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Abstract

For a recent new numerical method for computing so-called robust Padé approximants through SVD
techniques, the authors gave numerical evidence that such approximants are insensitive to perturbations
in the data and do not have so-called spurious poles, that is, poles with close-by zero or poles with
small residuals. A black box procedure for eliminating spurious poles would have a major impact on the
convergence theory of Padé approximants since it is known that convergence in capacity plus the absence
of poles in some domain D implies locally uniform convergence in D.

In the present paper we provide a proof for forward stability (or robustness) and show the absence of
spurious poles for the subclass of so-called well-conditioned Padé approximants. We also give a numerical
example of some robust Padé approximant which has spurious poles and discuss related questions. It turns
out that it is not sufficient to discuss only linear algebra properties of the underlying rectangular Toeplitz
matrix, since in our results other matrices like Sylvester matrices also occur. These types of matrices have
been used before in numerical greatest common divisor computations.
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1. Introduction and statement of the main results

A popular method for approximation, for analytic continuation or for detection of singularities
of a function f knowing the first terms of its Taylor expansion at zero f (z) =

m+n
j=0 c j z j

+

O(zm+n+1)z→0, is to compute its [m|n] Padé approximant at zero p/q , namely a rational
function satisfying

p(z) =

m
j=0

p j z
j , q(z) =

n
j=0

q j z
j
≢ 0,

f (z)q(z) − p(z) = O(zm+n+1)z→0.

(1.1)

It is well known [2, Section 1] that there always exists an [m|n] Padé approximant: we just have
to find a non-trivial solution of the homogeneous system of n equations and n +1 unknowns with
Toeplitz structure

C vec(q) = 0, C =


cm+1 · · · cm−n+2 cm−n+1
cm+2 · · · cm−n+3 cm−n+2

...
...

...

cm+n · · · cm+1 cm

 , vec(q) =


q0
q1
...

qn

 , (1.2)

with the convention c j = 0 for j < 0, and then find the coefficients of p from (1.1). Whereas
(1.2) has infinitely many solutions, it is also known [2] that the rational function p/q is unique.

Though many theoretical results [2, Section 6] show the usefulness of sequences of Padé
approximants in approximating f or its singularities, there are drawbacks making it somehow
difficult to interpret correctly the approximation power of such approximants: it might happen
that the rational function has poles at places where function f has no singularities, so-called
spurious poles. This somehow vague notion needs some more explanation; for a precise
(asymptotic) definition, see the work [17, Definition 8] or [18] of Stahl: the Padé convergence
theory like the Nuttall–Pommerenke Theorem for meromorphic functions f [2, Theorem 6.5.4]
or the celebrated Stahl Theorem for algebraic functions f [19, Theorem 1.2], [2, Theorem 6.6.9]
(or more general multivalued functions) tells us that there are domains D of analyticity of f
such that the [n|n] Padé approximants tend for n → ∞ to f in capacity on any compact subset
K of D. That is, given any threshold ϵ > 0, the set of exceptional points in K where the error
is larger than ϵ becomes quickly “small”; see, e.g., [2, Section 6.6] and the references therein.
By the Gonchar Lemma [13, Lemma 1], convergence in capacity and absence of poles implies
uniform convergence, but there are examples showing that there might be poles of an infinite
subsequence of [n|n] Padé approximants in K , which of course makes it impossible to have
uniform convergence in K . Stahl shows in [20, Theorem 3.7] that one can establish uniform
convergence for the special case of hyperelliptic functions by simply dropping all terms in a
partial fraction decomposition with poles in D. More generally, for algebraic functions, Stahl
mentions in [19, Remark (8) for Theorem 1.2] an elimination procedure for spurious poles, but
without giving details.

The notion [18] of asymptotically spurious poles of course is intractable on a computer since
we are able to compute only finitely many approximants. In addition, the computed approximants
will be affected by finite precision arithmetic, or by noise on the given Taylor coefficients. It
was suggested by Froissart [9] and further analyzed for particular functions in [5,11,12] that
instead we should identify poles of Padé approximants which come along with a “close-by” zero,
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so-called Froissart doublets. The occurrence of such doublets is observed experimentally to
increase in the case of noise on the Taylor coefficients [5]. Stahl shows in [18] that in fact
asymptotically spurious poles give raise to “asymptotical Froissart doublets”.

Another popular method to detect “doubtful” poles, adapted for instance in [14], is to identify
poles zk which have “small” residuals ak corresponding to terms ak

z−zk
in the partial fraction

decomposition of a Padé approximant p/q. Notice that such poles are generically of multiplicity
one.

