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Abstract : In this paper, we extend to simultaneous approximation the notion of Frobenius-
Padé approrimants; we then construct rational approrimants for vector functions given by their
expansion in an orthogonal series. After giving the definitions and notations for simultaneous
Frobenius-Padé approximants and table, we develop recursive relations for computing different
sequences in the table of approximants. We then propose algorithms to compute, in the two
dimensional case, antidiagonal (Kronecker type algorithm) and diagonal sequences.
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1 Introduction

Rational approximants for a function given as an orthogonal series (expansion with respect to
a family of orthogonal polynomials) has been defined and studied for a rather long time ([11],
[12], [13]). Different definitions can be given, known as linear or non linear (see for instance [1],
[2], [6]), and we restrict our study to the so-called linear case, classically denoted Frobenius-Padé
approximants.

The effective computation of these approximants was considered by [8], and continued in [9]
where the author looks for all possible recurrence relations in the Frobenius -Padé array.

In this paper, we try to extend to simultaneous approximation the notion of Frobenius -Padé
approximants. The ideas concerning simultaneous rational approximation of functions given by
their expansion in power series can be found at their beginning in [4]. Practical computational
methods for this problem have been developped by De Bruin [3, 5] and in [7] analogues of
Frobenius identities have been derived to develop recursive algorithms to compute “anti-diagonal”
sequences as in the Padé table (the so called Kronecker algorithm).

*This work was partly supported by INTAS project 00-272



These ideas have been precised, then extended by vector-orthogonal polynomials, and matrix-
orthogonal polynomials for example in [10], [14], where the set of free parameters is limited
(regular indices) and so a well-structured table is obtained.

Here, following the ideas of these two origins, we study the array of simultaneous Frobenius-
Padé approximants. In section 2, we give the most possible canonical definition for approximating
d functions given as orthogonal expansions. Then, we limit the number of functions to d = 2, to
keep the concepts clear, we are then ready to look for recursive algorithms to compute any of these
approximants. In section 3, we look for the shortest possible relations, i.e. three term relations.
In section 4, we define algorithms linking approximants having the same accuracy, similar to the
antidiagonal in the scalar Padé case. To increase the accuracy, diagonal sequences are considered
in section 5. In section 6, the number of free parameters is reduced : the numerators have the
same degree, and accuracy is regularly distributed on the different functions, as done in “vector
approximation” with “regular indices”. The aim is to have a well-organized table (2 parameters
instead of 4) and a quick increase of accuracy.

The algorithms which are developed in the different sections are independent, in the sense
that the involved sequences are different. None can be reduced to a combination of the others.

2 Definitions and notations

The notations are extensions of what was taken in [8]. In the sequel, a ‘double’ capital letter will
denote a vector. We consider a vector function

F(z) = (f'(2), f*(2),- -, f(2)) € C'[[e]] -

(Pr)k>0 being the system of orthogonal polynomials with respect to the weight function w(z) on
the interval [a, b], each f7 is supposed to be in Ly((a,b), w) and given as an orthogonal series

00 b
. . . 1 . _
(=)= Zf,sz(z), fli= W/ (@) Py(z)w(z)dz , j=1,...,d
k=0 2 Ja
We are going to construct a rational approximant to F(z) in the following way:
e we define two multi-indices p = (p1, pa,--- ,pa) and q = (¢1, 42, - - - , 4a),

e the numerator polynomials are denoted by Num (z) = (N'(2), -+, N%(z)) and their degrees
are specified by _
deg(Nj(Z))Spja jzla"'ada

e the denominator polynomial D(z) has degree at most ¢ = ¢; + - - - + qq,
e these polynomials satisfy the accuracy to order conditions, i.e. the remainder term

Rem(z) = (R'(2), R*(2), - , R%(z))



satisfies

RI(2) = D(2)f(2) = N'(2) = e;;j+Qj+1ij+qj+1(Z) teos J=104, (1)

which means that for each component of Rem (z), the first p;+¢; coefficients of the expansion
with respect to the orthogonal system (Py)k>o are zero. We have omitted the indexes (p, q)
in Rem(z), Num(z), D(z), ej, in order to simplify notations.

These conditions lead to a homogeneous linear system which has always a non trivial solution,
and the approximant is called a simultaneous Frobenius-Padé approximant

[p: q] or [pI: 5y Pdiq1, :qd] = Num(z)/D(z) (2)
We set
P q
]Z):Za’gpi(z)’jzlf"vda D(Z)ZZbZPZ(Z),
i=0 =0
and, in the same way as in [8], we define the quantities (hii),j =1,---,d, by

Z h ), where

1

hii = TP, /. f’( )Bi(x) Pr(z)w(z)dz - (3)

Classically, i.e. as for any kind of Padé approximation, equations (1) can be written

Z (Zbl kl) Pk Z(L{P[ ij+<1j+1): .7: ]-a' oo ada

k=0

where the notation O(P,) means that all the coefficients in the polynomial series expansion are
zero up to [ — 1. We then obtain the two following systems

STl = af, k=0, ,p;, j=1,--,d, (4)
=0

q .

STl = 0 k=pj+1,--.p+q, j=1,-,d (5)
=0

The system (5) of ¢ equations enables us to compute the ¢ 4+ 1 coefficients of D(z). Once the
(b)) are computed, the numerator coefficients are given immediately from (4). The (b;) are the
solution of a homogeneous system of ¢ equations in ¢ + 1 unknowns and so there is always a
non-trivial solution. Proceeding like in [8], it is easy to see that, for computing all the coefficients
of the previous systems, we need to know the quantities f,z, k=0,---,pj+2¢,j=1,---,d,
that is, the first p; + 2¢; + 1 coefficients of each series f7(z),7 =1,---,d.
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Apart from a multiplicative factor, the denominator D(z) has the

following determinantal

representation (we define for all i, n; = p; + ¢;)
1 1 1
h;D1+1 0 h’;D1+1,1 h 1+1,q
h‘nl 0 h‘7111, h7111,q
D(z) = : (6)
d d d
hpd+1 0 hpd+1 1 hpd+1,q
hzd, hg’/d 1 T hzd,q
Py(z2) Pi(z) -+ Pyl?)
and the numerators can then be written
1 1 1
h p1+1,0 hp1+1,1 T h’p1+1,q
h'}ll, h'}lzlal e hE’Lllyq
Ni(z) = : : : j=1,---,d. (7)
d d d ) )
hpd+1,0 hpd+1,1 hpd+1,q
» hgd,o ’ hﬁd,l ’ zd,q
i=0 h'z?,opi(z) i=0 hg,lpi(z) i=0 h'z?,qpi(z)

For the multi-indices p, q, let us define the determinants (generalization of the classical Hankel
determinants) Hy 4, ¢ X ¢ for ¢ = Z‘f gk, by:

1 1
hP1+1 0 hp1+1 1 h 1+1,(1 1
1
hnl, hm 1 hnl,q 1
Hp,q = : :
d d d
hpd+1 0 hpd+1,1 hpd+1,q—1
d d d
hnd, hnd 1 hnd,q 1

If H, 4 # 0 then the system (5) has full rank ¢ and has a one-parameter family of solutions that
can be obtained by Cramer’s rule. This is equivalent to the fact that the approximant is uniquely
defined, and also equivalent to the property that the denominators and numerators are of exact
degree (p1,...,p4,q). The table of approximants is, in this case, called regular or normal. In the
sequel, we will restrict ourselves to this regular case, i.e.

Hy, 4 # 0 for all p, q.

