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Abstract—This paper presents a practical scheme for the
binary coded side-information problem based on LDPC codes
and trellis quantization. A recently proposed improved decoder
is shown to be amenable to numerical density evolution and thus
to LDPC code optimization. First results display significant gains
compared to off-the-shelf codes, which could be further improved
by refined modeling of the system.

I. CODED SIDE INFORMATION

Source coding with coded side information is a classic
problem of information theory in which two encoders EX and
EY encode separately, at rates RX and RY , two discrete and
correlated sources X and Y , with alphabets X and Y , and
joint distribution PX,Y . The decoder DX tries to reconstruct
X losslessly as X̂ , using a compressed version of Y as side
information (SI) (Y will not be reconstructed). This situation
is depicted in Fig. 1.

Ahlswede and Körner characterized the achievable rate
region for this problem in [1]. A rate pair (RX , RY ) is
achievable if {

RX ≥ H(X|U)

RY ≥ I(Y ;U)
(1)

for an auxiliary random variable U ∈ U , with |U| ≤ |Y|+ 2,
such that X − Y − U form a Markov chain.

When both X and Y are binary symmetric, Gu et al.
[2] showed that encoding Y using binary quantization with
Hamming distortion criterion achieves the aforementioned rate
region, for which a closed-form expression can be obtained.
Let X be a binary Bernoulli-1/2 source. The correlation
between X and Y is modeled by a Binary Symmetric Channel
(BSC) with error probability p (BSC-p). The encoder EY
produces a compressed version of Y and can be modeled,
in an idealized setting, by a BSC-D, where D is the optimal
distortion obtained for rate RY . This is depicted in Fig. 2.

The achievable rate region (1) becomes :{
RX ≥ H(p+D − 2pD)

RY ≥ 1−H(D)
(2)

When considering the idealized setup, we can notice that
this is equivalent to a standard binary Slepian-Wolf problem
[3] with a BSC-ε correlation channel, where ε = (1− p)D +
(1 − D)p is the error probability of the BSC equivalent
to the concatenation of the two BSCs in Fig. 2 and X is
encoded at rate H(X|Ŷ ). An easy encoding and decoding
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Fig. 2. Coded side information problem: binary case

procedure for all points of the Slepian-Wolf rate region using
linear codes was described by Gehrig and Dragotti in [4]. A
practical solution to this problem using Low-Density Parity
Check (LDPC) codes was proposed by Liveris et al. in [5].

In our previous work [6], we proposed the following sim-
ple scheme for the coded side-information problem based
on the above LDPC approach and a trellis quantizer. The
binary input sequence X = (X1, X2, . . . , Xn) of length n
is compressed by computing its syndrome S = XHT , where
H ∈ GF (2)(n−k)×n is the parity check matrix of an LDPC
code. The encoder EY produces a quantized version W of Y
using a binary trellis-coded quantizer based on a convolutional
code. The codeword Ŷ that is closest in Hamming metric to
the input sequence Y is found using the Viterbi algorithm and
the corresponding information sequence is output as index W .
The reconstruction Ŷ (W ) associated to the index W is used as
channel information at the LDPC decoder DX . This decoder
must then estimate the sequence X from the syndrome S and
the reconstructed SI Ŷ (W ), as in [5].

The following notations will be used throughout this paper:
• ŷi(w), i = 1, . . . , n: current component values of Ŷ (w)
• sj , j = 1, . . . , n−k: components of the realization of

syndrome S = XHT

• LLRi: Log-Likelihood Ratio (LLR) corresponding to
channel value ŷi(w)

• mc→v
j,i : LLR message from check node (CN) cj to vari-

able node (VN) vi
• mv→c

i,j : LLR message from VN vi to CN cj



• N (v): set of CNs connected to VN v
• N (c): set of VNs connected to CN c

The LDPC decoder performs MAP decoding by computing
the a posteriori probabilities (APP) for each variable node
and deciding for the value x̂i that maximizes this quantity.
The steps of the Belief Propagation decoder (BP) are:
• Initialization :