Before going further, we introduce some notation. We denote by Rm,n the set of rational
functions with numerator (and denominator) degree not exceeding m (and n, respectively). In
what follows, ∥ · ∥ will always denote the Euclidean norm together with the induced spectral
norm of a possibly rectangular matrix A. The matrices A under consideration will always have
full row rank ℓ, in which case we may write the spectral condition number as

κ(A) =
σ1(A)

σℓ(A)
= ∥A∥ ∥AĎ

∥

with σ j (A) the j th largest singular value of A, and the pseudoinverse AĎ
= A∗(AA∗)−1. We

notice that a change of norms might improve some of our estimates below, in particular we do
not claim that any of the powers of m + n + 1 occurring below are optimal. Hence we will
sometimes use the writing a1 . a2 meaning that there exist modest constants b, r > 0 not
depending on f or m, n such that a1 ≤ b(m + n + 1)r a2. Also, a1 ∼ a2 means that a1 . a2 and
a2 . a1. As suggested in [14], before computing Padé approximants of f one should replace f
by a suitably scaled counterpart a f (bz) with nonzero scalars a, b chosen such that

m+n
j=0

|c j |
2

= 1. (1.3)

Here the rescaling factor b should be chosen in order to obtain quantities |c j | ≤ 1 of comparable
size, which asymptotically means that we rescale the complex plane in a way such that a
meromorphic function f becomes analytic in |z| < 1. Finally, in order to simplify notation,
in what follows we always fix m and n and drop these indices.

1.1. Robust Padé approximants, degeneracy and related matrices

Recently [14], Gonnet, Güttel and Trefethen suggested the interesting concept of a robust
[m′

|n′
] Padé approximant p/q based on SVD computations. This object essentially is an [m|n]

Padé approximant (at least for exact arithmetic) for suitably chosen m ≤ m′ and n ≤ n′. Though
the suggested numerical method to find m, n from m′, n′ is much more elaborate, one may get
an idea of the method by thinking of (m, n) as being the upper left corner of a “numerical block”
of the Padé table containing the coordinate (m′, n′), or being on the upper or left border of such
a “block” and on the same diagonal m′

− n′
= m − n. In the numerical experiments reported

in [14], the shape of such a “numerical block” is either a (finite or infinite) square or an infinite
diagonal. Their robust [m|n] Padé approximant p/q has the following properties:

(P1) it is nondegenerate in the sense that the polynomials p and q are co-prime, and that the
defect min{m − deg p, n − deg q} is equal to zero;

(P2) the nth largest singular value σn(C) is larger than a certain threshold;
(P3) the denominator is given by choosing as vec(q) a right singular vector of norm 1

corresponding to the singular value σn+1(C) = 0.



94 B. Beckermann, A.C. Matos / Journal of Approximation Theory 190 (2015) 91–115

We can read from (P2), (P3) that indeed C has maximal numerical rank n, and thus vec(q) spans
the numerical kernel of C ; see also [1]. Moreover, according to (1.3) and (P2), the condition
number κ(C) will be of moderate size.

The authors in [14] use analogies from well-known regularization techniques for linear
algebra problems in order to justify theoretically their approach. Their paper contains many
numerical examples which lead one to believe that these new “regularized” approximants are
indeed robust, that is, small perturbations in the input like noisy Taylor coefficients produce
similar approximants; see also Section 1.2 below for this notion of robustness or forward
stability. Also, in all numerical experiments reported in [14], these robust approximants do
no longer have Froissart doublets nor small residuals. The aim of the present paper is to give
some theoretical results complementing these numerically observed phenomena. For instance,
we present a numerical example of robust approximants where spurious poles have not been
eliminated. In addition, we describe a subclass of robust approximants where we can ensure that
we have eliminated spurious poles. All our statements only apply to nondegenerate [m|n] Padé
approximants p/q , and we will see that (P2) will enable us to show that the underlying nonlinear
map is forward well-conditioned. For the backward condition number, for Froissart doublets or
for small residuals, other matrices T, S, and Q do occur, which are defined as follows:

We first observe that (1.1), (1.2) is equivalent to solving

T


vec(p)

vec(q)


= 0,

T =



1 0 · · · 0 −c0 0 · · · 0

0 1
. . .

... −c1 −c0
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 · · · 0 1 −cm
. . . −c0

0 · · · · · · 0 −cm+1 · · · · · · −c1
...

