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Abstract

In the Conjugate-Gradient-Squared method, a sequence of residuals rj defined by ry = P2(A)rg is
computed. Coeflicients of the polynomials P, may be computed as ratio of scalar products from the
theory of formal orthogonal polynomials. When a scalar product in a denominator is zero or very affected
by round-off errors, situations of breakdown or near-breakdown appear. Using floating point arithmetic
on computers, such situations are detected with the use of ¢; in some ordering relations like |z| < ¢;.
The user has to choose the ¢; himself and these choices conditionate entirely the efficient detection of
breakdown or near-breakdown. The subject of this paper is to show how stochastic arithmetic eliminates
the problem of the g; with the estimation of the accuracy of some intermediate results.
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accuracy.

Subject Classification: AMS(MOS):.

1 Introduction

Let us consider in € the system of linear equations Az = b where A is a nonsingular matrix. The Lanczos
method [12, 13] for solving this system consists in constructing a sequence of vectors (zy) in the following
way:

e choose two arbitrary nonzero vectors xg and y;
o set rg = b — Auxg;

e determine z; such that

— & — g € By = span(ro, Arg, - - -,Ak_lTo), that means we can write
T — o = —bgk)To — = b;ck)Ak_l'ro;
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— rp=b— Az L Fj, = span(y, A*y, - -,A*k_ly), where A* is the conjugate transpose of A, which
is equivalent to the following orthogonality conditions

(A*2y7frk)20 fOI”L:O”k_l (1)

If we set

Q) = 14084 4P ch

then we have

rr = Pp(A)ro.
Moreover, if we define the linear functional ¢ on the space of polynomials by
(¢ = (y,A%), i=0,1,---,
then the orthogonality conditions (1) can be written in the form
C(CiPk) =0 fori=0,---,k—1.

This approach, which was developed in [4, 3], shows that Py is the orthogonal polynomial of degree at
most k belonging to the family of formal orthogonal polynomials with respect to ¢ [1]. This polynomial
is defined apart from a multiplying factor which in our case is chosen such that P(0) = 1. So 71 can be
computed if Py exists and the existence and uniqueness of Py is determined by the condition

(3/7 ATO) (?JyAQ”'o) T (yyAk’T‘o)
H}gl) _ (yv %27?0) (yv %37”0) e (yv Akj—l_lTO) 0.
(%Akro) (v, Ak+1"'0) e (y, A%_ITO)

The variant of Lanczos method proposed by Sonneveld [14] — the the Conjugate Gradient Squared method
(CGS in short) is the method that we will consider in this paper. It consists in computing

T = P,?(A)'ro,

in order to avoid the computation of A*. Lanczos method, as well as CGS, have the property of finite
termination, namely
3 k < n such that r, = 0 and 2 = 2 = A~ b.

The polynomials Py can be computed recursively in different ways leading to various Lanczos type methods
[4]. The coefficients of the different recurrence relations for the computation of the orthogonal polynomials
P, are given by ratios of scalar products. When a scalar product in the denominator is zero, which
corresponds to the non existence or non uniqueness of some polynomial, a situation of breakdown occurs
in the algorithm and we have to stop. To avoid breakdown, algorithms based on formulas that jump over
the non-existing polynomials and compute only the existing ones have been proposed (for the description
of these algorithms and theoretical background see [2]). The orthogonal polynomials approach of Lanczos
type methods has two main advantages: it makes the presentation of the methods clear and simple and
gives formulae for avoiding breakdown.

But when those scalar products appearing in denominators are badly computed, then rounding errors
can affect seriously all the computations. This is a typical situation of near-breakdown. In scientific



computations, due to finite precision, we can’t distinguish between breakdown and near breakdown. Re-
currence formulas for orthogonal polynomials in order to avoid near-breakdown in the CGS-algorithm have
been proposed in [4] as well as an algorithm implementing them - the BSMRZS algorithm. The examples
given there show how interesting and important these techniques are in order to obtain good numerical
results from the CGS-algorithm. In the BSMRZS-algorithm, some choices have to be made: when to jump
and what is the size of the jump. These decisions are made based on the size of some computed quantities
and so some ¢;’s have to be given. The main problem is how to choose these ¢;’s : a bad choice can lead
to bad results. In fact, what is useful to know to decide on the jumps is the accuracy of intermediate
computations. But this is impossible with the floating point arithmetic.

