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Abstract—Robust communication is necessary for many
wireless applications. Making a decision at the receiver
requires an evaluation of the likelihood. However, in
impulsive noise, the traditional Gaussian-based receiver
exhibits a very significant performance loss. This paper
proposes to approximate the likelihood ratio in a binary
transmission with a function adapted to impulsive noise
conditions but also efficient when noise is purely Gaussian.
We introduce a blind estimation of the two parameters
defining the approximation and evaluate its performance
when used as the inputs of the belief propagation decoder.
Our proposal allows us not only to achieve performance
close to the optimal decoding but also to have a simple
implementation and to adapt to different environment,
impulsive or not, independently of the underlying statistical
noise model, without the need of a training sequence.

Index Terms—Soft iterative decoding, impulsive interfer-
ence, impulsive noise, alpha-stable distribution, supervised
learning, unsupervised learning.

I. INTRODUCTION

Low-Density Parity Check (LDPC) codes, introduced
by Gallager [1] and rediscovered by MacKay are a
powerful linear block coding tool, since the sparseness
of their parity check matrices guaranties a decoding
complexity that increases quasi-linearly with the code
length. They are widely used in various standards, as for
example in wireless local area networks (WLAN IEEE
802.11n), Digital video broadcasting and Digital audio
broadcasting. Usually, LDPC codes are decoded with
the Belief Propagation (BP) algorithm, relying on Log-
Likelihood Ratio (LLR) and perform near the capacity
under Gaussian noise.

However, in many communication settings, noise can-
not be modeled by a Gaussian distribution since it
exhibits an impulsive behavior [2] [3]. Many works
have tackled the modelization question and numerous
solutions have been proposed since the first works by
Middleton [4]. Recently, stochastic geometry has been
used to address the problem in different network scenar-
ios, but the analytical expression of the noise density is
often complex (infinite series) or non tractable (α-stable).
Consequently, designing the optimal receiver is complex,
even assuming we can have a perfect knowledge of the
interference statistics.

If we use a traditional receiver, relying on the Gaus-
sian noise assumption, the decoding will suffer from

severe performance degradation, due to the noise model
mismatch, not being able to handle the strong impact
of impulsive samples. Several approaches have been
proposed in the literature to improve the robustness of a
receiver against impulsive noise. For instance an approx-
imation of the interference distribution can be proposed
which leads to an analytical receiver design (for instance
a generalized Gaussian distribution approximation in [6],
a mixture of Laplacian and Gaussian in [5], a Cauchy
distribution in [3]), a Normal Inverse Gaussian in [7]). To
be less specific on a noise model, some robust metrics to
estimate distance have also been used, for instance in [9]
a saturation of the metric obtained in the Gaussian case
(not of the received sample, unlike the soft-limiter), the
p-norm in [8] or the Hubber metric in [10]. We proposed
in [11] to directly approximate the LLR that will serve as
input of the BP algorithm for LDPC codes, moreover, our
solution is not limited to these codes. Choosing a family
of function for this approximation in a space defined by
a small set of parameters allows both to estimate those
parameters with a limited complexity and to adapt to
different noise statistical properties, impulsive or not.

We propose to approximate the LLR
with parametric function chosen in the set
f(x) = sign(x)min(a|x|, b/|x|). The main contribution
of our paper is to propose a simple, fast and easy way
to implement a blind estimation of the parameters a and
b. It brings two main advantages over the previously
proposed approaches:

1) It avoids the use of a training sequence which
reduces the useful rate of the transmission.

2) It allows to use the full packet for the estimation
which can be a great advantage especially when
large samples are not so frequent and could be
missing from the training sequence, misleading the
estimation process.

The rest of this paper is organized as follows: The
system model is presented in Section II. Section III
starts, for the sake of completeness, by presenting the
supervised LLR approximation with mutual information
criterion. We then propose our unsupervised LLR ap-
proximation and provide a performance comparison with
the supervised approximation. Section IV gives some
simulation results using a regular LDPC code under



Fig. 1. Pdfs of SαS distributions (γ = 0.5).

impulsive noise and finally, Section V concludes the
paper.