...
...

...

0 · · · · · · 0 −cm+n · · · · · · −cm


∈ C(m+n+1)×(m+n+2),

(1.4)

T being block upper triangular, with the lower right block given by −C . We will also require the
two matrices

Q =



q0 0 · · · · · · · · · 0
...

. . .
. . .

...

qn q0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 qn · · · q0


, S =



q0 0 · · · 0 −p0 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

qn
. . . 0 −pm

. . . 0

0
. . . q0 0

. . . −p0
...

. . .
. . .

...
...

. . .
. . .

...

0 · · · 0 qn 0 · · · 0 −pm


,

(1.5)

with Q ∈ C(m+n+1)×(m+n+1), and S = S(q, −p) ∈ C(m+n+1)×(m+n+2) having one more row
and two more columns than the usual Sylvester matrix of two polynomials. Notice that these
matrices are related through

S = QT . (1.6)
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1.2. Continuity and conditioning of the Padé map

For defining a (nonlinear) Padé map F

F : Cm+n+1
∋ c = (c0, . . . , cm+n)t

→ y =


vec(p)

vec(q)


∈ Cm+n+2 (1.7)

mapping the vector of (m + n + 1) Taylor coefficients to the coefficient vector in the basis of
monomials of the numerator and denominator of an [m|n] Padé approximant p/q we have to be a
bit careful due to degeneracies in the Padé table, also we have to fix the normalization (norm and
phase) of the coefficients. Uniqueness is obtained by taking any p, q of degree at most m, and
n, respectively, satisfying (1.4), by canceling out a possible non-trivial greatest common divisor
such that q(0) ≠ 0 (since p(0) = c0q(0)), and then normalize in a suitable manner by a complex
scalar; here

∥F(c)∥2
= ∥vec(p)∥2

+ ∥vec(q)∥2
= 1, q(0) > 0. (1.8)

Notice that a non-trivial greatest common divisor only occurs for degenerate Padé approximants,
and only here it might happen that T F(c) ≠ 0. Also, F is neither injective nor surjective. By
adapting the techniques of [22], one may show the following result which is stated here without
proof and which shows the importance of degeneracy.

Theorem 1.1. F is continuous in a neighborhood of c if and only if its [m|n] Padé approximant
F(c) is nondegenerate.

For studying conditioning we will restrict ourselves to the real Padé map, namely the re-
striction of F onto Rm+n+1, also denoted by F , and hence F(c) ∈ Rm+n+2. For the conve-
nience of the reader, let us recall two different concepts of condition numbers measuring both
the worst case amplification of infinitesimally small relative errors: for the forward conditioning
κ f or (F)(c) one is interested whether small errorsc − c in the data gives an answer F(c) close to
F(c). In contrast, for the backward conditioning one considersy close to F(c) and asks whethery is the right answer F(c) for some c close to c. However, due to the lack of surjectivity, it
could be necessary to project first the perturbed value y on the image of F , and we might need
additional assumptions in order to ensure that the value dist(y, F(Rm+n+1)) is attained at some
F(c). Also, in general there might be several such argumentsc due to the lack of injectivity and
we have to find the one closest to c.

However, as we see in Theorem 1.2(a), (b) below, for the real Padé map the situation is much
less involved: for instance, we show that F is injective in a neighborhood of a point of continuity.
Also, since ∥c∥ = ∥F(c)∥ = 1 by (1.3) and (1.8), we may replace relative errors by absolute
errors in the definition of conditioning, which make our formulas more readable.

Theorem 1.2. Suppose that F is continuous in a neighborhood of c ∈ Rm+n+1, that (1.3) holds,
and that matrix T of (1.4) is defined by c and Q of (1.5) by F(c). Then the following statements
hold.

(a) There exists U ⊂ Rm+n+1, a neighborhood of c, and V ⊂ Sm+n+2
:= {y ∈ Rm+n+2

:

∥y∥ = 1}, a relative neighborhood of F(c) on the unit sphere Sm+n+2 such that the
restriction F : U → V is a diffeomorphism, and we have the Jacobian JF (c) = T ĎQ.