The aim of this paper is to use the stochastic arithmetic to try to solve all this problems, avoiding the
choice of the different ¢;’s and deciding on the jump from the precision with which intermediate quantities
are computed. The use of this arithmetic can detect some near-breakdowns that can not be controlled by
€;’s. We will see that letting the computer decide whether to jump or not and how far, we will obtain the
best results for all the examples given in [4] (considering different choices for all the €’s given there).

We will begin by recalling the principal recurrence relations on what the BSMRZS-algorithm is based
and making a brief description of this algorithm, as well as the near-breakdown tests used there. Then,
after a simple description of the stochastic arithmetic, we will describe the BSMRZS-algorithm using the
stochastic arithmetic, pointing out all the advantages. Some numerical results will be given to show the
good numerical properties.

2 The orthogonal polynomials approach of the CGS algorithm

2.1 Theoretical results

The CGS algorithm consists in computing the quantities
ry = P{(A)ro, (2)

and the BSMRZS algorithm is based on the recursive computation of these quantities using the recurrence
relations for the orthogonal polynomials. Let us begin by recalling the recurrence relations that enable us
to avoid the near-breakdown situation. See [4] for the details.

As we shall only consider the existing polynomials (called regular), we won’t give a name to the other
ones and so we shall denote Py the polynomial of degree at most n satisfying the orthogonality conditions

C(CZPIC(C) =0 for i = 07 Tty N,

normalized by the condition P(0) = 1, and P,gl) the regular monic polynomial of degree n; belonging to
the family of formal orthogonal polynomials with respect to the functional ¢(!) defined by c(l)(Ci) = (¢

(we remark that the existence and uniqueness condition is the same that the one for Py, that is, HT(L? #0).

So Plgl) satisfies the orthogonality conditions
c(l)(CiPlgl)(C)) =0 fori=0,---,n; — 1.
If this quantity is zero for higher values of ¢ and if P,gl) satisfies

D PDC)) =0 fori =0, -, ny + my — 25 D=1 pD()) £ 0,



then the next regular orthogonal polynomial P,g_li_)l has degree ng41 = ng + mg. To jump over the non
existing polynomials we can use the recurrence relations for the computation of Py, P,gl) given by Draux
[11].

But if ‘c(l)(C”k+mk_1P,£1))| is badly computed, the coefficients in the recurrence relations can also be
very badly computed, so that round-off errors could affect drastically the algorithm. The same is verified
for the quantities ‘c(l)(Plgl))| , T = Nk, Nk + mp — 2. In this case no breakdown occurs, but we are in

presence of numerical instability, a situation called near-breakdown. Recurrence formulas for Py and Plgl)
that enable to jump over those polynomials that could be badly computed and compute directly the first
polynomial following them have been deduced in [4]. It is shown that

Pey1(Q) = Pul€) = Con(O PO = Cor( Q) PU(Q) (3)
with
wp(() = Yo+t Y1 (T
() = ”/(’) 4+ 4 ”/z/kClk where I, = n,p — 1 if np, < mi — 1 and I, = my — 2 otherwise .
1 1
PO = al QPO + (O () (4)
with
w(C) = Mo+t ’Umk—lfmk_l;
vw(() = ’176 + -+ n;kCl’“ where [, = np — 1 if np, < my and [ = my — 1 otherwise .
The coeflicients ~;, 72{7 i, 772'» are the solution of two linear systems given in [4].

