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Spécialité Sciences et Technologies
de l’Information et de la Communication

par

Anne Savard

Coding for cooperative communications:

Topics in distributed source coding and

relay channels
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midi, à savoir Veronica, Romain N., Olivier, David P., Laura, Laurent, Elsa et Maël. Grâce à
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Chapter 0

Foreword

0.1 Motivation

In the last decades, our relation to telecommunications has changed. The goal is now to send a
growing amount of data over wireless networks. Moreover, while twenty years ago the number
of wireless communicating devices was very low, now almost everyone has such a device. Due to
the nature of the wireless medium, devices can overhear signals sent by neighbouring devices.
Thus, since users wish to send more and more data, with a reduced power, one widely accepted
solution is to consider cooperative communications.

In this thesis, we investigate some multi-terminal information theory problems. The simplest
building block for cooperative communications is the relay channel. In this model, represented
on Figure 1, a user wishes to send its data to a destination with the help of a relay.

S D

R

hSD

hSR hRD

Figure 1: Relay channel

We first focus on two somewhat dual problems: one in source coding and one in channel
coding. On one hand, we consider the binary source coding problem with coded side information,
where nodes have correlated inputs, and on the other hand, the Gaussian relay channel with
correlated noises.

Moreover, the source coding with coded side information problem is equivalent to the in-
formation bottleneck problem studied in [Tishby et al., 1999], which is a typical problem of
cooperative communication, since the helper (that can be seen as a relay) tries to extract from
its observation, as much information on the source message as possible, while keeping its rate
constraint satisfied.

For the source coding part, convolutional codes and Low-Density Parity Check (LDPC) codes
are used. Since it is more easy to optimize LDPC codes, we choose a specific convolutional code
and optimize the LDPC code accordingly.

For the channel coding part, we use either lattice coding or Additive White Gaussian Noise
(AWGN) coding.

In the last part of the thesis, we focus on a more realistic multi-user communication scenario,
where N users, grouped into L clusters of K users each wish to exchange their messages within
a cluster with the help of a single relay. This model, called multiway relay channel, has been
proposed by [Gündüz et al., Jan. 2013]. Here we propose an extension of this model by adding
direct links between the users of a cluster, which seems to be a more realistic model of users



2 Chapter 0. Foreword

overhearing each other. The aim of this part is not to propose new relaying schemes per se, but
to show that standard schemes based either on lattice coding or AWGN coding can be used also
on this extended multiway relay channel model.

0.2 Thesis outline and contributions

This thesis is organized into two parts: Part I presents source coding with coded side information
and Part II focuses on relay channels.

0.2.1 Part I

The first part is dedicated to the source coding problem with coded side information. We propose
a practical solution using a convolutional quantizer for the coded side information branch and a
Low-Density Parity Check (LDPC) code on the main branch. Since many sequences are mapped
onto the same quantization index, instead of using the reconstruction of the quantization index as
a single representative side information, one can modify it by projecting an intermediate estimate
of the source word onto the Voronoi cell associated to this index. Our main contributions to this
consist in characterizing the Voronoi cell V0 of a convolutional quantizer using a Finite-State
Machine (FSM) and then proposing a new decoding principle based on this characterization,
improving thus the performance obtained for the coded side information problem.

Chapter 1 presents the theoretical aspect of source coding with coded side information for
the binary case and a state-of-the-art LDPC code based algorithm used for this problem [Liveris
et al., 2002], as well as LDPC codes and convolutional quantizers.

Chapter 2 presents, in a tutorial way, how to characterize the Voronoi cell V0 of a convolu-
tional code using a FSM and how to assign transition probabilities on this FSM.

Chapter 3 presents our improved decoder, based on a geometrical intuition. We present two
main implementations of our method and finally show how to optimize the LDPC code used.

Publications The work presented in this part was presented in

• [Savard and Weidmann, 2013a] A. Savard and C. Weidmann, ”Décodeur amélioré
pour le codage de source avec information adjacente compressée” GRETSI,
Brest, France, 2013

• [Savard and Weidmann, 2013b] A. Savard and C. Weidmann, ”Improved decoding
for binary source coding with coded side information” Proc. IEEE Information
Theory Workshop (ITW), Seville, Spain, 2013

• [Savard and Weidmann, 2014a] A. Savard and C. Weidmann, ”Optimized codes for
the binary coded side information problem” International Symposium on Turbo
Codes (ISTC), Bremen, Germany, 2014

• [Savard and Weidmann, 2015c] A. Savard and C. Weidmann, ”On the Hamming-
space Voronoi regions of convolutional codes with applications” submitted to
IEEE Transactions on Communication
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0.2.2 Part II

Part II of this thesis focuses on various relay channel models. We study extensions of the relay
channel models, for which no achievable schemes were proposed so far. The goal is to characterize
achievable rate regions using different state-of-the-art relaying schemes, as for instance Decode-
and-Forward (DF), Compress-and-Forward (CF) or Amplify-and-Forward (AF). In order to
compare these protocols, we derive cut-set bounds for each relay channel model, in order to
obtain an upper bound on the capacity.

Chapter II introduces the different relay channel models considered in this thesis.

Chapter 4 presents two different Gaussian Relay Channel models: the first one is the standard
full-duplex model and the second one is a more general model considering correlated noises at
the relay and the destination.

We briefly present achievable rate regions for the first model that can be found in the
literature. Furthermore, we introduce standard relaying schemes such as DF, AF and CF.
Proofs, even if standard, are presented in this thesis since we will refer to them when proving
achievability for more elaborated relay models.

We then show that lattices can achieve a previously known achievable rate region of the
Gaussian relay channel with correlated noises.

Chapter 5 presents a first extension of the Gaussian relay channel by considering Two-way
relay channel, a multi-hop communication scenario, in which two users wish to exchange data
with the help of a relay. We study three different Gaussian two-way relay channel models: the
standard full-duplex two-way relay channel without and with direct links, and a more general full-
duplex two-way relay channel with direct links and correlated noises at the relay and destinations.
In this chapter, we derive a full-duplex CF lattice based scheme for the two-way relay channel
without direct links and then we propose a Compress/Decode-and-Forward scheme for the two-
way relay channel with direct links and correlated noises, based on the CF scheme proposed in
previous chapter for the relay channel with correlated noises.

Chapter 6 presents a more general extension of the Gaussian relay channel, the multi-way
relay channel, by considering multiple clusters of users that wish to exchange messages locally
within each cluster, with the help of one single relay. This model is an extension of the one
proposed by [Gündüz et al., Jan. 2013] by adding direct links between users of the same cluster.
We first characterize achievable rates for various standard relaying protocols, when time-sharing
among the cluster is used, and compare them with the rates obtained on Gündüz et al.’s model,
which is considered as the asymptotic limit of our model when the gain on the relay-user links
grows large. We also characterize the gap to the cut-set bound for the proposed protocols. The
last part of this chapter gives results for the multi-way relay channel without the time-sharing
assumption.

Publications The work presented in this part was presented in

• [Savard and Weidmann, 2014b] A. Savard and C. Weidmann, ”On the multiway relay
channel with direct links” Proc. IEEE Information Theory Workshop (ITW), Hobart,
Tasmania (Australia), 2014



4 Chapter 0. Foreword

• [Savard and Weidmann, 2015a] A. Savard and C. Weidmann, ”Canal à relais multi-
directionnel avec liens directs” GRETSI, Lyon, France, 2015

• [Savard and Weidmann, 2015b] A. Savard and C. Weidmann, ”Lattice coding for the
Gaussian one- and two-way relay channels with correlated noises” Proc. IEEE
International Symposium on Information Theory (ISIT), Hong-Kong, China, 2015

• [Savard and Weidmann, 2015d] A. Savard and C. Weidmann, ”On the multiway relay
channel with intra-cluster links” to be submitted to IEEE Transactions on Wireless
Communication
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1.1 Theory of the binary case

In various situations, such as sensor networks, distributed coding or networks with relay, side
information (SI) is available at the decoder. Usually this side information, that is correlated to
the source, is compressed in a many-to-one fashion. In the first part of this thesis, we consider
the binary source coding with coded side information problem, which is a typical example of such
a situation as well as a cooperative communication problem.

Two discrete sources X and Y , with finite alphabets X and Y, respectively, and joint distri-
bution PX,Y , are separately encoded by encoders EX and EY at rates RX and RY , respectively.

Decoder DX tries to reconstruct X losslessly as X̂, while Y serves only as SI for decoding X
and won’t be reconstructed. This situation is depicted in Figure 1.1.

EX

PY |X

EY

DX
X

Y

X̂RX

RY

Figure 1.1: Coded side information problem: general case

The achievable rate region for this problem has been characterized by [Ahlswede and Körner,
Nov. 1975]. A rate pair (RX , RY ) is achievable if{

RX ≥ H(X|U)

RY ≥ I(Y ;U),
(1.1)

for an auxiliary random variable U ∈ U , with |U| ≤ |Y|+ 2, such that X−Y −U form a Markov
chain. H denotes the entropy function and I the mutual information.
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In this thesis, we focus only on the binary case. For the case when both X and Y are
binary symmetric, by [Gu et al., 2007] showed that encoding Y using binary quantization with
Hamming distortion criterion is sufficient to achieve the rate region. In this case, one can give
a closed-form expression of the achievable rate region. Let X be a Bernoulli-1/2 source. The
correlation between X and Y is modeled by a Binary Symmetric Channel (BSC) with error
probability p (BSC-p). Encoder EY produces a quantized version of Y and can be represented,
in an idealized setting, by a BSC-D, where D is the optimal distortion obtained for rate RY .
This is depicted in Figure 1.2.

EX

BSC-p

BSC-D

DX
X

Y

X̂S

Ŷ

Figure 1.2: Coded side information problem: binary case

The achievable rate region (1.1) becomes :{
RX ≥ H2(p+D − 2pD)

RY ≥ 1−H2(D),
(1.2)

where H2 denotes the binary entropy function.
If we compare this problem to the relay channel, we can note some similarities: Y , which is

correlated with X serves only as side information, and won’t be reconstructed as for instance the
message sent by the relay in Compress-and-Forward, that only helps the decoding of the source
message. The main difference with relay channel is that the messages sent from the source to
the destination and to the ‘helper node’ (encoder EY ) are not the same.

1 2

R

EX

BSC-p

BSC-D

X

X S

Y

X̂
S

Ŷ

Y Ŷ

Figure 1.3: Coded side information problem from a relay channel point of view

If we take a closer look at the destination, we can note that from the main branch, it receives
a compressed version S of X and from the SI branch a noisy version of X, thus this problem
is equivalent to a Slepian-Wolf problem [Slepian and Wolf, 1973], for which a practical solution
using Low-Density Parity Check (LDPC) codes has been proposed by [Liveris et al., 2002].

1.2 Overview of a practical scheme and outlook

As mentioned previously, since the concatenation of the two BSC is equivalent to a new BSC of
error probability ε = p+D− 2pD, our problem is equivalent to a Slepian-Wolf coding problem.
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We present the following simple scheme based on a LDPC approach and a trellis quantizer for
binary source coding with coded side information. This scheme will be referred throughout this
thesis as standard method and will be used to compare the results obtained with the improved
decoder and the optimized codes.

In the following, the sequence x will be modeled as coming from a Bernoulli-1/2 source. The
correlation between x and the side information y will be modeled by a BSC-p.

The binary input sequence x = (x1, x2, . . . , xn) of length n is encoded by computing its
syndrome s = xHT , where H is the parity check matrix of an LDPC code. y is encoded to
a quantized version w using a binary trellis-coded quantizer based on a convolutional code.
The codeword ŷ closest in Hamming metric to the input sequence y is found using the Viterbi
algorithm and the corresponding information sequence is output as index w. The reconstruction
ŷ(w) associated to the index w is used as channel information at the LDPC decoder DX (see
Figure 1.2). This decoder must then estimate the sequence x from the syndrome s and the
reconstructed SI ŷ(w) using the Belief Propagation (BP) algorithm as in [Liveris et al., 2002].

The key observation for the improved decoder presented in the first part of this thesis
is the following: the coded side information is conveyed by a single quantization index w
but many sequences are mapped onto this quantization index: they form the Voronoi cell
Vw = {y ∈ {0, 1}n|EY (y) = w}. In the practical LDPC-based solution, the iterative decoder only
uses the codeword Ŷ (w) associated to the quantization index w but choosing another sequence
could achieve better performance. Our idea is to project an intermediate solution onto Vw and
continue the decoding with this new sequence. The hope is that this new sequence is closer to
X than Ŷ (w) was, and could thus accelerate the decoding of X.

In order to perform this projection, we need a characterization of all Voronoi cells Vw asso-
ciated to the used convolutional code. Since convolutional codes are linear, the goal is to write
the set of all possible sequences E as the direct sum of the Voronoi cells Vw associated to each
codeword w. The cells are such that Vi ∩ Vj = ∅,∀i 6= j and

E =
⋃
c∈C
Vc =

⋃
c∈C
V0 ⊕ c,

where C is the code, ⊕ denotes the componentwise modulo-2 addition and V0 is the fundamental
Hamming space Voronoi cell, i.e. the set of all sequences that are closer to the all-zero codeword
than to any other codeword.

In the remaining of this chapter, we first introduce LDPC codes, as well as their usually
associated iterative decoding algorithm (the Belief Propagation algorithm), and convolutional
quantizers, as well as two algorithms, the Viterbi and the BCJR algorithms, usually used for
their decoding.

1.3 Low-Density Parity Check code

1.3.1 Definition and decoding

In block coding, an information sequence is segmented into message blocks each of the length
k. At the encoder, each input message u = [u1, . . . , uk] is encoded into a longer binary sequence
v = [v1, . . . , vn], with n > k. The sequence v is called the codeword associated to the message
u. The n − k added bits are called the redundancy, they don’t carry any new information but
provide the capacity of detecting and/or correcting errors. The ratio k/n, that is called the code
rate, represents the average number of information bits carried by each code bit.
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Definition 1.3.1. A binary block code of length n with 2k codewords is called a (n, k) linear
block code if and only if the 2k codewords form a k-dimensional subspace of the vector space 2n.

Since a (n, k) linear block code C is a k-dimensional subspace of 2n, there exist k linearly
independent codewords g1, . . . , gk ∈ C such that each codeword v ∈ C is a linear combination of
these g1, . . . , gk, which form a basis of C. Using a matrix based notation, we may write G as

G =

g1
...
gk

. Thus, the codeword v = [v1, . . . , vn] of the message u = [u1, . . . , uk] can be expressed

as v = uG.

Definition 1.3.2. The above given matrix G is called a generator matrix of the (n, k) linear
code C.

C = {v ∈ 2n|∀u ∈ 2k, v = uG}

Since a (n, k) linear block code C is a k-dimensional subspace of 2n, its dual space is a
n− k-dimensional subspace of 2n, defined as Cd = {w ∈ 2n|∀v ∈ C < w, v >= 0}, where < a, b >
represents the inner product of a and b. Cd can thus be seen as a binary (n, n− k) linear block
code. As previously done, we can find a basis formed by n− k linearly independent codewords

h1, . . . , hn−k and define the generator matrix H of Cd as H =

 h1
...

hn−k

.

Based on these definitions, we can note that HGT = 0.

Definition 1.3.3. Let C be a (n, k) linear code and let x ∈ 2n be any vector. The subset

x+ C = {x+ y|y ∈ C}

is called a coset of C.

Definition 1.3.4. A coset leader of coset x+ C is a word y ∈ x+ C of minimum weight.

Definition 1.3.5. The above given matrix H is called a parity check matrix of the (n, k) linear
code C.

C = {v ∈ 2n|vHT = 0}

In other words, a (n, k) linear block code C is defined as C = Im(G) = Ker(H).
LDPC codes have been introduced by Gallager in 1963 and rediscovered by MacKay in the

90s. They are linear block codes whose parity check matrix H is sparse, i.e. has a low density
of 1s. The sparseness of H guarantees a decoding complexity which increases linearly with
the code length. LDPC codes are very popular and widely used since their decoder performs
near-capacity.

H =


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 1 1 1 0
1 0 0 1 1 0 0 1


check nodes

variable nodes

Figure 1.4: Example of a LDPC parity check matrix H and its associated Tanner graph
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Definition 1.3.6. Regular LDPC codes are such that each column of the parity check matrix is
of weight wc and each line of weight wl. LDPC codes whose parity check matrix doesn’t satisfy
these criteria are irregular LDPC codes.

LDPC codes can also be described by their Tanner graph. A Tanner graph is a bipartite
graph, that is a graph composed of two different types of nodes: the variable nodes (VN) and
the check nodes (CN). The n coordinates of the codewords are associated with the VN and
each CN is associated with a parity check constraint, thus there are n VN and n − k CN. A
connection between CN i and VN j exists only if the entry hij of the matrix H is equal to 1,
thus the adjacency matrix of this graph is the parity check matrix H of the code.

The degree of a node is the number of edges connected to it. For an irregular LDPC code,
one defines two polynomials to describe the distribution of the edges as follows:

λ(x) =

Vmax∑
i=1

λix
i−1 and ρ(x) =

Cmax∑
i=1

ρix
i−1,

where Vmax and Cmax are the maximal VN and CN degrees, respectively. Given the Tanner
graph of the LDPC code, λi is the fraction of edges that are connected to a VN of degree i (i.e.
connected to i CN). Similarly, ρi is the fraction of edges that are connected to a CN of degree
i. The design rate of this code is given by:

R = 1−
∫ 1

0 ρ(x)dx∫ 1
0 λ(x)dx

.

The Tanner graph is also very useful for the decoding procedure: each node can be seen as
an operating processor whose result is sent to its neighbors defined by the edges.

As said previously, LDPC codes can be decoded iteratively using their Tanner graph and
message passing algorithms: Messages are passed along the edges of the graph. Messages from
VN to CN are computed based on the observed values of the VN and some messages passed
from neighboring CN. An important aspect of this algorithm is that the message sent by VN
v to CN c must not take into account the incoming message from c to v. In the same way,
messages from CN to VN are computed based on some messages sent by the neighboring VN.

One important algorithm is the Belief Propagation (BP) algorithm, where the decoder per-
forms a symbol-wise maximum a posteriori decoding by computing the a posteriori probabilities
APP for each VN and taking the value that maximizes this quantity. The messages passed are
probabilistic information (beliefs). The message sent from v to c is the probability that v has
a certain value given the observed value and values communicated to v in the previous round.
The message from c to v is the probability that v takes a certain value given messages sent to c
in the previous round. Usually, the decoding is performed in the Log-Likelihood domain. For a
binary random variable X, let LLR(X) = P (X=0)

P (X=1) be the Log-Likelihood Ratio (LLR) of X.
The decoder is initialized with the LLRs from the channel, which are received by the n VN.

At the beginning of each iteration, each VN takes inputs from the channel and its neighboring
CN and sends extrinsic information to its neighboring CN. Then, each CN takes inputs from its
neighboring VN and sends extrinsic information to its neighboring VN. After a predetermined
stopping criteria has been reached, the decoder computes the LLRs from which the decided bit
value is computed.

In this subsection, we present the BP algorithm used in Slepian-Wolf problem: Suppose that
a destination wishes to recover a binary i.i.d. sequence X losslessly and has as inputs a noisy
version Ŷ of X, where we assume that the noise is modeled via a Binary Symmetric Channel
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(BSC) of error probability ε (BSC-ε), and a compressed version S of X that is equal to the
syndrome S = XHT .

The following notations will be used:

• ŷi, i = 1, . . . , n: current component values of Ŷ ;

• sj , j = 1, . . . , n−k: components of the realization of syndrome S = XHT ;

• LLRi: LLR corresponding to channel value ŷi;

• mc→v
j,i : LLR message from CN cj to VN vi;

• mv→c
i,j : LLR message from VN vi to CN cj ;

• N (v): set of CN connected to VN v;

• N (c): set of VN connected to CN c.

The BP algorithm is given in Algorithm 1.

Algorithm 1 Belief propagation for Slepian-Wolf coding

1: Initialization :

LLRi = log

(
P (Xi = 0|ŷi)
P (Xi = 1|ŷi)

)
= (1− 2ŷi) log

1− ε
ε

2: for l→ iter do
3: for i→ Vmax do
4: Data pass:

mv→c
i,j = LLRi +

∑
cj′∈N (vi)\cj

mc→v
j′,i

5: end for
6: for j → Cmax do
7: Check pass:

mc→v
j,i = 2 tanh−1

(1− 2sj)
∏

vi′∈N (cj)\vi

tanh

(
mv→c
i′,j

2

)
8: end for
9: for i→ Vmax do

10: Decision:

x̂i =


0, if LLRi +

∑
cj∈N (vi)

mc→v
j,i ≥ 0

1, else

11: end for
12: end for

The only step that differs from the BP algorithm used in standard channel decoding is the
check pass, where we have to take into account the value of the syndrome that isn’t necessary
equal to zero.



1.3 Low-Density Parity Check code 13

LDPC are very popular because of their near capacity performance, unfortunately, these
can’t be achieved with regular LDPC codes and one needs to optimize the degree distribution
of the code to come closer to the Shannon bound. One way to perform the optimization is using
density evolution and differential evolution.

1.3.2 Optimization and construction

Up so far, we presented a decoding algorithm that can correct some errors, given a LDPC code.
One fundamental question is how does the LDPC code choice impact the performance or in other
words, given a Tanner graph, how much noise the BP algorithm can correct. Unfortunately this
question can’t be answered in that form, but we can answer the question for an ensemble of
codes, i.e. codes that have the same degree distributions ρ and λ.

Richardson and Urbanke proposed in [Richardson and Urbanke, 2001b] a tool called density
evolution that determines the asymptotic ensemble average behavior of LDPC codes given the
channel model and the noise power. For each iteration of the BP algorithm, this algorithm
tracks the average probability density function (pdf) of the messages from VN to CN.

We can define the error probability at iteration l of the BP algorithm as:

P (l)
e =

∫ 0

−∞
f (l+1)
v (x)dx,

where f
(l+1)
v (x) is the pdf of the correct message from a VN to a CN during the l-th iteration of

BP algorithm. Using this tool, one can determine the decoding threshold of a LDPC code and
also optimize its degree distributions using for instance differential evolution.

Definition 1.3.7. The decoding threshold corresponds to the maximum noise power such that

the error probability vanishes as l grows large, lim
l→∞

P
(l)
e = 0.

We present density evolution for the following setup: Assume that the destination wishes to
recover a binary i.i.d. sequence X from a noisy version Y , where we assumed that the noise is
modeled as a BSC-ε.

The following notations will be used:

• f (l)
v : pdf of message from a VN to a CN at lth iteration;

• f (l)
c : pdf of message from a CN to a VN at lth iteration;

• fo: pdf of a priori LLR.

Since the path from X to Y is modeled by a BSC-ε, fo is given by

fo = εδ

(
x+ log

(
1− ε
ε

))
+ (1− ε)δ

(
x− log

(
1− ε
ε

))
,

where δ(x) is the Dirac distribution.

The average density f
(l+1)
v is given by

f (l+1)
v = fo ⊗

[
Vmax∑
i=1

λi

(
i−1⊗
k=1

f (l)
c

)]
,

where ⊗ stands for the convolution operation and
i−1⊗
k=1

for the convolution of i− 1 pdfs.
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In the same way, the average f
(l+1)
c is given by

f (l+1)
c =

Cmax∑
i=1

ρiΓ
−1

[
i−1⊗
k=1

Γ
(
f (l+1)
v

)]
,

where Γ is the density transformation operator induced by γ : x→ (sgn(x),− log tanh |x/2|).
Algorithm 2 describes how density evolution is performed.

Algorithm 2 Density evolution

1: for l→ iter do

2: f
(l+1)
v = fo ⊗

[
Vmax∑
i=1

λi

(
i−1⊗
k=1

f
(l)
c

)]
3: f

(l+1)
c =

Cmax∑
i=1

ρiΓ
−1

[
i−1⊗
k=1

Γ
(
f

(l+1)
v

)]
4: P

(l)
e =

∫ 0
−∞ f

(l+1)
v (x)dx

5: if P
(l)
e ≥ P (l−1)

e then
6: break
7: end if
8: end for

Differential evolution is a global optimization algorithm that generates, at each iteration l,

NP possible degree distributions, denoted by {π(l)
i }NP

i=1. Here π denotes a vector grouping a non-
redundant set of coefficients of λ(x) and ρ(x) satisfying the design rate and other constraints, for

instance concentrated check degrees. The first generation, {π(0)
i }i=1,...,NP , is initialized uniformly

at random.
At each round, we search within the NP candidates for the one distribution that minimizes

the error probability after performing a fixed number of density evolution steps; this distribution

is denoted by π
(l)
best. For each of the NP distributions, we generate a mutant distribution by

randomly selecting four distinct distributions indexed i1, i2, i3, i4 and computing

π
(l+1)
i = π

(l)
best + F (π

(l)
i1

+ π
(l)
i2
− π(l)

i3
− π(l)

i4
),

where F > 0 is a non-negative differential mixing parameter. The NP distributions for the next
round are taken to be either the distribution from the previous round or the mutant candidate,
if the latter yields a smaller error probability during the density evolution phase.