As in [8] for the Legendre polynomials, the quantities hf“ defined by (3) can be computed

recursively from the data fij ,1>0,7=1,---,d using the three term recurrence relation for the
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family (Py)r>o of orthogonal polynomials
2Py (z) = AgPyy1(z) + BpPy(z) + CyPy_1(z), k> 1.
We obtain the relation
hi,ﬂ—l = ’rihi,i—l + Skihi—l,z' + tkihi,z‘ + ukih£+1,i’ j=1---,d, (8)
with the initializations (Py = 1, ux = || Px|3)
Mo = fis W= 0 F W =0, j =1, d.

The quantities 7;, Sg;, tr;, Ug; are defined from the coefficients of the recurrence relation in the

following way
C; ﬁ Hrk—1

B, — B; A
— 5 Ski = atki: k Zauki:_kljlk+1’
A; Ai A; Ai g
for all values of 7 and £ > 1.

ri = —

There are many ways of choosing sequences of simultaneous Frobenius-Padé approximants
(SFPA) because we have many free parameters

e the denominator degree ¢ = ¢; + - -+ + qq,
e the numerator degrees p = (p1, p2, - - - Pa),

e the order of approximation (p; + q1, -, Pa + qa)-

From the point of view of approximating the d functions f7, it seems natural and interesting to
consider the following cases:

o We fix the denominator degree ¢ = md+k and impose the same accuracy to order p;4+q; = n
to the d functions. More precisely, the numerator polynomials will have degrees p, =
(p1,---spa) Withp; =n—m—1,(¢j=m+1) for j=1,--- ,k, pj =n—m,(g; =m) for
j=k+1,---,d and we consider the “vertical sequences” (¢ fixed) ([Pn, d])nen-

e we impose the same degree for all numerator polynomials: p; = p and then if ¢ = md + &,
we define the “regular multi-index” q = (q4,...,¢qq) by

QJ:m+1a nJ:p+m+1: ]:Laka
Qj:m nJ:p+ma ]:k+1aad7

and then consider the “diagonal-regular” sequences ([p, q])qen-

e We fix the order of accuracy n = (nq,--- ,ny) from the number of available coefficients for
the expansion of each series f? and construct a sequence of approximants increasing the
degree of the denominator from 0 to ijl n; and decreasing the numerator degrees from
p=mnto (0,---,0).

From now on we restrict ourselves to the case d = 2 and will develop recursive algorithms to
compute sequences of simultaneous Frobenius -Padé approximants.



3 Three term recurrence relations

Based on the determinantal formulas (6) and (7) for the representation of numerators and denom-
inator of the simultaneous Frobenius-Padé approximant and on the Jacobi identity ( see formula
(9) further on) we can obtain several three term recurrence relations involving two approximants
of the same column and one approximant of the previous one. Combining these relations we
propose an algorithm that, starting with an approximant of a given column ¢, enables the com-
putation of any approximant in that column ¢ from suitable approximants of the column ¢ — 1.
We can then compute all of the Frobenius-Padé table.

3.1 Three-term recurrence relations

Let D(py1, pa; g1, ¢2)(2), N?[p1,p2; a1, ¢2](2), j

ators of [p1,p2;q1, ) -

= 1, 2 be respectively the denominator and numer-

By the determinantal representation (6) and (7) in the general case we

obtain (n; =p; +¢;,/ = 1,2;¢ = q1 + ¢2)
1 1
hl hl hl 0 h p1+1,0 h 1+1,q
;IJ1+1 0 p1+1 1 1+1,q :
' 0 Al h1
1 1 1 n1,0 ” )
}2%1’ hm ' Zm’q 1 h, -:1 0 n Jlrf
D[plap2; Q1,Q2](2) =|h pa+1,0 h’pz—l—l 1 h 2+1,q (—1)(11 0 h21 hzl 4,
p2+1,0 p2+1,q
2 2 2 : : :
h’nz 0 th 1 n2,q : 2' 2‘
Py(z)  Pi(z) Py(2) 0 oo n2,q
0 P(z)) Fy(2)
and the same for the numerators replacing the last row by (0, Y7 hf,OPz-(z), R hg,qP,-(z)),
j=12.
As previously, H is the generalized Hankel determinant, g X ¢, ¢ = q1 + ¢
1 1 1
hp1+170 hp1+1 1 hpl"'l;q 1
h h, h}
Hlpi,p2;q1,q0) = | ™0 om0t ma—l
h 2+1 0 hp2+1 1 hpz-l-l,q—l
hnz 0 h’nz 1 hng,q 1
Let us recall the Jacobi’s identity applied to a (n x n) determinant D:
Dy jisijnis D = Diyyjy Digsjs — Diyyjo Dinygy With 1 < 44,19, j1, j2 < n, 9)

where D, represents the determinant obtained from D eliminating the row m and the column
l.



o (i1,12;51,02) = (¢ +1,¢+2;1,¢+2)

Dip1,p2;q1,0|(2)H[p1,p2; 1 +1,q0 — 1] =
Dip1,p2; a1 + 1,2 — 1](2) H[p1, p2; g1, @2] — DIp1,p2; 41,42 — 1(2) H[p1, 2501 + 1, q2]

Interchanging the two functions f! <+ f? we get the similar identity

Dip1,p2; ¢1, | (2)H[p1,p2;q1 + 1,00 — 1] =
Dip1,p2; 1 — 1,q2 + 1)(2)H[p1, p2; g1, ¢2] — DIp1,p2;q1 — 1, go)(2) Hp1, pa; 1 — 1, ¢2]

o (i1, 0271, 52) = (1,¢+2;1,9+2)

Dip1,po; a1, @] (2)H[pr + 1, p2;q1, ¢2] =
Dlp1 + 1,p2; q1, @) (2) H[p1, p2; ¢1, ¢2] — Dp1 + 1, p2; 01 — 1, ¢2)(2) H[p1,po; 1 + 1, 40]

Interchanging the two functions f' <+ f2 we get the similar identity

Dlp1, p2; a1, @2](2)Hlp1,p2 + 1; 1, g2) =
Dip1,p2 + 1; 1, @] (2)Hp1, p2; 1, ¢2] — DIp1,p2 + 1;¢1, 62 — 1](2) Hp1, p2; q1, g2 + 1]

These identities are also satisfied by the corresponding numerators and so, if as usual we
denote by S[p1, p2; q1, go] either the denominators or the numerators, the previous relations can
be writen:

S[p1, p2; a1, 42 = p%4S[p1,p2; @1 +1,¢0 — 1]+ paSlp1, p2s 1, g2 — 1], (A)
S[p1,p2; @1, ¢o] = uSSlp1,p2sqi — 1, ¢0 + 1] + ppSlpr, v 1 — 1, ¢, (B)
Sy + 1,p2s a1, 42] = p&Spr, p2s a1, @o] + & Slpr + 1, p2s a1 — 1, ¢a), (®))
Slp1,p2 + L1, 42] = pdSpr, v ar, @2] + 1pSlpr, p2 + 11, 42 — 1) (D)

The quantities p'y, p, ub, 'y, = 0,1 are immediately obtained from the previous relations
as a quotient of generalized Hankel determinants: for instance

py = Hlpi,peqr, @2l /Hlpi,p2;n + 1,42 — 1]
pay = —Hlpi,poq+1,¢]/Hlpi,posqn + 1,2 — 1].

Let us now see how we can use the 4 relations (A) — (D) to compute the Frobenius-Padé
table.

3.2 Recursive algorithms in the Frobenius-Padé table

Using the same notations as in the previous section let us denote by

[P1p2; q1,q2] With g1 +¢2 =¢q, g €N, (10)

the gth column of the Frobenius-Padé table.

Suppose we have the expansion of a vector function F = (f!, f?) in the orthogonal polynomial
system (P)r>0, i-e., we know the approximants [p1, po; 0, 0], p1, p2 € N (the partial sums). Let us
now show that the previous relations allow to compute the table of approximants.
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e Column 1: in this column we have two types of sequences:

- (QIaq2) = (170) Le. ([plap2; 1:0]:171;172 € N7
— (q1,42) = (0,1) ie. ([p1,p2;0,1],p1,p2 € N.