II. SYSTEM MODEL AND BACKGROUND

In this paper, we consider the transmission of a
binary message X in presence of interference. Let Y
denotes the received message modeled by Y = X +N ,
where N denotes the interference, that is assumed to be
independent of X . Throughout the paper, we assume that
the information source X belongs to a simple binary
phase-shift keying (BPSK) constellation where X = ±1
with equal probability and N follows a symmetric alpha
stable (SαS) distribution.

The characteristic function of a SαS random variable
is given as φSα (t) = exp (−|γt|α) , where (0 < α ≤ 2)
is the characteristic exponent and γ the dispersion. In
wireless context, α is directly associated with the path
loss exponent of the radio channel [12].

Fig. 1 shows the pdf of various α-stable distributions
associated with different values of α. Remark that the
smaller the value of α, the heavier the tail of the
pdf, which increases the likelihood of having impulses
with large amplitudes and far from the center location.
The dispersion measures the spread of the noise and is
considered as a scale parameter, similarly to the variance
for Gaussian distribution, which is a special case of SαS
distribution with α = 2 and γ = σ/

√
2.

In this paper, we assume that X is encoded using
LDPC codes, whose parity check matrix H , of dimen-
sion m×n, is sparse, i.e. has a low density of ones. Their
usually associated decoder, the Belief Propagation (BP)
algorithm, expects the input to be given as LLRs. Thus,
in order to use the BP decoder, one has to transform the
channel output Y into LLR, which is thereafter called
demapping. Consequently, working on this demapping
allows our solution to be compatible with all types of
decoders. The decoder inputs are given as:

LLR(y) = log

(
Pr[Y = y|X = +1]

Pr[Y = y|X = −1]

)
=log

(
fN [y − 1]

fN [y + 1]

)
,

where fN (·) is the pdf of the noise N .

Fig. 2. LLR demapper for α=1.4, γ = 0.5, and its approximation.

If α = 2, the studied channel reduces to the AWGN
channel. In this case, one has access to a closed-form
expression of the noise pdf. The decoder inputs are given
as LLRGauss(y) = 2y

σ2 = y
γ2 . This is the widely used

LLR demapper, which is a linear function of y, which
slope depends only on the channel conditions.

However, in the general case, SαS distributions does
not have a closed-form expression for the pdf. We can
nevertheless overcome this impediment by numerical
calculation of the LLR e.g. by numerical integration of
the inverse Fourier transform of the characteristic func-
tion, as fα,γ(x) = 1

2π

∞∫
−∞

exp(−|γt|α)e−itx dt. However,

this induces a generally prohibitive computational bur-
den as well as requiring the knowledge of the noise
parameters. Fig. 2 illustrates the non-linearity of the LLR
function for the channel output y when the noise is α-
stable with α = 1.4 and γ = 0.5. Except for α = 2,
this shape is similar for every value of α. Fig. 2 clarifies
that, as the output channel increases, the LLR decreases
meaning that the received sample becomes less reliable.
Moreover, two specific parts can be observed: when
the output is close to zero, the LLR is almost a linear
function of y, whereas when y is larger the LLR presents
a power-law decrease. This observation is the starting
point of our supervised approximated demapper used for
LDPC codes under additive impulsive noise [11]. Even
if Fig. 2 delineates a special impulsive noise model, the
overall appearance of the LLR stays the same for the
other noise models.

In the next section, we start by presenting our su-
pervised LLR approximation as proposed and we then
extend it yielding a novel unsupervised approximated
LLR demapper.

III. PROPOSED DEMAPPER BASED ON
APPROXIMATED LLR

To avoid the complexity induced by the α-stable
assumption about the noise and to have a solution robust
to a model mismatch, we propose to implement a simple
approximated demapper.



Based on the presence of the two aforementioned parts
in the LLR, we proposed in [11] the following LLR
approximation:

Lθ(y) =

{
ay if |y| <

√
b/a ,

b/y otherwise.
(1)

which requires the knowledge of the parameter θ =
(a, b), a>0 and b>0, to tune the receiver, and thus to
match to the channel situation. In [13] we proposed to
estimate θ in a supervised manner, which can drastically
decrease the throughput, because of the needed learning
sequence. In this paper, we propose to optimize θ in an
unsupervised manner.

In [13], we proposed three methods solving the su-
pervised optimization : two of them were dependent on
the noise model, whereas the last one was based on a
maximization of the mutual information (MI) between a
learning sequence and the approximated demapper. We
showed that the later yields the best performance in terms
of bit error rate (BER) in various impulsive noise types.