One major limitation in the BP algorithms performance is the presence of cycles in the
Tanner graph.

Definition 1.3.8. A cycle is defined as a set of connected vertices in the Tanner graph that
start and end at the same vertex. The length of a cycle is the number of edges it contains and
the girth is defined as the length of the smallest cycle.

The larger the girth is, the better the code is under BP decoding since the size of the girth
is correlated with the number of independent decoding iterations. In iterative decoding, VN
and CN send messages in turn along connected edges and outgoing messages are computed from
incoming messages. Thus the girth corresponds to the minimal number of half-iterations before
(part of) a message can come back to the originating node on a different edge. In other words,
since cycles lead to correlations in the marginal probabilities passed by the BP algorithm, the
smaller the girth, the larger the effect on the decoding performance.
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For long LDPC codes, randomly chosen LDPC codes will always perform well since the
concentration theorem assures that the behavior of a randomly chosen code from an ensemble
concentrates around the ensemble average. Unfortunately, for simulation, we have to set a code
length and no one accepts a code that probably works. Thus, given a code ensemble and a code
length, the goal is to find methods to build good codes.

The method considered in this thesis is Progressive Edge Growth (PEG).
PEG algorithm is based on Bit Filling. In both methods, VN are added one at a time. In

Bit Filling, edges connecting the new VN are chosen to avoid cycles of size g. For each new VN,
a set of feasible CN is computed and the CN chosen within this set is the one that was the less
used. In PEG algorithm, edges added are chosen to maximize the local girth at the current VN
instead of satisfying a fixed girth requirement.

1.4 Convolutional codes

1.4.1 Definition

Convolutional codes have been introduced by Elias in 1955 and, like LDPC codes presented in the
previous section, they have also been used for wireless communications for over 50 years. Again,
their strength relies on their easy implemented maximum-likelihood decoder. In opposition to
LDPC codes, convolutional codes aren’t block codes: the convolutional encoder assigns code
bits to an incoming information bit stream, and the output at time t depends not only on the
inputs at that time instant but also on previous incoming information bits.

In this thesis we introduce all definitions and concepts based on the convolutional code with
generator matrix [1, 1 + D] given on Figure 1.5. We can first note that two coded bits are
computed for each information bit, thus the rate of this code is 1/2. We still perform each
operation in GF(2), thus the adders are modulo-2 adders. The states of the encoder are given
by the content of the memory cells, thus there are two states for this convolutional code: 0 and
1.

D +u

x1

x2

Figure 1.5: A two-state, rate 1/2 convolutional code

We can also note that the coded bits are the result of the convolution of the information bit
and two different discrete-time finite-impulse-respond filters with operations in GF(2). The two
polynomials are g1(D) = 1 and g2(D) = 1 + D. The encoder outputs the convolution of the
input sequence u(D) = u0 + u1D + u2D

2 + . . . by g1(D) and g2(D) as xi(D) = u(D)gi(D).

Definition 1.4.1. The matrix G(D) = [g1(D) g2(D)] is called the code’s generator matrix and
the polynomials gi(D) are the generator polynomials. As for LDPC codes, we can also use a par-
ity check matrix H(D) to describe a convolutional code and H(D) is such that G(D)H(D) = 0.

In the previous section, we saw that the Tanner graph, which is a graphical representation
of LDPC codes, is very useful for the decoding procedure: trellis representation is the analog
for convolutional codes. The trellis gives transitions, labeled by the coded bits, between the
encoder states, for a given input information bit.

For our example code, one trellis section is given on Figure 1.6. Transitions are labeled by
the output values x1x2, dashed lines correspond to u = 0 and solid lines to u = 1.
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0

1

0

1

00

11

01

10

Figure 1.6: One trellis section of the convolutional code with generator matrix [1, 1 +D]

There exists many different decoders for convolutional codes. The most famous two are
the Viterbi and the BCJR algorithm. The Viterbi algorithm is a maximum-likelihood sequence
decoder, thus it minimizes the probability of code-sequence error, whereas the BCJR is a bit-wise
maximum a posteriori decoder, which minimizes the probability of information bit error.

For the rest of the section, we assume that the coded sequence is of length K and denote by
y1→K the received sequence.

1.4.2 Algorithms

The Viterbi algorithm [Viterbi, April 1967] is a dynamic programming maximum-likelihood
decoding procedure that updates a set of trellis vertices (states) at every time unit. At every
time unit, it computes the path metric for all paths entering a trellis state using the metrics at
the previous time unit and the received sequence. This path metric is the cumulated Hamming
distance between the received sequence and a given path in the trellis. It then compares all
incoming metrics of a state and chooses the path with the smallest metric, or uses a tie-breaking
rule when more than one path has minimal metric. Thus, at the end of the decoding, the
codeword that is closest to the received sequence is output.

Let Λk denotes the cumulated metric vector at time unit k. In our case this vector has two
components: the cumulated metric of state 0 and the one of state 1. Let y1y2 denote the received
sequence at time unit k. The cumulated metric vector for the next time unit is given by:

Λk+1 =

[
min{Λk(0) + dH(y1y2, 00); Λk(1) + dH(y1y2, 01)}
min{Λk(0) + dH(y1y2, 11); Λk(1) + dH(y1y2, 10)}

]
.

The Viterbi algorithm is given in Algorithm 3.

Algorithm 3 Viterbi algorithm

1: Initialization :
Λ0 = [0; 1]T

2: for k → K do
3: Compute the new cumulated metric vector Λk+1 and for each component j of Λk+1 store

the path minimizing Λk+1(j).
4: end for
5: Decision: Choose the path associated with the minimal component of the cumulated metric

vector

The BCJR algorithm, proposed by Bahl, Cocke, Jelinek and Raviv in [Bahl et al., Mar.
1974] is a maximum a posteriori decoder, the goal is thus to compute the APP P (uk|y1→K).

First note that P (uk, y1→K) = P (uk|y1→K)P (y1→K), since the second term is a constant,
the searched APPs are proportional to P (uk, y1→K).
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Let sk denote the content of the memory cells at time unit k and xk the output vector at
time unit k.

p(uk, y1→K) =
∑
sk

∑
sk−1

∑
xk

P (uk, sk−1, sk, xk, y1→K)

∝
∑
sk

∑
sk−1

∑
xk

αk−1(sk−1)βk(sk)λ(xk)P (xk|sk, sk−1)P (sk|sk−1, uk) (1.3)

where

αk−1(sk−1) = P (y1→k−1|sk−1),

βk(sk) = P (yk+1→K |sk) and

λ(xk) = P (yk|xk).

Let Vp(sk) be defined as Vp(sk) = {sk−1|P (sk|sk−1) 6= 0} and Vf (sk−1) as
Vf (sk−1) = {sk|P (sk|sk−1) 6= 0}. One can prove that

∀k ∈ {1, . . . ,K}, αk(sk) =
∑

sk−1∈Vp(sk)

αk−1(sk−1)λ(xk) (1.4)

and
∀k ∈ {1, . . . ,K}, βk−1(sk−1) =

∑
sk∈Vf (sk−1)

βk(sk)λ(xk). (1.5)

Thus, the BCJR algorithm is a forward/backward decoding algorithm: the α metric being
evaluated in a forward fashion on the trellis and the β metric in a backward fashion.

The BCJR algorithm is given in Algorithm 4.

Algorithm 4 BCJR algorithm

1: Initialization: Compute all λ(xk), set α0(s0) = [1; 0; . . . ; 0]T and βK(sK) = [1; 0; . . . ; 0]T .
2: for k = 1→ K do
3: Compute recursively the α metric using (1.4)
4: end for
5: for k = K → 1 do
6: Compute recursively the β metric using (1.5)
7: end for
8: for k = 1→ K do
9: Compute P (uk, y1→K) using (1.3) and decide ûk = arg maxP (uk, y1→K).

10: end for

Convolutional codes can be used for quantization: The codeword ŷ closest in Hamming
metric to the input sequence y1→K is found using the Viterbi algorithm and the corresponding
information sequence is output as index w.
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As mentioned in Chapter 1, the improved decoder that will be presented in Chapter 3 relies
on the characterization of all the Voronoi cells Vw of the convolutional code used in the side
information branch. Since convolutional codes are linear, a characterization of the fundamental
Hamming-space Voronoi region V0 of this convolutional code is sufficient.

We describe the characterization of the Voronoi cell V0 of a convolutional code in a tutorial
way based on the rate 1/2 convolutional code with generator matrix [1, 1 +D] presented in the
previous chapter. This characterization can of course be generalized to any convolutional code.

The encoder of a convolutional code can be represented by a Finite State Machine (FSM)
and as seen previously, its trellis representation allows an efficient decoding using the Viterbi or
the BCJR algorithm.

The performance of a convolutional code may be evaluated by computing the decoder error
probability. Works based on the union bound and the distance spectrum first gave useful ap-
proximations. First works on the exact error performance computation have been investigated
by Morrissey using a Markov chain describing the decoder operation [Morrissey, July 1970]. He
extended this work to the Viterbi decoding algorithm for a class of convolutional codes [Morris-
sey, Oct. 1969] and [Best et al., March 1995] later generalized this approach to any convolutional
code. All these methods were based on this FSM approach.

[Calderbank et al., May 1995] used the same Markov chain approach to evaluate the quan-
tization performance of binary convolutional codes. Using this formalism, they were able to
derive exact formulas for the expected incremental Mean Square Error (MSE) per dimension for
arbitrarily long sequences. The maximum incremental MSE may be seen as the covering radius
of the convolutional code. Using their Markov chain characterization, one can more easily de-
rive exact formulas for the expected performance, which is rarely possible, due to computational
difficulties.
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When quantizing uniformly distributed sources, the Markov chain describes a uniform dis-
tribution over all Voronoi cells of the convolutional code. In this chapter, we introduce a char-
acterization of the fundamental Hamming-space Voronoi region V0 of a convolutional code, that
is the Voronoi cell of the all-zero codeword.

[Agrell, Jan. 1996] proposed a characterization of the Voronoi cells of linear block codes in
Euclidean metric, which is relevant to soft decoding. Here, we provide a similar characterization,
but for convolutional decoding using Hamming distance as metric. In terms of the standard array
of a code, we search for the first column of the table, i.e. all coset leaders (which are infinite
sequences for convolutional codes).

The fundamental Hamming-space Voronoi cell V0 is the set of all sequences that are closer,
in terms of Hamming distance, to the all-zero codeword than to any other codeword (ties can
be broken arbitrarily). Since the code is linear, the goal is to write the space of all sequences E
as the direct sum of the Voronoi cells Vc associated to each codeword c. The cells Vi are such
that Vi ∩ Vj = ∅,∀i 6= j.

E =
⋃
c∈C
Vc =

⋃
c∈C
V0 ⊕ c, (2.1)

where C is the code and ⊕ denotes componentwise modulo-2 addition.

Our problem is equivalent to enumerating all channel sequences that the Viterbi algorithm
decodes to the all-zero codeword. When we perform our characterization, we must consider a
tie-breaking rule in the Viterbi decoding algorithm such that the constraint (2.1) is satisfied.
Instead of a deterministic rule, we will use a probabilistic one, resulting in a simpler Markov
chain characterization.

The rest of the chapter is organized as follows: Section 2.1 present the convolutional decoder
FSM, Section 2.2 explains how to get the FSM of the Voronoi cell V0 using this convolutional
decoder FSM and finally, Section 2.3 gives the transition probabilities of this new obtained FSM.

2.1 Convolutional decoder FSM

States in the encoder state diagram of the convolutional code (the content of the memory cell)
are called encoder states or trellis states. For example, the convolutional code with generator
matrix [1, 1 +D] has two encoder states: state 0 and state 1.

The internal states of the Viterbi decoder, i.e. the path metrics for each encoder state, are
called decoder states. For the convolution code with generator matrix [1, 1 + D], the decoder
states are pairs of individual path metrics. A possible decoder state for our example is [1, 2].

Since the Viterbi algorithm computes the new metric using the previous metrics and the
sequence received from the channel, the choices made by the algorithm depend only on the
metric differences. Thus we can form metric states that are normalized decoder states where
the minimum component has been subtracted. The minimal component of every metric state
(vector) will be 0.

For the above example, the metric state is [0, 1].

Since the set of possible path metrics with this normalization step is finite (the starting
state of the algorithm is known), the number of metric states is also finite. For the code used,
the Hamming distance between a label and the received sequence is at most 2, thus the set of
possible metric states is {[0, 0], [0, 1], [1, 0], [0, 2], [2, 0]}.

Definition 2.1.1. A probabilistic finite state machine is a tuple (S,Σ, T , P, s0,F) where

• S is a finite set of states;
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• Σ is the label alphabet;

• T ⊆ S × Σ× S is the set of transitions, where for each transition e ∈ T , σ(e) denotes its
starting state, τ(e) its ending state and o(e) its label;

• P (e), e ∈ T are the transition probabilities;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of proper final states.

Thus, for our example, the FSM of the Viterbi decoder (denoted FSM-dec) is characterized
by:

• S = {[0, 0], [0, 1], [1, 0], [0, 2], [2, 0]};

• Σ = {00, 01, 10, 11};

• T is given in the table of Figure 2.1;

• P will depend on the channel model;

• s0 = [0, 2]1;

• F = S: all states are final states2.

A graphical representation of FSM-dec is given in Figure 2.1.

This FSM can be used to compute the exact error probability of the decoder, as done in
[Best et al., March 1995] or [Calderbank et al., May 1995].

2.2 FSM of the Voronoi cell V0 of a convolutional code

2.2.1 FSM of the Voronoi cell V0 of a convolutional code using the Viterbi
decoding algorithm

Since we are interested in the characterization of the fundamental Hamming-space Voronoi cell
V0, we must build a FSM that only keeps metric states such that the sequence is decoded onto
the all-zero codeword (using the Viterbi algorithm). This will be denoted by FSM-V0.

Proposition 2.2.1. A necessary condition for a metric state m = [m0, . . . ,m|Se|−1] ∈M to be
kept in FSM-V0 ⊆ FSM-dec is given by:

min
e∈T :τ(e)=0

{mσ(e) + dH(r, o(e))} = m0 + dH(r, 0). (2.2)

Se is the set of encoder states, r the received sequence and dH(x, y) the Hamming distance
between x and y.

1The Viterbi decoder starts in state 0 with metric 0, while state 1 can be thought of having metric ∞. However,
it can be shown that starting in [0, 2] yields the same behavior.

2For channel coding, the code is generally terminated in a specific state, whereas this is not necessary for
quantization. This will of course impact the way we treat termination for our FSM.
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Received sequence

Metric state 00 01 10 11
[0, 0] [0, 1] [0, 1] [1, 0] [1, 0]
[0, 1] [0, 2] [0, 0] [0, 0] [2, 0]
[1, 0] [0, 0] [0, 2] [2, 0] [0, 0]
[0, 2]∗ [0, 2] [0, 0] [0, 0] [2, 0]
[2, 0] [0, 0] [0, 2] [2, 0] [0, 0]

[0, 0] [0, 1][1, 0]

[0, 2]

[2, 0]

00,01

10,11

00

01,10

11

00,11

01

10

00

01,10

10

00,11

01

11

Figure 2.1: Transition table of FSM-dec and its graphical representation for the convolutional
code with generator matrix [1, 1+D] (The metric state with the asterisk in the table corresponds
to the initial state.)

Proof. The proposition can be rephrased as follows: among all transitions (edges) entering state
0, the transition with the all-zero label coming from state 0 must have the smallest Hamming
distance from the received sequence. This necessary condition assures that the sequence may be
mapped onto the all zero codeword, and thus lie in V0.

In our example, we have two transitions entering state 0: one coming from state 0 with label
o0→0 = 00 and one coming from state 1 with label o1→0 = 01. Suppose that the metric state at
time i is [m0(i),m1(i)]T and that the received sequence at time i + 1 is r1r2. The new metrics
are given by [

m0(i+ 1)
m1(i+ 1)

]
=

[
min{m0(i) + dH(r1r2, 00),m1(i) + dH(r1r2, 01)}
min{m0(i) + dH(r1r2, 11),m1(i) + dH(r1r2, 10)}

]
. (2.3)

We only keep the metric state:[
m0(i+ 1)−min{m0(i+ 1),m1(i+ 1)}
m1(i+ 1)−min{m0(i+ 1),m1(i+ 1)}

]
=

[
max{0,m0(i+ 1)−m1(i+ 1)}
max{0,m1(i+ 1)−m0(i+ 1)}

]
(2.4)

if the following equality holds

min{m0(i) + dH(r1r2, o0→0),m1(i) + dH(r1r2, o1→0)} = m0(i) + dH(r1r2, 00), (2.5)

which insures that we stay in the Voronoi cell V0.
Transitions from the previously obtained FSM-dec that do not satisfy this necessary condition

are removed, yielding a new FSM given in Table 2.1.
We notice that metric state [2, 0] has no transitions left to other metric states, thus we can

remove it too, yielding the Voronoi FSM in Figure 2.2. This removal procedure may need to be
applied repeatedly.



2.2 FSM of the Voronoi cell V0 of a convolutional code 23

Received sequence

Metric state 00 01 10 11

[0, 0] [0, 1] − [1, 0] −
[0, 1] [0, 2] [0, 0] [0, 0] [2, 0]
[1, 0] [0, 0] − [2, 0] −
[0, 2]∗ [0, 2] [0, 0] [0, 0] [2, 0]
[2, 0] − − − −

Table 2.1: FSM-V0 of the Voronoi cell V0 for the convolutional code with generator matrix
[1, 1 +D]

[0, 0] [0, 1][1, 0]

[0, 2]

00 (7/8)

10 (1/8)

00 (4/7)

01, 10
(1/4, 1/4)

00 (1)

00

01, 10
(1/7, 2/7)

Figure 2.2: FSM-V0 of the Voronoi cell V0 for the convolutional code with generator matrix
[1, 1 +D]. In parentheses: branch transition probabilities

Closer inspection of the metric states reveals that they fall into two classes: F , which contains
the metric states in which the metric of state 0 is the smallest one, and F̄ , containing the other
metric states. The class F contains the proper final states, that are the states in which a
finite-length sequence may terminate and be guaranteed to lie in V0.

For the same reason, the finite-length decoder can’t stop in a metric state of class F̄ since the
all-zero codeword won’t be decoded. Nevertheless, a decoding trajectory can go through metric
states of that second class and still be mapped onto the all-zero codeword. For instance, the
sequence 0010100000, corresponding to the trajectory [0, 2]→ [0, 2]→ [0, 0]→ [1, 0]→ [0, 0]→ [0, 1],
is indeed mapped to the all-zero codeword using the Viterbi algorithm.

The characterization of V0 must take this particularity into account. If we consider finite-
length sequences, the trellis built from this FSM must only keep metric states of class F in the
last stage.

Thus, for our example, FSM-V0 is characterized by:

• S = {[0, 0], [0, 1], [1, 0], [0, 2]};

• Σ = {00, 01, 10}

• T is given in Table 2.1;

• s0 = [0, 2];

• F = {[0, 0], [0, 1], [0, 2]}.

A graphical representation of FSM-V0 is given in Figure 2.2.
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2.2.2 FSM of the Voronoi cell V0 of a convolutional code using the syndrome
decoding algorithm

[Schalkwijk et al., September 1978] proposed another approach to decode convolutional codes:
the syndrome decoding algorithm. In [Schalkwijk et al., November 1979], they proposed a new
characterization of the decoder error probability using this algorithm. It can be also used to
characterize the cell V0. For this ML decoder, the decoder first forms the syndrome z and then,
using a recursive algorithm like Viterbi’s, a tuple of noise sequence of minimum Hamming weight
that may be a possible cause for this syndrome is output. Using this noise sequence estimate,
an estimate of the sent message can be form.

Assume that the data sequence is u(D) = u0 + u1D + u2D
2 + . . . and that we use the

convolutional whose generator polynomials are g1(D) = 1 and g2(D) = 1 + D. We denote
the encoded outputs as xi(D) = u(D)gi(D), i = {1, 2}. The noisy outputs are defined as
yi(D) = xi(D) + ni(D). The syndrome is obtained by

z(D) = g2(D)(g1(D)u(D) + n1(D)) + g1(D)(g2(D)u(D) + n2(D))

= g2(D)n1(D) + g1(D)n2(D).

Using a recursive algorithm, the noise sequence n̂1(D), n̂2(D) of minimum weight that could
cause this syndrome is obtained. The estimate data sequence is computed as

x̂i(D) = yi(D) + n̂i(D).

The syndrome former of the convolutional code with generator matrix [1, 1 +D] is given on
Figure 2.3. One section of the syndrome former trellis is also given on the same figure. Each
transition of the trellis is labeled with the error bit [n1, n2]. Transitions marked with dashed
lines correspond to z = 0 and solid line to z = 1.

D

+

y1

y2
z

0

1

0

1

00

0111
10

01

00 10

11

Figure 2.3: Syndrome former and one trellis section for the convolutional code with generator
matrix [1, 1 +D]: dashed lines correspond to z = 0 and solid line to z = 1.

Example 2.2.1. Assume that u = 0100. Thus x1 = 0100 and x2 = 0110. After transmission,
the received sequence is given by y1 = 0101 and y2 = 1110, thus the syndrome is given by
z = 1001. Using the Viterbi algorithm on the trellis given on Figure 2.3, one obtains n̂1 = 0001
and n̂2 = 1000 and thus x̂1 = 0100 and x̂2 = 0110.

Since the cell V0 is composed of all coset-leaders, in other words all the sequences of minimum
Hamming weight associated with all possible syndromes, we can again form a FSM based on
other metric states, given on Table 2.2. Using this FSM, we can form all sequences contained
in V0.

2.3 Transition probabilities in the Voronoi FSM

The goal of assigning probabilities to the transitions of FSM-V0 is to obtain a uniform probability
distribution over all sequences in V0. The equivalent problem for FSM-dec is trivial, since
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z = 0 z = 1

Metric Metric Survivor Metric Survivor
state state state
[0, /] [0, 2] 0, 0 [0, 0] 0, 0
[0, 2] [0, 2] 0, 0 [0, 0] 0, 0
[0, 0] [0, 1] 0, 1 [0, 1] 1, 0
[0, 1] [0, 2] 0, (0, 1) [0, 0] (0, 1), 0

Table 2.2: FSM of the Voronoi cell V0 for the convolutional code with generator matrix [1, 1+D]
using the syndrome decoding algorithm. Columns 3 and 5 list the survivor (i.e. the encoder state
with minimum weight transition): if there is a choice of survivor, candidates are given within
parentheses.

uniform probabilities over the 2n transitions leaving every metric state (for rate-k/n codes) will
result in uniform probability over the space of binary sequences. This does not hold for FSM-V0,
since some outgoing transitions may not always be available due to tie-breaking in the Viterbi
algorithm. The correct probabilities can be found using a weighted adjacency matrix.

Proposition 2.3.1. Let the weighted adjacency matrix A = [ai,j ], where

ai,j =
∑

e∈T :
σ(e)=i
τ(e)=j

1

w0(e)

and w0(e) is the number of minimum-metric branches entering Viterbi decoder state 0 in metric
state j. Then the metric state transition probabilities are obtained from the positive eigenvector
µ0 corresponding to the Perron-Frobenius eigenvalue λ0 of A as follows:

pi,j = Pr{st=j|st−1 = i} =
ai,jµ0,j

λ0µ0,i
. (2.6)

The probabilities of individual branches e such that σ(e) = i and τ(e) = j is Pr(e) =
pi,j

ai,jwo(e)

(so their sum is pi,j as expected). The rate of FSM-V0 equals 1
n log2 λ0.

Proof. The proof relies on counting the number of sequences in V0 and computing its asymptotic
growth rate. The number of sequences following a specific path on FSM-V0 is given by the
product of the ai,j along the path. Thus ai,j is incremented by 1/w0(e) for each transition e
leading from metric state i to j. The division by w0(e) accounts for the fact that the tie-breaking
rule in the Viterbi algorithm picks one out of the w0(e) winning paths entering state 0. (A tie-
breaking rule not respecting this proportion would result in V0 being either too small or too
large.)

Let N t
u(i) be the number of sequences of length (t−u)n bits beginning in metric state i at time

u. (One time step of the FSM-V0 corresponds to n bits.) Then one has N t
0(i) =

∑
j ai,jN

t
1(j),

or N t
0 = AN t

1 using column vectors. For t → ∞, the asymptotic growth is dominated by the
Perron-Frobenius eigenvalue λ0, i.e. N t

0 = λt0µ0, obtained from the equation Aµ = λµ. The rate

per output bit of FSM-V0 is thus 1
n log2 λ0.