* If we apply identity (A) with (g1, ¢2) = (0,1) we get

Sp1,p2; 0, 1] = phS[p1, p2; 1, 0] + 1y Slp1, p2; 0, 0],
which enables to compute the sequences of type (0, 1) from the sequences of type (1,0) and
approximants of the previous column;

* If we apply identity (B) with (g1,¢92) = (1,0) we get

S[p1,p2;1,0] = pS[p1, p2; 0, 1] + pS[ps, pa; 0, 0],
which enables to compute the sequences of type (1,0) from the sequences of type (0,1) and
approximants of the previous column;
* If we apply identity (C) with (g1, ¢2) = (1,0) we get
S[pl + 17p2; 1’ O] = M%S[plap% ]-: 0] + Més[pl + ]-7p2; 0) O]a
which enables to construct the sequence ([py +/,p2;1,0]), | € N from the approximant

[p1,p2; 1,0] and approximants of column 0;
* If we apply identity (D) with (g1, ¢2) = (0,1) we get
S[p1,p2 +1;0,1] = 13 S[p1, p2; 0, 1] + pp S[ps, p2 + 1; 0,0,
which enables to construct the sequence ([pi,p2 +1;0,1]), [ € N from the approximant

[p1,p9; 0,1] and approximants of column 0;

We conclude that from the partial sums and the knowledge of one approximant in the first
column [py, pe; 1,0] ( or [p1,p2;0,1] ) we can compute all the approximants

([pr + 1, p2 + m; qu, qQ])l,meNa (1 + g2 =1).

In general,
e Column q: suppose we have computed the approximants in column ¢ — 1 and let ¢, g2 be
such that ¢1 + ¢ = ¢

x from identity (A): [p1, p2; ¢1 — 1, g2 + 1] can be obtained from [p1, p2; ¢1, ¢2] and a suitable
approximant of column g — 1;

* from identity (B): [p1, p2; ¢1 + 1, ¢2 — 1] can be obtained from [p;, p2; ¢1, ¢2] and a suitable
approximant of column ¢ — 1;



* from identities (C) and (D):
(1 + 1,023 415 2]), and ([p1, p2 + 15 01, g2]),

from [p1, po; ¢1, go] and suitable approximants of the previous column. We conclude that is
sufficient to know one approximant of column ¢ to compute all the approximants in this
column if we know the column ¢ — 1.

To obtain the first approximant in column ¢ we can:

1. use one of the algorithms developed in the further sections that enables to increase the
denominator degree (diagonal or antidiagonal sequences),

2. construct the approximant [py, po; g, 0] (or [p1, p2; 0, ¢]) which corresponds to the Frobenius-
Padé approximant [p;,q] = N/D of the scalar function f! (resp. [ps,q] of f?) and the
partial sum of f2D (f!D) by an algorithm for scalar functions (see [8, 9]).

Computation of the coefficients:

From the Way we obtained the identities (A), (B), (C) and (D) we know that the coefficients
Wy Wy iy 15, 7 = 1,2 are quotient of generalized Hankel determinants and so they exist if the
Frobenius Padé table is normal. For their computation we may proceed in the following two
ways:

1. we can develop recursive formulas to the computation of these generalized Hankel determi-
nants using the Jacobi identity;

2. we can obtain their values by imposing the order and degree conditions on the new approx-
imant.

Let us give an example of how to proceed in this second case. We consider the identity:

Slpr,p2s a1, @] = M%S[phpﬁ(h +1,¢0— 1]+ M}qs[pbp% ¢, g2 — 1], (11)
where S is either the numerator or the denominator. We have

Rip1,p2 a1, 2](2) = Dlp1,pa; a1, @) (2) f7(2) = N [p1, p2; a1, 4] (2)
= [BADIp1,p2; v + 1,42 — 1](2) + 4 Dlp1, p2; a1, a2 — 1(2)] (=)
(4N [p1, pos 1 + 1, g2 — 1](2) + py N [p1, p2; @1, g2 — 1](2)] /7 (2)]
= p%[Dlpr, s + 1,40 — 1](2 )_fj( z) — N][PlapQ,(h + 1,92 — 1)(2)]
+u5 '[D[p1,p2;(11,(h —1)(2) f(2) — N][pl,pQ;(h,(ZQ — 1](z)]
= pQR'Dlp1,p2;q +1,q2 — 1](2) + py R [p1,p2s ¢, 2 — 1](2) (5 =1,2)

As
Ripy,paiqugl(2) = > €llp,pes a1, 0] Pi(2),

i>pj+g;+1
from the numerators and denominator degrees and accuracy to order conditions of the approxi-
mants involved, we can easily see that this leads to one condition only to have the right order:

M?4€;2;2+q2 [p1,po5q1 +1,¢2 — 1] + #}46224—@ [p1, P25 1,02 — 1] = 0. (12)
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As the numerators and denominator of the approximant are defined apart from a constant factor,
we can choose the normalization corresponding to a monic denominator, which is equivalent to
set u% = 1. Then we obtain p} by solving (12) if €3, . [p1,P2;¢1,02 — 1] # 0 which is the
case if the table is normal. In fact, with n; = p; + ¢; and o the normalizing constant for

Dip1,p2; 41,92 — 1](2),

Rp1,p2; q1.92 — 1(2) = Dlp1,po; (111, 42 — 1(2)f(2) - Nj[pl,pQ; a1, 92 — 1](2)
= 20 ity il P(2) — Yl al Pi(z) =
= (S0 bihl 1) Py (2) -

_ [ aH(pipxa+1,¢) ifj=1 )4
aH(pi,p2qi,q2+1) ifj=2 nj+l

( here b; are the coefficients of D[p1, p2; g1, g2 — 1] and a{ are the coefficients of N7[pi, po; q1, g2 —
1, j=1,2

Remark: The relation (11) is also satisfied by the errors R’[p1, p2; q1, ¢2](2) and so enables us to
compute recursively the coefficients of the expansion in (Py)x>o of the error of the new approxi-
mant. The number of coefficients needed depends on the required sequence of approximants.

4 A Kronecker-type algorithm

The idea is to consider sequences having a fixed order of accuracy. In classical scalar approxima-
tion, this gives rise to the “antidiagonal” sequences.
We fix n = ny = ny and compute the sequence of approximants

AFPy(z) = Numg(z)/Di(z), k=1,2,---,2n, (13)
satisfying the accuracy to order condition, i.e. the following formula for the remainder sequences

where
deg(Ny(2)) = n—[(k+1)/2],
deg(N;(2)) = n—1[k/2] k=0,---,2n,
deg(Dx(z)) = k.

