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Abstract—This paper presents a new iterative decoding algo-
rithm for the source coding with coded side information problem.
Side information (SI) is compressed to an index by a many-to-
one (quantization) function. Instead of using the reconstruction
corresponding to the quantization index as a single representative
SI word to aid the main decoder, one can modify it by projecting
an intermediate estimate of the source word onto the Voronoi cell
associated to the SI index. The hope is that the projection brings
the representative SI word closer to the source word, and thus
accelerates iterative decoding. Simulations using LDPC syndrome
coding in the main branch and trellis-coded quantization in the
SI branch show that for a fixed number of decoder iterations,
this method indeed increases the number of correctly decoded
source words. In fact, the decoding threshold is shifted, which
may be attributed to a partial compensation of the suboptimality
of the quantizer.

I. CODED SIDE INFORMATION

In a variety of applications, such as distributed video
coding or networks with relays, the decoder may have access
to coded side information (SI). In practice this SI, which is
correlated with the message to be decoded, is compressed us-
ing a deterministic many-to-one function. Thus the compressor
output may be mapped back to a set of possible sequences.

This paper considers the problem of source coding with
coded SI, which can be seen as a typical example of such a
situation. Two discrete sources X and Y, with finite alphabets
X and ), respectively, and joint distribution Px y, are sepa-
rately encoded by encoders Fx and Ey at rates Rx and Ry,
respectively. The decoder D tries to reconstruct X losslessly
as X, while Y serves only as SI (for decoding X) and is not
reconstructed. This situation is depicted in Fig. 1.

The achievable rate region for this problem has been
characterized by Ahlswede and Korner in [1]. A rate pair
(Rx, Ry) is achievable if

Rx > H(X|U) )
Ry > I(Y; U)
for an auxiliary random variable U € U, with || < |V|4+2,
such that X — Y — U form a Markov chain.

For the case when both X and Y are binary symmetric, Gu
et al. [2] showed that encoding Y using binary quantization
with Hamming distortion criterion is sufficient to achieve the
rate region. In this case, one can give a closed-form expression
of the achievable rate region. Let X a binary Bernoulli-1/2
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Fig. 1. Coded side information problem: general case

Fig. 2. Coded side information problem: binary case

source. The correlation between X and Y is modeled by a
Binary Symmetric Channel (BSC) with error probability p
(BSC-p). The encoder Ey produces a quantized version of
Y and can be represented, in an idealized setting, by a BSC-
D, where D is the optimal distortion obtained for rate Ry-.
This is depicted in Fig. 2.

The achievable rate region (1) becomes :

{Rx > H(p+ D —2pD)

Ry >1-H(D) @

A straightforward, albeit slightly naive, “standard” imple-
mentation of the binary case may be outlined as follows.
The encoder Ey is modeled as ideal, see Fig. 2, yielding a
concatenation of two BSCs that is equivalent to a BSC with
error probability ¢ = (1 — p)D + (1 — D)p. This situation
corresponds to a classic binary Slepian-Wolf problem [3],
where the correlation channel is a BSC-¢ and X is encoded
at rate H(X|Y). A practical solution of this problem using
Low-Density Parity Check (LDPC) codes has been proposed
e.g. by Liveris et al. in [4]. An easy encoding and decoding
procedure for all points of the rate region using linear codes
has been described by Gehrig et al. [5].

The binary input sequence X" = (Xi1,Xs,...,X,) of
length n, is compressed by computing its syndrome S™ % =
X"HT, where H € GF(2)("~F)x" is the parity check matrix
of an LDPC code. The encoder Ey produces a compressed
version W of Y. This operation will be performed using a
binary trellis-coded quantizer based on a convolutional code



and the Viterbi algorithm. Such quantizers still offer an excel-
lent performance-complexity trade off. The Viterbi algorithm is
used to find the codeword Y closest in Hamming metric to the
input sequence Y"; the corresponding information sequence is
output as index W.

The reconstruction Y (W) associated to the index W will
be used as channel information at the LDPC decoder Dx. As
in [4], the decoder must estimate the sequence X™ from the
syndrome and the reconstructed SI Y.