It is useful to write down explicitly the previous relations in the case where my = 1 because the tests
for breakdown and near-breakdown are based on the quantities appearing there. So we have

(1)
Pen(Q) = Bl€) - 10 PQ). where 5o = ) 5)
c(CPy )
and
PO = (C+ 1) PO + moPe(C),
where

o= SCEPY) CR eler)
(PP ()T PRy

2.2 The BSMRZS algorithm in floating point arithmetic

2
Squaring the recurrence relations (3) and (4) and introducing the auxiliary quantities z; = Plgl) (A)rg and

Sp = Pk(A)Plgl)(A)'ro, we will obtain the BSMRZS algorithm which consists in computing recursively:
e = (1 — Avg(A)) e — 2(1 — Avg(A)) Awg(A)sy + A*wi(A)z,
Tpe1 = ap — (Avg(A) = 2D)op(A)ry + 2(1 — Avp(A))wi(A)sy — Awi(A)zy,
Zep1 = qi(A)z + 2qu(A)p(A)si + G(A)ry
Skr1 = (qe(A) — Age(A)vi(A) — At (A)wi(A))sp — Aqr(A)wir(A)z +
1, (A)(I — Avg(A))rg.



These general formulas require at each step the computation of the coefficients of the polynomials vx((),
wi((), qx(¢) and 1x(¢). In the particular case where my = 1, that is when we don’t need a jump, they
simplify and only the quantities vo, 70 and 7, defined by (5) and (6) have to be computed. This algorithm
is breakdown free (apart from the incurable hard one, which numerically almost never arises).

Let us now consider the breakdown and near-breakdown tests proposed in [4]. There are two kinds of
tests.

2.2.1 Tests for the treatment of the theoretical breakdown

At each step, we have to test if we have reached the solution and, if not, what is the length my of the jump
(eventually my = 1) to go to the next step. At step k, the value of my is determined from two conditions:

1. computation of the coefficients of the recurrence relations: initially m; = 1; if one of the quantities
Yo, 7o OT 776 is not defined because of a division by zero, then we increase the value of my until we get
two systems for the computation of the coefficients of the polynomials v((), wi((), tx(¢) and gx(¢)
that are nonsingular;

2. possibility of performing the next step, that is, there will be no division by zero in the beginning of
the next step.

There is a quantity defined in [4] by

ot = (™ P Pr) = (0 5841)

which is very useful in verifying 2.. In fact, if U,(:f) = 0 then

o we’ll obtain the solution at the end of the current iteration or

o ¢((™+1Pyq1) = 0, which means that we’ll have a jump at the beginning of the next iteration and

(mx)

we’ll have to solve a system where O']::l is a pivot.

So to ensure 2. we need to have U,(:f) # 0.

P
the absolute value of the pivots found when solving the systems for the coefficients is less than a small

The practical implementation of these theoretical breakdowns consists in testing if ‘U(mf)‘ < € and if
quantity e;.

2.2.2 Tests for the treatment of near-breakdown

As we have remarked above, if the previous quantities are badly computed, propagation of round-off errors
will affect drastically all the computations. In order to try to avoid this situation other tests are proposed
in [4], based on the order of magnitude of some coefficients.

These tests for breakdown and near-breakdown have the disadvantage of the choice of the different ¢;’s.
The efficiency of the algorithm depends on a good choice of the ¢;’s in order to obtain the correct jumps.
Moreover, some near-breakdowns cannot be expressed in terms of ¢;’s. We have to avoid the introduction
of some badly computed quantities whithout knowing their order of magnitude. It is to overcome these
drawbacks that we propose to introduce the stochastic arithmetic in the BSMRZS algorithm. We will
begin by a brief description of this arithmetic.



3 The stochastic arithmetic

The stochastic arithmetic [6, 8, 17] is a modelization of the synchronous implementation of the CESTAC
method [15, 17]. The aim of the CESTAC method, based on the probabilistic approach of round-off errors,
is to estimate the effect of the propagation of the round-off errors on every computed results obtained with
the floating point arithmetic. It consists in making the round-off errors propagate in different ways in order
to distinguish between a stable part of the mantissa, considered as the significant one, and an unstable
part considered as non-significant.