LLRi = log

(
P (Xi = 0|ŷi(w))

P (Xi = 1|ŷi(w))

)
(3)

= (1− 2ŷi(w)) log
1− ε
ε

(4)

• Data pass :

mv→c
i,j = LLRi +

∑
cj′∈N (vi)\cj

mc→v
j′,i (5)

• Check pass :

mc→v
j,i =

2tanh−1

(1− 2sj)
∏

vi′∈N (cj)\vi

tanh

(
mv→c
i′,j

2

) (6)

• Decision :

x̂i =


0, if LLRi +

∑
cj∈N (vi)

mc→v
j,i ≥ 0

1, else
(7)

The next section briefly recalls the improved decoder for
this scheme that we proposed in [6]. The remaining sections
then present numerical density evolution of this decoder and
first code optimization results.

Our main contributions in this paper are:
• adapting numerical density evolution along the same lines

as [7] to the improved decoder presented in [6].
• using this density evolution in a differential evolution

algorithm in order to optimize the degree distribution of
irregular LDPC codes.

II. IMPROVED DECODER [6]

A. Principle

The method relies on the following observation: the coded
SI is given by a single index w, but many SI sequences
are mapped to the same index by the quantizer. The se-
quences mapped onto the index w form the Voronoi cell
Vw = {y ∈ {0, 1}n|EY (y) = w}. Instead of using only
Ŷ (w) to decode X , our method exploits the knowledge of
Vw to select another representative sequence. The hope is
that this new sequence is closer to X than Ŷ (w) and thus
accelerates iterative decoding. The new sequence will be
obtained by projecting an approximate solution x̂(t) onto Vw.
Thus, we need a characterization of the Voronoi cells. Since
convolutional codes are linear, we only need to characterize
the Voronoi cell V0 associated to the all-zero codeword; other
cells are obtained as Vw = V0 ⊕ Ŷ (w), where ⊕ denotes
component-wise modulo-2 addition.
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Fig. 3. Proposed decoder graph
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Fig. 4. Geometrical intuition

The projection of the sequence x̂(t) onto the Voronoi cell
Vw yields the sequence Ŷ (w)(t+1) closest to x̂(t). Thanks
to linearity, we can project the sequence x̂(t) ⊕ Ŷ (w) onto
V0, yielding an output sequence v∗ such that Ŷ (w)(t+1) =
v∗ ⊕ Ŷ (w). Calderbank et al. showed in [8] that V0 can
be characterized by the evolution of a particular finite state
machine (FSM). Thus the above Voronoi projection step can
be implemented using the hard- or soft-input Viterbi and BCJR
algorithms. In [6], we found that a BCJR Voronoi decoder
gives the best performances.

B. Decoding procedure

Decoding of X starts with T BP LDPC decoder iterations
as in the standard setup. If the decoder fails to converge
after T iterations, the SI is modified by performing a Voronoi
projection. The resulting sequence is used to modify the input
LLRs before carrying on with additional BP iterations (the
mc→v and mv→c messages are not reset). If the decoder still
fails to converge after t additional decoding iterations, the
above procedure is restarted.

Fig. 3 depicts the decoder graph, where the “Voronoi
decoder” is responsible for modifying the channel LLR values
fed to the LDPC decoder shown above it. The geometrical
intuition behind this decoding principle is depicted in Fig. 4.

C. BCJR Voronoi decoder

The inputs to the BCJR Voronoi decoder are scaled versions
z̃i of the extrinsic zi =

∑
cj∈N (vi)

mc→v
j,i computed by the BP

LDPC decoder,

LLR(BCJR)
i =

{
(1− 0.99j)zi, if Ŷi(w) = 0,
−(1− 0.99j)zi, if Ŷi(w) = 1,

(8)



where j − 1 is the number of times a Voronoi projection
has already been performed. This heuristic scaling takes into
account the reliability of the extrinsic z and is based on the
intuition that the more projections (and decoder iterations)
have been made, the closer x̂n should be to the source
sequence. So for the first projections, the sequence projected
onto the Voronoi cell is very close to the all-zero codeword,
thus we don’t change the LLRs too aggressively, since the
LDPC decoder would have difficulties to correct them, while in
later iterations this shouldn’t be a problem anymore. The factor
0.99 was chosen based on the good performances obtained in
our simulation setup, it may be changed for other setups.