The transition probabilities pi,j are well-defined, since∑
j

pi,j =
∑
j

ai,jµ0,j

λ0µ0,i
=

[Aµ0]i

λ0µ0,i
= 1. (2.7)
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To see that these are the correct pi,j , one may compute the rate R of the probabilistic FSM-
V0 and compare with the rate defined using the eigenvalue λ0. Notice that R will be larger than
the entropy rate of the underlying Markov chain, since there are in general multiple distinctly
labeled weighted transitions between states. Each bundle of parallel edges from state si to sj
contributes P (si → sj) log ai,j to the rate (we will explain below why sometimes this does not
coincide with the edge label entropy). Let the row vector π be the stationary distribution of
P = [pi,j ], obtained from πP = π. Then

R = −
∑
i

πi

H(St|St−1 = i) +
∑
j

pi,j log ai,j


=
∑
i

πi

[
H(pi,1, pi,2, . . .) +

∑
j

pi,j log ai,j

]

where the first term in brackets is the Markov chain conditional entropy. One has

R =
∑
i

πi

[
H(pi,1, pi,2, . . .) +

∑
j

pi,j log ai,j

]

=
∑
i

πi

[
−
∑
j

pi,j log
ai,jµ0,j

λ0µ0,i
+
∑
j

pi,j log ai,j

]
= log λ0 +

∑
i

πi logµ0,i −
∑
i

πi
∑
j

pi,j logµ0,j

= log λ0,

where the last equality is due to the eigenvalue equation
∑
i
πipi,j = πj (see problem 6.13 in

[Ash, 1990]).

The rate computation in the proof reflects a peculiarity in the probabilistic FSM model for
V0, namely the fact that ai,j may be a sum of non-integer fractions. In that case the edge label
entropy will be larger than log ai,j . For example, for two parallel edges with w0 = 2 one has
H = 1, but log ai,j = log(1/2 + 1/2) = 0. The reason of this discrepancy is that the probabilistic
model is insufficient to capture the actual tie-breaking behavior. This will be illustrated in the
following.

Example 2.3.1. Consider the two-state FSM with

T =

(
s0

a−−−→
w0=1

s1, s0
b−−−→

w0=2
s1, s1

c−−−→
w0=1

s0, s1
d−−−→

w0=1
s0

)
,

where a, b, c, d stand for distinct output symbols. It has a0,1 = 1.5, a1,0 = 2 and thus λ0 =
√

3.
The symbols a and b will be output in proportion pa/pb = 2/1 and so the apparent output entropy
on the transition s0 → s1 is h(1/3) ≈ 0.92 > log a0,1 ≈ 0.58. Accounting for a proper tie-breaking
rule requires introducing additional states to remove this spurious uncertainty (entropy). A
necessary and sufficient condition for this is that all transitions in the new FSM have unit
weight, i.e. w0 = 1. This is easily done for the present example by extending the original FSM
with a state s2 as follows:

T ′ =
(
s0

a−−−→
w0=1

s1, s0
b−−−→

w0=1
s2, s1

c−−−→
w0=1

s0, s1
d−−−→

w0=1
s0, s2

c−−−→
w0=1

s0,

)
,
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that is, the tie-breaking rule says that b will always be followed by c (one could have chosen d
instead of c, but this choice must be deterministic). The point is that tie-breaking must guarantee
that a appears exactly twice as often as b, rather than on average. The original FSM is seen to
be a projection of the extended FSM in which s1 and s2 are superposed, leading to the spurious
probabilistic choice that increases entropy. In other words, the original FSM does not have
sufficient memory to correctly model tie-breaking.

It is easily seen that Markov chain output entropy and actual rate coincide if and only if
tie-breaking is such that w0(e) = 1, ∀e ∈ T . Indeed, for a state transition si → sj we have the
entropy due to parallel edges

Hi,j = −
∑
e∈Ti,j

1

ai,jw0(e)
log

1

ai,jw0(e)

= log ai,j +
∑
e∈Ti,j

logw0(e) ≥ log ai,j ,

with equality if and only if w0(e) = 1, ∀e ∈ Ti,j .
The tie-breaking rule must be deterministic in the sense that out of all prefix sequences

leading to a tie, only a given fraction may be extended further. It is thus not sufficient that the
model assigns smaller probabilities to the excluded prefixes; it needs to have enough memory to
prevent those prefixes from appearing altogether.

The analysis of average quantizer distortion in [Calderbank et al., May 1995] did not require
considering tie-breaking rules, because the average is computed over all paths through the trellis,
i.e. over all Voronoi cells at the same time. This works even in the case of non-uniform source
probabilities. However, tie-breaking needs to be taken into account when computing the average
number of information bit errors of a Viterbi channel decoder, as pointed out in [Best et al.,
March 1995]. In that work, the authors compared different rules that could be analyzed using a
simple decoder FSM alone, and provided (numerical) approximations for more complex decoders.

It turns out that FSM-V0 as constructed above from a Viterbi decoder with probabilistic
(approximate) tie-breaking is precise enough to yield remarkable gains in applications, as will
be shown in Chapter 3. Nevertheless it is straightforward to obtain an exact model of V0:
it suffices to start from an FSM model of a Viterbi decoder that includes a tie-breaking rule
and then applying Proposition 2.2.1 and Proposition 2.3.1, since the tie-breaking will ensure
w0(e) = 1 for all transitions. The above example did this “backwards,” without constructing
the full decoder FSM.
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Chapter 3

Improved practical scheme

This work was presented in [Savard and Weidmann, 2013a], [Savard and Weidmann, 2013b]
and [Savard and Weidmann, 2014a].
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In this chapter, we propose to use the characterization of V0, presented in Chapter 2, to
improve an LDPC-based decoder for source coding with coded SI , presented in Chapter 1. We
first present how to improve the standard decoder and then how to perform a numerical density
evolution, leading to code optimization.

3.1 Geometrical intuition and decoding procedure

Our method relies on the following observation: the coded SI is given by a single index w, but
many SI sequences are mapped onto the same index by the quantizer. The set of sequences
mapped onto the index w forms the Voronoi cell Vw = {y ∈ {0, 1}n|EY (y) = w}. Thus all
sequences within Vw could have been possible y sequences. Instead of using only ŷ(w) to decode
x, our method exploits the knowledge of Vw to select another representative sequence. This new
sequence will be obtained by projecting onto Vw an approximate solution x̂(t), obtained at some
iteration t by the BP decoder. The hope is that this new sequence is closer to x than ŷ(w)
and thus accelerates decoding. The device that performs this projection and outputs a new SI
sequence ŷ′ (with reliability information) will be called a Voronoi decoder.

The decoding is done as follows: Decoding of X starts with T BP LDPC decoder iterations
as in the standard setup, using the LLR associated to Ŷ (w) as channel values. If the decoder
fails to converge after T iterations, the SI is modified by performing a Voronoi projection. The
resulting sequence is used to modify the input LLRs before carrying on with additional BP
iterations (the set of messages from CN to VN and from VN to CN is not reset). If the decoder
still fails to converge after t additional decoding iterations, the above procedure is restarted.
The geometrical intuition behind this decoding principle is depicted on Figure 3.1, where three
projection steps are performed.

Figure 3.2 depicts the decoder graph, where the Voronoi decoder is responsible for modifying
the channel LLR values fed to the LDPC decoder graph above it.
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Figure 3.1: Geometrical intuition: 3 steps of the proposed algorithm
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Voronoi decoder

ŷ1(w) ŷ2(w) ŷn−1(w)ŷn(w)...

Figure 3.2: Proposed decoder graph

Thus, our improved method relies on a characterization of all the Voronoi cells Vw of the
convolutional code used in the SI branch. Because convolutional codes are linear, the character-
ization of the Voronoi cell V0 associated to the all-zero codeword is sufficient, since other cells
are obtained as Vw = V0 ⊕ Ŷ (w), where ⊕ denotes component-wise modulo-2 addition. This
characterization is done by building the FSM associated with V0 as explained in the previous
chapter.

3.2 Different implementations of the Voronoi decoder

We focused on two Voronoi decoder implementations: on one hand an hard-input, hard-output
Viterbi-based decoder and on the other hand a soft-input, soft-output BCJR-based decoder.

For both decoders, the input is an estimate x̂(t) of the source sequence, whose reliability
is crucial for the overall decoder performance: a very bad estimate x̂(t) could yield a sequence
ŷ(w)(t+1) that is farther away from x than ŷ(w) was, leading to a performance loss.

3.2.1 Viterbi Voronoi decoder

For the Viterbi-based decoder, we propose the following procedure: using the APP computed
by the BP decoder, we estimate x̂(t) and then the sequence ŷ(w)(t+1) is obtained by projecting
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x̂(t) onto Vw. Thanks to linearity, one can equivalently project x̂(t) ⊕ ŷ(w) onto V0, yielding an

output sequence v∗ such that ŷ(w)(t+1) = v∗ ⊕ ŷ(w). Thus, the new sequence ŷ(w)(t+1) is given
by:

ŷ(w)(t+1) = ŷ(w)⊕ arg min
v∈V0

dH

(
v, x̂(t) ⊕ ŷ(w)

)
. (3.1)

The remaining question for this decoder is what LLRs should one feed to the BP decoder. Since
the projection step using the Viterbi algorithm is a hard-output sequence, we only have the
LLRs associated to ŷ(w). One solution could be to assign to VN i

LLRi =

{
0 if ŷi(w) 6= ŷi(w)(t+1)

LLR(ŷi(w)) else.
(3.2)

Note that setting a LLR to zero is equivalent to erasing this bit position. Doing so, we don’t take
into account at all the reliability of the estimate x̂(t) and this results in very poor performance.
Based on our experiments, we propose the following heuristic LLR update rule:

LLRi =

{
0.9j ∗ LLR(ŷi(w)) if ŷi(w) 6= ŷi(w)(t+1)

LLR(ŷi(w)) else,
(3.3)

where j−1 is the number of times a Voronoi projection has already been performed. Thus, the
more projections (and decoder iterations) have been made, the closer x̂(t) is assumed to be to
the source sequence, while in the first projections, the estimate may be far away from the source
sequence. So we don’t modify the LLRs too aggressively during the first projections, since the
LDPC decoder would have difficulties to correct them, while in later iterations this should be
no longer a problem. The factor 0.9 was determined experimentally to yield good results in our
simulation setup; it may need to be changed for other setups.

Results obtained with a non-optimized rate RX = 0.1 LDPC code of size n = 1000 and the
rate RY = 1/2 convolutional code (5,7), with generator matrix [1+D2, 1+D+D2] are shown in
Figure 3.3. The sets of curves are indexed by the crossover probability p of the BSC relating X
and Y . We can observe that the proposed method increases the rate of successful convergence.
We perform T = 30 decoder iterations with the LLR associated with Ŷ (w). In case of failure
of the decoder, we perform up to 18 searches of Ŷ (w)(T+lt+1), and for each, we perform up to
t = 15 decoder iterations. The results are given for 10000 samples.

This experimental setup was sufficient to show the feasibility of our method, but its overall
performance is not overwhelming. To overcome this, one has to use optimized LDPC codes.

Since good low-rate LDPC codes are rather hard to come by, we decided to increase the
rate of the encoder EY in order to be able to use rate-1/2 LDPC codes optimized for the BSC.
Various optimized high-rate convolutional codes can be found in the literature, see for example
[Tang and Lin, Jan. 2002], [Lin and Costello, 2004], [Lee, 1985].

For our second experiment, we chose an optimized rate-1/2 LDPC code with variable node
degrees

λ(x) = 0.24426x+ 0.25907x2 + 0.01054x3 + 0.05510x4 + 0.01455x7 + 0.01275x9 + 0.40373x11

and concentrated check node degrees, found in [Richardson and Urbanke, 2001a]; parity check
matrices were constructed with the PEG algorithm.
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Figure 3.3: Comparison between the standard and the proposed method using a rate-0.1 LDPC
code, the rate-1/2 convolutional code (5,7) and the Viterbi algorithm to perform the projection:
Cumulated number of decoding successes as a function of the number of iterations.

For the quantizer, we used a rate-5/6 convolutional code found in [Tang and Lin, Jan. 2002]
with generator matrix

G =


1 1 0 1 0 0
0 1 1 0 1 0
2 0 0 1 0 1
2 2 2 0 1 1
0 0 0 0 2 3

 . (3.4)

This generator matrix is given using the octal notation. This code uses 3 binary memory cells,
meaning there are 8 trellis states. Increasing the encoder memory will improve the performance
of the code in terms of distortion. At the same time, it will increase the number of trellis states
and strongly expand the number of states in the Voronoi FSM, so we will only consider codes
with 3 binary memory cells.

For this experimental setup, we set the code length to n = 1200.
We can see in Figure 3.4 that even with an optimized LDPC code and a high-rate convolu-

tional code, the proposed method outperforms the standard one.

3.2.2 BCJR Voronoi decoder

The Viterbi Voronoi decoder has the conceptual advantage of delivering a sequence that is
guaranteed to lie in Vw and thus to have been a possible quantizer input sequence. Nevertheless,
the difficulty is to find an optimal LLR update rule. An obvious alternative is to use the
soft-input, soft-output BCJR algorithm [Bahl et al., Mar. 1974] on the Voronoi FSM trellis.

For the soft version based on the BCJR algorithm, the procedure is a little bit different
since we use soft values as inputs of the projection step, thus we can directly take into account
the reliability of x̂(t). Moreover, in the first projections, the decided output sequence should
be close to the all zero-sequence, in order not to modify the LLRs given to the BP decoder
too aggressively. As inputs of the BCJR algorithm, we use scaled version of the extrinsic zi
computed by the BP algorithm: zi =

∑
cj∈N (vi)

mc→v
j,i , where mc→v

j,i denotes the message passed
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Figure 3.4: Comparison between the standard and the proposed method using a rate-0.5 op-
timized LDPC code, a rate-5/6 convolutional code and the Viterbi algorithm to perform the
projection: Cumulated number of decoding successes as a function of the number of iterations.

from check node j to variable node i. Inputs of the BCJR algorithm are

LLR
(BCJR)
i = (1− 2ŷi(w))(1− 0.99j)zi, (3.5)

where j−1 is the number of times a Voronoi projection has already been performed. This
heuristic scaling is done to take into account the reliability of the estimate x̂(t), as previously.
The sign flipping operation is done to perform on the Voronoi cell V0.

The factor 0.99 was again chosen based on the good performance obtained in our simulation
setup, it may need to be changed for other setups.

The BCJR then computes the bit-wise APP values, i.e. the marginal posterior likelihood of
bit yi given the quantizer index w and a soft estimate of the source. From these we obtain an
extrinsic soft-output LLR sequence extr.

Since the BCJR outputs an APP for Y and since X = Y ⊕N , with N a Bernoulli-p source,
we can use the tanh-rule to compute the new “channel” LLR fed to the LDPC decoder for the
next t iterations.

LLRi = 2tanh−1

tanh

(
extri

2

)
tanh

log
(

1−p
p

)
2

 . (3.6)

For simulations with the BCJR, we used an optimized rate-1/2 LDPC code of length n = 1200
and first performed T = 20 decoding iterations with the LLR associated with Ŷ n(w). In case of
failure of the decoder, we then perform up to 76 BCJR runs, after each of which we perform up
to t = 5 LDPC decoding iterations. The results are given for 10000 samples. Results are given
on Figure 3.5.

For completeness, we also ran simulations with a soft-input Viterbi decoder; the obtained
results are shown in Figure 3.6 and compared to the standard and BCJR methods in Figure 3.7.
The gain over the standard variant is only slightly above that for hard-input Viterbi, indicating
the importance of proper soft outputs.

Since the decoding threshold is clearly seen to be shifted in Figure 3.7, we computed the
theoretical thresholds (Shannon limits) for comparison purposes. An ideal rate-5/6 binary code
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Figure 3.5: Comparison between the standard and the proposed method using a rate-0.5 op-
timized LDPC code, a rate-5/6 convolutional code and the BCJR algorithm to perform the
projection: Cumulated number of decoding successes as a function of the number of iterations.
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Figure 3.6: Comparison between the standard and the proposed method using a rate-0.5 opti-
mized LDPC code, a rate-5/6 convolutional code and the the soft-input Viterbi algorithm to
perform the projection: Cumulated number of decoding successes as a function of the number
of iterations.

has theoretical distortion D∗th = 0.0246, which yields p∗th = 0.0898. The actual distortion
obtained for our considered convolutional code is D = 0.0373, yielding pth = 0.0786. These
thresholds are still far from the ones observed in our simulations, which may partly be due to
the moderate LDPC block length. Nevertheless, we can see that the proposed method provides
clearly better performance than the standard one. A possible explanation of this gain is that
the Voronoi decoder is able to compensate part of the quantizer suboptimality.

Beyond its superior performance (at the price of complexity), the BCJR Voronoi decoder
has another major interest: it can be used to perform numerical density evolution of the overall
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Figure 3.7: Comparison between the standard and the proposed methods using a rate-0.5 opti-
mized LDPC code, a rate-5/6 convolutional code, 400 decoding iterations: Number of decoding
successes (out of 10000 samples) as a function of source correlation parameter p.

decoder, along the lines of the approach presented in [Kavčić et al., 2003]. This allows to match
the optimization of the LDPC code to the structure of the Voronoi cell.

3.3 Optimization of the LDPC degree distribution

As presented in Chapter 1, one way to optimize LDPC codes is to run a density evolution and
a differential evolution.

The main difference between density evolution used in a standard channel coding situation
and for our decoder is the following: in channel coding, one key assumption is that the all-zero

codeword has been sent, thus the error probability tracked is defined as P
(l)
e =

∫ 0
−∞ f

(l+1)
v (x)dx.

Unfortunately, this assumption doesn’t hold for our setup, thus we must frequently change
from/to the Voronoi cell V0 or Vw. A major contribution was to show that using the BCJR
Voronoi decoder, our improved decoder is still amenable to density evolution. Our approach
follows the ideas proposed in [Kavčić et al., 2003], where the authors used a numerical density
evolution using a BCJR algorithm over a binary intersymbol interference channel.

The following notations will be used:

• f (l)
v : pdf of message from a VN to a CN at lth iteration;

• f (l)
c : pdf of message from a CN to a VN at lth iteration;

• f (l)
o : pdf of a priori LLR at the lth iteration;

• f (l)
e : pdf of extrinsic given to the BCJR at lth iteration.

The computations of f
(+1)
v , f

(l+1)
c and the initialization of f

(1)
o are carried out as outlined in

Chapter 1 for a BSC-ε.

The only step that differs from the standard density evolution is the one computing f
(l+1)
o :

since there isn’t a closed-form expression for this density, it will be computed numerically using
Monte-Carlo techniques.
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The Voronoi decoder transforms f
(l)
e into f

(l+1)
o as follows:

f (l)
o =

{
f

(l−1)
o , if l 6= kt (we don’t perform a projection during this iteration)

εtrellis(f
(l)
e , p), otherwise

(3.7)

where εtrellis is a symbolic notation for trellis evolution.
The average density of the extrinsic given to the BCJR is obtained by

f (l)
e =

Vmax∑
i=1

λ̃i

(
i⊗

k=1

f (l)
c

)
(3.8)

where λ̃i = λi
/(

i
∫ 1

0 λ(x)dx
)

is the fraction of variable nodes of degree i and
⊗

denotes convo-

lution.
The density evolution associated to the proposed decoder is described in Algorithm 5. We

first start by performing T iterations of standard LDPC density evolution, before performing the
first projection step. After this first projection, t iterations of density evolution are performed
before each additional projection. In total, proj projection are performed.

The operation in line 5 of Algorithm 5, corresponding to the numerical density evolution
obtained via Monte Carlo simulation, is detailed in Algorithm 6.

Algorithm 5 Density evolution with BCJR Voronoi decoder

1: Initialization:
f

(1)
o = εδ

(
x+ log

(
1−ε
ε

) )
+ (1− ε)δ

(
x− log

(
1−ε
ε

) )
P

(1)
e = 1;

2: Density evolution: Phase 1 T BP iterations using f
(1)
o

3: for j = 1→ proj do

4: f
(T+(j−1)t)
e =

Vmax∑
i=1

λ̃i

(
i⊗

k=1

f
(T+(j−1)t)
c

)
5: Trellis evolution: f

(T+(j−1)t)
o = εtrellis(f

(T+(j−1)t)
e , p)

6: Density evolution: Phase 2 t BP iterations using f
(T+(j−1)t)
o

7: end for

Algorithm 6 Trellis evolution εtrellis(f
(l)
e , p)

1: Draw an i.i.d. vector V of distribution f
(l)
o

2: V ← V × X̃ × Ỹ where X̃ ∈ {−1, 1}n = 1− 2X and Ỹ = 1− 2Ŷ (w)
3: Account for the estimate reliability according to (3.5)
4: V1 ← BCJR-based Voronoi decoder
5: V1 ← V1 × Ỹ

6: LLRi = 2 tanh−1

(
tanh

(
V1i
2

)
tanh

(
log

(
1−p
p

)
2

))
7: L̃LR← LLR× X̃
8: f

(l)
o ← Density of L̃LR

Since the Voronoi projection step has to be performed for an i.i.d. binary sequence to obtain
proper averages (see [Kavčić et al., 2003] for more details), we first draw a random sequence X
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and compute the corresponding quantization index. Then the BCJR Voronoi projection method
is used to compute a realization of an extrinsic vector. In order to avoid trellis boundary effects,
the block length n has to be rather large.

The following decoding thresholds were obtained using this numerical density evolution:
p∗ = 0.0337 for the standard method and p∗ = 0.0368 for the proposed decoder, matching the
performance observed on Figure 3.7.

The density evolution just outlined can then be used to optimize irregular LDPC degree
distribution using differential evolution [Storn and Price, 1997]; see [Richardson and Urbanke,
2001a] for the application to LDPC channel codes. For more details about this method, we refer
the reader to Chapter 1.

Using differential evolution and numerical density evolution, we found a rate-1/2 LDPC code
ensemble, of decoding threshold p∗ = 0.06, with variable degree distribution

λ(x) = 0.094167x2 + 0.7275x3 + 0.0125x5 + 0.045x6 + 0.00417x10 + 0.0317x14 + 0.0233x15

+ 0.000833x16 + 0.04583x19 + 0.015x20

and concentrated check-node degrees. This code has been optimized for the same quantizer as
in the previous simulations.

Figure 3.8 compares the results obtained by the standard method and the improved decoder,
using either the rate-1/2 code found in [Richardson and Urbanke, 2001a] (denoted ‘without opti-
mization’) or the optimized rate-1/2 code (denoted ‘with optimization’). For both LDPC codes,
our method outperforms the standard one and the decoding threshold is shifted. Experiments
with longer block lengths show that the threshold shift vanishes for the optimized codes, i.e.
the advantage of knowing V0 is mainly exploited by the code optimization and so there is little
gain left for the Voronoi decoder. Conversely, a non-optimized code will always benefit from the
Voronoi decoder.

Recall that an ideal rate-5/6 quantizer has theoretical distortion D∗th = 0.0246, which yields
p∗th = 0.0898. The actual distortion of our considered convolutional quantizer is D = 0.0373,
yielding pth = 0.0786. For now, the best rate-1/2 degree distributions that we found have a
threshold of p = 0.065, which is still far from the theoretical limits. An explanation for this
gap may lie in the heuristic scaling rule used before the projection, thus it is likely that density
evolution won’t be able to close this gap. To overcome this problem, a refined model of the
processing chain X − Y − Ŷ (W ) must be found in order to use the Voronoi FSM to directly
estimate X, without having to approximate the reliability of the projection step.
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code (either found in the literature or optimized for the overall decoder), a rate-5/6 convolutional
code, 400 decoding iterations: Number of decoding successes as a function of the crossover
probability p.



Summary and conclusion of Part I

The first part of this thesis was centered around an improved scheme for the binary source
coding problem with coded side information, where we used a convolutional code to compress
the side information and a LDPC decoder performing in Slepian-Wolf fashion.

In a standard setup, the side information is conveyed by a single quantization index, but
many sequences are mapped onto the same index by the quantizer. The key point of our new
decoding principle consists in projecting an intermediate estimate of the source sequence, given
by the BP decoder, onto the Voronoi cell associated to the quantization index.

In order to do so, one needs a characterization of all Voronoi cells of the convolutional code
used in the side information branch. Thanks to linearity, a characterization of the fundamental
Hamming-space Voronoi cell V0 is sufficient. This was realized using a particular FSM. We first
presented how to describe the Viterbi decoder of a convolutional code using a FSM and then
how to build the graph of the FSM associated to the Voronoi cell V0, by studying the evolution
of the Viterbi algorithm in terms of metric differences of the sequences mapped onto the all-zero
codeword. Finally, we presented how to assign transition probabilities to this FSM in order to
obtain an uniform probability distribution over all sequences in V0.

A way to possibly simplify this FSM is based on an observation made for perfect codes:
Suppose that the minimum distance of the perfect code equals dmin, then the Voronoi cell V0

is the set of all sequence of weight up to dmin−1
2 , which can be described by a counter. Hence,

maybe an FSM with windowed counters may represent a relatively large subset of V0, that is
sufficient for LDPC optimization. Having such a simplified FSM would of course reduce the
complexity of the projection step onto the cell in our application, respectively make it possible
at all. This characterization can be applied to all linear block code trellises.