This means that the sequence of degrees of the numerators and denominators is
(p1,p2,9) = (n,n,0),(n —1,n,1),(n—1,n—1,2),(n—2,n—1,3),---,(0,1,2n — 1), (0,0, 2n)

We search for a recurrence relation verified by the remainder terms, and simultaneously by
the numerators and denominators, and of the form

Sp+1(2) = Y _ €i(2)She1—i(2), with ¢;(2) = o; + Biz, (15)

=1
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(two unknowns for each value of 7, so 2/ unknowns). The coefficients ¢;(z) that we are going
to compute obviously depend on k£ but here we dropped the index to simplify notations. Here
S(z) represents N'(z), N?(z) or D(z). The linear terms ¢;(z) are computed from the accuracy
to order conditions and the conditions on the degrees of the numerators polynomials.

e Let us denote by (eiﬂ-)(j =1, 2) the coefficients of the expansion of the remainder:

Rl(2) = Dy(2) f7(2) — Ni(2) = 'Z el Pi(z), j=1,2 (16)

Then, using the recurrence relation for orthogonal polynomials, we get

1
R?c+1 ZCZ k+1 _i(2) = ek—l—ln w(2) + O(Poy1), =1,2. (17)
=1

with 6i+1,n = Cpt1 Zézl 5i€i+1—z',n+1a for 5 = 1,2. So the accuracy to order principle
supplies two conditions

l
Giin =0, 1=1,2) fichy jun=0, j=12 (18)

i=1
The quantities €], ; ,, 2 > n+1 can be computed recursively using (17) as we will see below.

e Let us now denote by szk (7 = 1,2) the coefficients of the numerator polynomials written

in the orthogonal basis (P;);>o. As the table has been supposed “regular”, they are of exact
degree

dg,
= 1lPi(z), v}, #0, j=1,2. (19)
7=0

Then by the recurrence relation satisfied by the orthogonal polynomials Py (z) we immedi-
ately get the coefficients sg’k in

di+1
ZNi (2 Z sl Pi(2), sh 1, #0575 =1,2. (20)

Using the recurrence relation (15) we can write down the equations that impose the degrees
of numerator and denominator polynomials and determine the smallest value of | (number
of terms in the recurrence) for which the number of conditions is less or equal the number
of parameters. This occurs for [ = 5 as we will see below. Let us explain how to proceed.
We consider 2 cases:

1. £+ 1 odd: We have

deg(Nyy) = n-— [%} =k,
deg(NZ,,) = n— B =k +1,



and we summarize in the next table the degrees for the other polynomials involved in
the recurrence relation:

k+1—j | deg(c;(2)Ny_;11(2)) | deg(cj(2)N;_;4,(2)) | deg(Dy_;14(2))
k ky +2 ki +2 k

k-1 ki +2 ki +3 k—1
k—2 ki +3 ki +3 k—2
k—3 ki +3 ki +4 k—3
k—4 ki + 4 ki +4 k—4

By using relation (15) we obtain for the right hand side (r.h.s.) and for the left hand
side (Lh.s.) the following degrees:

r.h.s. L.h.s.
deg N' ki+4 k1
deg N? ky + 4 ky+1
deg D |k+1if 3 #0| k+1

So to get the good polynomial degrees we have to impose 7 degree conditions. If we
write them down explicitly we get:

Nk +4 B =0
N2 | ky +4 B, =0
N' |k +3 Q5T sa s+ BaSk, 1352 =0
N? | ki +3 | Q5T s a T 0alh a3+ BaSiha g2+ Bostyaap =0 99
N' |k +2 >, QiThy ok it T S BiSkysan is1 =0 (22)
N? |k +2 Z?:Z airl%1+2,k—i+1 + 2?21 5i8%1+2,k—i+1 =0
Nk +1 S Tk, 1 jiv1 T+ S Biskys1h—is1 =0

In this table, for each row the first two columns indicate that the equation is obtained
by eliminating the term of order k; + j in the right hand side of (15) applied to N°®.
We have then 7 degree conditions and 2 order conditions for 10 unknowns and so, this
homogeneous linear system always has a solution.

. k+1 even: proceeding in the same way as in the previous case, the conditions on the
numerator degrees are equivalent to the following system of equations :

12

N? |k +4 Bs=0
NY | ki +3 Bs=0
N? |k +3 QsT}, 1354 T B35%, 1352 =0
N' |k +2 0457’1£1+2,1c—4 + a4r1})1+2,k—3 + +ﬁ381161+2,k:—2 + 52511c1+2,k—1 =0 23
N2 | ki +2 Zf:g QTR vo i T+ Z?:l Bisky+2—i+1 =0 (23)
N |k +1 Z?:z airél—}-l,k—i—l—l 2?21 /Bi311c1+1,1c—z'+1 =0
N? |k +1 Zf:1 airgl+1,k—z’+1 + 2?21 5i3%1+1,1c—z’+1 =0



If we regroup the order and degree conditions we obtain the homogeneous linear system of 7
equations and 8 unknowns

B
( - X X \ ( 52\
B3
a5
07
a3
(03]

\:____if”\al/

- - - - -+

We denote by “+4” the terms which can be shown to be non zero under normality conditions, by
“—” the terms that can be nonzero and by “x ” the terms on which we will impose a condition
in order to get a solution for the system (see below) .

The first two equations correspond to the accuracy to order conditions (18). This system has
always a nontrivial solution. Let us suppose that the first k£ approximants of the sequence are
“regular”, that means they have the exact numerator and denominator degrees. We look for the
k + 1 st approximant to have a denominator of degree £+ 1 and so we need to have 8; # 0. This
is the case if the first 2 equations have a solution with g; = 1, that is, if

61 61
det ( echfl,n—{—l 61572,71-%1 ) 7& 0. (24)
k—1mn+1 k—2,n+1

In this case, we get [s, 83 by solving

e?cfl,n—l—l/BQ + 6172,n+153 = _ei:,n-}—l? J=12 (25)

and we then obtain a lower triangular system for the values of a;,7 = 1,---,5. We easily see
that the diagonal coefficients are nonzero because they correspond to the coefficient of highest
degree of the numerators of the previous approximants (for instance in the case of £+ 1 odd, the
diagonal terms are (rg, s 4 Tr 43535 k42420 This2k—10 Thi4+14))- We summarize these results
in the following theorem.

Theorem 1 Let F(z) = (f!(2), f?(z)) be a vector function given by its expansion in an or-
thogonal series and let us consider the anti-diagonal sequence of simultaneous Frobenious-Padé
approzimants (AFPy)g>o defined by (13). We suppose this sequence to be normal. Then if

1 1

er_ er_

det( k=ln+l  "k=2ntl ) # 0 for all k,
€k1nt1 Ck—2nt1

(the quantities efn,l are defined in (16)) the numerators and denominators of these approximants
can be computed by a siz term recurrence relation of the form

Sk+1(2) = (of + 81 2) Sk (2) + (s + 85 2) Sk—1(2) + (0 + 85 2) Sp—2(2) + &y Se—3(2) + 0k Sk—a(2) (26)

13



where B := 1 and the other coefficients are computed by (22,23) and (25). The Ci(z) being the
k-th partial sum of the series expansion, the initializations are

(( D_j(z)=1 j=1,---,4
Colz) if j=1
< Nij = Cria(2) if j=2,3
Coia(2) if j=4
N2 — Crn(2) if j=1,2
.’ 0721—1—2(2) if =34

Recursive computation of ¢ : From the recurrence relation (26) we obtain
k41,1

Dia(2)f(2) = Nija(2) = XiZnn 6£+1glpl(z)_ 3 .
= 2 ient1 (21:1 aieic—i—t—l,l) Pl(z) + > (Zi:1 5iefc_i+17l) 2P(2)
= Z?inJrl elel(z) +Z;:n+17_ljzpl(z), _] = 1,2

(27)
From the three term recurrence relation for the orthogonal system (Py) k>0 we know that
2Pi(z) = AP (2) + BiP(2) + CiPa(2),
and finally the recurrence relation for the quantities (ei,l) is
e =0+ AT+ BT +ClT,, 1>n+1,5=1,2. (28)

with 77 and 6/ defined in (27).
How many quantities do we need to compute at each step? Suppose we want to compute the
approximants AFP(z) for k =1,---,2n.

e we deduce from (25) that, for a fixed k, we need to know ei,nﬂ, ei_l’nﬂ, ei_Z’nH,j =1,2
to compute the approximant AFP;i(z). So, to compute the sequence AFP.(z) for k =

1,---,2n, we will need the quantities e],,,,,7 =1,2; i=0,---,2n — 1;

e from the recurrence relation (28) we deduce that to compute ei +1, We need the quantities

( J

Ck—a,

62—3,1

S ef?_Q,l_Hi,i =0,1,2 (j=1,2).
J -

Ch1i-14ir L = 0,1,2

J -
{ €hi—14ir ! = 0,1,2

Then we easily obtain that we need to compute the quantities

eg’l fort=n+1,---,3n—4, i=1,---,2n—-1 (j=1,2).

