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Abstract—This paper investigates the energy efficiency of a
multi-user downlink non-orthogonal multiple access (NOMA)
system. The energy-efficiency maximization representing the
tradeoff between the sum rate versus the overall power consump-
tion is formulated as a bi-criterion optimization problem; being
convex, scalarization is suitable for its solution. Assuming that
each individual user has a minimum quality of service constraint,
we prove that the solution of the scalarized objective can be
obtained in closed form. Hence, our solution characterizes the
entire Pareto-optimal boundary of the rate vs. power tradeoffs.
In the special case of maximizing the ratio sum rate vs. overall
power, our solution reduces the complexity of the Dinkelbach
procedure to a univariate bisection method, similarly to [1]. At
last, our simulation results highlight the benefit of NOMA over
OMA in terms of the rate vs. power optimal tradeoff.

Index Terms—NOMA, energy efficiency, bi-criterion optimiza-
tion, minimum QoS constraints

I. INTRODUCTION

Non-orthogonal multiple access (NOMA), which enables
multiple users to communicate over the same frequency, time
or spreading-code resources, has been identified as a very
promising technology to improve the spectrum efficiency of
future communication networks [2]–[5]. Furthermore, it was
shown that NOMA outperforms OMA in terms of device
connections and spectrum efficiency, making it very suitable
for Internet of Things (IoT) [6] applications. Nevertheless,
energy consumption remains a major issue and requires to
allocate the network resources in an efficient manner. In the
last couple of years, resource allocation problems for NOMA-
based systems have been widely studied in the literature from
an energy-efficient perspective. Both uplink [7] and downlink
[8], [9] scenarios have been studied given the recent advances
in user equipment making possible the implementation of
successive interference cancellation (SIC) in practice [10],
[11].

In this paper, we study the energy efficiency of a multi-
user NOMA system, formulated as a bi-criterion convex
optimization problem, similarly to [9]. Aside from the power
budget constraint, we also consider minimum QoS constraints
for all links. Remarkably, we provide the closed-form solution
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– known only in the special case of two users [4] – for
the general case of K ≥ 2 users, as opposed to [7]–[9]
(in which only iterative methods were proposed). Our closed
form solution allows us to fully characterize the entire Pareto-
optimal boundary of the rate vs. power tradeoff points. Our
numerical simulations show that NOMA outperforms OMA
both in terms of achievable sum rate (up to 9.4% gain NOMA
vs. OMA) and of consumed power (up to 33% excess OMA
vs. NOMA), irrespective from the tradeoff parameter.

The closest works to ours are [12] and [1], in which
different closed-form power allocation solutions have been
provided in multi-user downlink NOMA systems. In [12],
the rate maximization problem was considered, in which the
transmission always takes place at maximum power (which is
not power-efficient). In [1], the energy efficiency defined as the
ratio between the sum rate and the overall power consumption
was studied. By using a skillful variable change, which lead to
an intermediary closed-form solution to a multi-variate non-
convex problem, finding the maximum energy efficiency in
a multi-user setting was reduced to a univariate bisection
method. Nevertheless, the solutions in [1], [12] provide only
very specific points on the Pareto-optimal boundary, whereas
our closed-form solution provides all rate vs. power optimal
tradeoffs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The network under study is composed of a single transmitter
(e.g., base-station, IoT access point, etc.) and K receivers. The
transmitter employs a superposed coding technique and the
received signal at receiver k writes as

Yk = hkX + Zk = hk

K∑
i=1

Xi + Zk

where Xi, of average power pi ≥ 0, denotes the message
intended for receiver i and Zk, of variance σ2

k, is the additive
white Gaussian noise at receiver k.

We assume that the channels are ordered as follows

|h1|2/σ2
1 > |h2|2/σ2

2 ≥ |h3|2/σ2
3 ≥ . . . ≥ |hK |2/σ2

K ,



which for a NOMA system means that the k-th strongest user
with respect to the channel quality decodes first the signals
of the weaker users j ≥ k + 1 using SIC, and only sees the
interference coming from the stronger users j ≤ k−1. Hence,
the achievable rate of user k-th writes as [12]

RNOMA
k (p)=log2

(
1+

|hk|2pk
|hk|2(p1+...+pk−1)+σ2

k

)
, (1)

where p = (p1, . . . , pK) denotes the power allocation vector.
The network is constrained by an overall power budget

at the transmitter such that
∑
i pi ≤ Pmax as well as by

individual minimum QoS constraints given as RNOMA
k (p) ≥

Rmin,k ∀k. These constraints define the set of feasible power
allocation vectors given as

P ,

{
p ∈ RK+

∣∣∣∣∣
K∑
k=1

pk ≤ Pmax, Rk(p) ≥ Rmin,k, ∀k

}
.