Using the FSM-V0, we proposed a new decoding principle for the coded side information
problem. By projecting an intermediate estimate of the source word onto V0, we can improve
the side information given to the main decoder and thus accelerate the decoding of the source
word.

Furthermore, we showed that this new decoder is amenable to density evolution and thus
to LDPC code optimization. A first step was to adapt density evolution to this decoder by
performing a numerical step via Monte Carlo simulations for the evolution of density during
the projection step, for which there is no closed-form expression. Finally, differential evolution
is used to optimize an irregular LDPC degree profile for the convolutional code of the side
information branch.

Results show a significant gain in term of number of decoding successes vs. the number of
decoding iterations, when optimized codes and the improved method are used. For large block
sizes, the knowledge of V0 is completely resorbed in the code optimization, that is the (complex)
Voronoi decoder step is only needed off-line.

Nevertheless, there remains a gap between theoretical and experimental thresholds to close.
A possible explanation for this gap lies in the heuristic update rule modeling the reliability of
the source estimate. To overcome this problem, one could investigate a better model for the
chain X−Y − Ŷ (w) to directly estimate X with the Voronoi FSM. Another major improvement
could consist in using non i.i.d. LDPC codes: since the side information is compressed using a
convolutional code, the output is in general no longer i.i.d.
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Overview

The simplest model of cooperative communication is the three-node relay channel, where one
source node wishes to send data to a destination with the help of one relay. This model has
been widely studied, but its capacity remains unknown in general.

The relay channel can also been seen as the combination of a Multiple-Access Channel
(MAC), formed by the links relay-destination and source-destination, and a broadcast channel,
formed by the links source-relay and source-destination. For the broadcast channel, a source
sends its message to many receivers that recover this data, thus its capacity is always limited
by the noisiest receiver, whereas for the MAC, multiple sources send their data to one single
destination, that recovers all messages, thus for two users, the maximal sum rate of C

(
P1+P2
N

)
can be achieved.

Various relaying schemes have been proposed in order to perform close to an upper-bound of
the capacity. The difference between these relaying schemes lies in the operation performed by
the relay: it can for example decode the message sent by the source (in the Decode-and-Forward
protocol), or amplify its received signal (in the Amplify-and-Forward protocol), or quantize its
received signal (in the Compress-and-Forward protocol). First, all of these lower bounds were
proved using AWGN random coding, but in the past years, lattices have been shown to achieve
the same rates. Moreover, for some extensions of the relay channel, such as the two-way relay
channel, where two users wish to exchange their data with the help of one relay, relaying schemes
exploiting the algebraic structure of lattices such as Compute-and-Forward, in which the relay
directly decodes the sum of the two messages sent, have been proposed.

In this part of the thesis, we focus on the study of various extensions of the relay channel.
For all channel models, the aim is to derive upper and lower bounds on the capacity. The proofs
are either based on AWGN coding or lattice coding. All the considered models are given on
Figure 3.9. The links between nodes are labeled with the respective channel gain. The noise(s)
at the receiver(s) are assumed to be AWGN.

We first recall some results and the associated proofs for the full-duplex Gaussian relay
channel (given on Figure 3.9a).

The first extension considered is a generalization of the relay channel considering correlated
noises at the relay and destination.

The second extension considers again three nodes: two source/destination nodes and one
relay. The two users wish to exchange their data with the help of a relay. Three models
are studied: the two-way relay channel without direct links between the two users (given on
Figure 3.9b), where one needs a multi-hop protocol, the two-way relay channel with direct links
between the two users (given on Figure 3.9c) and again a generalization of the two-way relay
channel with direct links between the two users and correlated noises at the relay and the users.

The last extension considers more than three nodes. In the multiway relay channel (given
on Figure 3.9d), multiple clusters of users wish to exchange messages locally within each cluster
with the help of a single relay. Users within a cluster are fully connected. First, this channel
is studied assuming time-sharing among the clusters and then the study is performed on the
relaxed model (i.e. without time-sharing).
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Part of this work was presented in [Savard and Weidmann, 2015b].
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The relay channel model, introduced by [van der Meulen, 1971] and studied by [Cover and
El Gamal, Sept. 1979] is one of the fundamental building blocks in wireless communications.
A source wishes to send its message to a destination with the help of a relay: this occurs for
example for communications between two base stations through a terrestrial link and a satellite,
or in a network with an intermediate node acting as a relay. The relay channel is depicted on
Figure 4.1.

S D

R

hSD

hSR hRD

Figure 4.1: Relay channel

Information may thus flow along the direct or the relayed link. The capacity of this channel
is unknown in general, but a cut-set (upper) bound can be established. The key question in
approaching the capacity is how the two links should cooperate. Two extreme cases can be
considered:
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• direct transmission, where the relay is not used in the communication.

• Decode-and-Forward (DF), where the relay decodes the message and coherently cooperates
with the source to communicate it to the destination. This includes pure multi-hop schemes
in which the direct link is not exploited.

Other schemes have also been proposed, such as

• Partial-Decode-and-Forward, where the relay decodes a part of the message and the re-
mainder of the message is decoded only at the destination.

• Compress-and-Forward(CF), where instead of recovering the message, the relay compresses
it using Wyner-Ziv coding techniques, with the sequence received at the destination acting
as side information.

• Amplify-and-Forward (AF), where the relay only scales its received message up to its power
constraint before transmitting it.

Throughout this chapter, we focus only on full-duplex nodes, which means that a node can
receive and transmit at the same time.

We study two Gaussian relay channel models: the first one is the standard full-duplex
Gaussian relay channel and the second one a more general full-duplex Gaussian relay channel
with correlated noises. The aim of the first section is to present the Gaussian relay channel, as
well as standard protocols and the way to prove achievable rates.

For the standard relay channel, we briefly summarize results found e.g. in [El Gamal and
Kim, 2011], [Cover and El Gamal, Sept. 1979] or [Kramer et al., Sept. 2005]. Even if the proofs
are quite usual, we recall them since they present the main techniques used for various protocols
proposed in this thesis.

4.1 Standard full-duplex Gaussian relay channel

In the Gaussian case, the source sends X1 of power P1 and the relay XR of power PR. The
received signals are given by:

At the relay: YR = hSRX1 + ZR,

At the destination: Y2 = hSDX1 + hRDXR + ZD,

where ZD and ZR are independent additive white Gaussian noises of variance ND and NR,
respectively.

Even if the relay channel is the main building block of cooperative communications, its
capacity remains unknown. Thus, we start by introducing an upper bound on the capacity
(using a cut-set bound) and we then present protocols that can perform close to this cut-set
bound.

4.1.1 Cut-set bound [El Gamal and Kim, 2011]

A multicast network is modeled via a directed acyclic graph G = (N , E , C), where N = [1 : N ]
is the set of nodes, E ⊂ N × N is the set of edges and C = {Ci,j , i, j ∈ E} is the set of edge
weights. This situation is depicted on Figure 4.2. Each node represents a transmitter and/or a
destination and each edge (i, j) represents a noiseless communication link from node i to node
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Figure 4.2: Example of a graphical multicast network

j of capacity Ci,j . The source node 1 wishes to communicate a message M ∈ [1 : 2nR] to a set
of destinations D ⊂ N . Each node k ∈ [2, N ] can act as a relay.

The average error probability is defined as P
(n)
e = P (M̂j 6= M for some j ∈ D). A rate R is

said to be achievable if there exists a sequence of (2nR, n) codes such that lim
n→∞

P
(n)
e = 0. The

capacity is defined as the supremum of the set of achievable rates.

An upper bound on the capacity is obtained considering cut-set arguments.
For a destination j ∈ D, we can define a cut (S,Sc) as a partition of nodes such that node 1
(i.e. the source node) is in set S and the destination node j is in set Sc. The capacity of this
cut is given by C(S) =

∑
(k,j)∈E
k∈S,l∈Sc

Ckl.

The capacity of the network cannot be larger than the smallest cut capacity C(S) for every
destination node j ∈ D, which is formalized in the following theorem.

Theorem 4.1.1. The capacity of the multicast network G = (N , E , C) with destination set D is
upper bounded as C ≤ min

j∈D
min
S⊂N

1∈S,j∈Sc
C(S).

We can also consider a graphical unicast model, where there is only one destination node.
Without loss of generality, assume that D = N . A unicast network with N = 5 nodes is given
on Figure 4.3. We also give an example of a cut on the same figure.

In this case Theorem 4.1.1 reduces to the max-flow min-cut theorem.

Theorem 4.1.2. The capacity of the unicast network G = (N , E , C) with destination node N is
C = min

S⊂N
1∈S,N∈Sc

C(S).

1

2

3

4 5M M̂

S Sc

Figure 4.3: Example of a graphical unicast network with one cut

Proposition 4.1.1. ([Cover and El Gamal, Sept. 1979]) For the Gaussian relay channel, the
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Cut-Set Bound (CSB) is given by

RCSB= max
ρ∈[0,1]

min

{
C

(
h2
SDP1+h2

RDPR+2hSDhRDρ
√
P1PR

ND

)
, C

(
P1ρ2(h2

SRND+h2
SDNR)

NRND

)}
,

where C(x) = 1
2 log2(1 + x) and x = 1− x.

Proof. Using Theorem 4.1.2, the capacity of the Gaussian relay channel is upper bounded by

C ≤ max
p(x1,xR)

min{I(X1, XR;YD); I(X1;YR, YD|XR)}

We write the first mutual information as

I(X1, XR;YD) = H(YD)−H(YD|X1, XR)

= H(YD)− 1

2
log2(2πeND)

≤ 1

2
log2

(
E[Y 2

D]

ND

)
≤ C

(
h2
SDE[X2

1 ] + h2
RDE[X2

D] + 2hSDhRDE[X1XR]

ND

)
≤ C

(
h2
SDP1 + h2

RDPR + 2hSDhRDρ
√
P1PR

ND

)
,

where ρ =
E[X1XR]√
P1PR

is the correlation coefficient between X1 and XR.

The second mutual information can be written as

I(X1;YR, YD|XR) = H(YR, YD|XR)−H(YR, YD|X1, XR)

= H(YR, YD|XR)−H(ZR, ZD)

= H(YD|XR) +H(YR|XR, YD)− 1

2
log2

(
4π2e2NDNR

)
≤ 1

2
log2(2πeE[Var(YD|XR)])+

1

2
log2(2πeE[Var(YR|XR, YD)])

− 1

2
log2

(
4π2e2NDNR

)
(a)

≤ 1

2
log2

(
2πe(ND + h2

SDP1ρ2)
)

+
1

2
log2

(
2πe

P1ρ2(h2
SRND + h2

SDNR) +NRND

h2
SDP1ρ2 +ND

)
− 1

2
log2

(
4π2e2NDNR

)
≤ C

(
P1ρ2(h2

SRND + h2
SDNR)

NRND

)
,

where (a) follows from the fact that the conditional mean squared error of the linear MMSE
estimate of Y given X upper bounds the expected variance E[Var(Y |X)].

Using the linear MMSE estimate of YD given XR, we obtain

E[Var(YD|XR)] ≤ ND + h2
SDP1(1− ρ2).
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Using the linear MMSE estimate of YR given XR and YD, we obtain

E[Var(YR|XR, YD)] ≤
P1ρ2(h2

SRND + h2
SDNR) +NRND

h2
SDP1ρ2 +ND

.

The remainder of the section presents various standard protocols, part of which can perform
close to the cut-set bound.

4.1.2 Lattice-based Compress-and-Forward

In the Compress-and-Forward (CF) scheme, the relay helps the communication by sending a
compressed description (a bin index) of its received message to the destination. Because this
description is correlated with the source message, Wyner-Ziv coding can be used to reduce the
rate needed at the relay. [Song and Devroye, Aug. 2013] showed that lattices can achieve the
CF rate.

Lattices are a powerful tool that achieves capacity on the AWGN channel. It has first been
showed that capacity-achieving codebooks can be obtained by intersecting a lattice with a ‘thin’
spherical shell [de Buda, Aug. 1989]. Later, [Urbanke and Rimoldi, Jan. 1998] showed that
the intersection of a lattice with a spherical region can produce capacity-achieving codebooks.
[Poltyrev, Mar. 1994] proved that lattice decoding on the AWGN channel, where the destination
bins the received signal according to the Voronoi regions, is asymptotically efficient. [Loeliger,
Nov. 1997] showed the existence of lattices that achieve 1

2 log2(SNR) over the AWGN channel
with lattice decoding and finally [Erez and Zamir, Oct. 2004] proved that using a modulo-lattice
operation and random dither, lattice codebooks can achieve the AWGN capacity under lattice
decoding.

Definition 4.1.1. A lattice Λ ⊂ Rn is a discrete additive subgroup of Rn closed under addition.
In other words, ∀λ1, λ2 ∈ Λ, λ1 + λ2 ∈ Λ, λ1 − λ2 ∈ Λ.

Equivalently a lattice Λ is the set of all integer combinations of a set of basis vectors. Regroup-
ing this basis into a matrix yields the generator matrix G ∈ Rn of the lattice: A n-dimensional
lattice Λ is defined as

Λ = {GX : X ∈ Zn}.

An example of a lattice is given on Figure 4.4.

Definition 4.1.2. The lattice quantizer QΛ maps any point x ∈ Rn to the closest lattice point:

QΛ(x) = arg min
λ∈Λ
||x− λ||.

Definition 4.1.3. The lattice Λ partitions Rn into the union of Voronoi regions

Vλ = {x ∈ Rn|QΛ(x) = λ}.

Definition 4.1.4. The fundamental Voronoi region V0 of Λ is the set of points that are closer
to the origin than to any other lattice point:

V0 = {x ∈ Rn|QΛ(x) = 0}, which is of volume V = Vol(V0).

The fundamental Voronoi region of the hexagonal lattice is given on Figure 4.4.
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Figure 4.4: Example of a two-dimensional lattice

Definition 4.1.5. The modulo Λ operation yields the quantization error:

[x] mod Λ = x−QΛ(x), which is ensured to lie in V0.

Definition 4.1.6. The second moment per dimension σ2(Λ) defines the average power of the
lattice Λ:

σ2(Λ) =
1

nV

∫
V0
||x||2dx, where V =

∫
V0
dx is the volume of V0.

Definition 4.1.7. The normalized second moment of a lattice Λ of dimension n is defined as:

G(Λ) =
σ2(Λ)

V 2/n
.

It measures the efficiency of Λ as a shaping region: the normalized second moment of a sphere
in Rn is 1/2πe and the more V0 resembles a sphere, the closer to 1/2πe G(Λ) will be.

Definition 4.1.8. The covering radius rcov is the radius of the smallest sphere that covers V0:

rcov = inf
r>0
{V0 ⊂ rBn}, where Bn is the unit ball in Rn.

Definition 4.1.9. The effective radius reff is the radius of a sphere with the same volume as
V0:

reff =

(
V

Vol(Bn)

)1/n

.

Good lattices for proving theoretic results need to satisfy some properties:

Definition 4.1.10. A sequence of n-dimensional lattice Λ(n) is said Rogers-good [Rogers, 1959]

if lim
n→∞

r
(n)
cov

r
(n)
eff

= 1, that is if the covering radius approaches the effective radius.

Definition 4.1.11. A sequence of n-dimensional lattice Λ(n) is said Poltyrev-good [Poltyrev,
Mar. 1994] (good for AWGN coding) if, for Z ∼ N (0, σ2I), a n-dimensional vector,
Pr(Z /∈ V) ≤ e−n(Ep(µ)−on(1)), where Ep(µ) is the Poltyrev exponent and µ is the volume-to-noise
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ratio defined as µ = V 2/n

2πeσ2 + on(1).

The Poltyrev exponent is defined as Ep(µ) =


1
2 [(µ− 1)− log(µ)] if 1 < µ ≤ 2
1
2 log eµ

4 if 2 ≤ µ ≤ 4
µ
8 if µ ≥ 4.

Definition 4.1.12. A sequence of n-dimensional lattice Λ(n) is said to be good for mean-square
error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
.

It can be shown that if a lattice is Rogers-good, then it is also good for mean-squared error
quantization [Zamir and Feder, Jul. 1996].

There exist different methods to build good lattices, such as constructions A, D, etc. [Conway
et al., 1999], but they will not be presented in this thesis.

Good lattice codebooks are obtained with the help of two nested lattices Λc and Λf , such that
Λc ⊆ Λf , with fundamental Voronoi region Vc of volume Vc and Vf of volume Vf respectively.
An example of nested lattices is given on Figure 4.5.

Λc is called the coarse lattice (or shapping lattice) and Λf the fine lattice (or coding lattice).
These lattices are chosen such that Λf is Poltyrev-good and Λc is both Rogers- and Poltyrev-
good. The second moment per dimension of the coarse lattice is chosen to insure a power
constraint. The rate of this codebook is R = 1

n log2
Vc
Vf

.
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Figure 4.5: Example of nested lattices

We now present lattice coding and decoding for the AWGN channel, for which it has been
shown that lattices are capacity-achieving [Erez and Zamir, Oct. 2004].

This channel is described by Y = X + Z, where X ∈ Rn is the transmitted signal, Y ∈ Rn
the received one and Z ∈ Rn is additive Gaussian noise of variance N . We assume that X is
limited to power P : 1

n ||X||
2 ≤ P .

The codebook is obtained in the following way: Choose Λc and Λf as previously and such
that σ2(Λc) = P . The codebook is given by C = Λf ∩ Vc.

To transmit the codeword c ∈ C, the source sends X = [c+U ] mod Λc, where U is a random
dither uniformly distributed over Vc and is known at the source and the destination.
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Lemma 4.1.1. (Crypto lemma [Erez and Zamir, Oct. 2004]) For any random variable X
distributed over the fundamental region V and statistically independent of U , which is uniformly
distributed over V, [X + U ] mod Λ is independent of X and uniformly distributed over V.

The destination receives Y = X + Z. To decode c, the destination scales its received signal
by the MMSE coefficient β = P

P+N , subtracts the dither and takes the result modulo Λc:

Ỹ = [c+ βZ + (β − 1)X] mod Λc.

The receiver estimates c by quantization: ĉ = QΛf
(Ỹ ). Erez and Zamir, [Erez and Zamir, Oct.

2004], showed that averaging over the dither, perfect decoding is possible if R ≤ C
(
P
N

)
.

Proposition 4.1.2. ([Song and Devroye, Aug. 2013]) For the Gaussian relay channel, CF
using lattices achieves the rate

RCF = C

(
P1

ND

h2
SD(NR +D) + h2

SRND

NR +D

)
,where D =

(h2
SRND + h2

SDNR)P1 +NDNR

h2
RDPR

.

Proof. The detailed proof has been proposed by [Song and Devroye, Aug. 2013].

The encoding and decoding procedures are based on block Markov coding.

• Encoding:
The codebook for the sender is given by C1 = Λc1 ∩ V1, where Λ1 ⊂ Λc1 and Λ1 is both
Rogers- and Poltyrev-good and Λc1 is Poltyrev-good. To ensure the power constraints, we
choose σ2(Λ1) = P1 and Λc1 such that |C1| = RCF .

During block b, the source sends c1(b) ∈ C1 as

X1(b) = [c1(b) + u1(b)] mod Λ1,

where u1 is a dither uniformly distributed over V1.

The quantization codebook at the relay is given by Cq = {ΛcQ ∩ VQ}, where ΛQ ⊆ ΛcQ
and ΛcQ is Rogers-good and ΛQ is Poltyrev-good. We choose the quantizer distortion
σ2(ΛcQ) = D and

σ2(ΛQ) = h2
SRP1 +NR +D − (hSDhSRP1)2

h2
SDP1 +ND

. (4.1)

Thus, the quantization rate is Rq =
1

2
log2

(
σ2(ΛQ)

D

)
.

The codebook for the relay is given by CR = {ΛcR ∩ VR}, where ΛR ⊆ ΛcR and ΛR is both
Rogers- and Poltyrev-good and ΛcR is Poltyrev-good. To ensure the power constraint, we
choose σ2(ΛR) = PR. Each compression index i ∈ Cq is mapped to one codeword cR ∈ CR,
that is ΛR is chosen s.t. |CR| = Rq.

During block b, the relay sends

XR(b) = [cR(I(b−1)) + uR(b)] mod ΛR,

where uR is a dither uniformly distributed over VR.
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• Decoding:
During block b, the relay receives YR(b) = hSRX1(b) + ZR(b) and quantizes it to

I(b) = [QcQ(hSRX1(b) + ZR(b) + ucQ(b))] mod ΛQ

= [hSRX1(b) + ZR(b) + ucQ(b)− EcQ(b)] mod ΛQ,

where EcQ is the quantization error and ucQ is a dither uniformly distributed over VcQ.

During block b, the destination receives

YD(b) = hSDX1(b) + hRD[cR(I(b−1)) + uR(b)] mod ΛR + ZD(b).

It starts by decoding the quantization index, considering the sender signal as noise, which
is possible if

Rq ≤ C
(

h2
RDPR

h2
SDP1 +ND

)
.

Then, it forms ỸD(b) = hSDX1(b) + ZD(b), by substracting the relay signal.

The decoding of X1(b− 1) is performed using Wyner-Ziv techniques. During the previous
block, the destination formed ỸD(b− 1) which is used in block b as side information to
estimate ŶR(b− 1), a noisy version of the signal received at the relay:

ŶR(b−1) =

[
I(b− 1)− ucQ(b− 1)−βỸD(b− 1)

]
mod ΛQ + βỸD(b− 1)

=

[
hSRX1(b−1)+ZR(b−1)−EcQ(b−1)−βỸD(b− 1)

]
mod ΛQ + βỸD(b− 1)

=

[
(hSR − βhSD)X1(b−1)+ZR(b−1)−EcQ(b−1)− βZD(b− 1)

]
mod ΛQ

+ βỸD(b− 1)

= hSRX1(b−1) + ZR(b−1)− EcQ(b−1).

The last equality is valid under perfect decoding, requiring

σ2(Λ)≥(hSR−βhSD)2P1+NR+D+β2ND.

Since we estimate hSRX1(b − 1) + ZR(b − 1) from hSDX1(b − 1) + ZD(b − 1), the linear

MMSE orthogonality principle requires that β is chosen as β =
hSDhSRP1

h2
SDP1 +ND

.

Thus,

σ2(Λ) = h2
SRP1 +NR +D − (hSDhSRP1)2

h2
SDP1 +ND

.

Combining this with the quantization rate constraint, the distortion of the quantizer (in
other words σ2(ΛcQ)) becomes

D =
(h2
SRND + h2

SDNR)P1 +NDNR

h2
RDPR

. (4.2)
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In order to recover X1(b−1), the receiver coherently uses two noisy observations of X1(b−1)
(ŶR(b− 1) and ỸD(b− 1)) as(
hSR
√
P1

NR +D

)
ŶR(b−1)+

(
hSD
√
P1

ND

)
ỸD(b−1) = X1(b−1)

((
h2
SD(NR +D) + h2

SRND

)√
P1

ND(NR +D)

)

+ ZD(b−1)
hSD
√
P1

ND
+ (ZR(b−1)− EcQ(b−1))

hSR
√
P1

NR +D
.

Thus, decoding succeeds if

RCF ≤ C
(
P1

ND

h2
SD(NR +D) + h2

SRND

NR +D

)
.

4.1.3 Decode-and-Forward

In Decode-and-Forward (DF), the relay plays a crucial role: it decodes the message and sends
it coherently with the source to the destination. In this subsection, we show that lattices can
achieve the DF rate [Nokleby and Aazhang, 2011]. The key to this approach relies in a specific
lattice construction. Each message is the sum of two lattice points: one coarse lattice point,
that the destination decodes alone, and one fine lattice point, that is decoded by both the relay
and the destination. In this scheme, the relay decodes the fine lattice point and sends it to
the destination coherently with the source. The destination starts by decoding this part of the
message and then recovers the entire message.

Proposition 4.1.3. ([Nokleby and Aazhang, 2011]) For the Gaussian relay channel, DF using
lattices achieves the following rate:

RDF = max
α∈[0,1]

min

{
C

(
h2
SRᾱP1

NR

)
, C

(
h2
SDP1 + h2

RDPR + 2hSDhRD
√
αP1PR

ND

)}
α allows to trade off power at the source node between repeating the message from the previous
block and sending a new message.

Proof. The detailed proof has been proposed by [Nokleby and Aazhang, 2011]. The encoding
and decoding procedure is based on block Markov coding.

• Encoding:
For the source, we use a doubly nested lattice coding scheme as proposed in [Nokleby and
Aazhang, 2011] with Λs ⊆ Λm ⊆ Λc1, where Λs and Λm are both Rogers- and Poltyrev-good
and Λc1 is Poltyrev-good. An example of doubly nested lattices is depicted on Figure 4.6.
As in the standard nested lattice coding scheme, Λs is the shaping lattice that ensures the
power constraint and Λc1 is the coding lattice. Λm is a meso lattice that groups codewords
into clusters. Using these three lattices, we build the following three codebooks:

C1 = Λc1 ∩ Vs of rate R1

C10 = Λc1 ∩ Vm of rate R10

C11 = Λm ∩ Vs of rate R11

(R1 = R10 +R11).
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We set σ2(Λs) = 1.