14



5 Computation of diagonal sequences

The idea is to increase accuracy, increasing simultaneously the degrees of the numerators and
denominators. In this part, from one term to the next one of the sequence, we have one parameter
more and gain one order of accuracy for one of the components.

Let us fix p; and p, and consider the following sequence of approximants

[plap2; 07 0]7 [p17p2; 17 0]7 [pl + 17p2; 1a O]a [pl + 17p2; 17 1]7 [pl + 1ap2 + 13 17 1]7 e
or, in general, the sequence (AFP,;),,,>¢ defined by:

(AFPujs1, AFP 0, AFP 5, AFP s y) = (29)
= ([ +k,p2+ ki k+1,k]
[p1+k+1,ps+ k; k + 1, K],
[pr+k+1,po+ ki k+1,k+1],
[pr + (k+1),po+ (k+1);k+1,k+1))

We remark that from step k to step £ + 1 we need to compute 4 terms and:
e we increase the denominator degree by 2

e we increase numerators degree by 1 and the accuracy to order of each function by 2;

Theorem 2 We consider the sequence of Frobenius-Padé approximants defined by (29). This
sequence can be computed by a siz-term recurrence relation of the form

Smi1(2) = 'S (2) + (05" + 55'2) Sm1(2) + (05" + £5"2) Sm—2(2) (30)

+(af + By 2)Sm—3(2) + aF'Sp—4(2)

where o, B]" are constants and Si(z) represents either the numerators or the denominators of
the approrimants.
This relation is minimal with respect to the number of terms.

Proof: from the definition (29) of the sequence of approximants (AFP,,>() we can immediately
deduce that we have to consider 2 different situations
Case 1:

obtain a recurrence relation corresponding to increasing the degree of numerator and the order
of convergence for the first component;
Case 2:

obtain a recurrence relation corresponding to increasing the degree of denominator and the
order of convergence for the first component. With respect to the second component, the relations
are obtained trivially from the first ones by interchanging the roles of f! and f2. The proof is
done in the following way: we try to obtain the new term S,,;1(z) of the sequence starting from
the last computed term S,,(z) multiplied by a linear factor (af* + 5{"z) and add successively

15



previous terms of the sequence multiplied by linear factors until the number of unknowns is
greater or equal to the number of accuracy to order and degree conditions. We then write
the system of equations corresponding to these conditons and show that it has a solution. To
simplify notations and without loss of generarity we set k¥ = 0 in (29)(the general case follows
immediately). We introduce some notation: let S[p1,pe;q1, ¢2] represent either the numerators
N' N2, the denominator D or the error term R* = Df* — N% i = 1,2 of the approximant
[p1,D2; q1, q2]. Let us obtain the two recurrence relations mentioned before.

Case 1:

In the following table we write down the degrees of polynomials, the degrees of their product by
a linear factor and orders of errors for the corresponding approximants, for the indices appearing
in the recurrence relation (30) with & = 0.

deg(N') | ord(Df! — N') | deg(N?) | ord(Df? — N?) | deg(D)

S[p1 +2,p2 +1;2,1] | p1 +2 pL+5 po+1 po+3 3
Slpr +1L,p2 +1;2,1] | pr+1 p1+4 p2+1 p2+3 3
X(ar + pf1z) | p1+2 p1+3 P2 + 2 P2 + 2 4
Sp1+1,p2+1;1,1] | p1+1 p1+3 p2+1 p2+3 2
X(og + f2z) | p1+2 p1+2 p2+2 p2+2 3

Slp1 +1,p2;1,1] | p1+1 p1+3 P2 P2+ 2 2

x (a3 + P32) | p1+2 p1+2 p2+1 po+1 3

Slp1 +1,p2;1,0] | p1+1 p1+3 D2 p2+1 1

X (o4 + faz) | p1+2 p1+2 p2+1 P2 2
S[p1,p2;1,0] P1 p1+ 2 P2 p2+1 1

X(a5 + P52) | p1+1 p1+1 p2+1 P2 2

We now write the linear combination appearing in (30) and obtain from the previous table

S left-hand side right-hand side
what we get what we want to get
S=N![deg(N)=p1 +2]| deg(N')=p; +2
S =N?|deg(N?) =py+2| deg(N?) =p;+1

S=D deg(D) =4 deg(D) =3
S=R!'|ord(R) =p; +1 ord(R')) =p; +5
S=R?| ord(R?) =py ord(R?) = ps + 3

We immediately conclude that we have to impose 9 conditions to obtain the good degrees and orders.
These conditions are linear equations in the unknowns «;, 8; with second member equal zero. In the
following table we summarize each condition. Each row corresponds to one condition: in the first column
we note the type of condition (order or degree), in the second column we write the order or degree of
the coefficient we are eliminating and in the third one the we write down the unknowns appearing in

16



the condition (i.e. for which the coefficient is non zero)

deg(D) 4 | B

deg(N?) |p2+2 | B1 P2

ord(R") | p1+1 Bs

ord(R?) | po Bs Ps

ord(R') | p1 42 B2 B3 P1 Bs as

ord(R*) | pa +1 B3 B1s Bs as o

ord(R?) |pa+2 |61 B2 B3 Ba Bs a5 au o3

ord(R') |p1+3|B1 Bo B3 Ba B5 a5 s a3 oy
ord(R') |p1+4|B1 B2 Bs Bs Bs a5 au a3 oo ay

This table shows us that the order and degree conditions are equivalent to an homogeneous
system of 9 equations on 10 unknowns and then there is always a non-trivial solution. From the
first four conditions we obtain immediately that 8; = By = B4 = 5 = 0. For the normality of
the table we need to have B3 # 0 and if we fix 3 = 1 we obtain a lower triangular system giving
the recurrence coefficients.

Case 2
Let us now consider the second case (that is, the new term corresponds to increasing the
denominator degree) and proceeding like in Case 1 we get the following tables

deg(N') | ord(Df! — N') | deg(N?) | ord(Df? — N?) | deg(D)
Slp1+1,p2+1,2,1] | p1+1 p1+4 pa+1 p2+3 3
Slpr+1,p2+1,1,1] | p1+1 p1+3 p2+1 p2+3 2
X(o1+prz) | p1+2 p1+2 p2 + 2 P2 + 2 3
Slp1 +1,p2,1,1] | p1+1 p1+3 D2 p2+2 2
X(ag + B22) | p1+2 p1+2 po+1 p2 +1 3
Slp1+1,p2,1,0] | p1+1 p1+3 P2 p2+1 1
(a3 + Bsz’) p1+2 p1+2 p2+1 P2 2
S[p1p2,1,0] p1 p1+2 P2 p2+1 1
X(aq+Bsz) | p1+1 p1+1 po+1 P2 2
S[p1,p2,0,0] p1 p1+1 P2 p2+1 0
X(as + PBs2) | p1+1 p1 p2+1 P2 1

We now write the linear combination appearing in (30) and obtain from the previous table

S left-hand side right-hand side
what we get what we want to get
S=N![deg(N)=p1+2]| deg(N')=p;+1
S =N?|deg(N?) =py+2| deg(N?) =p;+1

S=D deg(D) =3 deg(D) =3
S=R! ord(R!) = py ord(R') = p; + 4
S = R? ord(R?) = po ord(R?) = po + 3
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The conditions are linear equations in the unknowns a;, 8; with second member equal zero. More
precisely we get from the previous table:

N?) [pa+2| B
ord(R') | p Bs

deg D)1 3 B B2

(
(
(
deg(N*) |p1+2|p1 B2 B3
ord(R?) | po B3 Bs PBs
ord(R') | p1+1 Bs Bs as
ord(RY) |p1+2|B1 B B3 Bu Bs a5 s
ord(R?) | p2 +1 Bo B3 Ba P5 a5 as ag
ord(R?) |pa+2|p1 B2 B3 Bs B5 a5 as as ao
ord(R') |pa+3|B1 B2 Bs Ba Bs a5 au a3 oo ay

This table shows us that the order and degree conditions are equivalent to an homogeneous
system of 9 equations on 10 unknowns and then there is always a non-trivial solution. From the
first two conditions we immediately get 81 = 5 = 0 and, from the normality of the table and
the third equation, we get 35 # 0. If we fix 5 = 1 then the other coefficients follow from solving
a triangular system.