The BCJR then computes the bit-wise APP values, i.e. the
marginal posterior likelihood of bit Yi given the quantizer
index w and a soft estimate of the source. From these we
obtain an extrinsic soft-output LLR sequence extr.

Since the BCJR yields an APP for Y and since X = Y ⊕Z,
with Z a binary Bernoulli-p source, we can use the tanh-rule
to compute the new “channel” LLR fed to the LDPC decoder
for the next t iterations:

LLRi = 2tanh−1

tanh

(
extri

2

)
tanh

 log
(

1−p
p

)
2


(9)

The BCJR Voronoi decoder has the major advantage that
it can be used to perform a numerical density evolution of
the overall decoder, following the approach in [7]. Using this
density evolution, a differential evolution algorithm can then
optimize the LDPC degree distribution for a given quantizer,
improving even more the performances obtained in [6].

In the next two sections, we present standard density evolu-
tion and propose a modified version suited to our Voronoi
decoder, as well as differential evolution. Using these two
tools, we optimize the degree distributions of a rate-1/2 LDPC
code for the binary coded side-information problem.

III. DENSITY EVOLUTION AND DECODING THRESHOLD

For any irregular LDPC code, one defines two polynomials
to describe the distribution of the edges as follows:

λ(x) =

Vmax∑
i=1

λix
i−1 and ρ(x) =

Cmax∑
i=1

ρix
i−1

where Vmax and Cmax are the maximal variable node and
check node degrees, respectively. Given the Tanner graph of
the LDPC code, λi represents the fraction of edges that are
connected to a variable node of degree i (i.e. connected to i
check nodes). Similarly, ρi is the fraction of edges that are
connected to a check node of degree i.

Density evolution, which has been proposed by Richardson
and Urbanke in [9], is a tool to determine the asymptotic en-
semble average behavior of LDPC codes given channel model
and noise power. This algorithm tracks the average probability
density function (pdf) of the messages from variable nodes to
check nodes for each iteration of the BP algorithm.

We can define the error probability at iteration l of the BP
algorithm as:

P (l)
e =

∫ 0

−∞
f (l+1)
v (x)dx

where f
(l+1)
v (x) is the pdf of the correct message from a

variable node to a check node during the l-th iteration of BP
algorithm. Density evolution computes f (l+1)

v (x) from f
(l)
v (x).

Using this tool, we can determine the decoding thresholds of
a LDPC code and also optimize its degree distributions using
e.g. differential evolution as explained in the next section.

The decoding threshold is defined as the maximum noise
power (here: crossover probability p) such that the error
probability vanishes as l grows large, liml→∞ P

(l)
e = 0.

Density evolution for the improved decoder follows along
the lines of [7], where the authors used a numerical density
evolution step using a BCJR algorithm over a binary inter-
symbol interference channels.

The following notations will be used:
• f

(l)
v : pdf of message from a VN to a CN at lth iteration.

• f
(l)
c : pdf of message from a CN to a VN at lth iteration.

• f
(l)
o : pdf of a priori LLR at the lth iteration.

• f
(l)
e : pdf of extrinsic given to the BCJR at lth iteration.

Since the path from X to Ŷ is modeled by a BSC of error
probability ε, the initialization of fo is given by

f (1)o = εδ

(
x+log

(
1− ε
ε

))
+(1−ε)δ

(
x− log

(
1− ε
ε

))
,

where δ(x) is the Dirac distribution.
The average density f (l+1)

v is given by

f (l+1)
v = f (l+1)

o ⊗

[
Vmax∑
i=1

λi

(
i−1⊗
k=1

f (l)c

)]
(10)

where ⊗ stands for the convolution operation and
⊗i−1

k=1 for
the convolution of i− 1 pdfs.