(b) For anyy sufficiently close to F(c), the projection of y onto F(Rm+n+1) exists and is given
byy/∥y∥ ∈ V .
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(c) The forward condition number is given by

κ f or (F)(c) := lim supc→c

∥F(c) − F(c)∥

∥c − c∥
= ∥T ĎQ∥. (1.9)

(d) The backward condition number is given by

κback(F)(c) := lim supy→F(c)

inf{∥c − c∥ : F(c) = y/∥y∥}

∥y − F(c)∥
= ∥JF (c)Ď∥ = ∥Q−1T ∥. (1.10)

We know from (1.3) and (1.8) (see also Lemma 3.2 below) that both matrices T and Q have
a norm not larger than

√
m + n + 2. Thus we learn from Theorem 1.2(c) that the real Padé map

is forward (backward) well-conditioned at c provided that the smallest singular value of T (and
of Q, respectively) is not too small. It is shown in Lemma 3.2 below that the smallest singular
values of T and C are of the same magnitude. Thus condition (P2) ensures that the real Padé
map is forward well-conditioned.

In our proof of Theorem 1.2(c) we exploit a well-known formula for κ f or (F)(c) in terms of
the Jacobian of F . To our knowledge, similar formulas for κback(F)(c) in terms of the pseu-
doinverse of the Jacobian have not been established before in the literature. The occurrence of
a sub-matrix of Q in the backward conditioning of the Padé denominator map has been noticed
before by S. Güttel (personal communication).

1.3. Well-conditioned rational functions and spurious poles

Let us now turn to the subject of spurious poles, which in the present paper we study for gen-
eral rational functions and not only for Padé approximants. It will be shown in Lemma 3.1 below
that p/q is nondegenerate if and only if the corresponding matrix S has full row rank. In a nu-
merical setting, rank deficiency is typically excluded in requiring a condition number of modest
size. In what follows, we will refer to rational functions as well-conditioned if the corresponding
matrix S has a modest condition number. As we show in the next theorem, for well-conditioned
rational functions we are able to control the occurrence both of Froissart doublets and of small
residuals. We refer to [4] and Lemma 6.1 below for other known results on Froissart doublets
but, to our knowledge, no such result has been published before for residuals.

In the statement below we will make use of the uniform chordal metric in the set MK of
functions meromorphic in some compact K ⊂ C being defined by

χK (r,r) = max
z∈K

χ(r(z),r(z)), χ(a, b) =
|a − b|

1 + |a|2


1 + |b|2
. (1.11)

Such a metric is useful to study questions of uniform convergence for rational or meromorphic
functions since such functions are continuous in K with respect to the chordal metric. A different
uniform metric has been also employed in [22] for measuring the distance of two rational
functions for the continuity of the Padé map. We will discuss the link with the distance of two
coefficient vectors in more detail in Section 4. Notice that the next statement does not only cover
Froissart doublets and small residuals of r = p/q but also of rational functionsr = p/q close
to r , as those constructed in [14] where small leading coefficients in p or q are replaced by 0.

Theorem 1.3. Let the two polynomials p of degree ≤ m and q of degree ≤ n be such that
r = p/q is nondegenerate. Then the following statements hold for matrix S = S(q, −p).
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(a) For any meromorphic functionr ∈ MD with χD(r,r) ≤ 1/3, the Euclidean distance of any
pair of zeros and poles of r in the unit disk is bounded below by 1/(3

√
2(m +n+1)3/2 κ(S)).

(b) For any rational functionr ∈ Rm,n with 2 (m + n + 1)2κ(S)2χD(r,r) ≤ 1/3, the modu-
lus of any residual of a simple pole in the unit disk of r is bounded below by 1/((2(m +

n + 1))3/2κ(S)).

Numerical results presented in Example 2.3 below indicate that both lower bounds of
Theorem 1.3 can be approximately attained. It seems for us that, due to the use of the basis
of monomials, the occurrence of the unit disk D in Theorem 1.3 is natural. For the case m = n
of diagonal rational functions r,r ∈ Rn,n , we could also obtain results outside of the unit disk,
by considering the reversed numerator and denominator polynomials (for which κ(S) remains
unchanged).

Let us finally turn to convergence questions for robust Padé approximants. In [14, Section 8],
Gonnet, Güttel and Trefethen asked whether there are analogues of classical convergence the-
orems by Stahl and Pommerenke for robust Padé approximants where the absence of spurious
poles would enable to obtain not only convergence in capacity but uniform convergence. To be
more precise, the authors suggest to compute robust Padé approximants of type [mk |nk] for in-
creasing sequences of numbers mk, nk , where each approximant is computed using a threshold
tolk possibly tending to zero for k → ∞. Notice that a variable threshold does no longer allow a
simple control of spurious poles through our Theorem 1.3. But quite often there are only a finite
number of distinct robust Padé approximants following for instance a diagonal path mk = nk = k
if one uses a fixed threshold for all approximants. For instance, the numerical experiments for the
exponential function with tolk = 10−14 as reported in [14, Fig. 5.1] tell us that there are only 8
distinct robust Padé approximants on the diagonal, since all approximants of type [n|n] for n ≥ 8
reduce to the one for n = 7.