6 Regular indices, diagonal regular approximants

6.1 Definitions and notations

We will follow ideas of “regular approximation” and regular indices as developed in ([10], [14])
for Padé and Padé-Hermite approximants. The idea is to improve quickly the accuracy and so we
are only interested in Frobenius-Padé approximants that can be called diagonal-regular, i.e. the
degrees are identical for the different numerators, and the approximation is regularly distributed,
i.e. ¢p,qo is the “regular” multi-index associated to ¢ : ([¢/2] is the integer part of ¢/2 and
q9=q +¢q.)

¢ =1[q9/2]+ ¢4, eq=1if godd ,0if ¢ even

p1 = Do, _

% = [q/2]
The same could be done with paradiagonal sequences, i.e. p; # ps but the difference p; —py being
constant. This brings no problem, and, for sake of simplicity, we stay with the same p = p; = ps.

These approximants can be indicated using two indices only, and are displayed in a 2-dimensional

array similar to the Padé table, the columns are for ¢ constant and the rows for p constant. The
notation are as follows

[p,q] = Nump,q/Dp,q’ .
{ Num,,, = (N;q, ), deg(N} ) p, 1 =1,2, deg(D,,) =g, (31)
Remy , = FDy,, — Nump,q (O( p+[q/2] +€q+1) O(Pp+[q/2]+1)) .
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Let us expand these notations: for ¢ = 2¢’

Remy 4 = Zk>p+q 141 €paik Pk €pgk = ( }oqk’ ;2)(1 )= ((R;) @ Pe))iz 20
Remy g1 = Zlc>p+q 141 €156k €pgtipre+1 = = (0, ep,q—|—1,p—|—q +1)ta

z Rem, , = Zk2p+q' €y 0k Pk,

€pgk = Ak—1€pgk—1 + Brep gk + Crt1€pgt1

in the first formula the scalar product is the product defining the orthogonal sequence (Py)x>0 ;
ep.q:k = 0 if k is outside the specified range (31) and, as ¢+ 1 is odd, the first non zero e, 411, has
the special form given in the second formula ; the Ay, By, Cy are the coefficients of the recurrence
formula for the Py: 2P, = AgPyy1 + Br Py + CrPr_1.

Moreover, if the table is regular in the sense that all Hankel determinants are non zero, then
the first terms of each expansion (Rem,, ;, 2Rem,, ;) are non zero, as follows: with ¢ = 2¢’

<R1 ,Pk;>:0;k:07"'ap+ql 1 1
{ <qu P)=0, k=0 ptq "’ (Rpgs Bota+1) = Cpgpiq+1 = Hpgi1/Hpg, (32)
2 0 , ey
(Ryy 1:Pi)=0,k=0,...,p+¢
{ <R2q 1 P > — 0 k‘ — O P + ql -1 <R12),q 1 PIH—Q') = e?),q—l;p—f—q’ = HP,Q/HPaq—b (33)
p,q— 17 Y Y
zixnd so the first terms €, . = Cprg11€, 4 gy Of 2ZRemy, 4 and
€ tiprq = Corq+1€5 4 1.1 q41 Of ZRemy o are also non zero.

6.2 Diagonal-staircase and diagonal relations

We will look for two types of recurrence relations between the Rem,, ,, first two descending stair-
case relations, second a diagonal relation. These relations will also be satisfied by the correspond-
ing numerators and denominators so, like before, we will denote by S, ; either NI} o Np2 o Pp.as R1
or R .

Let us now consider the descending staircases, there are two cases, ending by a horizontal or
by a vertical line. The sequence considered is, in both cases, defined by the following indices:

p.9),(p+1,9),(p+1,g+1),(p+2,g+1),...

Theorem 3 For all (p,q), there exist polynomials ¢;(z) = «; + Biz,j = 1,...,6, of degree
respectively 0,1,1,1,1,0, such that the following relation holds

Spi1,g+1(2) = 01(2)Spr1,4(2) + 62(2)Spq(2) + D3(2) Spg-1(2)+ (34)
¢4(2)Sp-1,4-1(2) + ¢5(2 ) p-1,4-2(2) + 06(2)Sp 24 2(2) -

The coefficients of the polynomials ¢;(2) are computed by a linear system, with a matriz A ‘nearly’
Hessenberg, given in formula (35).
The relation involves the following approximants

19



Proof: We have to prove an identity of the form F times a polynomial minus a polynomial
is equal to zero. So if we suppose that one (at least) of the components of F is not a rational
function, this is equivalent to say that the two polynomials are zero.

How to imagine the existence of a recurrence relation as (34)? The relation is written to avoid
“degree conditions” for the denominators, i.e. the degree of the terms on the right hand side are
of degree smaller than ¢ + 1, which means that the degrees of the polynomials ®y, @4, ... is at
most 1,2, .... Then we consider the relation for the residuals Remy s 411, we count the number
of accuracy conditions (or orthogonality conditions) to be satistied by the right hand side (let
us say m), and the number of unknowns coefficients of the polynomials ®q, ®1, ..., let us say m’.
When m = m' — 1, we have a homogeous linear system, one unknown more than the numlber of
equations, so we are sure to have a solution to the system.

Let us consider identity (34) for the denominators

Dpi1,4+1 (z) = b1 (Z)DIH-I,Q(Z) + ¢2(Z)Dp,q(z) + ¢3(Z)Dp,q—1(z) +...,

as the degree of D, ; is j, identifying the degrees gives the leading coefficient of ¢(z).

The approximation order and the respective degrees define the approximants up to multipli-
cation by a scalar. So we consider the expression on the right hand side of (34) for the error
terms Rem, , and write the conditions of orthogonality satisfied by the left hand side. If this is
possible, it means that the right hand side is proportional to the left one. In short, this means
that we must obtain m equations and m' unknowns, satisfying m’ = m + 1. Then we always
have a solution. The condition on the degrees, already mentioned, gives the last equation and
the unicity of the solution.

Let us write the proof for the case ¢ = 2¢/, then Rem, ;411 = (O(Ppig12+1); O(Ppigt141))-
Let us consider the right hand side. We get, detailed for the second term (ay + S22)Rem,, ,, with

q=2q¢

(a2 + B22)Rem,; (2) = (0‘3 + B22) ZkZp—f—q’—f—l €,k (2) _
= Bo&pgpta Dora (7) + ZkZp—i—q’—f—l (2€p g5k + B28pgik) Pr(2) -

Doing similarly for each term of the sum, we obtain for the last term the lowest degree of
approximation

agRemy 55 =06 45y 2€p-24-250% -
So, the coefficients of the polynomials ¢;(z) must be taken so that the following orthogonality
conditions are satisfied: rhs means the expression on the right hand side of (34)

(rhs', Py =0, k=p+q¢ —2,....p+q +2
(rhs®*, Py =0, k=p+¢—2,....p+q +1

this gives 9 equations for 10 unknowns (the coefficients of the polynomials ¢,(2) = (a; + §;2)),
so the system always has a solution. We write the orthogonality conditions, successively for
component 1 and 2, first for P, , o, up to P4y 41, and finally the first component for P,y 9.
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The form of the system is

[

\ -

V()

(67

Pa
(673
B _y
Oy

B

(0%]

\ o )

- - - -+

-

Terms denoted by a + are now proven to be non zero. We use formulae (32), (33), ¢ = 2¢'
being taken even. The coefficients noted by a + are row by row, from left to right and top to

bottom:

row 1 : é})*l,qu;p-Fq’*l’ 6;72,q72;p+q’*2 ’
TOW 2 1€, 1 o 1pig—15

TOW 3 i€ . onig 1

row 4 1€ 1 € g i1
IOW D 1€ ot

row 6 : ef,’qfl;pﬂ,,

row 7 : ezll,q;p+q’+1’

row 9 :e)

“Cpitgptg+2 ?

and each of these are from (32, 33) non zero because of the regularity of the Frobenius-Padé

array.

