each user. Let us assume
that the maximum allowed distortion for the reconstruction of
the estimate of {Uij}i∈{1,2} is defined as Dj .

Since both quantization indexes are recovered separately
at each user, one has to study four distortions given by
Dij = (γijβj − 1)2σ2

ij + γ2
ijσ

2(ΛcQj ) and to verify that
D1 ≥ max{D21, D11} and D2 ≥ max{D22, D12}. One
can prove that the minimal distortions are given by D∗ij =
σ2
ijσ

2(ΛcQj )

σ2(ΛcQj )+β2
jσ

2
ij
. Set D1 = maxi{D∗i1} and D2 = maxj{D∗j2}

and let i∗, resp. j∗, denote i∗ = arg maxi{D∗i1}, resp.
j∗ = arg maxj{D∗j2}.

The choice β1 = γ∗i∗1 and β2 = γ∗j∗2 yields β1 =√
1− D1

σ2
i∗1

and β2 =
√

1− D2

σ2
j∗2

. Note that in this case,

σ2(ΛcQ1
) = D1 and σ2(ΛcQ2

) = D2, which is usually chosen
for CF applied to the Gaussian relay channel.

B. Proof of Proposition 3

The proof is inspired by [12], where a lattice-based CF
is proposed over the Gaussian relay channel. Encoding at
user U1, relay R2 and the quantization step are done as
previously with σ2(ΛcQ2) = D and β2 = 1. Recall that
XR1

(b) = ρ1X1(b−1) + ρ2X2(b−1) + ρ3ZR1
(b−1).

1) Decoding at user Ui: As for CF/CF, the decoding at both
users is done in a Wyner-Ziv fashion as depicted in Fig. 5.
We briefly present the decoding steps at user U1, decoding
at user U2 is done in a similar way. During block b, user U1

starts by removing its own message, decodes the quantization
index, removes it to form the side information Y1,SI(b) =
h1ρ2X2(b−1)+Zeq1 , where Zeq1(b) = h1ρ3ZR1

(b−1)+Z1(b)
is an equivalent Gaussian noise of power Neq1 = h2

1ρ
2
3NR1

+

N1. It then forms Û12 and MRC is used to combine the two
noisy observations Û12(b−1) and Y1,SI(b) of X2(b−1).

J2

ucQ2

−
+

Si2

−
+ +

− [ ] mod ΛQ1
+
+

Ûi2
ξi1

Yi,SI

αi

ξi2

+

+

MRC

Xi′

Fig. 5. Decoding of Xi′

All these steps are possible as long as

Rq ≤ min

{
C

(
g2

1PR2

Neq1 + h2
1ρ

2
2P2

)
;C

(
g2

2PR2

Neq2 + h2
2ρ

2
1P1

)}
σ2(ΛQ2) ≥ max

{
g2

2P2Neq1
h2

1ρ
2
2P2+Neq1

;
g2

1P1Neq2
h2

2ρ
2
1P1+Neq2

}
+NR2+D

Rgi ≤ C
(

g2
i Pi

NR2
+D

+
h2
i′ρ

2
iPi

Neqi′

)
.

2) Summary of the obtained constraints: All obtained con-
straints on Rq and σ2(ΛQ2) reduce to

D ≥
NR2

+ max

{
g21P1Neq2

h2
2ρ

2
1P1+Neq2

;
g22P2Neq1

h2
1ρ

2
2P2+Neq1

}
min

{
g21PR2

Neq1+h2
1ρ

2
2P2

;
g22PR2

Neq2+h2
2ρ

2
1P1

} .

Since both user’s rate constraints are decreasing functions
of D, the distortion has to be set with equality in order to
maximize both user’s rate, which concludes the proof. Note
that in this case, σ2(ΛQ2

) is set as σ2(ΛQ2
) = NR2

+ D +

max

{
g21P1Neq2

h2
2ρ

2
1P1+Neq2

;
g22P2Neq1

h2
1ρ

2
2P2+Neq1

}
.