A codeword c1 ∈ C1 can be written as c1 = [c10 + c11] mod Λs, where

c10 = c1 mod Λm ∈ C10 and

c11 = [c1 − c10] mod Λs ∈ C11.
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Figure 4.6: Doubly-nested lattices used for the source

To simplify the notation, we scale C10 to a unit power C∗10 = Λ∗c ∩ V∗m, where σ2(Λ∗m) = 1.

During block b, the source sends

X1(b) =
√
αP1[c∗10(b−1) + u∗m(b−1)] mod Λ∗m +

√
ᾱP1[c1(b) + us(b)] mod Λs,

where u∗m and us are dithers uniformly distributed resp. over V∗m and Vs.
During block b, the relay sends

XR(b) =
√
PR[c∗10(b−1) + u∗m(b−1)] mod Λ∗m,

where u∗m is a dither uniformly distributed over V∗m.

• Decoding:
During block b, the relay receives

YR(b)=hSR

(√
αP1[c∗10(b−1)+u∗m(b−1)] mod Λ∗m+

√
ᾱP1[c1(b)+us] mod Λs(b)

)
+ZR(b).

It first starts by removing [c∗10(b−1) + u∗m(b−1)] mod Λ∗m (the part of the message it has
already decoded in the previous block) and decodes c1(b) which is possible if

R1 ≤ C
(
h2
SRᾱP1

NR

)
.

At block b, the destination receives

YD(b) =

(
hSD

√
αP1 + hRD

√
PR

)
[c∗10(b−1) + u∗m(b−1)] mod Λ∗m

+ hSD
√
ᾱP1[c1(b) + us(b)] mod Λs + ZD(b).
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It starts by decoding c∗10(b−1) which is possible if

R10 ≤ C
(
αh2

SDP1 + h2
RDPR + 2hSDhRD

√
αP1PR

h2
SDᾱP1 +ND

)
.

Then, it decodes c11(b−1) from the previous block which is possible if

R11 ≤ C
(
h2
SDᾱP1

ND

)
.

Thus, the decoding of c1(b−1) succeeds if

R1 ≤ C
(
h2
SDP1 + h2

RDPR + 2hSDhRD
√
αP1PR

ND

)
.

4.1.4 Amplify-and-Forward

In Amplify-and-Forward (AF), the relay only scales its received message up to its power con-
straint, which is the most simple thing to do.

Proposition 4.1.4. For the Gaussian relay channel, AF achieves the following rate:

RAF =
1

2
log2

(
α+

√
α2 − β2

2

)
, where

α = 1+
h2
SDP1(h2

SRP1 +NR) + h2
SRh

2
RDP1PR

h2
RDPRNR + h2

SRP1ND +NRND
and β =

2hSDhSRhRDP1

√
PR(h2

SRP1 +NR)

h2
RDPRNR + h2

SRP1ND +NRND
.

(4.3)

Proof. The proof is based on [Chang et al., 2010] and on a block Markov encoding scheme.
During block b, the relay sends

XR(b) =

√
PR

h2
SRP1 +NR

(
hSRX1(b−1) + ZR(b−1)

)
.

At block b, the destination receives

YD(b) =

√
PR

h2
SRP1 +NR

hRDhSRX1(b−1) + hSDX1(b) +

√
PR

h2
SRP1 +NR

hRDZR(b−1) + ZD.

The total noise power is: Neq =
h2
RDPRNR

h2
SRP1 +NR

+ND. We can divide YD(b) by
√
Neq to obtain

Ỹi(b)=

√
h2
SRP1+NRhSD√

h2
RDPRNR+(h2

SRP1+NR)ND

X1(b)+
hRDhSR

√
PR√

h2
RDPRNR+(h2

SRP1+NR)ND

X1(b−1)+Zeq(b),

where Zeq(b) has unit power.
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Thus, the AF protocol transforms the channel into a unit-memory intersymbol channel, as
mentioned in [Kramer et al., Sept. 2005].
The achievable rate is then given by R = 1

2
1

2π

∫ 2π
0 log2(1 + P1|H(ω)|2)dω, where H(ω) is the

Fourier transform of H=

[ √
h2SRP1+NRhSD√

h2RDPRNR+(h2SRP1+NR)ND

hRDhSR
√
PR√

h2RDPRNR+(h2SRP1+NR)ND

]
and

|H(ω)|2 =
h2
SD(h2

SRP1 +NR) + h2
SRh

2
RDPR

h2
RDPRNR + (h2

SRP1 +NR)ND
+ 2

hSDhSRhRD

√
PR(h2

SRP1 +NR)

h2
RDPRNR + (h2

SRP1 +NR)ND
cos(ω).

Thus,

1

2π

∫ 2π

0
log2(1 + P1|H(ω)|2)dω = log2

(
α+

√
α2 − β2

2

)

with α and β given by (4.3) obtained from
∫ 2π

0 log2(x + y cos(z))dz = 2π log2

(
x+
√
x2−y2
2

)
,

[Gradshteyn and Ryzhik, 2007, 4.224.9].

4.1.5 Comparison of the presented protocols

In this subsection we compare the achievable rates for the full-duplex Gaussian relay channel
using CF, DF and AF in a free space path loss model. We thus assume that the gains are inversely
proportional to the distance to the power 3/2 between nodes. We suppose that the source and
destination are unit distance apart and that the relay is between the source and destination
at a distance d from the source: The channel gains are given as: hSD = 1, hSR = 1/d3/2 and
hRD = 1/(1− d)3/2.

For this numerical example, we set P1 = PR = 10 and NR = ND = 1.
Figure 4.7 gives the achievable rates using CF, AF and DF, as well as the cut-set bound as

a function of the distance between the relay and the source.
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Figure 4.7: Comparison of the cut-set bound, DF, AF and CF as a function of the distance d
between the source and the relay (hSR = 1/d3/2, hRD = 1/(1− d)3/2).

We can note that, when the relay is close to the source, DF outperforms both CF and AF,
and is capacity achieving. When the relay is close to the destination, CF outperforms both DF
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and AF, and is capacity achieving. When the relay is close to the source, the signal-to-noise ratio
at the relay is very high, thus the relay can decode the transmitted signal at high rate, whereas
when it’s close to the destination, the decoding of the transmitted message is only possible at
a very low rate. If the relay is close to the destination, the destination can easily recover the
message sent by the relay, thus using CF, where the relay message is correlated with the source
message, can achieve higher rates as DF. We can note that using this setup, AF always yields
the worst performance in terms of achievable rate, but this protocol remains the simplest to
implement at the relay.

4.2 Full-duplex Gaussian relay channel with correlated noises

In this section, we consider a more general Gaussian relay channel, where the additive Gaussian
noises at the relay and the destination are correlated. This situation can occur for instance
when a common interference signal contributes to the noises at both receivers. We will see
that some relaying schemes can exploit this correlation. Since DF decodes the source message
entirely, it removes all the correlation that could have been useful in terms of rate. On the
other hand, CF looses some information via compression. [Zhang et al., March 2011] showed
that none of the two strategies is optimal for all channel gains and correlation coefficient values.
Nevertheless, they showed that for some specific values of the correlation coefficient, DF or CF
is capacity-achieving.

The main contribution in this section is to prove that lattices can achieve the CF rate
obtained theoretically in [Zhang et al., March 2011]. Part of this work was presented in [Savard
and Weidmann, 2015b].

In the Gaussian case, the source sends X1 of power P1 and the relay XR of power PR. The
received signals are given by:

At the relay: YR = hSRX1 + ZR,

At the destination: YD = hSDX1 + hRDXR + ZD,

where ZD and ZR are correlated Gaussian noises of variance ND and NR, respectively, and the

correlation coefficient is defined as ρz =
E[ZDZR]√
NDNR

.

Since the capacity of this channel remains unknown, we first derive an upper bound, using
a cut-set argument.

4.2.1 Cut-set bound

Proposition 4.2.1. ([Zhang et al., March 2011]) For the Gaussian relay channel with correlated
noises, the CSB is given by

RCSB= max
ρ∈[0,1]

min

C
(
h2
SDP1+h2

RDPR+2hSDhRDρ
√
P1PR

ND

)
,

C

(
P1ρ2(h2

SRND+h2
SDNR−2hSRhSDρz

√
NRND)

NRNDρ2
z

).
Proof. The proof follows the same arguments as for the Gaussian relay channel without corre-
lated noises. The cut-set region is given by

R ≤ min[I(X1, XR;YD), I(X1;YD, YR|XR)]. (4.4)



4.2 Full-duplex Gaussian relay channel with correlated noises 59

We introduced the correlation coefficient: ρ =
E[X1XR]√
P1PR

.

The computation of I(X1, XR;YD) is done as in Section 4.1.1 and yields

I(X1, XR;YD) ≤ C
(
h2
SDP1+h2

RDPR+2hSDhRDρ
√
P1PR

ND

)
.

We write the second mutual information term of (4.4) as

I(X1;YD, YR|XR) = H(YR, YD|XR)−H(YR, YD|X1, XR)

= H(YR, YD|XR)− 1

2
log2

(
(2πe)2NRND(1− ρ2

z)
)

= H(YD|XR) +H(YR|YD, XR)− 1

2
log2

(
(2πe)2NRNDρ2

z

)
. (4.5)

Using the linear MMSE estimate of YD given XR, we obtain

H(YD|XR) ≤ 1

2
log2

(
2πe(ND + h2

SDP1ρ2)
)
.

Using the linear MMSE estimate of YR given YD and XR we obtain

H(YR|YD, XR) ≤ 1

2
log2

(
2πe

(
NRNDρ2

z + P1ρ2(h2
SRND+h2

SDNR−2hSRhSDρz
√
NRND)

ND + h2
SDP1ρ2

))
.

Finally, inserting these bounds in (4.5), we obtain

I(X1;YD, YR|XR) ≤ C

(
P1ρ2(h2

SRND+h2
SDNR−2hSRhSDρz

√
NRND)

NRNDρ2
z

)
.

The remainder of the section presents the CF protocol adapted for this channel model, as
well as a comparison of rates obtained with CF and DF.

4.2.2 Compress-and-Forward

Proposition 4.2.2. ([Savard and Weidmann, 2015b]) For the Gaussian relay channel with
correlated noises, CF based on lattice coding achieves the following rate:

RCF = C

(
P1

ND

h2
SD(NR +D) + h2

SRND − 2hSDhSRρz
√
NDNR

NRρ2
z +D

)
,where

D =
(h2
SRND + h2

SDNR)P1 +NDNRρ2
z − 2hSRhSDP1ρz

√
NDNR

h2
RDPR

.

Remark: This rate region is the same as obtained theoretically in Proposition 5 of [Zhang
et al., March 2011].

Proof. The encoding and decoding procedure is based on block Markov coding and follows the
encoding/decoding scheme used for CF in Section 4.1.2.
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• Encoding:

The codebook for the sender is given by C1 = Λc1 ∩ V1, where Λ1 ⊂ Λc1 and Λ1 is both
Rogers- and Poltyrev-good and Λc1 is Poltyrev-good. To ensure the power constraints, we
choose σ2(Λ1) = P1 and Λc1 such that |C1| = RCF .

During block b, the source sends c1(b) ∈ C1 as

X1(b) = [c1(b) + u1(b)] mod Λ1,

where u1 is a dither uniformly distributed over V1.

The quantization codebook at the relay is given by Cq = {ΛcQ ∩ VQ}, where ΛQ ⊆ ΛcQ
and ΛcQ is Rogers-good and ΛQ is Poltyrev-good. We choose the quantization distortion
σ2(ΛcQ) = D and

σ2(ΛQ) = h2
SRP1 +NR +D − (hSDhSRP1 + ρz

√
NDNR)2

h2
SDP1 +ND

. (4.6)

The noise correlation appears in the second moment of ΛQ since this lattice is used to
obtained the noisy version of the signal received at the relay, using the signal sent over the
direct link as side information. By setting ρz to zero, (4.6) reduces to the second moment
of ΛQ used for CF on the Gaussian relay channel (4.1). The quantization rate is thus

Rq =
1

2
log2

(
σ2(ΛQ)

D

)
.

The codebook for the relay is given by CR = {ΛcR ∩ VR}, where ΛR ⊆ ΛcR and ΛR is both
Rogers- and Poltyrev-good and ΛcR is Poltyrev-good. To ensure the power constraint, we
choose σ2(ΛR) = PR. Each compression index i ∈ Cq is mapped to one codeword cR ∈ CR,
that is ΛR is chosen s.t. |CR| = Rq.

During block b, the relay sends

XR(b) = [cR(I(b−1)) + uR(b)] mod ΛR,

where uR is a dither uniformly distributed over VR.

• Decoding:

During block b, the relay receives YR(b) = hSRX1(b) + ZR(b) and quantizes it to

I(b) = [QcQ(hSRX1(b) + ZR(b) + ucQ(b))] mod ΛQ

= [hSRX1(b) + ZR(b) + ucQ(b)− EcQ(b)] mod ΛQ,

where EcQ is the quantization error and ucQ is a dither uniformly distributed over VcQ.

During block b, the destination receives

YD(b) = hSDX1(b) + hRD[cR(I(b−1)) + uR(b)] mod ΛR + ZD(b).

It starts by decoding the quantization index, considering the source signal as noise, which
is possible if

Rq ≤ C
(

h2
RDPR

h2
SDP1 +ND

)
.
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Then, it forms ỸD(b) = hSDX1(b) + ZD(b) by subtracting the relay signal.

The decoding of X1(b−1) is performed using Wyner-Ziv coding. During the previous
block, the destination formed ỸD(b−1) which is used in block b as side information to
estimate ŶR(b−1), a noisy version of the signal received at the relay:

ŶR(b−1) =

[
I(b− 1)− ucQ(b− 1)−βỸD(b− 1)

]
mod ΛQ + βỸD(b− 1)

=

[
hSRX1(b−1)+ZR(b−1)−EcQ(b−1)−βỸD(b− 1)

]
modΛQ + βỸD(b− 1)

= hSRX1(b−1) + ZR(b−1)− EcQ(b−1).

The last equality is valid under perfect decoding, requiring

σ2(Λ) ≥ (hSR − βhSD)2P1 +NR +D + β2ND − 2βρz
√
NDNR.

Since we estimate hSRX1(b−1)+ZR(b−1) from hSDX1(b−1)+ZD(b−1), the linear MMSE

orthogonality principle requires that β is chosen as β =
hSDhSRP1 + ρz

√
NDNR

h2
SDP1 +ND

.

Thus,

σ2(Λ) = h2
SRP1 +NR +D − (hSDhSRP1 + ρz

√
NDNR)2

h2
SDP1 +ND

.

Combining this with the quantization rate constraint, the distortion of the quantizer (in
other words σ2(ΛcQ)) is

D =
(h2
SRND + h2

SDNR)P1 +NDNRρ2
z − 2hSRhSDP1ρz

√
NDNR

h2
RDPR

. (4.7)

Note that by setting the correlation coefficient to zero, (4.7) reduces to the distortion
obtained for the Gaussian relay channel without correlated noises, given by (4.2).

In order to recover X1(b−1), the receiver coherently uses two correlated noisy observations
of X1(b− 1) (ŶR(b−1) and ỸD(b−1)) as(

hSR
√
P1

NR +D
−hSD

√
P1ρz

√
NDNR

ND(NR +D)

)
ŶR(b−1)+

(
hSD
√
P1

ND
−hSR

√
P1ρz

√
NDNR

ND(NR +D)

)
ỸD(b−1)

= X1(b−1)

((
h2
SD(NR +D) + h2

SRND − 2hSDhSRρz
√
NDNR

)√
P1

ND(NR +D)

)

+ ZD(b−1)

((
hSD(NR +D)− hSRρz

√
NDNR

)√
P1

ND(NR +D)

)

+ (ZR(b−1)− EcQ(b−1))

((
hSRND − hSDρz

√
NDNR

)√
P1

ND(NR +D)

)
.

Thus, decoding succeeds if

RCF ≤ C

(
P1

ND

h2
SD(NR +D) + h2

SRND − 2hSDhSRρz
√
NDNR

NRρ2
z +D

)
.
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This rate can also be achieved by an equivalent Gaussian relay channel with independent

noises, by setting the source-relay link to h′SR =

∣∣∣∣hSR − hSDρz

√
NR

ND

∣∣∣∣ and the noise power

at the relay to N ′R = NRρ2
z. When ρz = ∓1, the relay is noiseless and CF achieves the rate

C

(
h2
SDP1

ND
+
h2
RDPR
ND

)
. Moreover, using this equivalent model, CF degrades to direct transmis-

sion when ρz =

√
ND

NR

hSR
hSD

.

4.2.3 Decode-and-Forward

Since in DF the relay decodes the message, the fact that the noises are correlated doesn’t affect
the set of achievable rates.

Proposition 4.2.3. ([Nokleby and Aazhang, 2011]) For the Gaussian relay channel with cor-
related noises, DF achieves the same rate as an ordinary Gaussian relay channel (see Proposi-
tion 4.1.3):

RDF = max
α∈[0,1]

min

{
C

(
h2
SRᾱP1

NR

)
, C

(
h2
SDP1 + h2

RDPR + 2hSDhRD
√
αP1PR

ND

)}
.

4.2.4 Capacity-achieving special cases

In [Zhang et al., March 2011], the authors proved that for the case when NR = ND = N , DF and
CF can achieve capacity for some particular values of the correlation coefficient. In fact, these
two specific values of the noise correlation coefficient correspond to the degraded Gaussian relay
channel and the reversely-degraded Gaussian relay channel defined in [Cover and El Gamal,
Sept. 1979].

Proposition 4.2.4. ([Zhang et al., March 2011]) For the Gaussian relay channel with correlated

noises and NR = ND = N , DF achieves the capacity for ρz =
hSD
hSR

and the capacity is given by:

C = max
α∈[0,1]

min

{
C

(
h2
SRᾱP1

N

)
, C

(
h2
SDP1 + h2

RDPR + 2hSDhRD
√
αP1PR

N

)}
.

The capacity-achieving case, by setting this specific value to the correlation coefficient, is
equivalent to the degraded Gaussian relay channel.

Proposition 4.2.5. ([Zhang et al., March 2011]) For the Gaussian relay channel with correlated

noises and NR = ND = N , CF achieves the capacity for ρz =
hSR
hSD

and the capacity is given by:

C =

(
h2
SDP1

N

)
.

The capacity-achieving case, by setting this specific value to the correlation coefficient, is
equivalent to the conversely-degraded Gaussian relay channel. Moreover, in this case, the ca-
pacity is achieved using the direct transmission, which is a special case of CF.

The proofs of these two propositions can be found in [Zhang et al., March 2011].
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4.2.5 Comparison of the proposed protocols

We study the achievable rates using CF and DF for the full-duplex Gaussian relay channel with
correlated noises, as a function of the noise correlation coefficient, for two channel configurations,
as in [Zhang et al., March 2011].

For this numerical example, we set P1 = PR = 1 and NR = ND = 1.
First, assume that gains are inversely proportional to the distance between nodes. We assume

that the distance between the source and destination equals 1 and that the relay lies between
the source and the destination at a distance d from the source. Thus the channel gains are
hSD = 1, hSR = 1/d, hRD = 1/(1 − d). Figure 4.8 gives the obtained rates for d = 0.2, and
Figure 4.9 for d = 0.8. We can see that when d = 0.2, DF outperforms CF for all values of ρz,
since in this case the signal-to-noise ratio at the relay is very strong allowing DF to perform at
high rate. For d = 0.8, CF outperforms DF for most values of ρz and we can note that both
protocols perform very close to the upper bound. In this case, since the signal-to-noise ratio at
the relay is low, it makes sense to exploit the noise correlation using CF. On both figures, we
can see that DF achieves the cut-set upper bound for ρz = hSD

hSR
= d.
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Figure 4.8: Comparison of the cut-set bound, DF and CF as a function of the noise correlation
ρz (hSD = 1, hSR = 1/d, hRD = 1/(1− d) with d = 0.2).

For the second model, we assume that the relay is far from both the source and destination,
such that the direct link has a higher gain than the relayed links. The channel gains are thus
given as hSD = 1, hSR = d, hRD = 1 − d. Figure 4.10 gives the obtained rates for d = 0.2,
and Figure 4.11 for d = 0.8. In both cases, CF outperforms DF because the source-relay link
is always weaker than the direct link, which strongly limits the performance of DF. Moreover,
using only the direct link, a rate of 0.5 is achievable, which clearly outperform DF because of
the weak source-relay link, compared to the source-destination link.

We can also see that CF achieves the upper-bound for ρz = hSR
hSD

= d.

4.3 Conclusions

In this chapter, we presented a detailed study of the Gaussian relay channel, which is the most
simple example of cooperative communication.
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Figure 4.9: Comparison of the cut-set bound, DF and CF as a function of the noise correlation
ρz (hSD = 1, hSR = 1/d, hRD = 1/(1− d) with d = 0.8).
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Figure 4.10: Comparison of the cut-set bound, DF and CF as a function of the noise correlation
ρz (hSD = 1, hSR = d, hRD = 1− d with d = 0.2).

We first gave an upper bound on the capacity as well as lower bounds achieved by various
standard protocols such as DF, CF and AF using either lattice or AWGN coding. If the relay
is between the source and the destination, we can see that if it is closer to the source, then DF
outperforms CF and if the relay is closer to the destination, then CF outperforms DF.

In the second part of the chapter, we studied a more general Gaussian relay channel, where
the additive Gaussian noises at the relay and destination are correlated. For this setup, we proved
that lattices can achieve the CF rate. Again, neither DF nor CF give the best performance for
all choices of channel gain and noise correlation. Nevertheless, the same observation as without
noise correlation, based on the relay position, can be made. For some specific values of the
correlation coefficient, CF or DF is capacity achieving.
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Figure 4.11: Comparison of the cut-set bound, DF and CF as a function of the noise correlation
ρz (hSD = 1, hSR = d, hRD = 1− d with d = 0.8).
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Chapter 5

The Gaussian Two-way relay channel

Part of this work was presented in [Savard and Weidmann, 2015b].
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The two-way relay channel (TWRC) is a natural extension of the relay channel, in which two
users wish to exchange their messages with the help of one relay. Such a channel can be found
in ad hoc networks or networks with a central node. A good understanding of this situation is
a first step towards the understanding of multi-user information theory.

Throughout this chapter, we assume full duplex nodes (each node can transmit and receive
at the same time) and restricted encoders: the channel input of each user depends only on its
own message, and not on previously decoded ones.

The first two sections summarize achievable rates using standard schemes, such as DF, CF,
AF or Compute-and-Forward (CoF), for two classes of two-way relay channels: with and without
direct links. We focus again only on Gaussian channels: User 1 sends X1 of power P1, user 2
sends X2 of power P2 and the relay sends XR of power PR; noises at both users and the relay
are Gaussian. The last section gives results for a more general TWRC with direct links and
correlated noises at the relay and destinations.
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5.1 Standard full-duplex Gaussian two-way relay channel with-
out direct links

The two-way relay channel without direct links is depicted on Figure 5.1. In the Gaussian case,
user 1 sends X1 of power P1, user 2 sends X2 of power P2 and the relay XR of power PR. The
received signals are:

At the relay: YR = gr1X1 + gr2X2 + ZR;

At user 1: Y1 = g1rXR + Z1;

At user 2: Y2 = g2rXR + Z2,

where Z1, Z2 and ZR are Gaussian noises of variance N1, N2 and NR respectively.

1 2

R

gr1 g1r g2r gr2

Figure 5.1: Two-way relay channel without direct links

5.1.1 Cut-set bound

As for the Gaussian relay channel, the capacity region of the Gaussian two-way relay channel
remains unknown, thus we again start by upper bounding the capacity, using a cut-set argument.

Proposition 5.1.1. ([El Gamal and Kim, 2011]) For the Gaussian two-way relay channel
without direct links, the CSB with restricted encoders is given by the convex closure of the cut-
set region: ⋃

(R1, R2) :

{
R1 ≤ min

{
C

(
g2
r1P1

NR

)
, C

(
g2

2rPR
N2

)}
,

R2 ≤ min

{
C

(
g2
r2P2

NR

)
, C

(
g2

1rPR
N1

)}}
.

Proof. This channel is the concatenation of point-to-point channels, thus the capacity is deter-
mined by the bottleneck link.

In the following, we extensively use results on the Multiple Access Channel (MAC). Suppose
now that many sources wish to transmit independent data to some specific destination node set.
We focus here on a specific case where there is only one destination node that wishes to recover
all messages sent. This network is called Multiple Access Channel (MAC). This situation occurs
for example when K base stations communicate with a satellite. Questions as what rates are
achievable simultaneously or how the sources should cooperate with each other arise in a very
natural way.