In the same way, the average f (l+1)
c is given by

f (l+1)
c =

Cmax∑
i=1

ρiΓ
−1

[
i−1⊗
k=1

Γ
(
f (l+1)
v

)]
, (11)

where Γ is the density transformation operator induced by
γ : x→ (sgn(x),− log tanh |x/2|).

Similarly, the average density of the extrinsic given to the
BCJR is obtained by

f (l+1)
e =

Vmax∑
i=1

λ̃i

(
i⊗

k=1

f (l)c

)
(12)

where λ̃i = λi
/(

i
∫ 1

0
λ(x)dx

)
is the fraction of variable

nodes of degree i. (We still need to take into account the
reliability scaling before performing the BCJR step.)

The Voronoi decoder transforms f (l+1)
e into f

(l+1)
o as fol-

lows:

f (l+1)
o =

{
f
(l)
o , if l 6= kt,
εtrellis(f

(l)
e , p), else,

(13)



where εtrellis is a symbolic notation for trellis evolution. Since
there isn’t a closed-form expression for this evolution, it will
be computed numerically using Monte-Carlo techniques.

The density evolution associated to the proposed decoder
is described in Algorithm 1. The operation in line 2, cor-
responding to the standard density evolution is described in
Algorithm 2 and the operation in line 5 corresponding to the
Monte Carlo simulation is detailed in Algorithm 3.

Algorithm 1 Density evolution with BCJR Voronoi decoder
1: Initialization:
f
(1)
o = εδ

(
x+ log

(
1−ε
ε

) )
+ (1− ε)δ

(
x− log

(
1−ε
ε

) )
P

(1)
e = 1;

2: Density evolution: Phase 1 iter ← T
3: for i→ proj do
4: f

(l+1)
e =

∑Vmax

i=1 λ̃i

(⊗i
k=1 f

(l)
c

)
5: Trellis evolution: f (l+1)

o = εtrellis(f
(l)
e , p)

6: Density evolution: Phase 2 iter ← t
7: end for

Algorithm 2 Density evolution
1: for l→ iter do
2: f

(l+1)
v = f

(l+1)
o ⊗

[∑Vmax

i=1 λi

(⊗i−1
k=1 f

(l)
c

)]
3: f

(l+1)
c =

∑Cmax

i=1 ρiΓ
−1
[⊗i−1

k=1 Γ
(
f
(l+1)
v

)]
4: P

(l)
e =

∫ 0

−∞ f
(l+1)
v (x)dx

5: if P (l)
e ≥ P (l−1)

e then
6: break
7: end if
8: end for

Algorithm 3 Trellis evolution

1: Draw an i.i.d. vector V of distribution f (l+1)
o

2: V ← V × X̃ × Ỹ where X̃ ∈ {−1, 1}n
and Ỹ = 1− 2Ŷ (w)

3: Take into account the reliability of the estimate
4: V1 ← BCJR-based Voronoi decoder
5: V1 ← V1Ỹ

6: LLRi = 2 tanh−1
(

tanh
(
V1i

2

)
tanh

(
log( 1−p

p )
2

))
7: L̃LR← LLR× X̃
8: f

(l+1)
o ← Density of L̃LR

Since the projection step has to be performed for an i.i.d.
binary sequence to obtain proper averages (see [7] for more
details), we first draw a sequence X and compute the corre-
sponding quantization index. Then we use the BCJR Voronoi
projection method to compute a realization of an extrinsic
vector. The block length n has to be rather large in order
to avoid trellis boundary effects.

Using this numerical density evolution, we obtained the fol-
lowing decoding thresholds for the scheme in [6]: p∗=0.0337
for the standard method and p∗ = 0.0368 for the proposed
decoder, matching the performances observed on Fig. 8 in [6].

IV. DIFFERENTIAL EVOLUTION FOR DEGREE
OPTIMIZATION

Differential evolution is an iterative method for global
nonlinear optimization problems [10]. It has been successfully
applied to the optimization of irregular LDPC degree distri-
butions in many works, e.g. [11] for binary output-symmetric
channels.