In the probabilistic approach, round-off errors are considered as independent, identically-distributed
random variables. The probabilistic approach takes into account compensation of round-off errors.

The first basic idea of the CESTAC method is to replace the usual floating-point arithmetic by a random
arithmetic. The random arithmetic is obtained from the usual floating-point arithmetic by randomly
perturbing the lowest-weight bit of the mantissa of the result of each arithmetic operation. The second
basic idea is to perform several times a code with this new arithmetic to obtained different results for each
run.

In practice, the use of the CESTAC method consists in:

(i) running a same program N times in parallel with the random arithmetic, consequently, for each
intermediate result R of any floating-point arithmetic operation, a set of N different computed results R;,
t=1,.., N is obtained,

N
.. . — - Ry
(ii) taking the mean value R = EZ]:\} as the computed result,
(iii) using Student’s distribution to estimate a confidence interval for R, and then computing the
number Cg of significant digits of R (i. e. the common digits between R and the exact result r) defined

\/N|E| Zf‘\;J(Ri_E)Q

Tg.5 with s = N-1

by Cz = logio , T3 being the value of Student’s variable ¢ for N — 1

degrees of freedom and probability 8. N = 2 or N = 3 is sufficient to have a efficient use of this method
that makes all its interest.

The validity of this method has been proven under some hypotheses which generally hold in real-life
problems [5]. The hypotheses can be controlled during the run.

The first application of the CESTAC method is to compute the number of exact significant digits of
the computed results, but the possibility of knowing the accuracy of results leads to a new arithmetic :
the stochastic arithmetic [6, 8, 17]. The stochastic arithmetic may also be seen as a modelization of
floating-point arithmetic with control of accuracy. In stochastic arithmetic, order relations and the notion
of equality must be redefined to take into account the accuracy of operands.

More precisely, it has been proved [5] that, under certain regular conditions, every computed result
R obtain with the random arithmetic can be modelled by B = r 4+ >/~ u;(d)27P2z; where the u;(d)
are constants depending only on the data d and the z; are identically distributed and centered random
independent variables. The integer p is the number of bits in the mantissa and n the number of operations.
This is a first order approximation with respect to 27P.

The main features of this model are: i) the distribution of R is approximately normal, ii) the mean
value of R is the exact result r.

Consequently, the set S of stochastic numbers is defined as the set of Gaussian random variables. Each
stochastic number X is denoted by (m, c?) where m is the mean value of X and ¢ its standard deviation.
Therefore, a stochastic number (m, 0?) represents the mathematical value m.

As with the CESTAC method, we can define a concept of accuracy for stochastic numbers.



If X = (m,0?) is a stochastic number, there exists Az, depending only on 3, such that

P(X €[m—2Ag.o,m+ Ag.o])=1—p.

The number of significant digits of X is defined in R by C x = logio (JZ‘L) for X #(0,0) and by +oo
for (0,0).

Briefly, as for the computer zero introduced in [16] and defined by C; < 0, a new concept of stochastic
zero is defined by C3 x < 0or X = (0,0). A stochastic zero is a value which represents the mathematical
zero or which is without significance.

The stochastic elementary arithmetic operations are defined as operations between gaussian independent
random variables at the first order with respect to o/m. Stochastic operations are noted (s+,s—, sk, s/).
For instance, X1 s — Xo = (my —ma,0f +02). A stochastic zero is noted @.0 .

We have the following definitions :

Definition 1 : Let X and Y be two elements of &, X is stochasticaly equal to Y, noted X s = Y, if

and only if
Xs—Y = @0 & |mx—my| < Agnfok +0%.

Definition 2 : X is stochastically strictly greater to Y, noted X s > Y, if and only if

mx —my > Agn/ok +ok.

Definition 3 : X is stochastically greater or equal to Y, noted X s > Y, if and only if

mx > my or |mx —my| < Agn/ok + of.