Using the previous properties and the recurrence relation of the Py, the first equation is

ﬁ5Ap+q’ -2

H, |,
pl,q1+

Hp—l,q—Q

Hp—2,q—1 =0
H - )
p—2,9—2

none of ag, 85 can be zero, the relation (34) cannot be shortened.
The proof is similar in the case where ¢ = 2¢' + 1 is odd. =

Let us now consider the second possible staircase

Theorem 4 For all (p,q), there exist polynomials ¢;(z) = o+ Bjz+7;2%,j = 0,..

., 6, of degree

respectively 0,1,1,2,1,0, such that the following relation holds

Spt1,4+1(2) = 01(2)Spg11(2) + 92(2)Sp,q(2) + B3(2) Sp-1,4(2)+
$4(2) Sp-1,4-1(2) + ¢5(2) Sp—2,0-1(2) + B6(2) Sp-2,¢-2(2) -

(36)

The coefficients of the polynomials ¢;(z) are computed by a linear system, with a matriz given in

(37).
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The relation involves the following approximants

Proof: The proof follows the general lines of the preceding one. As before, the recurrence
relations will hold for the numerators and denominators, if IF is supposed to have, at least, one
no rational component.

The identity for the denominators gives, for monic denominators, the equation

l=o1+ B2+ B3+ -

Let us come now to the orthogonality properties. The proof is written for the case ¢ = 2¢/,
where Remyi1 411 = (O(Ppigi2+41), O(Ppig+141)). We consider the relation (36) for the error
terms and its right hand side. We obtain for the last term the lowest degree of approximation
the terms ¢4Rem,_; ,_; and ¢sRem,_ 5, 1 which are orthogonal to P up to kK = p + ¢’ — 3 for
the first component and k& = p+ ¢’ — 4 for the second. So the orthogonality conditions to satisfy,
to obtain (36), are

(rhs', Py =0, k=p+q¢ —2,....,p+¢ +2,
(rhs*, Py =0, k=p+q¢ —3,....,p+¢ +1,

this gives 10 equations for 11 unknowns (the coefficients of the polynomials ¢;(z) = «; + 5z +
v;2%,7 =1,...,6), plus the degree condition. We write the orthogonality conditions, successively
for component 1 and 2, first for (rhs® Pyiy_3), up to (rhs', Py y12). The form of the system is

Ya
(+ V()
873
Ba
a5
ps | =0. (37)
QY
P2
%}
0%}

ey

The coefficients noted by a + are non zero. This is proven as in the previous result, i.e. these terms
are either (R;,;, Piyjy1) or (R7y; 1 Piyji1), up to the multiplication by A;; for the coefficients of
the 3, and by A;,;_1A;; for the coefficient of the v, which are ratio of two Hankel determinants,

and are supposed to be non zero for the regularity of the Frobenius-Padé table.m

- - - - - - - - -+

Let us consider now the diagonal problem, that is the considered sequences are, for each pair
(p,q), (Remyp g q1k)kez
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Theorem 5 For all (p,q), there exist polynomials ¢;(2) = o + Bjz + v;2%...,5 =0,...,6, of
degree respectively 1,2,3,4,4,2,1, such that the following relation holds

Spr1,g+1(2) = 00(2)Spg(2) + 31(2)Sp-1,4-1(2) + ¢2(2) Sp—2,4-2(2)+
$3(2)Sp—3,4-3(2) + a(2)Sp—1,g-4(2) + #5(2)STp_54-5(2) + P6(2)Sp—6,0-6(2) -

The coefficients of the polynomials ¢;(z) are computed by a linear system, described below.

Proof: The proof follows the general lines of the preceding ones. As before, the recurrence
relations will hold for the numerator and denominator, if IF is supposed to have, at least, one non
rational component.

The polynomials ¢;(z) are written a; + Bz + v;2% + 6;2° + €;2%,j = 0,...,6 following their
degree, and the identity for the degrees of the monic denominators gives the equation

1=08y+m+02+¢€3.

Let us come now to the orthogonality properties. Let us write the proof for the case ¢ = 2¢/, then
Rempiig41 = (O(Pprgt241), O(Pprgs141)). When S, denotes the error terms R}, the right
hand side is orthogonal to Py, up to k = p + ¢’ — 10 for the first component and k£ = p+ ¢’ — 10
for the second. So the orthogonality conditions to satisfy, to obtain (5), are

(rhs', Py =0, k=p+¢—-9,....p+q¢ +2
(rhs®, Py =0, k=p+q¢—-9,....p+q¢ +1

this gives 23 equations for 24 unknowns. So, again, we always have a solution. We write the
orthogonality conditions, successively for component 1 and 2, first for (rhs', P, , o), up to
(rhs', Ppiq2).

The form of the system is “pseudo-Hessenberg”, i.e. the equations have an increasing number
of terms: this number is (n+1) for equation n= 1, 2, n+2 for equation n= 3, n+3 for equation
n=4,5, n+4 for equation n=6,7,8, n+5 for equation n=9 to 16,n+4 for equation n=17-19, n+3
for equation n=20-21, and complete (24 terms) for equation n=21-23.

The unknowns are involved in the following order

((567 €4, 75, O, 54)7 (/657 €3, V4, A5, 53)(547 V3, Oy, 62): (1637 Y2, C¥3), (/62: V1, 062), (/817 al): (/807 OKO)),

and each time a new unknown is involved, its coefficient is non zero.m

6.3 Computational aspects

Despite the rather large systems we have obtained, it seems not too difficult to compute any
approximant in the Frobenius-Padé table, restricted to diagonal-regular approximants, with the
preceding relations. The interest is to obtain approximants with a large order of accuracy, without
going through less interesting approximants.

The previous relations have been obtained only with conditions concerning the accuracy, and
the idea is that going to compute all the conditions, there is only the last condition(s) to compute
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because the other ones were computed at the preceding step; in other words, considering the
matrices to compute, there is more or less only the last row(s) to compute.

More precisely, let us first use the two descending staircases to obtain simultaneously two
descending diagonals in this table ([p + &, k])x and ([p + & + 1, k]).

We suppose we have obtained [p+ 1,¢ + 1] i.e. Rem,1 441 (¢ = 2¢') by the first staircase, let
say (H), so we know the matrix of the system

M1 = (55; O, /B4a a5, ﬂ?n Qy, 523 a3, 0y, al)

where we denote the column by the name of the unknown whose coefficients are in this column (10
unknowns). It has been obtained by writing the required orthogonality conditions (9 equations)

(rhs', Bprg-2), (rhs®, Ppygr—2), . ., (rhs', Ppiga) -

Now we try to obtain [p+ 2, ¢ + 1] by the second staircase, let say (V), so we look for the matrix
of the system
M2 = (047 b5a Qg b47 as, b3a Gy, b2; as, ag, al)

where we similarly denote the column by the name of the unknown (replacing « by a...) whose co-
efficients are in this column (11 unknowns). The required orthogonality conditions (10 equations)
are

(rhs®, Bprg-a), (rhs', Ppygr—1), .., (rhs', Ppiga) -

The first row of M1 is no more used, and we will have to compute the last two new rows of M2,
orthogonality of the second component w.r.t. B,y 2, and orthogonality of the first component
w.r.t. Py y3. Each column of M2 is now computed from M1 (except the 2 last terms), then
completed

bs = B4,bs = B3,b3 = Ba,

g = Q05,05 = 04,04 = Q3,03 = Q2,09 = Q1 .