Each iteration l of this algorithm generates NP possible
degree distributions, denoted by {π(l)

i }NP
i=1. Here π stands for

a vector grouping a non-redundant set of coefficients of λ(x)
and ρ(x) satisfying the design rate and other constraints, e.g.
concentrated check degrees. The first generation, {π(0)

i }NP
i=1,

is initialized uniformly at random.
At each round, we choose within the NP candidates the

one that gives the smallest error probability after performing
a fixed number of density evolution steps; this distribution
is denoted by π

(l)
best. For each of the NP distributions, we

generate a mutant distribution by randomly selecting four
distinct distributions indexed i1, i2, i3, i4 and computing

π
(l+1)
i = π

(l)
best + F (π

(l)
i1 + π

(l)
i2 − π

(l)
i3 − π

(l)
i4 ),

where F > 0 is a non-negative differential mixing parameter.
The NP distributions for the next round are taken to be
either the distribution from the previous round or the mutant
candidate, if the latter yields a smaller error probability during
the density evolution phase.

For the following simulation results, we used a quantizer
built with a rate-5/6 convolutional code from [12] with gener-
ator matrix

G =


1 1 0 1 0 0
0 1 1 0 1 0
2 0 0 1 0 1
2 2 2 0 1 1
0 0 0 0 2 3

 . (14)

Using differential evolution, we found a rate-1/2 LDPC code
ensemble with variable degree distribution

λ(x) = 0.094167x2 + 0.7275x3 + 0.0125x5 + 0.045x6

+ 0.00417x10 + 0.0317x14 + 0.0233x15

+ 0.000833x16 + 0.04583x19 + 0.015x20

and concentrated check-node degrees. Actual parity check ma-
trices were obtained using the PEG algorithm. The decoding
threshold for this ensemble is p∗ = 0.06.

For our simulations, we set n = 1200 and first perform
T = 20 LDPC decoding iterations with the LLR associated
with Ŷ (w). In case of decoding failure, we then perform up
to 76 BCJR runs, after each of which we perform up to t =
5 LDPC decoding iterations. The results for 10000 samples
are given in Fig. 5 and Fig. 6. We can again notice that our
method gives clearly better results than the standard one, even
for optimized codes. As in [6], we notice that the decoding
threshold has been shifted. A possible explanation of this gain
is that the Voronoi decoder is able to compensate part of the
quantizer suboptimality.



For comparison purposes, we computed the theoretical
thresholds (Shannon limits) for this setup. An ideal rate-
5/6 quantizer has theoretical distortion D∗ = 0.0246, which
yields p∗th = 0.0898. The actual distortion of our considered
convolutional quantizer is D = 0.0373, yielding pth = 0.0786.
For now, the best rate-1/2 distributions that we found have a
threshold of p = 0.065, which is still far from the theoretical
limits. An explanation for this gap may lie in the heuristic
scaling rule (8) used before the projection. Thus it is likely
that density evolution won’t be able to close this gap. To
overcome this problem, we are investigating a refined model
of the processing chain X−Y −Ŷ (W ), which should allow to
use the Voronoi FSM to directly estimate X , without having
to estimate the reliability of the projection step.
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as a function of the number of iterations.
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V. CONCLUSION

In this work, we propose an optimization of the improved
iterative decoder presented in [6] for source coding with coded
side information. The key idea of this improved decoder
relies on the use of the knowledge of the Voronoi cell V0 to
accelerate the main decoder of X , which operates in a Slepian-
Wolf fashion. A well-known way to optimize the LDPC codes
is to use a density evolution. Unfortunately, there isn’t any
closed-form expression for the evolution of density while
using a BCJR step, therefore we perform a numerical step
via Monte Carlo simulations. Using a differential evolution
and the numerical density evolution, we optimized an irregular
LDPC code given our quantizer. Using this optimized code,
we showed that the improved decoder yields a significant gain
in terms of decoding successes vs. iteration number.
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