The main properties of these new concepts are :

1) s = is reflexive, symmetric but not transitive,

2)Xs#Y = mx # my,

3) s > is transitive,

4) s > is the opposite of s <,

5) s > is reflexive, anti-symmetric but, as the equality, not transitive.

As explained in [10], we recover with these definitions, specially the stochastic equality (the others only
depend on it), the coherence between arithmetic operations and order relations that was lost in floating
point arithmetic.

It must be reminded that stochastic numbers are a model for computed results obtained with the
CESTAC method. Therefore, the physical meaning of the above definitions are that two values will be
stochastically equal if their difference is only due to round-off error propagation. For the order relation, a
value will be strictly greater than another value if it is significantly greater than the other. On the other
hand, a value will be greater or equal to another value if it is greater than the other or if their difference
is only due to round-off error propagation.

In pratice, property 2) is very important. It means that when two computed results are stochastically
different, we are sure that the mathematical values they represent are different. It also means that the
mathematical zero is always represented by a stochastic zero on computer. This will be very important
in the Lanczos type algorithms for the number of iterations as shown in the sixth numerical example of
section 5.

On a computer, by using the synchronous implementation of the CESTAC method and by identifying
the notions of computed zero and stochastic zero, it is possible to use the stochastic arithmetic with its
definitions.



This is done by the CADNA software [7, 17]. CADNA is a library for programs written in FORTRAN
77 or in ADA which allows the computation using stochastic arithmetic concepts by automatically im-
plementing the synchronous CESTAC method. CADNA may also detect numerical instabilities occuring
during the run. The numerical debugging is a very important aspect od CADNA which enables us to
stabilize algorithms and to obtain more efficient programs.

The use of CADNA multiplies the running time by a factor between 3 and 5. This allows us to
use CADNA on large codes (the greatest code on which CADNA has been used had more than 50.000
FORTRAN lines).

4 The BSMRZS algorithm in stochastic arithmetic

The efficiency of the jumps strategy in the BSMRZS algorithm depends on the choice of the ¢’s. This is
not easy for the user to do because it depends on the data of the problem. Our goal is to replace all of
them by tests based on the accuracy of some intermediate results and so to eliminate the use of the ¢’s
(i.e. to have exactly the same code whatever the linear system is). This will be very helpfull when using
the jumps strategy.

Let us remark that, as we have already said, on computers there only exist near-breakdowns. Of
course, some of them come from mathematical breakdown (in this algorithm, it only means divisions by
zero) but it is impossible without a background analysis to distinguish the two cases. Apart from making
the computations by hand, we cannot know if the denominator of a division is only badly computed or if it
effectively represents the mathematical null value. This is why we say that there are only near-breakdowns
on computer.

4.1 Near-breakdowns produced by theoretical breakdowns

Mathematically, there are two possible breakdowns in the BSMRZS algorithm : divisions by zero in the
computation of g, 79 and 7}, division by a null pivot when solving the linear systems (in the case of
jump).

Classically, on a computer, testing a theoretical breakdown leads to test the magnitude of the denomi-
nator. But using the floating point representation, the size of the exponent has no effect on the numerical
stability of a division. A division by a small value leads to a very stable result if this value is well computed.
Only the mantissa is important. For this reason, the right concept on computers is the accuracy of the
denominators with respect to the round-off errors propagation and not the magnitude of the denominator.
Even in the gaussian elimination, divisions by a small pivot (if someone can define what a small pivot is)
are stable with a well computed pivot. One must not confuse the pivoting strategy, which obviously leads
to more stable results, and the detection of the numerical singularity of the matrix. Even on a computer,
testing the magnitude of the chosen pivot is not related to this detection.

On a computer, the situation corresponding to a theoretical breakdown is always a division by a stochas-
tic zero because a null value always leads to an unsignificant value using the floating point arithmetic.