This vague observation can be made more explicit for Stieltjes functions f , since here matrix
C has a condition number which grows quickly with n; see [3] for results on the condition number
of positive definite Hankel matrices. For general functions f , we have the following result.

Theorem 1.4. Let r = p/q ∈ Rm,n be nondegenerate and r = p/q ∈ Rm−1,n−1. Then
2 χD(r,r)κ(S)2

≥ (m + n + 1)−2 for matrix S = S(q, −p).

We feel that it should be possible to establish an improved version of Theorem 1.4 where
κ(S)2 is replaced by a term of order κ(S). Such a result is given in Corollary 6.3 below at least
for the special case where r,r are two succeeding Padé approximants on a diagonal. Notice also
that Theorem 1.4 implies for the rational functionr of Theorem 1.3(b) to be nondegenerate.

Roughly speaking, we learn from Theorem 1.4 that for any function f which can be well ap-
proximated by some element of Rm−1,n−1 with respect to the uniform chordal metric in the unit
disk, its [m|n] Padé approximant r either does not have a small approximation error χD( f, r), or
otherwise the number κ(S) is necessarily “large”. Since we feel that on a computer it is prefer-
able to compute only well-conditioned rational functions, this could lead to an early stopping
criterion for computing only Padé approximants of small order. Such a stopping criterion would
however require a systematic study of the error of best rational approximants with respect to
the uniform chordal metric, which to our knowledge is an open problem, beside the negative re-
sult [8, Theorem 3.1]. Another impact of Theorem 1.4 could be to introduce in the computation
of Padé approximants a penalization term taking care of a modest κ(S) or some more appropriate
estimator, inspired by techniques from inverse problems. But this is far beyond the scope of the
present paper.
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The remainder of the paper is organized as follows. Section 2 contains some numerical ex-
periments which confirm our theoretical findings. In Section 3 we give auxiliary statements and
provide a proof of Theorem 1.2 on the conditioning of the real Padé map. Section 4 is devoted to
the study of distances of rational functions, we will show in Theorem 4.1 that in some cases the
uniform chordal metric is close to forming differences of scaled coefficient vectors. A proof of
Theorems 1.3 and 1.4 is provided in Section 5. In Section Section 6 we report about some pre-
vious work on related fields like numerical GCDs, condition number estimators, and look-ahead
procedures for computing Padé approximants. A summary of our work and concluding remarks
can be found in Section 7.

2. Some numerical experiments

In this section we present examples of subdiagonal Padé approximants (m = n − 1) for three
functions, namely

f1(z) =

 1

−1

1
√

1 − x2

dx

1 − xz
, f2(z) = exp(z),

f3(z) =

2N
j=0

c3( j)z j , c3 = randn(2N ),

(2.1)

the first one a Stieltjes function analytic in |z| < 1, and the second (and third) one an entire func-
tion with quickly decaying Taylor coefficients (and random coefficients, respectively). For each
m + 1 = n = 1, . . . , N , we first normalize the vector of the first m + n + 1 Taylor coefficients
following (1.3) by dividing by the norm. Subsequently, we compute the denominator coefficients
using the SVD, the corresponding coefficients of the numerator by multiplying by a submatrix of
T , and then normalize following (1.8) by dividing by the norm. It turns out that all subdiagonal
approximants are nondegenerate, though there are 2 × 2 blocks in the Padé table of the even
function f1.

We draw in Figs. 1–3 the condition number of the four matrices C , T , S and Q, as well as the
norm of the two matrices T ĎQ and Q−1T occurring in Theorem 1.2(c), (d). One observes that
always κ(C) and κ(T ) are of the same magnitude, and that max{κ(Q), κ(T )} . κ(S). These
properties are shown analytically in Lemma 3.2 below. It is also not difficult to establish the
inequalities ∥Q−1T ∥ . κ(Q) and ∥T ĎQ∥ ≤ κ(T ), but we also observe without proof in our
numerical experiments that ∥Q−1T ∥ ≈ κ(Q) and ∥T ĎQ∥ ≈ κ(T ), up to some artifacts for the
exponential function and n ≥ 11 in Fig. 2 which we believe are due to rounding errors.