Assume that the K transmitters have each a power constraint P and that the communication
takes place over a Gaussian MAC. This situation is depicted on Figure 5.2. The received signal

is Y =
K∑
k=1

Xk + Z, where Z is a Gaussian additive noise of variance N .
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K

...

2

1X1

X2

XK

YD

Figure 5.2: Example of a MAC with K users

Proposition 5.1.2. ([Cover and Thomas, 2006]) The following rate region is achievable for the
Gaussian MAC with K users of power P :

Ri <
1

2
log2

(
1 +

P

N

)
∀i

Ri +Rj <
1

2
log2

(
1 +

2P

N

)
∀i 6= j

K∑
k=1

Rk <
1

2
log2

(
1 +

KP

N

)
.

Note that if all rates are equal, the last inequality dominates the others.

5.1.2 Decode-and-Forward

Proposition 5.1.3. ([El Gamal and Kim, 2011]) For the Gaussian two-way relay channel
without direct links, DF with restricted encoders achieves the following rate region:⋃

(R1, R2) :

{
R1 ≤ min

{
C

(
g2
r1P1

NR

)
, C

(
g2

2rPR
N2

)}
,

R2 ≤ min

{
C

(
g2
r2P2

NR

)
, C

(
g2

1rPR
N1

)}
,

R1 +R2 ≤ C
(
g2
r1P1 + g2

r2P2

NR

)}
.

Proof. The relay recovers the messages from both users over a MAC and broadcasts them back
to the users.

5.1.3 Amplify-and-Forward

Proposition 5.1.4. ([El Gamal and Kim, 2011]) For the Gaussian two-way relay channel
without direct links, AF with restricted encoders achieves the following rate region:⋃

(R1, R2) :

{
R1 ≤ C

(
g2
r2P2 + g2

r1P1 +NR + g2
r1g

2
2rP1PR

g2
2rPRNR + (g2

r2P2 + g2
r1P1 +NR)N2

)
,

R2 ≤ C
(

g2
r1P1 + g2

r2P2 +NR + g2
r2g

2
1rP2PR

g2
1rPRNR + (g2

r1P1 + g2
r2P2 +NR)N1

)}
.
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Proof. The relay sends a scaled version of its received message

XR =

√
PR

g2
r1P1 + g2

r2P2 +NR
(gr1X1 + gr2X2 + ZR).

5.1.4 Compress-and-Forward

In [Smirani et al., Jun. 2014], the achievable rate region using CF was characterized for the
half-duplex Gaussian relay channel. Here we present a full-duplex version of that protocol.

Proposition 5.1.5. For the Gaussian two-way relay channel without direct links, when assuming
w.l.o.g g2

r2P2 ≤ g2
r1P1, CF with restricted encoders achieves the following rate region using lattice

coding: ⋃
(R1, R2) :

{
R1≤C

(
g2
r1P1(g2

r1P1+NR−D)

(g2
r1P1+NR−D)NR+D(g2

r1P1+NR)

)
,

R2≤C
(

g2
r2P2(g2

r1P1+NR−D)

(g2
r1P1+NR−D)NR+D(g2

r1P1+NR)

)}
with

D =
g2
r1P1+NR

1+PR min
{
g21r
N1
,
g22r
N2

} .
Proof. The proof follows the lines of the half-duplex protocol in [Smirani et al., Jun. 2014]. Let
Si = griXi be the side information available at user i and Ui = grjXj + ZR,
i 6= j ∈ {1, 2} denote the unknown part at user i. Since we assumed that g2

r2P2 ≤ g2
r1P1, user 1

has the weakest side information, thus the compression step at the relay is performed such that
user 1 reconstructs an estimate ŶR,1 of YR with MSE distortion D.

• Encoding:

For the quantization at the relay, we use a nested lattice coding scheme with Λ2 ⊆ Λ1,
where Λ2 is good for quantization and Λ1 is good for channel coding. We set σ2(Λ1) = D

and σ2(Λ2) = g2
r1P1 +NR. Thus, the quantization rate is Rq = 1

2 log2

(
g2r1P1+NR

D

)
.

The relay performs a Wyner-Ziv coding for which it outputs the index of

vR = [Q1(βYR + t1)] mod Λ2,

where t1 is a dither uniformly distributed over V1.

• Decoding:

At both users, vR is decoded first and Ûi is recovered using Wyner-Ziv decoding with Si
as side-information:

Ûi = β ([vR − t1 − βSi] mod Λ2) i ∈ {1, 2}.

vR can be decoded at both users as long as

Rq ≤ min

{
C

(
g2

1rPR
N1

)
, C

(
g2

2rPR
N2

)}
.



5.1 Standard full-duplex Gaussian two-way relay channel without direct links 71

At user 2, the unknown part is recovered as

Û2 = β[[Q1(βU2 + βS2 + t1)] mod Λ2 − t1 − βS2] mod Λ2

= β[βU2 + Eq] mod Λ2

(a)
= β(βU2 + Eq)

= β2gr1X1 + β2ZR + βEq

where (a) is valid under perfect decoding, requiring

σ2(Λ2) ≥ β2(g2
r1P1 +NR) +D. (5.1)

Decoding of X1 succeeds if R1 ≤ C
(
β2g2r1P1

β2NR+D

)
.

Let ŶR,2 denote an estimate of YR obtained by user 2. Since

YR − ŶR,2 = U2 − Û2

= (1− β2)U2 − βEq,

the MSE distortion equals E[(YR − ŶR,2)2] = (1− β2)2(g2
r1P1 +NR) + β2D, and must, as

at user 1, satisfy the fidelity criterion,

E[(YR − ŶR,2)2] ≤ D. (5.2)

The optimal β satisfying both (5.1) and (5.2) is β =
√

1− D
g2r1P1+NR

.

The same decoding procedure is used at user 1: The unknown part is recovered as

Û1 = β[[Q1(βU1 + βS1 + u1)] mod Λ2 − u1 − βS1] mod Λ2

= β[βU1 + Eq] mod Λ2

(b)
= β(βU1 + Eq)

= β2gr2X2 + β2ZR + βEq

where (b) is valid under perfect decoding, requiring

σ2(Λ2) ≥ β2(g2
r2P2 +NR) +D. (5.3)

Thus, decoding of X2 succeeds if R2 ≤ C
(
β2g2r2P2

β2NR+D

)
.

Note that since β =
√

1− D
g2r1P1+NR

, the condition (5.3) is satisfied:

β2(g2
r2P2 +NR) +D = β2(g2

r2P2 +NR) + g2
r1P1 +NR − β2(g2

r1P1 +NR)

= g2
r1P1 +NR + β2(g2

r2P2 − g2
r1P1)

≤ g2
r1P1 +NR

= σ2(Λ2),

where the last equality holds by design.
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The fidelity criterion at user 1 is also satisfied since

E[(YR − ŶR,1)2] = E[(U1 − Û1)2]

= E[((1− β2)U1 − βEq)2]

= (1− β2)2(g2
r22 +NR) + β2D

= D − D2

(g2
r1P1 +NR)2

(g2
r1P1 − g2

r2P2)

(c)

≤ D,

where (c) follows from the assumption g2
r1P1 ≥ g2

r2P2.

5.1.5 Comparison of the presented protocols

In this subsection we compare the achievable rates for the full-duplex Gaussian two-way relay
channel using CF, DF and AF in a free space path loss model. We thus assume that the gains
are inversely proportional to the distance between nodes raised to the power 3/2. We suppose
that source and destination are unit distance apart and that the relay is between the source and
the destination at a distance d from the source: The channel gains are given as: g12 = g21 = 1,
g1r = gr1 = 1/d3/2 and gr2 = g2r = 1/(1−d)3/2. For this numerical example, we set P = PR = 10
and NR = ND = 1.

Figure 5.3 gives the achievable sum rate of CF, DF and AF as well as the cut-set bound as
a function of the distance d between the relay and user 1. We can see that DF performs very
close to the upper bound when the relay is close to user 1 (or user 2) and that CF gives the best
performance when the relay is somewhere in the middle. We can also note that when the relay
is close to one user, AF achieves higher sum rate than CF, but lower than DF and when the
relay is somewhere in the middle, AF achieves higher sum rate than DF, but lower than CF.
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Figure 5.3: Comparison of the cut-set bound, DF, AF and CF as the function of the distance d
between user 1 and the relay (g1r = gr1 = 1/d3/2, g2r = gr2 = 1/(1− d)3/2).
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5.2 Standard full-duplex Gaussian two-way relay channel with
direct links

The two-way relay channel with direct links is depicted on Figure 5.4. As previously, in the
Gaussian case, user 1 sends X1 of power P1, user 2 X2 of power P2 and the relay XR of power
PR. The received signals are:

At the relay: YR = gr1X1 + gr2X2 + ZR;

At user 1: Y1 = g12X2 + g1rXR + Z1;

At user 2: Y2 = g21X1 + g2rXR + Z2,

where Z1, Z2 and ZR are Gaussian noises of variance N1, N2 and NR respectively.

1 2

R

g21

g12

gr1 g1r g2r gr2

Figure 5.4: Two-way relay channel with direct links

5.2.1 Cut-set bound

As previously, the capacity region of this channel remains unknown, thus we first derive an
upper bound based on a cut-set argument.

Proposition 5.2.1. For the Gaussian two-way relay channel with direct links, the CSB with
restricted encoders is given by the convex closure of the cut-set region:

⋃
0≤ρ1,ρ2≤1

(R1, R2) :


R1 ≤ min

C
(
P1(ρ2

2 − ρ2
1)

ρ2
2

g2
r1N2 + g2

21NR

N2NR

)
, C

(
g2

2rPRρ
2
2 + g2

21P1 + 2g21g2rρ1

√
P1PR

N2

),
R2 ≤ min

C
(
P2(ρ2

1 − ρ2
2)

ρ2
1

g2
r2N1 + g2

12NR

N1NR

)
, C

(
g2

1rPRρ
2
1 + g2

12P2 + 2g12g1rρ2

√
P2PR

N1

)
.

Proof. The cut-set region is given by:{
R1 ≤ min[I(X1;YR, Y2|XR, X2), I(X1, XR;Y2|X2)],

R2 ≤ min[I(X2;YR, Y1|XR, X1), I(X2, XR;Y1|X1)].
(5.4)

In this proof, we only compute

R1 ≤ min[I(X1;YR, Y2|XR, X2), I(X1, XR;Y2|X2)], (5.5)
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the bound on R2 follows in analogous fashion.

We introduce two correlation coefficients: ρ1 =
E[X1XR]√
P1PR

and ρ2 =
E[X2XR]√
P2PR

.

The first mutual information of (5.5) is written as

I(X1;YR, Y2|XR, X2) = H(YR, Y2|XR, X2)−H(YR, Y2|XR, X2, X1)

= H(Y2|X2, XR) +H(YR|Y2, X2, XR)−H(YR, Y2|XR, X2, X1).

Using the linear MMSE estimate of Y2 given X2 and XR, we obtain

H(Y2|X2, XR) ≤ 1

2
log2

2πe

g2
21P1

(
ρ2

1 − ρ2
2

)
−ρ2

2

+N2

 .

Using the linear MMSE estimate of YR given Y2, X2 and XR, we obtain

H(YR|Y2, X2, XR) ≤ 1

2
log2

2πe

 g2
r1P1N2

(
ρ2

2 − ρ2
1

)
g2

21P1

(
ρ2

2 − ρ2
1

)
+N2ρ2

2

+NR

 .

Finally,

I(X1;YR, Y2|XR, X2) = H(YR, Y2|XR, X2)−H(YR, Y2|XR, X2, X1)

= H(Y2|X2, XR) +H(YR|Y2, X2, XR)−H(YR, Y2|XR, X2, X1)

≤ C

(
P1(ρ2

2 − ρ2
1)

ρ2
2

g2
r1N2 + g2

21NR

N2NR

)
.

The second mutual information of (5.5) is written as

I(X1, XR;Y2|X2) = H(Y2|X2)−H(Y2|X1, X2, XR)

≤ C

(
g2

2rPRρ
2
2 + g2

21P1 + 2g21g2rρ1

√
P1PR

N2

)
.

The remaining of the section presents various protocols, such as DF, AF, Compute-and-
Forward (CoF) and Compress/Decode-and-Forward (CDF).

5.2.2 Decode-and-Forward

Proposition 5.2.2. ([Rankov and Wittneben, 2006]) For the Gaussian two-way relay channel
with direct links, DF with restricted encoders achieves the following rate region:

⋃
0≤ρ1,ρ2,γ≤1

(R1, R2) :

R1 ≤ min

{
C

(
g2
r1ρ

2
1P1

NR

)
, C

(
g2

21P1 + γg2
2rPR + 2ρ1g21g2r

√
γP1PR

N2

)}
,

R2 ≤ min

{
C

(
g2
r2ρ

2
2P2

NR

)
, C

(
g2

12P2 + γg2
1rPR + 2ρ2g12g1r

√
γP2PR

N1

)}
,

R1 +R2 ≤ C

(
g2
r1ρ

2
1P1 + g2

r2ρ
2
2P2

NR

).
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ρ1 and ρ2 allow to trade off power between repeating the message from the previous block and
sending a new one at user 1 and 2, respectively. γ controls the power trade-off between the
messages intended for user 1 and 2.

Proof. The proof is based on sliding window encoding and decoding to take advantage of both
the direct and the relayed links. This extends the proof proposed in [Khina et al., 2012] for the
Gaussian relay channel to the Gaussian TWRC.

• Encoding:

The codeword of each user is the superposition of two codewords. At the relay, only one
of the two codewords is decoded and sent coherently to the receiver with the user message
in the next block, the other codeword is decoded only at the receiver.

At block b, user 1 sends

X1(b) =

√
ρ2

1P1

PRγ
X11(w1,b)+

√
ρ2

1X12(w1,b+1),

where X11 is of power PRγ and X12 of power P1.

At block b, user 2 sends

X2(b) =

√
ρ2

2P2

PRγ
X21(w2,b)+

√
ρ2

2X22(w2,b+1),

where X21 is of power PRγ and X22 of power P2.

The codebooks have rate R1 and R2 respectively:

w1,b ∈ {1, . . . , 2nR1} and w2,b ∈ {1, . . . , 2nR2}.

At block b, the relay sends XR(b) = X11(w1,b) +X21(w2,b).

• Decoding:

At block b, the relay receives

YR(b) =gr1

√
ρ2

1P1

γPR
X11(w1,b)+gr1X12(w1,b+1)

+gr2

√
ρ2

2P2

γPR
X21(w2,b)+gr2X22(w2,b+1)+ZR(b).

During the previous block, the relay has decoded w1,b and w2,b (by induction assumption),
so it can remove them and decode w1,b+1 and w2,b+1 if

R1 ≤ C

(
g2
r1ρ

2
1P1

NR

)
,

R2 ≤ C

(
g2
r2ρ

2
2P2

NR

)
and

R1 +R2 ≤ C

(
g2
r1ρ

2
1P1 + g2

r2ρ
2
2P2

NR

)
.
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User 1 receives at block b:

Y1(b) =

g12

√
ρ2

2P2

γPR
+g1r

X21(w2,b)+g12

√
ρ2

2X22(w2,b+1)+Z1(b).

It starts decoding X22(w2,b) from Y1(b−1) and then decodes X21(w2,b) from Y1(b), conside-
ring X22(w2,b+1) as noise. This succeeds if

R2 ≤ C


(
g12

√
ρ22P2

γPR
+ g1r

)2

γPR

g2
12ρ

2
2P2 +N1

+ C

(
g2

12ρ
2
2P2

N1

)

= C

(
g2

12P2 + γg2
1rPR + 2ρ2g12g1r

√
γP2PR

N1

)
.

The same decoding procedure can be applied at user 2 and the decoding succeeds if

R1 ≤ C


(
g21

√
ρ21P1

γPR
+ g2r

)2

γPR

g2
12ρ

2
1P1 +N2

+ C

(
g2

21ρ
2
1P1

N2

)

= C

(
g2

21P1 + γg2
2rPR + 2ρ1g21g2r

√
γP1PR

N2

)
.

5.2.3 Amplify-and-Forward

Proposition 5.2.3. For the Gaussian two-way relay channel with direct links, AF with restricted
encoders achieves the following rate region:

⋃
(R1, R2) :

R1 ≤
1

2
log2

(
α1 +

√
α2

1 − β2
1

2

)
, R2 ≤

1

2
log2

(
α2 +

√
α2

2 − β2
2

2

), where

g =

√
PR

g2
r1P1 + g2

r2P2 +NR
;

α1 = 1 + P1
g2

21 + g2
r1g

2
2rg

2

N2 + g2NR
and β1 =

2gr1g2rg21gP1

N2 + g2NR
;

α2 = 1 + P2
g2

12 + g2
r2g

2
1rg

2

N1 + g2NR
and β2 =

2gr2g1rg12gP2

N1 + g2NR
.

Proof. The proof follows the same approach as for AF in Section 4.1.4.
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5.2.4 Compute-and-Forward

In Compute-and-Forward (CoF), the relay decodes a linear combination of the transmitted
codewords, by exploiting the noisy linear combination output by the channel. Using nested
lattices, it has been shown that decoding linear combinations can be done at higher rates than
decoding each codeword individually [Nazer and Gastpar, Oct. 2011].

For this scheme, we assume that gr1 = g1r = gr2 = g2r = 1. If the coefficients aren’t equal
to 1, one must find the best integer equation to compute at the relay.

Proposition 5.2.4. ([Song and Devroye, Aug. 2013]) For the Gaussian two-way relay channel
with direct links, CoF with restricted encoders achieves the following rate region using lattice
coding:

⋃
(R1, R2) :

{
R1 ≤ min

{
1

2
log+

2

(
P1

P1 + P2
+
P1

NR

)
, C

(
g2

21P1 + PR
N2

)}
,

R2 ≤ min

{
1

2
log+

2

(
P2

P1 + P2
+
P2

NR

)
, C

(
g2

12P2 + PR
N1

)}}
.

5.2.5 Compress/Decode-and-Forward

It can be shown that for the Gaussian relay channel, DF approaches the cut-set bound when
the relay is close to the user, while CF approaches the cut-set bound when the relay is close to
the destination. For the Gaussian two-way relay channel, neither DF nor CF achieve the cut-set
bound, since one of the rates obtained with these two protocols is always very low. Instead of
using either DF or CF, one can combine them to achieve better performance. Assume, without
loss of generality, that the relay is close to user 1: the relay first decodes the message from user
1, which can be done with a high rate, and then compresses the rest, which is also done with a
high rate, since this compressed version is intended for user 1, that is close to the relay.

In this subsection, we assume without loss of generality that gr2P2 ≤ gr1P1.

Proposition 5.2.5. For the Gaussian two-way relay channel with direct links, Compress/Decode-
and-Forward (CDF) with restricted encoders achieves the following rate region:

⋃
0≤α≤1
0<γ<1

(R1, R2) :

{
R1 ≤ min

{
C

(
g2
r1ᾱP1

g2
r2P2+NR

)
,
1

2
log2

(
g2

21P1+g2
2rPR+N2+2g21g2r

√
αγ̄P1PR

g2
2rγPR+N2

)}
,

R2 ≤ C
(
P2

N1

g2
12(NR +D) + g2

r2N1

NR +D

)}
with D =

(g2
r2N1 + g2

12NR)P2 +NRN1

g2
1rγPR

.

α allows to trade off power between repeating the message from the previous block and sending a
new one at user 1. γ controls the power trade-off between the messages intended for user 1 and
2.

Proof. For user 1, we use the DF scheme presented in Section 4.1.3, with an additional noise of
power g2

r2P2 at the relay, with a relay power γ̄PR for the transmission to user 2 and an additional
noise of power g2

2rγPR at receiver 2. (The quantization index is treated as additional noise for
the decoding at receiver 2.)
For user 2, we use the CF scheme presented in Section 4.1.2, with a relay power γPR for the
transmission to user 1.
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5.2.6 Comparison of the presented protocols

In this subsection we compare the achievable rates for the full-duplex Gaussian two-way relay
channel using CDF, DF and AF in a free space path loss model. We thus assume that the
gains are inversely proportional to the distance between nodes raised to the power 3/2. We
suppose that the source and destination are unit distance apart and that the relay is between
the source and the destination at a distance d from the source: The channel gains are given as:
g12 = g21 = 1, g1r = gr1 = 1/d3/2 and g2r = gr2 = 1/(1− d)3/2. For this numerical example, we
set P = PR = 10 and NR = ND = 1.

Figure 5.5 gives the achievable sum rate of CDF, DF and AF as well as the cut-set bound as
a function of the distance d between the relay and user 1. We can see that DF performs close
to the upper bound when the relay is close to user 1 (or user 2) and that CDF gives the best
performance when the relay is close to one user. (For CDF, at d = 0.5, the direction of CF and
DF protocols are reversed.)
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Figure 5.5: Comparison of the cut-set bound, DF, AF and CDF as the function of the distance
d between user 1 and the relay (g12 = g21 = 1, g1r = gr1 = 1/d3/2, g2r = gr2 = 1/(1− d)3/2).

5.3 Full-duplex Gaussian two-way relay channel with correlated
noises

As in the previous chapter, we investigate a more general Gaussian two-way relay channel with
direct links by considering correlated additive Gaussian noises at the relay and both destinations.

As previously, in the Gaussian case, user 1 sends X1 of power P1, user 2 X2 of power P2 and
the relay XR of power PR. The received signals are:

At the relay: YR = gr1X1 + gr2X2 + ZR;

At user 1: Y1 = g12X2 + g1rXR + Z1;

At user 2: Y2 = g21X1 + g2rXR + Z2,

where ZR, Z1 and Z2 are Gaussian noises of variance NR, N1, N2 such that ZR is correlated with
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Z1 and Z2. The noise correlation coefficients are defined as ρz1 =
E[Z1ZR]√
N1NR

and ρz2 =
E[Z2ZR]√
N2NR

.

5.3.1 Cut-set bound

Since the capacity of this channel remains unknown, we start by presenting an upper bound
using a cut-set argument.

Proposition 5.3.1. ([Savard and Weidmann, 2015b]) For the Gaussian two-way relay channel
with direct links and correlated noise, the CSB for restricted encoders is given by the convex
closure of the cut-set region:

⋃
0≤ρ1,ρ2≤1

(R1, R2) :

R1≤min

C
(
P1(ρ2

2−ρ2
1)(g2

21NR+g2
r1N2−2g21gr1

√
N2NRρz2)

ρ2
2 ρ

2
z2N2NR

)
,

C

(
g2

2rPRρ
2
2+g2

21P1+2g21g2rρ1

√
P1PR

N2

),
R2≤min

C
(
P2(ρ2

1−ρ2
2)(g2

12NR+g2
r2N1−2g12gr2

√
N1NRρz1)

ρ2
1 ρ

2
z1N1NR

)
,

C

(
g2

1rPRρ
2
1+g2

12P2+2g12g1rρ2

√
P2PR

N1

)
.

Proof. The cut-set region is given by{
R1 ≤ min[I(X1;YR, Y2|XR, X2), I(X1, XR;Y2|X2)],

R2 ≤ min[I(X2;YR, Y1|XR, X1), I(X2, XR;Y1|X1)].

We introduce two correlation coefficients ρ1 =
E[X1XR]√
P1PR

and ρ2 =
E[X2XR]√
P2PR

.

In this proof, we only compute

R1 ≤ min[I(X1;YR, Y2|XR, X2), I(X1, XR;Y2|X2)]. (5.6)

The bound on R2 follows in analogous fashion.

The first mutual information of (5.6) is written as

I(X1;YR, Y2|XR, X2) = H(Y2|X2, XR) +H(YR|Y2, X2, XR)−H(YR, Y2|XR, X2, X1).

Using the linear MMSE estimate of Y2 given X2 and XR, we obtain

H(Y2|X2, XR) ≤ 1

2
log2

(
2πe

g2
21P1(ρ2

1 − ρ2
2)−N2ρ2

2

−ρ2
2

)
.

Using the linear MMSE estimate of YR given Y2, X2 and XR we obtain

H(YR|Y2, X2, XR) ≤ 1

2
log2

(
2πe

(
NR+

N2NRρ
2
z2ρ

2
2+gr1P1(ρ2

2−ρ2
1)(2g21

√
N2NRρz2−gr1N2)

−N2ρ2
2+g2

21P1(ρ2
1−ρ2

2)

))
.
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H(YR, Y2|XR, X2, X1) = H(ZR, Z2) =
1

2
log2

(
(2πe)2|KZ |

)
,

where |KZ | is the determinant of the noise covariance matrix : |KZ | = N2NR(1− ρ2
z2).

Thus,

I(X1;YR, Y2|XR, X2) ≤ C

(
P1(ρ2

2 − ρ2
1)(g2

21NR + g2
r1N2 − 2g21gr1

√
N2NRρz2)

ρ2
2 ρ

2
z2N2NR

)
.