Therefore, we must consider divisions by stochastic zero on computer as division by zero in mathematics.
That is why, using the stochastic arithmetic, the treatment of this kind of near-breakdowns is very simple.
The division is not performed if the denominator is a stochastic zero. In the code, the tests become of the
form :

IF (ALPHA .EQ.0.D0) THEN ...

followed by the code corresponding to the mathematical treatment of the breakdown. It must be pointed



out that this stochastic test allows us to return to the mathematical formulation but we must remind that
the test means : if ALPH A has no significant digit then ...

For the gaussian elimination, we have used the version of the algorithm described in [9] which is the
elimination with total pivoting(to have a more stable algorithm) but only among the values which are
not stochastic zeroes( to detect a numerical singularity). The system is detected as singular if and only if
there is no more significant value for the choice of the pivot. After choosing the pivot max, the test for the
detection of singular systems is 1F (PIVOT .EQ.0.D0) THEN... as for the mathematical formulation.

4.2 Near-breakdowns produced by numerical instabilities

The difficulty in the treatment of such near-breakdowns is to detect the basic causes of the numerical
instabilities. Numerical instabilities mean very badly computed values and so the appearance of stochastic
zeroes. With the CADNA software, it is possible, during the execution, to stop the process (and to
point out the concerned line of the code) at each time a stochastic zero is detected.

We detected that, without the tests for near-breakdown in the BSMRZS code mentioned in section
2.2.2, the value 19 was always a stochastic zero just before the explosion of computations (specially in
the fourth example given in the next section). But we also remarked that jumping when 7 becomes
a stochastic zero is not enough. All the linear systems which have to be solved in the sequence are
numerically singular. There is always a pivot which is detected as a stochastic zero. Then the process
stops after the maximum step for the jump is reached.

This can be explained in the following way.

First, ng is one of the parameters which are involved in the recurrence formulae for the computation
of the polynomials Py(¢) and P,El)(C)(the two others are 79 and 7). If one of these values is very badly
computed, the next polynomials will also be. Then we have to test before continuing if all these parameters
are well computed.

Secondly, we can remark that if there are numerical instabilities in the recurrence formula and if we
decide to jump, they will also appear in the linear system we will have to solve. For instance, the quantity

(P e(POP) = (PN (P Py

(which is nearly the expression of 79) appears as a subdeterminant of the coefficient matrix and in the
right hand side of the system. So, to avoid this situation we have to jump over the polynomials which
create instabilities even if they are well computed.

Practically, instead of the tests mentioned in section 2.2.2, we propose a new strategy of jumping which
can be described as follows.

At the beginning of step k, we have computed P, and P,gl) and we know that the recurrence formulae of
order one (5) and (6) are stable, that means that all the three paramaters g, 79 and 7; are not stochastic
zeroes. So we can compute the polynomials of degree n; 4+ 1 and take ngyq = ng + 1. We test if for this
value of ng4q the order one recurrence relations (5) and (6) are also stable. If not, we begin to jump until
the system is regular and the stability conditions are satisfied. We remark that these stability tests include
all the cases due to mathematical breakdowns discussed above.

Instead of stochastic zeroes, we may decide to jump when these parameters have only 1 or 2 significant
digits. By experience, in the following example using double precision and concerning 7g, a good choice is
two significant digits. There is a function which is called CESTAC, in the CADNA software which returns
the number of significant digits of every stochastic variable. With this function the test is

IF (CESTAC(ETA(0)) .LE.2) THEN ..



For an iterative algorithm, we have also to choose a stopping criterion. It is based, in the BSMRZS
algorithm, on the vector ryp which is the residue b — A.xj. As explained in [17], the solution will be
computationaly available if all the components of r; are stochastic zeroes. At this time, because of round-
off errors propagation, the computer is not able to distinguish the vector rp from the null vector and
continuing has no sense. It is the best result the computer can give. We have chosen this condition for
the stopping criteria. As for the divisions and the pivot, the stopping criterion becomes :

IF (NORM(R(K)) .EQ.0.D0) THEN ...