Throughout the paper, we will use the following notations
to simplify the mathematical derivations: Γk = |hk|2

σ2
k

,

Ak = 2Rmin,k , θk =
∑k
i=1 pi,∀k ≥ 1, and θ0 = 0. Using

these notations, the feasible set can be expressed as a convex
polytope (afine inequality constraints):

P =

{
p ∈ RK+

∣∣∣∣ θK≤Pmax, θk≥Akθk−1+
Ak − 1

Γk
, ∀k

}
.

A. Energy efficiency as a bi-criterion problem

Energy efficiency measures the tradeoff between the overall
throughput and the power consumption of the network and can
be formulated mathematically as a bi-criterion optimization
problem [13], which in our case writes as

max
p ∈ P

( K∑
k=1

RNOMA
k (p); −

K∑
k=1

pk − Pc

)
, (2)

where Pc denotes the constant circuit power consumption.
Notice that the two above objectives are contradictory: to
maximize the sum rate, the network transmissions take place
at full power, which obviously is not energy-efficient; and
to minimize the power consumption, there should be no
transmission, which is neither throughput- nor QoS-efficient.

To solve such a bi-criterion optimization problem, we need
to find the Pareto-boundary of the feasible set of the rate-power
pairs. This boundary contains all the Pareto-optimal solutions,
which represent the rate-power feasible pairs which cannot be
improved in both objectives simultaneously while remaining
in the feasible set. Under the channel order assumed, the sum
rate is jointly concave w.r.t. p as shown in [12]. Hence, the
optimization problem (2) is convex and finding the Pareto-
boundary reduces to maximizing the weighted sum of the two
opposing objectives [14]:

max
p ∈ P

K∑
k=1

RNOMA
k (p)− α

(
K∑
k=1

pk + Pc

)
, (3)

where α ≥ 0 is the parameter that trades off between rate and
power consumption and sweeps the entire Pareto-boundary.

It can also be interpreted as a measure of the unit power
consumption cost.

In what follows, we first provide the closed-form solution
and then, we show how to exploit this solution in the max-
imization of the ratio between the sum rate and the overall
power consumption.

III. ENERGY EFFICIENCY FOR DOWNLINK NOMA

Because of the QoS constraints, the feasible set may be
void. Indeed, depending on the channel conditions, the QoS
requirements for all users may not be met under the available
power budget. Necessary and sufficient feasibility conditions
were introduced in [12].

Proposition 1 ([12]). The optimization problem (2) is feasible
if and only if the following condition on the system parameters

holds: Pmax ≥ Pmin ,
K∑
i=1

Ai − 1

Γi

K∏
j=i+1

Aj .

Intuitively, Pmin denotes the overall minimum power re-
quired for all the QoS constraints to be met with equality.

A. Closed-form solution

Exploiting the notations Γk and θk, the optimization prob-
lem under study can be rewritten as

max
p

K∑
k=1

log2

(
1 + Γkθk

1 + Γkθk−1

)
− α(θK + Pc)

s.t. θK ≤ Pmax,

θk ≥ Akθk−1 +
(Ak − 1)

Γk
, ∀k ∈ {1, . . . ,K},

(4)

which is a convex problem that we solve analytically and
in closed-form using the Karush-Kuhn-Tucker (KKT) opti-
mality conditions. Intuitively, under the assumed order of the
channels, we can show that all users except for the strongest
one (user 1) should meet their QoS with equality in order to
maximize the overall energy efficiency.

Theorem 1. The optimal power allocation that maximizes the
energy efficiency bi-criterion optimization problem (2) in a
downlink multi-user NOMA system, can be obtained in closed-
form as follows:

p∗k(α) = (Ak − 1)

(
1

Γk
+ p∗1(α)

k−1∏
i=2

Ai

+

k−1∑
i=2

Ai − 1

Γi

k−1∏
j=i+1

Aj

)
, ∀ k ≥ 2,

p∗1(α) = min
(

max
(
p1(α); A1−1

Γ1

)
;U1

)
,

(5)



where U1 and p1(α) are expressed below

U1 =
1

K∏
i=2

Ai

Pmax − Pmin +
A1 − 1

Γ1

K∏
j=2

Aj

 , (6)

p1(α) =
1

(ln 2) α

K∏
i=2

Ai

− 1

Γ1
. (7)

Proof. Let L be the Lagrangian of the convex problem (4):

L =

K∑
i=1

log2

(
1 + Γiθi

1 + Γiθi−1

)
− α(θK + Pc) + λ(Pmax − θK)

+

K∑
i=1

βi

(
θi −Aiθi−1 −

Ai − 1

Γi

)
,

where λ and β = (β1, . . . , βK)T are the positive Lagrange
multipliers for the overall power constraint and the K QoS
constraints, respectively. The KKT optimality conditions are
necessary and sufficient for optimality and they imply that
∂L
∂pk