The second mutual information of (5.6) is obtained as

I(X1, XR;Y2|X2) ≤ C

(
g2

2rPRρ
2
2 + g2

21P1 + 2g21g2rρ1

√
P1PR

N2

)
.

The remainder of this section presents achievable rate regions using CDF or DF, as well as
a comparison of these two protocols.

In the following, we assume that the relay is very close to user 1 (and hence far from user
2), such that it can only decode the message from user 1 but not the one of user 2. Instead
of only decoding the message from user 1, the relay will also use a part of its power to send a
compressed version of the message of user 2.

5.3.2 Compress/Decode-and-Forward

Proposition 5.3.2. ([Savard and Weidmann, 2015b]) For the Gaussian two-way relay channel
with direct links and correlated noise, CDF with restricted encoders achieves the following rate
region using lattices:

⋃
0≤α≤1
0<γ<1

(R1, R2) :

R1 ≤ min

{
C

(
g2
r1ᾱP1

g2
r2P2+NR

)
,
1

2
log2

(
g2

21P1+g2
2rPR+N2+2g21g2r

√
αγ̄P1PR

g2
2rγPR+N2

)}
,

R2 ≤ C

(
P2

N1

g2
12(NR +D) + g2

r2N1 − 2g12gr2ρz1
√
N1NR

NRρ2
z1 +D

) with

D =
(g2
r2N1 + g2

12NR)P2 +N1NRρ2
z1 − 2gr2g12P2ρz1

√
N1NR

g2
1rγPR

.

At user 1, α allows to trade off power between repeating the message from the previous block and
sending a new message. γ controls the power trade off at the relay between the decoded and the
compressed part.

Proof. For user 1, we use the DF scheme presented in Section 4.1.3, with an additional noise of
power g2

r2P2 at the relay, with a relay power γ̄PR for the transmission to user 2 and an additional
noise of power g2

2rγPR at receiver 2. (The quantization index is treated as additional noise for
the decoding at receiver 2.)
For user 2, we use the CF scheme presented in Section 4.2.2, with a relay power γPR for the
transmission to user 1.
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5.3.3 Decode-and-Forward

Recall that, in case of correlated noise, the rate-region achieved with DF is the same as for the
standard two-way relay channel, without correlated noises, since the relay decodes everything.

Proposition 5.3.3. ([Rankov and Wittneben, 2006]) For the Gaussian two-way relay channel
with direct links and correlated noise, DF with restricted encoders achieves the following rate
region:

⋃
0≤ρ1,ρ2,γ≤1

(R1, R2) :

R1 ≤ min

{
C

(
g2
r1ρ

2
1P1

NR

)
, C

(
g2

21P1 + γg2
2rPR + 2ρ1g21g2r

√
γP1PR

N2

)}
,

R2 ≤ min

{
C

(
g2
r2ρ

2
2P2

NR

)
, C

(
g2

12P2 + γg2
1rPR + 2ρ2g12g1r

√
γP2PR

N1

)}
,

R1 +R2 ≤ C

(
g2
r1ρ

2
1P1 + g2

r2ρ
2
2P2

NR

).
ρ1 and ρ2 allow to trade off power between repeating the messages from the previous block and
sending a new ones at user 1 and 2. γ controls the power trade-off between the message intended
for user 1 and 2.

5.3.4 Comparison of the presented protocols

We now compare the sum rate achieved with CDF, DF and the direct links only.
For our numerical examples, we consider the following way to assign the channel gains:

gr1 = g1r = d and gr2 = g2r = (1− d) (0 ≤ d ≤ 1).
One major result of [Zhang et al., March 2011] is that if ρz1 = g2r

g21
for the Gaussian relay

channel with N1 = NR, then CF can achieve the CSB.
For the two-way relay channel, numerical evaluations show that the gap between the CSB

and CDF is minimal for this value of ρz1, i.e. ρz1 = (1−d)
g21

.
On Figure 5.6 and Figure 5.7, we represent the sum rate as a function of ρz1. In both cases,

the value ρz1 = (1−d)
g21

minimizes the gap between the CSB and CDF. In both cases, DF achieves
low sum rate since the relayed links are very asymmetric and weaker than the direct links. We
can note that on Figure 5.6, using only the direct links achieves a higher sum rate than using
the relay, since the direct link is better than at least one of the relayed links, but on Figure 5.7
we see that when the direct link is worse than both relayed links, using the relay achieves higher
sum rate. Thus, when the relayed links are weaker than the direct links, it is more efficient not
to use the relay when one can choose between DF and CDF. Note that it wouldn’t be neither
efficient to send the message from user 1 over the direct links and only to compress the one
from user 2 at the relay: in this case, the message from user 1 would act as additional noise
at the relay for the compression of the message from user 2 but at the relay, the message from
user 1 convey more power than the one that should be compressed, leading again to very poor
performance.

5.4 Conclusion

In this chapter, we presented a detailed study of the Gaussian two-way relay channel (with and
without direct links), which is a simple extension of the Gaussian relay channel.
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Figure 5.6: Comparison of the cut-set bound, DF, CDF and the transmission only over the
direct links as the function of the noise correlation ρz1, (g21 = g12 = 0.9, gr1 = g1r = d,
gr2 = g2r = 1− d with d = 0.75). Minimal gap between the cut-set bound and CDF is achieved
for ρz1 = 0.27.
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Figure 5.7: Comparison of the cut-set bound, DF, CDF and the transmission only over the
direct links as the function of the noise correlation ρz1, (g21 = g12 = 0.9, gr1 = g1r = d,
gr2 = g2r = 1− d with d = 0.95). Minimal gap between the cut-set bound and CDF is achieved
for ρz1 = 0.05.

We first gave an upper bound on the capacity as well as lower bounds achieved by various
standard protocols such as DF, CF, AF, CDF and CoF using either lattice or AWGN coding. If
the relay is between the source and the destination, we can see that if it is closer to the source,
then DF outperforms CF and if the relay is closer to the destination, then CF outperforms DF.

In the second part of the chapter, we studied a more general Gaussian two-way relay channel,
where the additive Gaussian noise at the relay and destinations are correlated. For this setup,
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we proposed a CDF protocol combining doubly-nested lattice coding at one user and standard
lattice coding at the other. Numerical examples show that, given the channel gains, CDF
can outperform a transmission only over the direct links or two-way DF. We also noted that a
particular value of the correlation coefficient minimizes the gap between the CDF and the CSB.
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Chapter 6

The Gaussian multiway relay
channel with direct links

This work was presented in [Savard and Weidmann, 2014b] and [Savard and Weidmann, 2015a].
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In the previous chapter, we investigated the Gaussian two-way relay channel, a natural
extension of the Gaussian relay channel, in which two users wish to exchange their messages
with the help of one relay.

An extension of the TWRC named the multiway relay channel (mRC) has been recently
proposed in [Gündüz et al., Jan. 2013]: the authors consider multiple clusters of users that wish
to exchange messages locally within each cluster, with the help of a single relay. Achievable
rates for DF, CF, AF and CoF are given for the so-called restricted model.

The main difference between the multiway relay channel in [Gündüz et al., Jan. 2013] and
the model considered in this chapter consists in the inclusion of direct links between users of the
same cluster. When users are close to each other (for instance in a sensor network), they can
overhear signals sent by each other, thus adding direct links gives a more realistic model of the
situation.
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The focus of this chapter is to provide rate limits for the Gaussian mRC with intra-cluster
links. The users in a cluster broadcast their messages both to the relay and to the other users
within the same cluster. The relay receives incoming messages on a MAC and sends a function
of its received message over a Gaussian broadcast channel to the users to help them decoding
the messages they wish to receive.

We investigate two different setups in detail: the full data exchange model and the pairwise
data exchange model. In the full data exchange model, each user wants to recover the messages
from all users in the network. In the pairwise data exchange model, there are only two users per
cluster who wish to exchange their messages. For this setup we also investigate the performance
of the CoF protocol using nested lattices, which can achieve rates within half a bit from the
capacity of the TWRC [Nam et al., 2008].

We focus only on one particular point in the capacity region: the exchange rate point for the
symmetric network setup. In this setup, all users have the same power constraint and the noise
powers at all terminals are the same. Moreover, the gains of the user-relay links are identical
and denoted by g, and all intra-cluster links have unit gain. The exchange rate is the point in
the capacity region with equal rate for all users. The total exchange rate is the total rate of all
the data multicast over the network. The supremum of all achievable exchange rates is called
the exchange capacity. We provide an upper bound on the exchange capacity and characterize
the total exchange rate achievable with DF, AF, CF and CoF (when there are K = 2 users per
cluster).

6.1 System model

This chapter considers a Gaussian multiway relay channel (mRC) in which N users, grouped
into L clusters of K ≥ 2 users each (N = KL), exchange messages with the help of one relay.
The K users in each cluster want to recover the messages of all K−1 other users within their
cluster. We suppose that users within a cluster are physically close, thus they can overhear the
other users’ messages and model this through unit gain direct links between users of the same
cluster. We also assume that the relay has a better observation of the transmitted messages
than the users and model this assumption through a bidirectional gain g > 1 on links between
the relay and the users (this can be justified by better antennas and/or higher power and less
noise, i.e. more powerful hardware at the relay). All nodes are assumed to be full-duplex. This
model is depicted in Figure 6.1.

For the Gaussian case, user k of cluster l sends Xl,k, which is of power Pl,k and the relay
sends XR, which is of power PR. The received signals are:

At user k of cluster l: Yl,k =
K∑
i=1
i 6=k

Xl,i+gXR+Zl,k (6.1)

At the relay: YR =
L∑
l=1

K∑
k=1

gXl,k+ZR, (6.2)

where ZR and Zl,k are zero-mean, unit-variance Gaussian noises that are independent of each
other and of the channel inputs. The difference with the model in [Gündüz et al., Jan. 2013] is
the presence of the intra-cluster signals in (6.1).
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Figure 6.1: Model setup: L clusters of K users each, fully connected within a cluster, commu-
nicating over one relay; user-relay links (blue) have gain g.

6.2 Exchange rate for the symmetric network

Like Gündüz et al., we focus on a symmetric setup with equal power constraints, respectively
noise variances, at the users, i.e., Pl,k = P , ∀l, k and Nl,k = N = 1 , ∀l, k. We will investigate
the achievable equal rate point for different relaying schemes, i.e. Rl,k = R , ∀l, k.

Definition 6.2.1. An exchange rate Re is achievable for the mRC with L clusters of K users
each if ( Re

KL . . .
Re
KL) is an achievable rate tuple. The exchange capacity is defined as the supremum

of all achievable exchange rates.

We also propose an upper bound on the cut-set bound, which allows an easier study of the
gap between the different proposed schemes and the upper bound. Throughout this chapter,
we focus on the full data exchange model. Like Gündüz et al., we first restrict analysis to
time-sharing among clusters, but in Section 6.5, we relax that restriction. Since we consider
a time-sharing assumption, each cluster only transmits over a 1/L fraction of the time, which
allows us to increase the power of each user up to P ′ = PL and still satisfy the average user
power constraint.

The model (6.1) and (6.2) becomes:

Yi =

K∑
k=1
k 6=i

Xk+gXR+Zi,

YR = g

K∑
k=1

Xk+ZR,

where we drop the cluster index for notation simplicity.

The remainder of the section presents the cut-set bound as well as achievable rates using
CF, AF, DF and CoF (only when K = 2). For each lower/upper bound, we also study the limit
when g grows large, i.e., when the direct links become negligible compared to the relayed links.
This study allows a comparison with the rates obtained by Gündüz et al.. In order to make a
fair comparison, we must normalize the transmitted powers (at the users and the relay) by g2.
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6.2.1 Cut-set bound

Since the capacity of this channel remains unknown, we first give an upper bound by considering
a cut-set argument.

Proposition 6.2.1. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each, the CSB on the exchange capacity, for restricted encoders,
is given by:

RCSB = max
ρ∈[0,1]

K

K−1
min {f1(ρ), f2(ρ)} , where

f1(ρ) = C

(g2+1)P ′(K−1)
(
ρ2−(K−1)ρ2

)
ρ2

 (6.3)

f2(ρ) = C
(
(K−1)P ′+g2PRρ2+2g

√
P ′PR(K−1)ρ

)
, (6.4)

and ρ is a correlation parameter.

Proof. Arguing that the most restricting cut is the one with all nodes but one in a set, we obtain{
(K−1)RK ≤ I(X1, . . . , XK−1;YK , YR|XK , XR)

(K−1)RK ≤ I(X1, . . . , XK−1, XR;YK |XK).
(6.5)

Using the linear MMSE estimate of YK given XK , the second constraint in (6.5) can be
upper-bounded as

I(X1, . . . , XK−1, XR;YK |XK) ≤ C

(
(K−1)P ′+g2PRρ2

K+2g
√
P ′PR

K−1∑
k=1

ρk

)
, (6.6)

where ρk stands for the correlation coefficient ρk =
E[XkXR]√
P ′PR

.

We write the right-hand side of the first constraint in (6.5) as

I(X1, . . . , XK−1;YK , YR|XK , XR) =H(YK |XK , XR) +H(YR|XK , XR, YK)

−H(YK , YR|X1, . . . , XK , XR).

Using the linear MMSE estimate of YK given XK , XR, we obtain

H(YK |XK , XR) ≤ 1

2
log2

2πe

1+
P ′

ρ2
K

(K−1)ρ2
K−

(
K−1∑
k=1

ρk

)2
 .

Using the linear MMSE estimate of YR given XK , XR, YK , we obtain

H(YR|XK , XR, YK) ≤ 1

2
log2

(
2πe

N

D

)
,

where D = P ′PR

(
−ρ2

K+P ′

(
−(K−1)ρ2

K+

(
K−1∑
k=1

ρk

)2
))

and N = (g2+1)D+g2P ′PRρ2
K .
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Thus,

I(X1, . . . , XK−1;YK , YR|XK , XR) ≤ 1

2
log2

(
(g2+1)D+g2P ′PRρ2

K

D

D

−P ′PRρ2
K

)

= C

(g2+1)P ′

ρ2
K

(K−1)ρ2
K−

(
K−1∑
k=1

ρk

)2
 . (6.7)

Inequalities (6.6) and (6.7) lead to:

RK ≤
1

K−1
min

C
(g2+1)P ′

ρ2
K

(K−1)ρ2
K−

(
K−1∑
k=1

ρk

)2
 ,

C

(
(K−1)P ′+g2PRρ2

K+2g
√
P ′PR

K−1∑
k=1

ρk

).
Since every node must satisfy the same constraints that are based on its own correlation

with the relay transmitter signal and the correlation of all other signals with the relay, the
above inequalities reduce to

R ≤ max
ρ∈[0,1]

1

K−1
min

{
f1(ρ), f2(ρ)

}
, where

f1(ρ) = C

(g2+1)P ′(K−1)
(
ρ2−(K−1)ρ2

)
ρ2

 and

f2(ρ) = C
(

(K−1)P ′+g2PRρ2+2g
√
P ′PR(K−1)ρ

)
.

Here ρ stands for the correlation coefficient ρ =
E[XiXR]√
P ′PR

, ∀i.

Proposition 6.2.2. For a symmetric Gaussian mRC with direct links, L clusters of K users
each, the CSB, for restricted encoders and asymptotically large gain g (with the appropriate
normalization of the powers), is given by:

Rg→∞CSB =
K

K−1
min

{
C
(
(K−1)P ′

)
, C(PR)

}
.

The CSB for Gündüz et al.’s mRC model, without direct links and with relay-user links of gain
1, is given by:

RGündüz et al.
CSB =

K

K−1
min

{
C
(
(K−1)P ′

)
, C(PR)

}
.

Remark: Note that Rg→∞CSB = RGündüz et al.
CSB .
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Proof. By replacing P ′ by P ′/g2 and PR by PR/g
2 in (6.3) and (6.4) and by taking the limit,

we obtain

lim
g→∞

f1(ρ) = C

(K−1)P ′
(
ρ2−(K−1)ρ2

)
ρ2

 and lim
g→∞

f2(ρ) = C
(
PRρ2

)
.

We see that both limits are decreasing in ρ, thus the optimum value is ρ = 0, which completes
the proof.

In the next subsections, we present the exchange rate for the Amplify-and-Forward (AF),
the Compress-and-Forward (CF), the Decode-and-Forward (DF) and the Compute-and-Forward
(CoF) protocols.

6.2.2 Amplify-and-Forward

This part is inspired by [Chang et al., 2010], where an AF scheme has been proposed for the
Gaussian relay channel. Here we extend this scheme to many users grouped into clusters.

Proposition 6.2.3. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each, the exchange rate achievable with AF relaying and
restricted encoders is:

RAF =
K

2(K−1)
log2

(
α+
√
α2−β2

2

)
,

with

α = 1+(K−1)P ′
g2(KP ′+g2PR)+1

g2(KP ′+PR)+1
(6.8)

β = 2(K−1)P ′g2

√
PR(g2KP ′+1)

g2(KP ′+PR)+1
. (6.9)

Proof. The proof follows along the line of the proof of Proposition 4.1.4 using a unit-memory

intersymbol MAC of K − 1 users. The scaling factor at the relay is here
√

PR
g2KP ′+1

.

Proposition 6.2.4. For a symmetric Gaussian mRC with direct links, L clusters of K users, the
following exchange rate is achievable with AF relaying for restricted encoders and asymptotically
large gain g (with the appropriate normalization of the powers):

Rg→∞AF =
K

K−1
C

(
(K−1)P ′PR
KP ′+PR+1

)
.

The achievable exchange rate with Gündüz et al.’s mRC model, without direct links and with
relay-user links of gain 1, and AF relaying is given by:

RGündüz et al.
AF =

K

K−1
C

(
(K−1)P ′PR
KP ′+PR+1

)
.

Remark: Note that Rg→∞AF = RGündüz et al.
AF .
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Proof. By replacing P ′ by P ′/g2 and PR by PR/g
2 in (6.8) and (6.9) and by taking the limit,

we obtain lim
g→∞

α = 1 + (K−1)P ′PR

1+PR+KP ′ and it’s straightforward that lim
g→∞

β = 0.

Thus,

lim
g→∞

α+
√
α2−β2

2
= lim

g→∞
α = 1+

(K−1)P ′PR
1+PR+KP ′

,

which concludes the proof.

6.2.3 Compress-and-Forward

This part is inspired by [Song and Devroye, 2011], where a lattice-based CF scheme has been
proposed for the Gaussian relay channel. Here we extend the proposed scheme to multiple nodes
in a cluster.

Proposition 6.2.5. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each, the exchange rate achievable with CF relaying using
lattice coding and restricted encoders is:

RCF =
K

K−1
C

(
(K−1)P ′

(
1+

g2

1+D

))
with D =

(1+g2)(K−1)P ′+1

g2PR
. (6.10)

Proof. The proof follows along the lines of the proof of Proposition 4.1.2. The main difference

are the second moment of the shaping lattice used for the quantization, σ2(ΛQ) = 1+D+g2(K−1)P ′

1+(K−1)P ′

and the use of a K − 1 user MAC to recover all messages.

Proposition 6.2.6. For a symmetric Gaussian mRC with direct links, L clusters of K users
each, the following exchange rate is achievable with CF relaying using lattice codes for restricted
encoders and asymptotically large gain g (with the appropriate normalization of the powers):

Rg→∞CF =
K

K−1
C

(
(K−1)P ′PR

1+(K−1)P ′+PR

)
.

The achievable exchange rate with Gündüz et al.’s mRC model, without direct links and with
relay-user links of gain 1, and CF relaying is given by:

RGündüz et al.
CF =

K

K−1
C

(
(K−1)P ′PR

1+(K−1)P ′+PR

)
.

Remark: Note that Rg→∞CF = RGündüz et al.
CF .

Proof. Replacing P ′ by P ′/g2 and PR by PR/g
2 in (6.10) yields

RCF =
K

K−1
C

(K−1)P
′

g2

(
PR+ 1+g2

g2
P ′+1+g2PR

)
PR+ 1+g2

g2
(K−1)P ′+1


and

lim
g→∞

(K−1)P
′

g2

(
PR+ 1+g2

g2
P ′+1+g2PR

)
PR+ 1+g2

g2
(K−1)P ′+1

=
(K−1)P ′PR

1+(K−1)P ′+PR
,

which concludes the proof.
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6.2.4 Decode-and-Forward

This part is inspired by [Khina et al., 2012], where a DF scheme using AWGN superposition
coding and decoding has been proposed for the Gaussian relay channel. Here we extend this
superposition scheme to multiple users in a cluster.

Proposition 6.2.7. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each, the exchange rate achievable with DF relaying and
restricted encoders is:

RDF = max
ρ∈[0,1]

min {R1(ρ), R2(ρ)} ,

where

R1(ρ) = C
(
g2ρ2KP ′

)
(6.11)

R2(ρ) =
K

K−1
C

(
(K−1)

(
P ′+g2PR

K
+2gρ

√
P ′PR
K

))
. (6.12)

Proof. The proof follows along the lines of the proof of Proposition 5.2.2. The main differences
are the powers of each part of the codeword, here Xk1, ∀k ∈ {1, . . . ,K} is of power PR/K,
Xk2, ∀k ∈ {1, . . . ,K} is of power P ′, and the use of a K−1 user MAC to recover all messages.

Proposition 6.2.8. For a symmetric Gaussian mRC with direct links, L clusters of K users
each, the following exchange rate is achievable with DF relaying for restricted encoders and
asymptotically large gain g (with the appropriate normalization of the powers):

Rg→∞DF = min

{
C
(
KP ′

)
,
K

K−1
C

(
(K−1)PR

K

)}
.

The achievable exchange rate with Gündüz et al.’s mRC model, without direct links and with
relay-user links of gain 1, and DF relaying is given by:

RGündüz et al.
DF = min

{
C
(
KP ′

)
,
K

K−1
C(PR)

}
.

Remark: Note that the two achievable rates Rg→∞DF and RGündüz et al.
DF differ only by the factor

K−1
K in the second term of the min function. Nevertheless, this term becomes negligible when

the number of users becomes large.

Proof. By replacing P ′ by P ′/g2 and PR by PR/g
2 in (6.11) and (6.12) and by taking the limit,

we obtain

lim
g→∞

R1(ρ) = C(ρ2KP ′) and

lim
g→∞

R2(ρ) =
K

K−1
C

(
(K−1)PR

K

)
.

Since R1(ρ) is a decreasing function and R2(ρ) is constant in ρ, the optimum value of ρ is ρ∗ = 0,
which completes the proof.
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6.2.5 Compute-and-Forward

For this subsection, we focus on the pairwise data exchange model: there are only two users
in each cluster. This part is based on [Song and Devroye, Aug. 2013], where a combination of
CoF and DF has been proposed for the TWRC with unitary links between the relay and the
two destinations nodes.

The main advantage of CoF is to compute directly the sum of the messages at the relay
instead of decoding both messages individually.

Proposition 6.2.9. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K = 2 users each, the exchange rate achievable with CoF relaying and
restricted encoders is:

RCoF = min

{
log+

2

(
1

2
+g2P ′

)
, log2(1+P ′+g2PR)

}
. (6.13)

Proof. The following nested lattices are used: Λ ⊆ Λs ⊆ Λc, ΛR ⊆ ΛsR ⊆ ΛcR, with σ2(Λ) = P ′

and σ2(ΛR) = PR.

Transmitters send:

Xi(b) = [ti(b)+Ui(b)] mod Λ, i = 1, 2

where Ui is a dither uniformly distributed over V.

The relay receives YR = g(X1+X2)+ZR and can compute T = [t1+t2] mod Λ if

R ≤ 1

2
log+

2

(
1

2
+g2P ′

)
.

Then, using the list decoder proposed in [Song and Devroye, Aug. 2013], the destinations
can decode each other’s messages as long as

R ≤ 1

2
log2(1+P ′+g2PR).

Proposition 6.2.10. For a symmetric Gaussian mRC with direct links, L clusters of K = 2
users each, the following exchange rate is achievable with CoF relaying using lattice codes, for
restricted encoders and asymptotically large gain g (with the appropriate normalization of the
powers):

Rg→∞CoF = min

{
log+

2

(
1

2
+P ′

)
, log2(1+PR)

}
.

The achievable exchange rate with Gündüz et al.’s mRC model, without direct links and with
relay-user links of gain 1, and CoF relaying is given by:

RGündüz et al.
CoF = min

{
log+

2

(
1

2
+P ′

)
, log2(1+PR)

}
.

Remark: Note that Rg→∞CoF = RGündüz et al.
CoF .

Proof. By replacing P ′ by P ′/g2 and PR by PR/g
2 in (6.13), and by taking the limit, the result

is straightforward.
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6.3 Comparison with the cut-set bound

In this section, we characterize the gaps to the cut-set bound of our proposed schemes. In
particular, we prove that the proposed schemes can achieve a finite gap that is independent of
the transmit powers and number of clusters of the system. We also prove that the AF protocol
achieves a finite gap to the CF protocol.