In the next section we present six examples that were already given in [4]. By applying this strategy
to the stochastic version of the BSMRZS algorithm, we have always found the results corresponding to
the best choice of ¢;’s.

5 Numerical examples

As all the examples in [4] show, the jump strategy of the BSMRZS algorithms is necessary to prevent
from breakowns and near-breakdowns during the run on computers. Using the classical floating point
arithmetic, for all the first five following examples, it has been shown in [4] that, at each time, a suitable
choice of the ¢’s gives very good results.

Our goal, in this section, is to show that, using the stochastic arithmetic combined with the new jump
strategy, and for the first five examples, we obtain results with the same numerical quality without any
use of €’s. Moreover, in the last example, using the stochastic arithmetic allows to eliminate a well-known
chaotic behaviour which is only due to the round-off errors propagation.

Computations have been performed on a Sun 4/40 in double precision with the stochastic arithmetic
using the CADNA software. The code used is the code presented in the paragraph above.

With the CADNA software, only the exact significant digits of results are printed out, so when it is
printed, 0.600 and 0.60000 are different. If the result is a stochastic zero, the symbol @.0 appears. In
each example, a table is presented with the number of iterations, the corresponding value of n; and the
residual Norm (rg).

It must be pointed out that if only one jump, in all the following examples, is not performed, the
computations explode because of the propagation of the round-off errors and, most of the time, an overflow
occurs.

Example 1
The linear system is
0 1 1 1
0 1 1 1
) =
0 1 1 1
0.95 0 1 0.95

with the dimension of the linear system equal to 40.
The results are :

Iterations N Norm (rg)
1 38 0.400000000
2 40 @.0

10



As for using floating-point arithmetic, we have a jump from n; = 1 to ny = 38 but we have also a jump
from 38 to 40 and the solution is reached with about 14 exact significant digits on all the components that
is practically the best accuracy of the computer. All the jumps are due to the bad computation of 7.

Example 2
M,
The matrix of the system is M; with M; = (é J __11+ a)' As explained in [4],

M
the solution is reached at the first iteration if the?éQis a jump of length 2 at the first step. Using floating
point arithmetic, it depends on the choice of e’s.
The second member is b = (5,—3,4,-4,0,...,0)7. Then the solution is given by @9;_1 = ba;_1 + (j —
14 a).by; and x5 = —by;.
With a = 1074, the results are

Iterations n Norm (ry)
1 2 @.0

The vector z is
z2(1) = 0.499970000000000 £ 4 001
= 0.300000000000000F + 001
= —0.40000000000F — 003
= 0.400000000000000F + 001
= 0.000000000000000F + 000
z2(40) = 0.000000000000000F + 000
The solution is reached with the best accuracy on all the components except the third which have
“only” 11 exact significant digits.

8
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Moreover, whatever is the value of a, the good jump is always performed. The jump is due to the bad
computation of 7g.

Example 3 .
It is the same as above with M; = (_01 ! -I-O].a)7 b=(1,2,...,n)" and @ = 107°. The dimension of
the linear system is 40.
The results are
Iterations N Norm (rg)
1 2 @.0

The vector z is
z2(1) = —0.200000000000000 F + 001
z2(2) = 0.999999999000000 £ + 000
(3) = —0.400000000000000 £ + 001
z2(4) = 0.299999999400000 £ 4 001
(5) = —0.600000000000000 £ + 001
z2(39) = —0.400000000000000 F + 002
z2(40) = 0.389999992200000F + 002

11



The solution is reached with the best accuracy on all the components. The jump is due to the bad
computation of 7g.

Example 4
The linear system is

a 1 1 a+1

-1 a 1 a

-1 B

1 . o .

a 1 1 a
-1 a 1 a—1

It has been shown that a good solution is obtained if there are jumps of lenght 2 from the beginning until
the dimension of the sytem is reached.

For the numerical example, a = 10~% and the dimension is 200.