VI. NUMERICAL RESULTS

In this section, we present some numerical results. We sup-
pose that both users are a unit distance apart, and that relay Ri
is at a distance di from user U1. The channel gains are given
as h1 = 1

d
3/2
1

, h2 = 1
(1−d1)3/2

, g1 = 1

d
3/2
2

, g2 = 1
(1−d2)3/2

,
following a common pathloss model.

Fig. 6 gives the achievable sum-rate as a function of d1

and d2 under CF/CF relaying (left) as well as the gap to the
achievable sum-rate of [1, Corollary 1] (right), where each user
chooses to send only over the best relay. Similarly, Fig. 7,
resp. Fig. 8, presents the achievable sum-rate under DF/CF,
resp. AF/CF, relaying, as well as the gap to the achievable
sum-rate of [1, Corollary 1].
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What is remarkable is that exploiting both relays always
provides a better performance to the users as compared to the
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case in which only the relay yielding the best individual rate
is used [1, Corollary 1]. As for the Gaussian relay channel,
the Gaussian two-way relay channel or the multi-way relay
channel, none of the relaying scheme is optimal for all channel
gains and the three proposed relaying schemes can outperform
the others for a specific set parameters (e.g. relays’ positions),
which results in very different shapes of the achievable sum-
rates.

Recall that for the Gaussian relay channel, DF outperforms
AF and CF when the relay is close to the user, whereas
CF outperforms DF and AF when the relay is close to the
destination. AF always gives the worst performance, but it
achieves it’s maximum rate when the relay is in the middle.
Similar observations can be made for the Gaussian two-way
relay channel without direct links: DF outperforms AF and CF
when the relay is close to one user, whereas CF outperforms
DF and AF when the relay is somewhere in the middle.
Also, when the relay is close to one user, AF achieves higher
sum-rate than CF, but lower than DF, and when the relay is
somewhere in the middle, AF achieves higher sum-rates than
DF, but lower than CF. All these well-known results will allow
to give some insights on why the proposed schemes over the
Gaussian TWDRC are better for some relay positions.

For the Gaussian TWDRC, AF/CF achieves high sum-rates
compared to other schemes when both relays are in the middle,
which is a direct consequence of the good performance of
both AF and CF over the Gaussian two-way relay channel
for these relays’ positions. CF/CF also performs well in this
region, which again can be easily explained following the same
argument. For DF/CF, one can note a large sum-rate decrease
in this region, which comes from the activation of the MAC
sum-rate constraint for DF, as for instance over the Gaussian
two-way relay channel.

DF/CF achieves high sum-rates when relay R1 is closer to
user U1 and relay R2 almost in the middle, closer to user U2,
or reverse. A position of R1 close to U1 allows a decoding
of the message from user U1 at high rate, and the position
of relay R2 almost in the middle closer to U2 a compression
of the message from user U2 at high rate, which explain the
good performance of DF/CF in this region. On the other hand,
neither CF nor AF performs well when the relay is closer to
one user, which explains the poor performance of AF/CF and
CF/CF in this region.

CF/CF achieves high sum-rates when relay R1 is close to
user U2 and relay R2 close to user U1, or reverse. For this set
of relays’ positions, both compression from user U1 to user
U2 and from U2 to user U1 are performed at high rate. In
this region, both DF/CF and AF/CF perform poorly: DF/CF
because one scheme, either CF or DF, can be performed at
high rate while the other is performed at very low rate and AF
because of its lack of efficiency for these relays’ positions.

VII. CONCLUSION

In this paper, we studied three relaying schemes over the
Gaussian two-way diamond relay channel when relay R2

uses a lattice-based CF scheme and relay R1 uses either
a lattice-based CF, DF or AF. For all relaying schemes,
we characterized the achievable rate region and compared
their performance via numerical illustrations. For future work,
achievable rate regions where relay R2 performs other schemes
than CF, as for instance DF or AF, should be characterized,
allowing for a comparative study of performance. Even if
it is rather unlikely that one specific relaying scheme will
perform better than all other schemes for all channel setups,
conclusions could be drawn for specific positions of the relays.
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