We first derive an upper bound on the cut-set bound which will be useful to analyze the
performance of the proposed protocols. The goal is to obtain a bound based only on the system
parameters and not on the optimization parameter ρ corresponding to the correlation coefficient
between the relay and the users.

6.3.1 Weakening the cut-set bound

Proposition 6.3.1. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each, the CSB for restricted encoders can be upper bounded
by:

RCSB ≤
K

K−1
C
(
(g2+1)(K−1)P ′

)
. (6.14)

Proof. Recall that

RCSB = max
ρ∈[0,1]

K

K−1
min {f1(ρ), f2(ρ)} , where

f1(ρ) = C

(g2+1)P ′(K−1)
(
ρ2−(K−1)ρ2

)
ρ2

 and

f2(ρ) = C
(
(K−1)P ′+g2PRρ2+2g

√
P ′PR(K−1)ρ

)
.

First, it can be proven that f1(ρ) is a decreasing function such that

∀ρ ∈ [0, 1], f1(ρ) ≤ 1

2
C
(
(g2+1)(K−1)P ′

)
and that f2(ρ) is a concave function whose maximum C

(
(K−1)P ′+g2PR+(K−1)2P ′

)
is reached

for ρ∗ = K−1
g

√
P ′

PR
.

The final result relies on the study of the relative position of f1(ρ) and f2(ρ). We can notice
that f1(1) ≤ f2(1). Based on the relative position of f1(0) and f2(0), and on the increasing or
concave nature of f2(ρ), there are either zero, or more intersections points , but in each case, the
maximum value that RCSB can take is upper-bounded by the value f1(0) = C

(
(g2+1)(K−1)P ′

)
.

6.3.2 Gaps to cut-set bound and comparison between schemes

Proposition 6.3.2. ([Savard and Weidmann, 2014b]) For a symmetric Gaussian mRC with
direct links, L clusters of K users each and restricted encoders, the CF protocol achieves rates
within K

2(K−1) log2(1+g2) bits of the exchange capacity.
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Proof.

RCF =
K

2(K−1)
log2

(
(1+(g2+1)(K−1)P ′)

)
− K

2(K−1)
log2

(
1+(1+g2)(K−1)P ′+g2PR

1+(K−1)P ′+g2PR

)
≥ RCSB−

K

2(K−1)
log2

(
1+(1+g2)(K−1)P ′+g2PR

1+(K−1)P ′+g2PR

)
≥ RCSB−

K

2(K−1)
log2(1+g2).

Justification of the two last steps:

Define the function f1(PR) = 1+(1+g2)(K−1)P ′+g2PR

1+(K−1)P ′+g2PR
. It can be shown that f1(PR) is a strictly

decreasing function and that

∀PR, f1(PR) ≤ f2(P ′) =
1+(1+g2)(K−1)P ′

1+(K−1)P ′
.

Then, it can be proven that f2(P ′) is an increasing function and that

∀P ′, f2(P ′) ≤ 1+g2,

which completes the proof.

Proposition 6.3.3. For a symmetric Gaussian mRC with direct links, L clusters of K users
each and restricted encoders, the AF protocol achieves rates within K

2(K−1) log2(2(g2+1)) bits of
the exchange capacity.

Proof. Recall that

RAF =
K

2(K−1)
log2

(
α+
√
α2−β2

2

)
,

with

α = 1+(K−1)P ′
g2(KP ′+g2PR)+1

g2(KP ′+PR)+1
and β = 2(K−1)P ′g2

√
PR(g2KP ′+1)

g2(KP ′+PR)+1
.

Define the function f(PR) = α2−β2. It can be proven that f(PR) is convex and that

∀PR,
4g2
(
P ′(g2+1)(K−1)+1

)
(g2+1)2

≤ f(PR)≤ (1+g2(K−1)P ′)2. (6.15)

Let us now study α as a function of PR. We can prove that α(PR) is an increasing function
and that

∀PR, 1+(K−1)P ′ ≤ α(PR) ≤ 1+g2(K−1)P ′. (6.16)

Define D as D=(1+(K−1)P ′)(g2+1)+2g
√
P ′(g2+1)(K−1)+1.

Thus, using (6.15) and (6.16) we obtain

−RAF ≤
K

2(K−1)
log2

(
2(g2+1)

D

)
, and

RAF ≥ RCSB−
K

2(K−1)
log2

(
2(g2+1)(1+(g2+1)(K−1)P ′)

D

)
RAF ≥ RCSB−

K

2(K−1)
log2(2(g2+1)).
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Justification of the last step:

Define f(P ′) as f(P ′) = 2(g2+1)(1+(g2+1)(K−1)P ′)
D .

This function f(P ′) is strictly increasing and ∀P ′, f(P ′) ≤ 2(g2 +1), which completes the
proof.

Proposition 6.3.4. For a symmetric Gaussian mRC with direct links, L clusters of K users
each and restricted encoders, the AF protocol achieves rates within K

2(K−1) log2(2(1+g2)) bits of
the CF protocol.

Proof. We first study the achievable rate of CF as a function of PR. It can be shown that it is
an increasing function upper bounded by 1

2(K−1) log2

(
1+(g2+1)(K−1)P ′

)
.

Thus, we have

RCF−RAF ≤
1

2(K−1)
log2

(
2(g2+1)

)
.

Notice that this is the exact same computation as for the comparison between the CSB and
AF.

6.4 Numerical results

In Figure 6.2, we plot the cut-set bound, the achievable symmetric rate for the mRC with L = 1
cluster of K = 2 and K = 20 users as a function of P ′ when PR = KP ′. We can see that the gap
between the cut-set bound and DF diverges quickly with increasing power and this especially for
a small number of users per cluster. We can also notice the finite gap between the cut-set bound
and the CF protocol at all power levels, and see that AF follows CF with a constant gap. For
a small number of users, CF dominates DF. Similar results are obtained when the relay doesn’t
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Figure 6.2: Total exchange rate in bits vs. P , PR = KP , g = 3, L = 1

scale its transmit power with the number of users (PR = P ′), which is depicted on Figure 6.3

In Figure 6.4, we plot the cut-set bound, the achievable symmetric rate for the mRC with
L = 1 cluster and P ′ = 30dB as a function of K. We consider two cases: in the first one, the
relay scales its power with the number of users (curves with circles) and in the second one it
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Figure 6.3: Total exchange rate in bits vs. P , PR = P , g = 3, L = 1

doesn’t (curves with squares). We observe that DF achieves the cut-set bound when the relay
power doesn’t scale with the number of users. We can also notice that in both cases, AF and
CF have very close performances.
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In Figure 6.5, we plot the cut-set bound, the achievable symmetric rate for the mRC with
L = 8 clusters of K = 2 users as a function of P ′. We can note that for the chosen g, CoF gives
the best performances among the proposed schemes. We can also see that the gap between the
cut-set bound and CoF tends to zero.

6.5 Without time-sharing between clusters

In this section, we study the Gaussian mRC with direct links, when we relax assumption that
clusters are operated in time-sharing fashion (as in [Gündüz et al., Jan. 2013]). In this case, the
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received signals are:

At user k of cluster l: Yl,k =
∑
i 6=k

Xl,i+gXR+Zl,k

At the relay: YR =
L∑
l=1

K∑
k=1

gXl,k+ZR,

where all users have a power constraint P and the relay a power constraint PR.

As above, we first derive an upper bound on the capacity using a cut-set argument and then
propose various lower bounds using AF, DF or CF.

6.5.1 Cut-set bound

Proposition 6.5.1. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, with restricted encoders and without time-sharing, the CSB is given
by:

RCSB ≤ max
ρ∈[0,1]

KL

K−1
min (f1(ρ), f2(ρ))

where

f1(ρ) = C

(
N

ρ2

)
f2(ρ) = C

(
(K − 1)P + g2PRρ2 + 2g

√
PPR(K − 1)ρ

)
N =

(
Pg2K(L− 1)

) (
PR(g − 1)2K(L− 1)ρ2ρ2 − P (K − 1)(KLρ2 − 1)

)
− P

(
g2(KL− 1)(KLρ2 − 1) + (K − 1)(Kρ2 − 1)

)
.
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Proof. Arguing that the most restricting cut is the one with all nodes but one in a set, we obtain
(K − 1)RK ≤ I

(
X1,1, . . . , X1,K−1,

⋃
k,l 6=1

Xl,k;Y1,K , YR|X1,K , XR

)
(K − 1)RK ≤ I

(
X1,1, . . . , X1,K−1,

⋃
k,l 6=1

Xl,k, XR;Y1,K |X1,K

)
.

(6.17)

We directly use the fact that for the exchange rate, the correlation coefficients are such that

ρl,k =
E[Xl,kXR]√

PPR
= ρ ∀l, k.

We write the right-hand side of the first constraint in (6.17) as

I

(
X1,1, . . . , X1,K−1,

⋃
k,l 6=1

Xl,k;Y1,K , YR|X1,K , XR

)
= H(Y1,K |XR, X1,K) +H(YR|Y1,K , XR, X1,K)

−H
(
Y1,K , YR|

⋃
k,l

Xl,k, XR

)
Using the linear MMSE estimate of Y1,K given XR and X1,K , we obtain

H(Y1,K |XR, X1,K) ≤ 1

2
log2

(
2πe

(
1 + P (K − 1)

ρ2 − (K − 1)ρ2

ρ2

))
.

Using the linear MMSE estimate of YR given Y1,K , XR and X1,K , we obtain

H(YR|Y1,K , XR, X1,K) ≤ 1

2
log2

2πe

 N + ρ2

ρ2 + P (K − 1)
(
ρ2 − (K − 1)ρ2

)
 ,

where

N =
(
Pg2K(L− 1)

) (
PR(g − 1)2K(L− 1)ρ2ρ2 − P (K − 1)(KLρ2 − 1)

)
− P

(
g2(KL− 1)(KLρ2 − 1) + (K − 1)(Kρ2 − 1)

)
Thus

I

(
X1,K , . . . , X1,K−1,

⋃
k,l 6=1

Xl,k;Y1,K , YR|X1,K , XR

)
≤C

(
N

ρ2

)
.

The second constraint in (6.17) is the same as with the time-sharing assumption since the
signals from other clusters do not show up in Y1,K , thus

I

(
X1,1, . . . , X1,K−1,

⋃
k,l 6=1

Xl,k, XR;Y1,K |X1,K

)
≤C

(
(K − 1)P + g2PRρ2 + 2g

√
PPR(K − 1)ρ

)
.

6.5.2 Amplify-and-Forward

In the following, two versions of AF are proposed: in the first one, relayed messages from other
clusters are treated as noise when recovering the messages for a given cluster, whereas in the
second one, they are first decoded in order to remove them, before decoding the messages for a
given cluster.
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Proposition 6.5.2. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, for restricted encoders and without time-sharing (relayed messages
from users in other clusters are treated as noise), the following exchange rate is achievable with
AF relaying:

RAF =
KL

2(K−1)
log2

(
α+
√
α2−β2

2

)
,

with

α = 1+(K−1)P
g2(KLP+g2PR)+1

g2(KLP+PR+g2(L−1)KPPR)+1

β = 2(K−1)Pg2

√
PR(g2KLP+1)

g2(KLP+PR+g2(L−1)KPPR)+1
.

Proof. The proof follows along the lines of the proof of Proposition 4.1.4 using a unit-memory

intersymbol MAC of K − 1 users. The scaling factor at the relay equals
√

PR
g2KLP+1

. Relayed

messages from users in other clusters are treated as noise when decoding the K − 1 messages of
a given cluster.

Proposition 6.5.3. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, for restricted encoders and without time-sharing (messages from users
in another cluster are decoded first to reduce the noise at each user), the following exchange rate
is achievable with AF relaying:

RAF = min

{
L

L−1
C

(
g4K(L−1)PPR

1+g2(KLP+PR)+(K−1)P (1+g2KLP+g4PR)

)
,

KL

2(K−1)
log2

(
α+
√
α2−β2

2

)}
(6.18)

with

α = 1+(K−1)P
g2(KLP+g2PR)+1

g2(KLP+PR)+1
and β = 2(K−1)Pg2

√
PR(g2KLP+1)

g2(KLP+PR)+1
.

Proof. The proof follows along the line of the proof of Proposition 4.1.4 using a unit-memory

intersymbol MAC of K − 1 users. The scaling factor at the relay equals
√

PR
g2KLP+1

. Relayed

messages from other clusters are first decoded, yielding the first rate constraint in (6.18) and
then removed. The K − 1 messages of a given cluster are then decoded using the K − 1 user
MAC, yielding the second rate constraint in (6.18).

6.5.3 Decode-and-Forward

In the following, two versions of DF are proposed: in the first one, relayed messages from other
clusters are treated as noises when recovering the messages for a given cluster, whereas in the
second one, they are first decoded in order to remove them, before decoding the messages for a
given cluster.

Proposition 6.5.4. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, for restricted encoders and without time-sharing (relayed messages
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from users in other clusters are treated as noise), the following exchange rate is achievable with
DF relaying:

RDF = max
ρ∈[0,1]

min

C
(
g2LKPρ2

)
,
KL

K−1
C

(K−1)
P+g2 PR

KL+2gρ
√

PPR
KL

1+g2L−1
L PR


.

Proof. The proof follows along the lines of the proof of Proposition 5.2.2. The main differences
are the powers of each part of the codeword, here Xl,k,1, ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , L} is of
power PR/(KL), Xl,k,2, ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , L} is of power P , and the use of a K − 1
users MAC to recover all messages. Relayed messages from users in other clusters are treated
as noise when decoding the K − 1 messages of a given cluster.

Proposition 6.5.5. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, for restricted encoders and without time-sharing (relayed messages
from users in other clusters are decoded first to reduce the noise at each user), the following
exchange rate is achievable with DF relaying:

RDF = max
ρ∈[0,1]

min

C
(
g2LKPρ2

)
,
KL

K−1
C
(

(K−1)ρ2P
)

+

min


L

L−1
C

 g2K(L−1) PR
KL

(K−1)(P+g2 PR
KL+2gρ

√
PPR
KL )+1

 ,
KL

K−1
C

(K−1)
g2 PR

KL+ρ2P+2gρ
√

PPR
KL

(K−1)ρ2P+1




.
(6.19)

Proof. The proof follows along the lines of the proof of Proposition 5.2.2. The main differences
are the power of each part of the codeword, here Xl,k,1, ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , L} is of
power PR/(KL), Xl,k,2, ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , L} is of power P , and the use of a K − 1
users MAC to recover all messages. The first rate constraint in (6.19) corresponds to the MAC
constraint at the relay, where all KL codewords Xl,k,1 are decoded. The second rate constraint
corresponds to the decoding of the K − 1 codewords Xl,k,2 after all Xl,k,1 have been removed,
which is possible as long as the minimum constraint of (6.19) is satisfied (the first term in the
min corresponds to the decoding of all (L − 1)K codewords Xl,k,1 and the second one to the
decoding of the K − 1 codewords Xl,k,1 of a given cluster after having the (L− 1)K codewords
Xl,k,1 removed.

6.5.4 Compress-and-Forward

Proposition 6.5.6. For a symmetric Gaussian multiway relay channel with direct links, L
clusters of K users each, for restricted encoders and without time-sharing, the following exchange
rate is achievable with CF relaying:

RCF =
KL

(K−1)
C

(
1+(K−1)P

(
1+

g2

1+D+g2(L−1)KP

))
with
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D =
1+(K−1)P (1+g2) + g2(L−1)KP (1+(K−1)P )

g2PR
.

Proof. The proof follows along the lines of the proof of Proposition 4.1.2. The main difference
are the second moment of the shaping lattice used for the quantization,

σ2(ΛQ) = 1+D+g2(K−1)P+g2(L−1)KP ((K−1)P+1)
(K−1)P+1 and the use of a K−1 users MAC to recover all

messages. Messages from users in another cluster are treated as noise when decoding the K − 1
messages of a given cluster.

6.6 Comparison of mRC with and without time-sharing

One interesting question concerning the multiway relay channel is whether it is more interesting
to assume time-sharing among the clusters or not. Figure 6.6 and Figure 6.7 present numerical
results obtained for L = 10 clusters of K = 20 users each and g = 3 and either PR = P or
PR = KLP .

In each case, results obtained with and without time-sharing are presented. The cut-set
bound without time-sharing is much higher than with time-sharing and one can note that only
CF performs clearly better without time-sharing than with this constraint, all other protocols
perform either in the same order of magnitude or worse.

When the relay does not scale its power with the number of users, one can note that AF
without time-sharing and considering additional signals from other clusters as additional noise
can give better performance than with time-sharing for a large range of user power P .

When the relay scales its power with the number of users, we can note that DF, when
additional signals are decoded first, gives results close to the one obtained with time-sharing
and clearly outperforms the version where the additional signals are treated as noise. For the
two versions of AF, the same observation can be made: decoding the additional signals first
yields higher exchange rate.

Clearly, in both cases, only CF seems to be able to achieve rates close to the cut-set bound.
All protocols have difficulties to deal with the additional signals, intended to other clusters and
broadcast by the relay. The major issue is that these signals have a higher power than the
signals that the users of a cluster want to recover.

6.7 Conclusions

In this chapter we considered an extension of the multiway relay channel proposed by [Gündüz
et al., Jan. 2013]. In the considered setup, multiple clusters of users with direct intra-cluster links
communicate with the help of a single relay. Each user wishes to recover all messages within
its cluster. We extended standard schemes such as CF, DF, AF for this setup using results
proposed for the Gaussian relay channel based on lattices [Nazer and Gastpar, Oct. 2011],
[Song and Devroye, Aug. 2013] [Song and Devroye, 2011] or standard AWGN coding/decoding
[Khina et al., 2012] [Chang et al., 2010]. We characterized the achievable exchange rate for all
these protocols with or without time-sharing among the clusters. In the case in which there
are only two users per cluster, we have proposed an extension of CoF. When we consider the
time-sharing assumption, we also studied gaps to the cut-set bound that these protocols can
achieve, and proved that the gaps only depend of the number of users K and on the weight g
of the links between users and the relay, and do not depend on the transmit power nor on the
number of clusters L. We also proved that AF performs within a finite gap from CF. For very
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Figure 6.6: Comparison of the proposed protocols with or without time sharing among the
clusters, K = 20, L = 10, g = 3, PR = P

large user-relay gain g, i.e. when the model becomes that of [Gündüz et al., Jan. 2013] (up
to scaling), the behaviors of the proposed protocols become the same as the ones obtained by
[Gündüz et al., Jan. 2013] (by scaling the node and relay transmit powers accordingly). We
also noted that for the general case without time-sharing, only CF performs clearly better than
with the time-sharing assumption. Other protocols perform either close to the performance
obtained with time-sharing or worse. This degradation is due to the interference caused by
signals intended to other clusters, that are broadcast to all clusters by the relay.

Up so far, we only characterized the symmetric case. One first question that arises, is how
to characterize an asymmetric case, in terms of power or gains on the links? One should find
a way to compare results for this setup: a minimum achievable rate, the sum-rate. . . Also, we
only considered a single-antenna relay: increasing the number of antennas at the relay up to K
could achieve higher rates.



104 Chapter 6. The Gaussian multiway relay channel with direct links

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

P(dB)

T
o

ta
l 
e

x
c
h

a
n

g
e

 r
a

te

 

 
CSB

DF add noise

DF decode int.

CF add noise

AF add noise

AF decode int.

0 5 10 15 20 25 30
5

6

7

8

9

10

11

P(dB)

T
o

ta
l 
e

x
c
h

a
n

g
e

 r
a

te

 

 

CSB with t.s.

DF with t.s.

CF with t.s.

AF with t.s.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

P(dB)

T
o

ta
l 
e

x
c
h

a
n

g
e

 r
a

te

 

 
DF add noise

DF decode int.

AF add noise

AF decode int.

DF with t.s.

CF with t.s.

AF with t.s.

Figure 6.7: Comparison of the proposed protocols with or without time sharing among the
clusters, K = 20, L = 10, g = 3, PR = KLP



Summary and conclusion of Part II

In this part, we focused on various Gaussian full-duplex relay channel models: the relay channel,
the two-way relay channel and the multiway relay channel, which is a straightforward general-
ization of the two-way relay channel. For the first two models, we also studied a generalization
considering correlated noises, which can occur for instance when there is a common interference
signal that cannot be decoded/removed.

For all these models, we first proposed a cut-set upper bound on capacity. Then, we char-
acterized achievable lower bounds on the capacity by focusing on five state-of-the-art relaying
schemes: Decode-and-Forward, Compress-and-Forward, Amplify-and-Forward,
Compress/Decode-and-Forward and Compute-and-Forward.

The goal is to show that standard techniques can be applied to new channel models and
generalizations of the relay channel. It is shown that lattices can achieve the theoretical rate
region for CF on the relay channel with correlated noises. This result is then extended to a
mixed protocol for the two-way relay channel with correlated noises. The main contribution of
this second part is the extension of the multiway relay channel by adding direct links between
users in a cluster.

Nowadays, almost everyone has a cell phone and many users use their communication devices
at the same time, thus it is unrealistic to consider the case where there is only one user and one
relay. For example in sensor network, users can be grouped into clusters that wish to exchange
their data locally within the same cluster. The multiway relay channel presented here is a first
attempt to characterize this situation by considering a symmetric case with direct links between
users to model the overhearing of each other’s communications. A more realistic setup would be
the asymmetric case. Furthermore, we didn’t propose any new relaying schemes, which could
potentially achieve higher sum rate or could overcome the interference problem that occurs when
no time-sharing is performed among clusters.
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Coding for cooperative communications: Topics in distributed source coding and relay channels

Abstract: The current wireless data traffic growth cannot be handled by classical multi-hop network protocols
as in interference-free wired networks, thus it has been recognized that network nodes need to cooperate in order
to take advantage of source and/or channel signal correlations, which is needed to achieve fundamental capacity
limits.
This thesis first considers a cooperative source coding problem, namely binary source coding with coded side
information (CoSI): the helper node has access to a signal that is correlated with the source and may send a
compressed version on a separate link to the destination, thus rate can be saved on the main source-destination
link. Using a characterization of the Hamming-space Voronoi regions of the quantizer at the helper node, an
improved practical scheme based on LDPC codes is proposed.
The second part of the thesis considers cooperative channel coding, where helper nodes are relays. The simplest
example of such a communication is the relay channel, in which a relay node helps the source to send its message
to the destination. Whereas in the source coding problem, the correlation between source and side information
is given, in channel coding, the main question is to find the best relaying operation. First, a somewhat dual
problem to source coding with CoSI is studied, by considering correlated noises at the relay and destination.
Then, various extensions of the relay channel are characterized using upper bounds on capacity and achievable
rates: the two-way relay channel with correlated noises at the relay and destinations, where two sources wish
to exchange their data with the help of a relay, and the multiway relay channel with direct links, where users,
grouped into fully connected clusters (users in a cluster can overhear each others’ messages), wish to exchange
their messages locally within a cluster with the help of one relay.

Keywords: Distributed source coding, Iterative decoding, Voronoi cells, Lattice coding, Relay channels

Codage pour les communications coopératives : Codage de source distribué et canaux à relais

Résumé : L’augmentation du trafic sur les réseaux sans fil ne permet plus de traiter les données en utilisant les
protocoles standards des réseaux filaires, qui sont eux sans interférences. Ainsi, les noeuds des réseaux sans fil
doivent coopérer en exploitant les corrélations inhérentes à la proximité des utilisateurs afin d’exploiter au mieux
la capacité d’un tel réseau.
Dans cette thèse, nous considérons tout d’abord le problème de codage de source avec information adjacente
compressée. Le noeud coopératif, ayant accès à un signal corrélé avec celui de la source, peut en envoyer une
version compressée au destinataire sur un lien indépendant, permettant d’économiser du débit sur le lien principal.
En utilisant une caractérisation des cellules de Voronoi du quantificateur utilisé, nous avons pu améliorer un
algorithme de décodage itératif basé sur des codes LDPC.
La seconde partie de la thèse traite des problèmes de codage de canal, où les noeuds coopératifs sont des relais.
L’exemple le plus simple d’une telle communication est le canal à relais, où un relais aide à la communication entre
la source et la destination. Alors que dans le problème de codage de source, le canal de corrélation entre la source
et le noeud coopératif est fixé, dans le codage de canal, la question est de savoir quelle opération effectuer au relais.
Tout d’abord, nous considérons un problème quelque peu dual au problème de codage de source avec information
adjacente compressée, en considérant des bruits corrélés au relais et la destination. Puis, nous étudions des bornes
sur la capacité et des débits atteignables pour deux extensions du canal à relais, le canal à relais bidirectionnel avec
des bruits corrélés au relais et aux destinations, où deux sources échangent leurs données avec l’aide d’un relais,
et le canal multidirectionnel avec liens directs (qui modélisent la proximité des utilisateurs), où les utilisateurs
sont regroupés dans des clusters et échangent leurs données localement au sein d’un même cluster avec l’aide d’un
relais.

Mots clés : Codage de source distribué, Décodage itératif, Cellules de Voronoi, Codage par réseau de points,
Canaux à relais