= 0, ∀k, at the solution. Thus, we also have that
the difference between two consecutive Lagrange derivatives
equals zero, ∂L

∂pk+1
− ∂L

∂pk
= 0, which leads to the following

equations

Ak+1βk+1 =
1

ln 2

(
Γk

1 + Γkθk
− Γk+1

1 + Γk+1θk

)
+ βk, (8)

for all k ∈ {1, . . . ,K − 1}.
Now, exploiting the assumption that Γ1 > Γ2, β1 ≥ 0 and

A2 > 0, the above equation for k = 1 implies that β2 > 0.
Since Γk ≥ Γk+1 and Ak+1 > 0, for all k ≥ 2, the fact
that β2 > 0 has a cascading effect in the above equations and
leads to βk+1 > 0, ∀k ∈ {2, . . . ,K−1}. Hence, we have that
βk > 0, ∀k ≥ 2. This means that all QoS constraints of all
weaker users, k ≥ 2, are active at the solution and they meet
no more than their minimum rate requirement:

θk = Akθk−1 +
Ak − 1

Γk
, ∀k > 1. (9)

By induction, we can show that

θk = θ1

k∏
i=2

Ai +

k−1∑
i=2

Ai − 1

Γi

k∏
j=i+1

Aj +
Ak − 1

Γk
,∀k > 1.

Knowing that pk = θk − θk−1, for all k > 1, and that
θ1 = p1, the above equations allow us to express all the
powers allocated to the weaker users as functions of p1, the
power allocated to the strongest user as in (5). Hence, the
multi-variable problem in (4) is reduced to the following single
variable problem:

max
p1

f1(p1) s.t.
A1 − 1

Γ1
≤ p1 ≤ U1,

where the new objective function is

f1(p1) = log2(1 + Γ1p1) + log2

K∏
i=2

Ai

− α
(
p1

K∏
i=2

Ai +

K−1∑
i=2

Ai − 1

Γi

K∏
j=i+1

Aj +
AK − 1

ΓK
+ Pc

)
and the upper bound on p1, coming from the maximum power
constraint, is given in (6).

It is obvious that the objective function f1(p1) is concave
w.r.t. p1, hence the optimal solution p∗1(α) is either the critical
point p1(α) in (7) canceling the first order derivative, or one of
the borders of the new feasible set, concluding the proof.

B. Ratio between the sum rate and overall power

A popular energy-efficiency metric is defined as the ratio
between the sum rate and the overall power consumption [1],
[8], [13], [15] measured in bits per Joule of consumed energy

ηEE(p) =

∑
k Rk(p)∑
k pk + Pc

, (10)

whose solution also lies on the Pareto-boundary of the bi-
criterion problem (2).

In [1], the authors proposed a skillful variable change
for the maximization of ηEE(p) leading to a closed-form
intermediary solution and reducing the Dinkelbach procedure
to a univariate bisection method.

Although our closed-form solution solves a different (more
general) problem, it can also be exploited for the same pur-
pose. Using fractional programming [8], [15] and our closed-
form solution in Theorem 1, simplifies the optimization of (10)
to finding the fixed point of the following function

F (α) =

K∑
k=1

RNOMA
k (p∗(α))− α

( K∑
k=1

p∗k(α) + Pc

)
,

where p∗(α) is given in (5). This can be done simply by using
the bisection method.

IV. SIMULATION RESULTS

In this section, we compare the performance of NOMA
and OMA in terms of both achievable sum rate and power
consumption in the following setup: K = 3 users, Pmax =
10 W available transmit power, Pc = 1 W circuit power
consumption, Rmin,k = 2 bps, ∀k, i.e., all users have the same
QoS requirement. We also assume that the noise variances are
such that σ2

k = 1,∀k and that the channel gains are such
that hk ∼ CN (0, 5),∀k. The curves are averaged over 105

independent channel realizations.
Under OMA, the transmitter serves the K users by per-

forming time sharing with equal time slots. Each user k is
allocated a power qk ∈ [0, Pmax] and can thus achieve the rate
ROMA
k (q) = 1

K log2 (1 + Γkqk). Note that under OMA, the
total amount of consumed power writes as 1

K

∑K
k=1 qk + Pc.