The following notations will be used:

e gi(w),i=1,...,n are the current component values
of Y™ (w)
e 55,7 =1,...,n—Fkis the j-th component of realization

of the syndrome S" % = X" HT

e LLR,; is the Log-Likelihood Ratio (LLR) correspond-
ing to the channel message y;(w)

7

e m§;" is the LLR message from check node ¢; to
variable node v;

° mf?c is the LLR message from variable node v; to
check node c;

e MN(v) is the set of check nodes connected to variable
node v

e MN(e) is the set of variable nodes connected to check
node c

The LDPC decoder performs MAP decoding by computing
the a posteriori probabilities (APP) for each variable node
and deciding for the value ; that maximizes this quantity.

e Initialization :
P(X; = 0|Qi(w))>
LLR; =1 _— 3
% (P(Xi = 1lji(w) ®
1 _
= (1 - 2ji(w))log— @)

e Data pass :

m{7¢=LLR;+ Y = m5 (5)
c;r €N (vi)\cj

e  Check pass :

w7 =
my ¢
2tanh™' | (1 — 2s;) H tanh (12])
v EN(¢;)\vi

(6)

e  Decision :
0,if LLR; + Y mi;" >0
T; = c; EN(vi) (7N

1 else

Fig. 3. Proposed decoder graph
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Fig. 4. Geometrical intuition

II. PROPOSED METHOD

Our method relies on the following observation: the coded
SI is conveyed by a single index w, but the quantizer
maps many SI sequences to the same index. This set of
sequences corresponds to the Voronoi cell V,, = {y" €
{0,1}"|Ey(y") = w}. As convolutional codes are linear,
Vw = Vo @ Y"(w), with Vy the Voronoi cell associated with
the origin (all-zero codeword). (¢ denotes componentwise
modulo-2 addition.) Thus we will need to characterize the set
Vo in order to perform a projection.

The projection of the sequence (i™)(*) onto the Voronoi
cell V,, yields the sequence Y™ (w)(t*tD e V, closest to
(#™)®). Thanks to linearity, we can project the sequence
(™)™ & Y™ (w) onto the Voronoi cell Vy, yielding an output
sequence v* such that Y™ (w)*1) = v* & V" (w).

As in the standard setup, we start decoding X™ with T'
belief propagation decoding iterations. If the decoder fails to
converge after 7' iterations, we modify the posterior prob-
abilities of the channel information (i.e. the coded SI) by
performing a projection onto the Voronoi cell associated to the
received index w. Fig. 3 depicts the decoder graph, where the
“Voronoi decoder” is responsible for modifying the channel
LLR values fed to the LDPC decoder shown above it. The
geometrical intuition behind this decoding principle is depicted
in Fig. 4.

A. Characterization of the Voronoi cell V

In [6], it has been shown that the Voronoi cell Vy of a
convolutional code can be characterized by the evolution of a
particular finite state machine (FSM). We will refer to this as
the Voronoi FSM.

To construct the Voronoi FSM for V), we study the
evolution of the Viterbi algorithm (in the trellis quantizer) in



terms of metric differences of the sequences mapped onto the
all-zero codeword. We use the rate-1/2 convolutional code (5,7)
with polynomials (1 + D?, 1+ D + D?) as an example. This
code has 4 states and thus each trellis section is characterized
by a 4-tuple of winning path metrics, named metric state.
These 4-tuples can be computed using the Hamming distance
between the trellis labels and the input sequence. Metric states
can be translated by a constant 4-tuple such that their minimum
element becomes 0. The Voronoi FSM for V), is obtained
by searching all transitions between metric states such that
the minimum path metric is the one associated to the all-
zero codeword. The number of such metric states is finite.
A metric state (a, b, ¢, d) must satisfy the following condition
to be included in the Voronoi FSM:

min{a + dH(lE1—>E1 ) S)a b+ dH(lE2—>E1 ) S)} =
a+dy(lg,»Eg,s) (8)

where [g,_, E; is the trellis label from state F; to state I
and s is the corresponding segment of the input sequence. We
suppose that the encoder starts from the all-zero state.

This procedure can be extended to any convolutional code.
Condition (8) becomes :
min {M; +du(lg,~5,,8)} = M1 +du(lg,~E,,5) 9)
E|E5,—>E1
where M; denotes the i*" component of the metric state and

where 3dF; — FE; means that there is a trellis transition
between states F; and Fj.

B. Decoding procedure

The decoder receives the syndrome s~ * from encoder Ex
and the index w from encoder Ey. The LDPC decoder starts
with the quantizer codeword Y (w). After T iterations, if it
fails to converge, we compute APPs to obtain (£")(™) and then
search the closest sequence within the set V,, = Vy & )A/"(w)

¥ ()T = V7 (w) @ arg min dir (v, (2") 7 @ 77 (w))

i (10)
This sequence is then used to modify the LLRs before carrying
on with additional LDPC decoder iterations (the m°~" and
m¥ ¢ messages are not reset). If after ¢ additional decoding
iterations the decoder still fails to converge, we restart the
above procedure.