The results are

Tterations ny Norm (rg)

1 2 0.60000019200002F + 001
2 4 0.10000001860000F + 002
3 6 0.14000001800001 F + 002
4 8 0.1800000174000F + 002
98 196 0.80000001 F + 001

99 198 0.40000000F + 001

100 200 @.0

The vector x39g is
Z200(1) = 0.99999999999 £ + 000

200(2) = 0.10000000000E + 001
2200(3) = 0.10000000000E + 001
200(4) = 0.1000000000F + 001

Z200(198) = 0.9999999999 F + 000

Z200(199) = 0.1000000000 £ + 001

Z200(200) = 0.1000000000 £ + 001

The solution is reached at x999. Because of the instability of the system, all the components have only
about 10 exact significant digits.

All the jumps are due to the bad computation of 79 of the next iteration.

Example 5
The linear system is

2 1 1 3

0 2 1 1 3

1 0 1 4

1 =

.1 . :

1 0 2 1 1 4

1 0 2 1 3
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The dimension is 400.
The results are

Iterations n Norm (rg)
1 2 0.159700025716005E 4 004
2 3 0.178219984620L 4 003
3 4 0.54406861448E 4 002
4 5 0.3792866771E + 004
5 6 0.1824035830E + 000
30 31 0.150E — 008
31 32 0.1070£ — 008
32 33 0.391F — 009
33 34 @.0

We have only one jump of lenght 2 at the first iteration due to the bad computation of 7y at the next
iteration. All the components of z34 have a least 14 exact significant digits.

If the jump is not performed, an overflow occurs. It may also be pointed out that a good solution is
obtained very far from the dimension of the system that is, of course, the interest of the Lanczos type
algorithms.

Example 6
The linear system is
0 -1 1 -N
1 0 2 1
1 = 2
1 0 N N -1
The dimension of the system is N = 12.
The results are
Tierations ny Norm (rg)
1 1 0.606328125000000 F + 002
2 9 0.416000000000 £ + 003
3 10 0.12028386845F + 003
4 12 @.0

We have a first jump (1 to 9) due to the bad computation of 79 and a second jump (10 to 12) due to the
bad computation of the next 7.

The vector zqy is
z12(1) = 0.10000000£ + 001

12(2) = 0.20000000E + 001
12(3) = 0.30000000E + 001
12(4) = 0.400000000£ + 001
12(5) = 0.50000000E + 001
12(6) = 0.60000000E + 001
12(7) = 0.7000000E + 001
12(8) = 0.8000000F + 001
12(9) = 0.90000000E + 001
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z12(10) = 0.10000000 £ + 002

z12(11) = 0.1100000000E + 002

z12(12) = 0.1200000000E + 002

The solution is reached with between 8 and 10 exact significant digits on the components.

In this example, using floating point arithmetic, most of the time because of the propagation of round-
off errors, the number of iterations is greater than the dimension of the system. This is a well-known
behaviour in the Lanczos type algorithms, for instance in the famous conjugate gradient method.

If there is no incurable breakdown, this never happens using stochastic arithmetic. As in
mathematics, such processes always stop at least when the number of iterations reaches the dimension
of the system. At this time, we are sure that the mathematical residual is zero. Then, because the
mathematical zero is always represented by a stochastic zero on computer, we are sure that the last
computed residual wil be a stochastic zero and so that the process will stop.

6 Conclusion

This paper shows some advantages of the application of the stochastic arithmetic to the BSMRZS algo-
rithm. The use of different ¢; in stopping criteria and in testing ”small” quantities has been eliminated.
The user doesn’t need to choose them anymore. We completely let the computer decide by itself for the
jumps, the determination of singular systems and the stopping criterion from the accuracy of the inter-
mediate results during the code execution. Moreover, it can also detect some instabilities that are very
difficult to express by ;.

These techniques can be applied to different algorithms involving computations with recurrence relations
for orthogonal polynomials and can be useful in detecting and controlling numerical instabilities.

Acknowledgements: we would like to thank C. Brezinski and M. Redivo-Zaglia for their help with
the code of BSMRZS.
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