In order to discuss the sharpness of Theorem 1.3, we also draw the reciprocal values of

Froissart = min{|σ − τ | : p(σ ) = 0, q(τ ) = 0, |τ | ≤ 1},

Residual = min
 p(τ )

q ′(τ )

 : q(τ ) = 0, |τ | ≤ 1


,

in case where the [n − 1|n] Padé approximant has at least one pole in the unit disk. Below we
give some specific comments for each of the three functions.

Example 2.1. The [n − 1|n] Padé approximant for n = 1, . . . , N = 15 of the Stieltjes function
f1 in (2.1) does not have poles in the unit disk, even in the presence of rounding errors. We
observe from Fig. 1 that κ(S) and κ(T ) have the same magnitude, and are growing exponentially
in n. Also, κ(Q) is growing exponentially in n, but less quickly.
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Fig. 1. Condition numbers related to the Stieltjes function f1.

Fig. 2. Condition numbers related to the exponential function f2.
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Fig. 3. Condition numbers related to the random function f3.

This example clearly shows that κ(S) large does not imply the existence of a Froissart doublet
or a small residual in the disk.

Example 2.2. The [n − 1|n] Padé approximant for n = 1, . . . , 10 of the exponential function f2
in (2.1) does not have poles in the (open) unit disk, even in the presence of rounding errors. We
believe that, due to rounding errors, our [n − 1|n] Padé approximants for n ≥ 11 having poles in
the disk are badly computed. Also, Matlab gives warnings that the condition numbers and norms
for n ≥ 11 are badly computed. We observe from Fig. 2 for n ≤ 10 that κ(Q) is close to 1, and
thus κ(S) and κ(T ) have the same magnitude, which is growing quickly with n.

Example 2.3. The numerical results reported in Fig. 3 for the random function f3 in (2.1) for
n = 1, 2, . . . , N = 30 depend of course on the realization of the random Taylor coefficients, but
for about 10 realizations we found each time a similar behavior: all approximants are robust since
κ(T ) is always not too far from 1. As a consequence, κ(S) and κ(Q) have the same magnitude,
the dependence on n being quite erratic, in this example between 1 and 1020. This shows that
there are cases where a Padé approximant is robust but not well-conditioned.

Even more striking, in this example the curves for 1/Froissart and 1/Residual follow quite
closely that of κ(S), showing that, for this example, Theorem 1.3 is essentially sharp.

In the context of Example 2.3, we should also mention the recent paper [15] where, given
arbitrary nonzero complex numbers zk of modulus ≤ 1/3, the author explicitly gives a function
f analytic in |z| < 1 where the subsequence of [nk |nk] diagonal Padé approximants, nk = 2k

−2,
are robust (with the condition number of C being bounded by 5) but have a (spurious) pole
at zk . His function f is resulting from a smart modification of Gammel’s counterexample
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[2, Section 6.7], where the [nk |nk] approximant coincides with the [nk |1] Padé approximant,
leading to a rich block structure in the Padé table. It can be shown that in this case both Q and S
have a condition number being of the same magnitude as |zk |

−2nk ; hence these approximants are
not well-conditioned.

3. Conditioning of the Padé map and proof of Theorem 1.2

The aim of this section is to analyze the conditioning of the real Padé map and in particular
to provide a proof of Theorem 1.2. We start however with two technical statements, the first one
relating nondegeneracy to the rank of matrix S, and the second relating to the smallest and largest
singular values of the matrices C, T, Q and S.

Lemma 3.1. Let p, q be two polynomials, p of degree ≤ m and q of degree ≤ n. Then p/q is
nondegenerate if and only if matrix S defined in (1.5) has full (row) rank m + n + 1.

Proof. Suppose that p/q is degenerate. Then either pn = qm = 0 (implying that the last row of S
is zero), or else there exists γ ∈ C with p(γ ) = q(γ ) = 0, implying that (1, γ, . . . , γ m+n)S = 0.
Thus, in both cases S does not have full row rank.

Conversely, suppose that p/q is nondegenerate; then at least one of the leading coefficients
pm or qn is not vanishing, without loss of generality pm ≠ 0. Notice that, up to permutation of
columns, S equals

S ∗ ∗

0 qn −pm


with the classical square Sylvester matrix S ∈ C(m+n)×(m+n), obtained from S by dropping the
last row, and last column in each column block. With x1, . . . , xm the roots of p, observe that by
assumption q(x j ) ≠ 0. We use the formula [10, Theorem 9.3(ii)]

det S = ±(pm)n
m

j=1

q(x j ) ≠ 0

in order to conclude that S and thus S has full row rank. �

Recall from (1.6) that S having rank m + n + 1 implies that matrix Q defined in (1.5) is
invertible, and matrix T defined in (1.4) also has full rank m + n + 1.