The next two sections discuss variants of the projection
(10) and associated LLR update rules.
III. VITERBI VORONOI DECODER

A low-complexity Voronoi decoder can be built using the
Viterbi algorithm on the Voronoi FSM trellis to map the hard
decision sequence (2™)(™) to Y (w)T+1) as in (10).

Based on our experiments, we propose the following LLR
update rule:

_ J09x LLR(Vy(w))  if Yi(w) # ¥i(w) "+
Lt = {LLR(Yi(w)) else

(1)

where j is the number of times we have already performed a
projection.

This heuristic update rule is based on the intuition that
the more projections (and decoder iterations) have been made,
the closer ™ should be the source sequence. So for the first
projections we do not reduce the LLRs too aggressively, since
the LDPC decoder would have difficulties to correct them,
while in later iterations this should be no longer a problem.

The factor 0.9 was determined experimentally to yield good
results in our simulation setup; it may need to be changed for
other setups.

Results obtained with a non-optimized rate Rx = 0.1
LDPC code of size n = 1000 and the rate Ry = 1/2
convolutional code (5,7) are shown in Fig. 5. The sets of curves
are indexed by the crossover probability p of the BSC relating
X and Y. We can observe that the proposed method increases
the rate of successful convergence. We perform 7' = 30
decoder iterations with the LLR associated with Y (w). In
case of failure of the decoder, we perform up to 18 searches
of Y (w)T+"+1) "and for each, we perform up to t = 15
decoder iterations. The results are given for 10000 samples.

This experimental setup was sufficient to show the fea-
sibility of our method, but its overall performance is not
overwhelming. To overcome this, one has to use optimized
LDPC codes.

Since good low-rate LDPC codes are rather hard to come
by, we decided to increase the rate of the encoder Ey in order
to be able to use rate-1/2 LDPC codes optimized for the BSC.
Various optimized high-rate convolutional codes can be found
in the literature, see for example [7], [8], [9].

For our second experiment, we chose an optimized LDPC
code with variable node degrees

A(z) = 0.24426z + 0.2590722 + 0.010542> + 0.055102*
+ 0.0145527 4 0.012752° + 0.4037321!

and concentrated check node degrees, found in [10]; parity
check matrices were constructed with the PEG algorithm.

For the quantizer, we used a rate-5/6 convolutional code
found in [7] with generator matrix

110100
011010

G=12 00101 (12)
2 2 20 1 1
0000 2 3

This code uses 3 binary memory cells, meaning there are 8
trellis states. Increasing the encoder memory will improve the
performance of the code in terms of distortion. At the same
time, it will increase the number of trellis states and strongly
expand the number of states in the Voronoi FSM, so we will
only consider codes with 3 binary memory cells.

We can see in Fig. 6 that even with an optimized LDPC
code and a high-rate convolutional code, the proposed method
outperforms the standard one.
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Fig. 5. Comparison between the standard and the proposed method using
a rate-0.1 LDPC code, the rate-1/2 convolutional code (5,7) and the Viterbi
algorithm to perform the projection: Cumulated number of decoding successes
as a function of the number of iterations.

IV. BCJR VORONOI DECODER

The above hard-input, hard-output Viterbi Voronoi decoder
has the conceptual advantage of delivering a sequence that
is guaranteed to lie in V,, and thus to have been a possible
quantizer input sequence. This is offset by the difficulty of
finding an optimal LLR update rule. An obvious alternative
is to use the soft-input, soft-output BCJR algorithm [11] on
the Voronoi trellis. In the present setting, the BCJR takes the
extrinsic Z as inputs

Z ifYi(w)=0

LLRBCJR _ " 13
i —% if Vi(w) =1 (13)

where Z is a scaled version of the extrinsic

— c—v
Fi = Z mji

c; EN(vy)

computed by the BP decoder. This scaling is done for the
same reason as for the Viterbi decoder: for the first projections,
the extrinsic z isn’t very reliable.

The BCJR then computes the bit-wise APP values, i.e.
the marginal posterior likelihood of bit Y; given the quantizer
index and a soft estimate of the source. From these we obtain
an extrinsic soft-output LLR sequence extr.