In this paper, we propose to perform the blind opti-
mization of the demapper using the MI based method.

The channel capacity has been well studied in the
literature [14]. For memoryless binary input symmetric-
output channel (MBISO) that corresponds to our channel
model, the capacity is given by the MI between the input
X and the channel output Y as C = I(X,Y ), where
the binary input is uniformly distributed. As a type of
MBISO, the mutual information over the additive SαS
noise channel can be expressed as:

IL(X,Y ) = 1− E
[
log2(1 + e−XL(Y ))

]
, (2)

where L denotes the LLR. The MI with approximated
LLR Lθ is thus given as:

ILθ (X,Y ) = 1− E
[
log2(1 + e−XLθ(Y ))

]
. (3)

Authors in [15] proved that (3) reaches its maximum
when the pdf of Lθ is equal to the pdf of true L.

Theoretically, to find back the optimum LLR from the
MI we must maximize ILθ (X;Y ). In order to narrow the
search space of the best function that fits to the optimum
L, we look for the parametrized function Lθ as we just
proposed. Thus, to fit the optimal L our goal is to find
θ that maximizes the mutual information as:

θ∗ = argmax
θ
ILθ (X;Y ) (4)

The expectation operator in (3) relies on the noise
distribution knowledge. Since we don’t make any as-
sumption on the noise model, the knowledge of the noise
distribution is missed, but a good estimation is authorized
by replacing the expectation operator by an empirical av-
erage with large values of N . Our optimization problem
can thus be rewritten as:

θ∗ ≈ argmax
θ

1− 1

N

N∑
n=1

log2

(
1 + e−xnLθ(yn)

)
≈ argmin

θ

1

N

N∑
n=1

log2

(
1 + e−xnLθ(yn)

)
︸ ︷︷ ︸

fopt(xn; yn)

,
(5)

where xn and yn are samples that represent the input
and output of the channel respectively.

The minimization of fopt(·) will be tackled in our
implementation via simplex method based algorithm
[16]. Eventually, the goal is to optimize the parameter
θ, which allows us to find back the best approximated
LLR that fits the optimum L.

To get the samples xn and yn two ways are con-
sidered: the supervised way, where xn is a learning
sequence and yn the output of the channel given the
input xn and the unsupervised way, where only yn is
known to the receiver which needs thus to rebuilt from
yn a corresponding input sequence xn.

In the following, we will start by briefly presenting the
supervised optimization as performed in [11], and then,
we will present our proposed unsupervised optimized
demapper.

A. Supervised
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Fig. 3. Supervised LLR demapper.

If the optimization is performed in a supervised man-
ner, the value of the parameter θ = (a, b) is triggered
after receiving the channel output Y by maximizing the
MI between the learning sequence X and channel output
Y as shown in Fig. 3.

The major drawback of this method is the large needed
length of the learning sequence, inducing a tedious
overload for each packet transmission. Because of the
impulsive nature of the noise, the estimation is more
complex than in the Gaussian case. Indeed, the learning
sequence has to be long enough to guaranty the presence
of large impulse amplitude, else the estimation of θ won’t
lead to a good LLR estimation.

In the next subsection, we propose to overcome these
issues by providing a blind estimation of a and b, which
focuses directly on the output of the channel, without
any prior on the input.



B. Unsupervised
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Fig. 4. Unsupervised LLR demapper.

Unsupervised optimization is notably attractive since
it does not rely on any overload.

Since the MI based method requires the noise knowl-
edge in order to optimize θ, we propose to estimate noise
samples directly from the received samples Y using a
sign detector as Ñ = Y − sign(Y ). Once the noise
samples are extracted, one can simulate a new channel
for which the input sequence X̃ is known and follows an
i.i.d. BPSK independent of Y and Ñ . The output of this
new channel will be given as Ỹ = X̃ + Ñ . Since this
known sequence is designed at the decoder, the method
will not suffer from a throughput loss: even if X̃ can be
seen as a learning sequence used to mimic the supervised
optimization, it is not sent over the channel. The optimal
value of the parameter θ is obtained by maximizing the
MI between the known input X̃ and the output of the
designed channel Ỹ using approximated LLRs. Once
the optimal parameter θ∗ is obtained over the designed
channel, it is used to build the approximated demapper
over the real channel as Lθ∗(Y ).