Once these columns are completed, they give rise to ¢4, by , for example for ¢4 expressed in terms
of the column by, (the analogue by, as)

<R;)’q_1,22pk> == <R p.q— 1,AkZPk_|_1> <R p.q— 1,BkZPk> <R D,q— 1,CkZPk 1> .

Finally, we get the new matrix with 9-14-2=10 equations, and 10-2+3=11 unknowns
Now we try to obtain [p+ 2, ¢ + 2] by the first staircase, let say (H’), so we look for the matrix
of the system

M1 = (55,016,ﬁ4,C¥5,,63,0j4,52,043,042,011) .

The two first rows are of no more use and we have to compute the last equation, orthogonality
of the second component w.r.t. P, 3. Except this last row, the columns are known as before
by

ﬁj: j+1,j:3,4,5, ,O!j:aj+1,j:2,...,5,
then by is computed from the complete column ay, and a; has only one term in the last and new
row. We have obtained the new matrix M1’ with 10-2+1=9 rows and 11-2+1=10 unknowns.
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How are the new rows computed? The different scalar products (Ri’s,
by the expansion of the already known Rem,. .

Why are the two steps non symmetric? Going from p to p + 1 means two degrees of freedom,
or an improvement of the accuracy by two (because the function is a vector of size two), while
going from ¢ to ¢ + 1 is only an improvement of one in the degree of accuracy.

Py) are the €, ., obtained

If now we use the diagonal relation to compute, for fixed p and g, the sequence ([p+k, ¢+ k|)x,
it is similar as we have to write the new conditions of orthogonality, 3 each time.

6.4 Other relations

The preceding relations seem a bit long, and so difficult to initialize. Here we look for relations
that will involve the knowledge of the two preceding columns, i.e. to compute [p,q|, we use
approximants of columns ¢ — 1, ¢ — 2. It seems that there does not exist relations involving only
one column.

In all the previous results we get either conditions due to the degrees i.e. ‘degrees conditions’,
or conditions due to the order of accuracy, i.e. ‘order conditions’. We first give a relation involving
only order conditions and one normalization condition.

Theorem 6 For all (p,q), there exist polynomials ¢;(z) = «; + Bz, = 1,...,5, of degree
respectively 0,0,1,1,0, such that the following relation holds

Sp1,+1(2) = 1Sp41,4(2) + 028p11,0-1(2) + 03(2) Spg(2) + 04(2) Spg-1(2) + @55p-1,4-1(2) - (38)
The coefficients o, B of the polynomials ¢;(z) are computed by a linear system, with a Hessenberg
matriz given in (39).

The relation wnvolves the following approximants

[ ]
* x
Proof: The proof follows the general lines of the preceding ones and is done for ¢ = 2¢’. As
before, the recurrence relations will hold for the numerator and denominator, if F is supposed to
have, at least, one non rational component.

If we write the relation for the error terms Rem,,, then on the left hand side, we get
Remyi1441 = O(Ppig+3, Pprg+2). On the right side, we get rhs = O(P,yy, Pprqg—1), SO We
have six equations for seven unknowns. Writing (rhs?, P,y,—1) up to (rhs', Py, y12), we get the
following Hessenberg system

(Rg,qfl’zpp-i'q,—l) + ( s \

(67

Bs
Oy =0. (39)
a3
6%

) AR O
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The terms of the superdiagonal are sure to be non zero (from the regularity assumption) and are
given by

Pp+q’—1> <Rp q ZPp+q ) <R§ q 19 Pp+q >

<qu,P+q +1> ( p+1,q—17 p+q +1> <R;11>+1,anp+q'+2)'

(R,

p—1,q—1°

If all the denominators are supposed to be monic, the normalization condition gives 83 = 1,
which ensures the unicity of the solution.m
Let us now look for a relation obtained through order conditions and degrees conditions

Theorem 7 For all (p,q), there exist polynomials ¢;(z) = «; + Bz, = 1,...,5, of degree
respectively 0,1,1,0,0, such that the following relation holds

Spt1,g+1(2) = 1Sp13,0-1(2)+025p+2,4(2) +03(2) Spr2,g-1(2) +0a(2) Sp11,4(2) +5Sp+1,4-1(2) - (40)
The relation inwvolves the following approximants

® X
[

Proof: The numerator is of degree p+ 3 for the right hand side and p+ 1 on the left hand side,
so the numerators being vectors of size 2, this gives four equations.

The order of accuracy is O(Pptq+2, Pp+q +1) for the right hand side, and O(Pptq+3, Pprg+2)
for the left hand side, which gives two equations (rhs?, Py g11), (rhs', Pyigi2). So we get six
equations for seven unknowns. We denote by r, 4, 7, , the first and second (vector) coefficients of
Num, , and obtain the two subsystems

Tp+2,0—103 + Tpt2,¢52 + Tpi3,q—1001 =0
Tp+2,0—103 + Tpr2,402 + Tpisg-101 +Tpio g0 + Tprog—103 =0
B3
41
( <R§+2,q—17ZPp+q’+1> + ) ) as | _, (41)
- - <Rp+2,q’ 2Bpiq42) + Pa
(67

The terms (+) are sure to be non zero (from the regularity assumption) and are given by

<R2+1 ,q—11 Pp+q’+1>, <R;(11—|—1,q’ Pp+q’+2> :

As noted before when using these relations iteratively, we do not have to recompute everything
in the order conditions, but here the remark is of less interest than before.

The initialization is done easily as the column of index zero is formed by the partial sums
of the initial series F. The column of index one can be computed from previous algorithms or
directly by the general formulae. We recall that hy,; = (h, ;, h2 ;)" and hi . = 1/||P,|[*(f*P;, Pp)

NERLY
D, = h1+1 0 h119+1,1 Num,; = hp+1 0 hle—l,l (42)
P P P P >0 hkoPe Y g hii Pr
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For j = 0, we get from the definition
hllc,O = fli )

for hy,, Py is written as az + b, and then

hir  =1/|B|P(f', (az + D) Py)
=bfy + a(Ap_1fe_1 + Befe + Crs1fir1) »

so the two first columns of the table are known, the last algorithms allow to compute the third
one and then any of the preceding algorithms gives rise to the whole table of Frobenius-Padé
approximants, restricted to diagonal-regular indices (p; = po and (¢, ¢2) the regular bi-index
associated to ¢).

7 Conclusion and perspectives

In the case of the Frobenius-Padé approximation for one function, the algorithms proposed in
[8, 9] have been implemented and the numerical results showed that these approximants have
good convergence and acceleration properties, specially for functions with discontinuities.

It will be interesting to program the recurrence relations developed in this paper to study their
numerical convergence properties, for instance when applied to the solution of partial differential
equations given by spectral methods (in this case we have the approximation of the solution as
a partial sum of an orthogonal series).

It will also be important to obtain some sufficient conditions on the regularity of the table of
the Frobenius-Padé approximants because this is a fundamental property to avoid breakdowns
in our algorithms. This work is under progress.

Another idea is the following. In the classical (scalar) orthogonality, three terms recurrence
relations are equivalent to orthogonality. Here the recurrence relations have several polynomial
coefficients, so are very different. It is under study to look for the “inverse” problem, i.e., to
obtain some orthogonality properties from the recurrence relations.
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