Since the BCJR gives us an APP for Y and since X =
Y & Z, with Z a binary Bernoulli-p source, we can use the
tanh-rule to compute the new “channel” LLR fed to the LDPC
decoder for the next ¢ iterations:

log (=2
tri g ( )
LLR; = 2tanh™! | tanh (eac2r ) tanh 7 b

14)

For simulations with the BCJR, we used an optimized rate-
172 LDPC code of length n = 1200 and first performed 7" = 20
decoding iterations with the LLR associated with Y (w). In
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Fig. 6. Comparison between the standard and the proposed method using a
rate-0.5 optimized LDPC code, a rate-5/6 convolutional code and the Viterbi
algorithm to perform the projection: Cumulated number of decoding successes
as a function of the number of iterations.

case of failure of the decoder, we then perform up to 76 BCJR
runs, after each of which we perform up to ¢ = 5 LDPC
decoding iterations. The results are given for 10000 samples.

As Fig. 7 shows, using a soft-input soft-output Voronoi
decoder gives the best performances for the proposed method.

Since the decoding threshold is clearly seen to be shifted in
Fig. 8, we computed the theoretical thresholds (Shannon limits)
for comparison purposes. An ideal rate-5/6 binary code has
theoretical distortion D = 0.0246, which yields p};, = 0.0898.
If we consider the convolutional code (12), its actual distortion
is D = 0.0373, yielding p, = 0.0786. These thresholds are
still far from the ones observed in our simulations, which
may partly be due to the moderate LDPC block length.
Nevertheless, we can see that the proposed method provides
clearly better performance than the standard one. A possible
explanation of this gain is that the Voronoi decoder is able to
compensate part of the quantizer suboptimality.

For completeness, we also ran simulations with a soft-input
Viterbi decoder; the obtained results are shown in Fig. 9 and
compared to the standard and BCJR methods in Fig. 8. The
gain over the standard variant is only slightly above that for
hard-input Viterbi, indicating the importance of proper soft
outputs.

Beyond its superior performance (at the price of complex-
ity), the BCJR Voronoi decoder has another major interest:
it can be used to perform numerical density evolution of the
overall decoder, along the lines of the approach presented in
[12]. This allows to match the optimization of the LDPC code
to the structure of the Voronoi cell. This will also give a
better insight on how the parameters that are currently chosen
heuristically impact the decoding procedure.

V. CONCLUSION

We presented a new decoding principle for source coding
with coded side information and compared various imple-
mentations of the proposed method with a standard setup.
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Fig. 7. Comparison between the standard and the proposed method using a
rate-0.5 optimized LDPC code, a rate-5/6 convolutional code and the BCJR
algorithm to perform the projection: Cumulated number of decoding successes
as a function of the number of iterations.
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Fig. 8. Comparison between the standard and the proposed methods using
a rate-0.5 optimized LDPC code, a rate-5/6 convolutional code, 400 decoding
iterations: Number of decoding successes as a function of the crossover
probability p.

The key idea is to exploit the knowledge of the preimage of
the side information encoder output to accelerate the iterative
main decoder. In the case of linear trellis-coded quantization,
the preimage is congruent to the Voronoi cell V,, which
can be described by a finite state machine. By projecting an
intermediate source estimate onto this cell, one can improve
the side information fed to the main decoder, which operates
in standard Slepian-Wolf fashion. Using a Viterbi decoder with
heuristic soft outputs as projector or a BCJR decoder yields
gains in terms of decoding success vs. iteration number.

Currently, we are working on a more theoretical analysis
of this decoding principle, beginning with a density evolution
study of the presented example with trellis-coded quantization.

12000
—<— p=0.025 proposed method - —<J— - p=0.025 standard method '
—+&— p=0.03 proposed method —B— - p=0.03 standard method
—p— p=0.032 proposed method - —[>— - p=0.032 standard method
—&A— p=0.035 proposed method - —A— - p=0.035 standard method
" —+— p=0.037 proposed method - —+— - p=0.037 standard method
—<— p=0.04 proposed method - —O— - p=0.04 standard method

10000

8000 - F

6000

Cumulated number of succsses

4000 -

2000 ||

R e e e

¢ > T e STt St ettt
50 100 150 200 250 300 350 400
Number of iterations

Fig. 9. Comparison between the standard and the proposed method using
a rate-0.5 optimized LDPC code, a rate-5/6 convolutional code and the the
soft-input Viterbi algorithm to perform the projection: Cumulated number of
decoding successes as a function of the number of iterations.
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