C. Comparison between the supervised and unsuper-
vised optimization

Fig. 5. Comparison of the mean and standard deviation evolution for
parameters (a, b) as a function of the dispersion γ of a SαS noise with
α = 1.4 for the supervised and unsupervised optimization.

In order to be efficient, we can expect that the ap-
proximated demapper under blind optimization performs
close to the one using a learning sequence. Thus, the
optimal values for θ obtained under the supervised and

the unsupervised optimization must be close to each
other.

Under both supervised and unsupervised optimization,
the evolution of the mean and variance of the parameter
θ = (a, b) are compared as a function of the dispersion
γ of a SαS noise with α = 1.4 as shown in Fig. 5.
For each channel state, a and b are resultant of 1000
experiments, furthermore, a learning sequence of 20000
samples is used to optimize a and b under the supervised
case. Such a long sequence allows to limit estimation
errors so that a and b will be obtained with a high
accuracy in the supervised approach. Whereas the gap
between the obtained values for a, under supervised
and unsupervised optimization, is rather small, the one
obtained for b is significantly larger. Nevertheless, this
will not have major consequences in terms of BER
performance as we will see in the next section. Fig. 6

Fig. 6. Comparison of the LLR shapes under the effect of the estimated
a and b parameters with γ = 0.5 and α = 1.4, in the supervised LLR
approximation, the unsupervised LLR approximation and with LLR
obtained by numerical integration.

compares the LLR shapes obtained under supervised
optimization (a = 3.15, b = 4.96) and unsupervised
optimization (a = 3.3, b = 3.75) to the true LLR
obtained via numerical integration for a SαS noise of
parameters α = 1.4 and γ = 0.5. This comparison shows
the convergence between the LLR shapes, despite the
aforementioned gap between the estimated values of b.

IV. SIMULATION RESULT

For our simulation results, we propose to use a reg-
ular (3,6) LDPC code of length n = 20000 over an
additive SαS noise channel of parameter α = 1.4 (high
impulsiveness) and α = 1.8 (low impulsiveness). For
each channel state, a learning sequence of 20000 samples
is used for the supervised optimization. In case of an
impulsive environment with α < 2, the second-order
moment of a stable variable is infinite [17, Theorem 3],
making the conventional noise power measurement not
well-defined. Accordingly, we present our simulation re-
sults as a function of γ, which is used as a measurement
of the strength of the α-stable noise.

Fig. 7 and Fig. 8 present the obtained BER in low
and high impulsiveness respectively, as a function of



Fig. 7. Evolution comparison of the BER as a function of the
dispersion γ of a SαS noise in poorly impulsive environment with
α = 1.8, in the supervised LLR approximation, the unsupervised LLR
approximation and with LLR obtained by numerical integration.

Fig. 8. Evolution comparison of the BER as a function of the
dispersion γ of a SαS noise in highly impulsive environment with
α = 1.4, in the supervised LLR approximation, the unsupervised LLR
approximation and with LLR obtained by numerical integration.

the dispersion γ of the alpha-stable noise. For each
value of γ, we compare the BER obtained via LLR
approximation, either in a supervised or unsupervised
manner to the BER obtained with the true LLR. First,
note that the unsupervised method performs close to
the supervised case. One major advantage of the blind
optimization, besides the absence of a learning sequence,
relies on the direct use of the noise impacting the
codeword’s transmission, reducing thus the risk of a bad
noise estimation, especially if the noise varies quickly
from one packet to another. Moreover, the gap between
the estimated LLR and exact LLR is close in both envi-
ronments, proving the strength of our proposed method,
and the ability to adapt to the change of impulsiveness.

V. CONCLUSION

In this paper, we proposed an unsupervised LLR
approximation used as the input of an LDPC decoder
over an additive symmetric α-stable noise channel. Our
new unsupervised approximated LLR demapper features
an easy implementation, thanks to the simplicity of our
proposed noise extraction used in the optimization step.
Moreover, the performance obtained with our solution

is very close to the one obtained using a supervised
LLR approximation or the one obtained with the true
LLR, proving the strength of our blind approximation.
Indeed, a very small gap to the true LLR is achieved
without decreasing the throughput and without requiring
numerical integration.
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