For a fair comparison with NOMA, the same individual QoS
constraints {Rmin,k}k are imposed in addition to the power
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Fig. 1. NOMA vs. OMA as a function of the parameter α that tradeoffs between sum rate and power consumption in the energy-efficiency bi-objective
optimization for Pmax = 10W . NOMA outperforms OMA in terms of sum rate for any α. In terms of power consumption, for rate-driven objectives (small
values of α) OMA may consume less power (down to 5%) than NOMA. At the opposite, for power-efficient objectives (large values of α) OMA consumes
more power (up to 34%) than NOMA.
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(b) Relative power consumption excess of OMA vs. NOMA

Fig. 2. NOMA vs. OMA as a function of the maximum power Pmax for different values of α. NOMA always performs at least as good as OMA in terms of
sum rate and the gap between them decreases with α. In terms of power consumption, for rate-driven objectives (small values of α) OMA may consume less
power (down to 4%) than NOMA. At the opposite, for power-efficient objectives (large values of α) OMA consumes more power (up to 34%) than NOMA.

budget Pmax to compute the optimal power allocation under
OMA, denoted by q∗(α).

In Fig. 1(a) and Fig. 1(b), we illustrate the relative sum-
rate gain, G(α), of NOMA vs. OMA and the relative power
consumption excess, E(α), of OMA vs. NOMA respectively,
as a function of α, the parameter that trades off between rate
and power consumption. To be precise, the two performance

metrics G(α) and E(α) are defined as

G(α) ,

∑
k

[
RNOMA
k (p∗(α))−ROMA

k (q∗(α))
]

∑
k

ROMA
k (q∗(α))

, (11)



E(α) ,

∑
k

[
1

K
q∗k(α)− p∗k(α)

]
∑
k

p∗k(α) + Pc
. (12)

In Fig. 1, notice that the gain G is always non-negative, which
means that NOMA cannot decrease the achievable sum rate
compared to OMA and, for low values of α (when the sum
rate dominates the power consumption in the objective) the
relative sum-rate gain goes up to 9%. Furthermore, for very
small α, both NOMA and OMA consume the entire available
power budget in order to maximize their sum rate, resulting in
E = 0. Then, NOMA first starts by consuming more power
than OMA (for relatively small values of α when the objective
is rate-driven), yielding a negative power excess E. Finally
for larger α (power-efficient objectives), OMA consumes up
to 33% more power than NOMA. Although for small values
of α, NOMA consumes more power than OMA, it achieves
higher sum rates, which is the target goal.

It is also worth mentioning that the two metrics G(α) and
E(α) exhibit opposite behavior. Specifically, the sum-rate gain
of NOMA vs. OMA is larger for small values of α, whereas
the power excess of OMA vs. NOMA is larger for larger
values of α. This means that, when the sum rate is the critical
or dominant objective (small α), NOMA clearly outperforms
OMA in terms of sum rate, but can consume more power.
On the other hand, when the power consumption is the most
critical objective (large α), NOMA clearly outperforms OMA
in terms of power consumption but the gain in terms of sum
rate drops and might even equal zero.

Indeed, when α becomes too large, both OMA and
NOMA achieve the same sum rate

∑
k R

NOMA
k (p∗(α)) =∑

k R
OMA
k (q∗(α)) =

∑
k Rmin,k, as shown in Fig. 1(a).

Since the main goal becomes minimizing the consumed power
while ensuring the QoS constraints, each user is only allocated
the exact power to meet its QoS. Nevertheless, as shown in
Fig. 1(b), OMA requires a larger amount of power than NOMA
to achieve the sum rate

∑
k Rmin,k.

In Fig. 2, we present the relative sum-rate gain G and the
relative power consumption excess E as a function of the base
station power budget Pmax for five different values of
α ∈ {0; 0.2; 0.5; 1; 1.5}.

First, in Fig. 2(a) we note that NOMA always outperforms
OMA in terms of sum rate for all values of α and power budget
Pmax. The largest gaps in the sum rate are achieved for small
α i.e., when the objective reduces to maximizing the sum rate,
with little or no power consumption consideration. For α > 0,
the optimal solution tradeoffs between sum rate and power
consumption. For large values of α, a small and flat relative
sum-rate gain can be observed: as the objective becomes more
power efficient, the achieved sum rate for both NOMA and
OMA approaches the sum of the minimum required user rates,
irrespective from Pmax.

With respect to the power consumption, NOMA does not
always outperform OMA. Indeed, in Fig. 2(b), we see that
for small values of α and large values of Pmax, NOMA

consumes more power than OMA, resulting into negatives of
the excess E. Nevertheless, for these values of α, the objective
is sum-rate driven with little or no consideration of the power
consumption. When α increases and the objective becomes
more power efficient, it can be seen that OMA is outperformed
by NOMA and may require up to 34% more power to achieve
nearly the same sum rate (α = 1.5).

V. CONCLUSIONS

In this paper, we provided a closed-form solution to the
energy efficiency maximization, defined as a bi-criterion prob-
lem, in a multi-user downlink NOMA system. Our solution
optimally tradeoffs between achievable sum rate and overall
power consumption for any weighting factor between the two
objectives. We also show that our solution is also quite useful
when maximizing the ratio between the sum rate and overall
power consumption.
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