Lemma 3.2. Suppose that S has rank m + n + 1. Then for the matrices C of (1.2) and T
of (1.4) we have that

max{1, ∥C∥} ≤ ∥T ∥ ≤
√

m + n + 2, (3.1)

∥CĎ
∥ ≤ ∥T Ď

∥ ≤


2(m + n + 2) ∥CĎ

∥. (3.2)

Furthermore, for the matrices S, Q of (1.5) with the normalization (1.8) there holds

∥Q∥ ≤
√

m + n + 1,
1

√
2

≤ ∥S∥ ≤
√

m + n + 1,

∥Q−1
∥ ≤ ∥T ∥ ∥SĎ

∥, ∥T Ď
∥ ≤ ∥Q∥ ∥SĎ

∥.

(3.3)
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Proof. Since 1 is an entry and −C a submatrix of T , we obtain the first inequality of (3.1), and the
second follows from the scaling (1.3) and the general fact that any matrix ∈ C(m+n+1)×(m+n+2)

with columns of norm ≤ 1 has a Frobenius norm ≤
√

m + n + 2.
For a proof of (3.2), we first recall that by assumption both C and T have full row rank, and

hence

1

∥T Ď∥
= min

y∈Cm+n+1

∥y∗T ∥

∥y∥
≤ min

x∈Cn

∥(0, x∗)T ∥

∥x∥
= min

x∈Cn

∥x∗C∥

∥x∥
=

1

∥CĎ∥
,

implying the first inequality. For the second, recall that CĎ
= C∗(CC∗)−1 and hence the two

matrices

T =


I −L
0 −C


, T R

=


I −LCĎ

0 −CĎ


=


C −L
0 −I

 
CĎ 0
0 CĎ


satisfy T T R

= I . Since the orthogonal projector T ĎT is of norm 1, we conclude that ∥T Ď
∥ =

∥T ĎT T R
∥ ≤ ∥T R

∥. It remains to observe that the right-hand factor in the above factorization
of T R has norm ∥CĎ

∥, and the left-hand factor has rows of norm ≤ 2 (in fact ≤ 1 provided that
n ≤ m) due to (1.3).

We finally turn to a proof of (3.3), the upper bound for ∥Q∥ following as before from the
scaling (1.8). Using (1.8) we also observe that the sum of the squares of the norms of all
columns of the matrix S equals ∥S∥

2
F = (m + 1)∥vec(q)∥2

+ (n + 1)∥vec(p)∥2
≤ m + n + 1

and the sum of the squares of the norms of the first and (n + 2)nd column of S equals
∥vec(q)∥2

+ ∥vec(p)∥2
= 1 ≤ 2 ∥S∥

2, implying the claimed inequalities for ∥S∥. For the upper
bound for ∥Q−1

∥ (which we suspect to be not very sharp), we use (1.6) in order to conclude that
I = SSĎ

= QT SĎ and thus Q−1
= T SĎ. Finally, since (1.6) is a full rank decomposition, we

also have that SĎ
= T ĎQ−1 and thus T Ď

= SĎQ, implying the claimed bound for ∥T Ď
∥. �

Let us now turn to a proof of Theorem 1.2. Here it is helpful to consider the nonlinear map

G : Rm+n+2
∋ y =


vec(p)

vec(q)


→c =

 c0
...cm+n

 ∈ Rm+n+1,

p(z)q(z)
=

m+n
j=0

c j z
j
+ O(zm+n+1)z→0,

which is defined at least for pairs of polynomials p,q with q(0) ≠ 0, as it is true for a
neighborhood of any value F(c). As we see below, it will be easier to study the differentiability of
G than that of the Padé map F . Under the assumptions of Theorem 1.2, we will show by applying
the Implicit Function Theorem that G is a kind of local inverse of F : there exist neighborhoods
W ⊂ Rm+n+2 of y = F(c) and U ⊂ Rm+n+1 of c such that

G is differentiable in W with Jacobian JG(F(c)) = Q−1T, (3.4)

for ally ∈ W ∩ Sm+n+2 we have that F(G(y)) = y, (3.5)

for allc ∈ U we have that G(F(c)) =c. (3.6)

Then the statement of Theorem 1.2(a) will follow by setting V = F(U ) ⊂ W ∩ Sm+n+2.
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Proof (of Theorem 1.2(a)). Let us first construct a neighborhood W of y = F(c) and prove (3.4).
In the sequel of the proof we adapt the notation Q = Q(q) for the triangular Toeplitz matrix in
(1.5), and T0(c) for the submatrix of T = T (c) in (1.4) formed by the last n + 1 columns. First
notice that

y =


vec(p)

vec(q)


, c = G(y) = Q(q)−1


vec(p)

0


.

By assumption and Theorem 1.1, F(c) is non-degenerate. Thus, by Lemma 3.1, S = S(y) has
full row rank for ally ∈ W , a sufficiently small neighborhood of y = F(c). As a consequence,
Q(q) is invertible, and thus G is well-defined on W . In addition, by the differentiability of the
maps vec(q) → Q(q) and vec(q) → Q(q)−1, we also conclude that G is differentiable on W .
Notice thatc = G(y) does satisfy

vec(p)

0


= Q(q)G(y) = −T0(c)vec(q).

Taking the product rule for partial derivatives, we obtain
I 0
0 0


= Q(q)JG(y) − T0(c) 0 I


implying that Q(q)JG(y) = T (c), as claimed in (3.4).

We proceed with showing (3.5), implying the injectivity of G restricted to W ∩ Sm+n+2. By
definition of W , we have thaty ∈ W ∩Sm+n+2 is nondegenerate, in particularq(0) ≠ 0, ∥y∥ = 1
and trivially T (c)y = 0 forc = G(y) by definition of G. Since q(0) > 0, by possibly making
W smaller, we may also assume thatq(0) > 0. Theny = F(c) by definition of the Padé map F ,
as claimed in (3.5).

In order to establish (3.6) together with the claimed formula for JF (c), we consider the
function

H : W × Rm+n+1
∋ (y,c) → H(y,c) =


G(y) −cyty − 1


,

being of class C 1 by (3.4). Notice that

∂ H

∂y (y,c) =


JG(y)

2yt


=


Q(q)−1T (c)

2yt


is invertible since the same is true for

Q(q)−1T (c)
2yt

 
Q(q)−1T (c)

2yt

∗

=


Q(q)−1T (c)T (c)∗Q(q)−∗ 0

0 4yty


fory ∈ W by definition of W and forc sufficiently close to c. Also, we have that H(F(c), c) = 0
because T (c)F(c) = 0 and q(0) ≠ 0. The Implicit Function Theorem thus implies the
existence of a neighborhood U of c and a C 1 function F : U → W ∩ Sm+n+2 such that
H(F(c),c) = G(F(c)) −c = 0 for all c ∈ U , and thus F(c) = F(G(F(c))) = F(c) by
(3.5), implying (3.6).

We also learn from the Implicit Function Theorem that

JF (c) = −
∂ H

∂y (y, c)−1 ∂ H

∂c (y, c) =


Q−1T

2yt

∗ 
Q−1T T ∗Q−∗ 0

0 4yt y

−1 
I
0


= T ∗(T T ∗)−1 Q = T ĎQ = JG(F(c))Ď.
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To sum up, F : U → V := F(U ) ⊂ W ∩ Sm+n+2 is surjective by construction, injective by
(3.6), differentiable with Jacobian JF (c) = T ĎQ, and has the inverse G|V being differentiable
by (3.4), as claimed in Theorem 1.2(a). �

Proof (of Theorem 1.2(b)). It is not difficult to check that the neighborhood W of y = F(c)
constructed above can be chosen to be a ball centered at y = F(c), with radius r > 0. Notice
that F(Rm+n+1) ⊂ Sm+n+2, and thus fory ∈ W

dist(y, F(Rm+n+1)) ≤ dist(y, Sm+n+2) =

y −
y

∥y∥

 = |∥y∥ − 1|.

Thus for establishing the statement of Theorem 1.2(b) it only remains to show that y/∥y∥ ∈

F(Rm+n+1), which would follow from (3.5) provided that y/∥y∥ ∈ W . In order to show the
latter, notice that ∥y∥ = 1, and thusy −

y
∥y∥

 ≤ ∥y −y∥ + | ∥y∥ − ∥y∥ | < r

fory sufficiently close to y, and thusy/∥y∥ ∈ W . �

Proof (of Theorem 1.2(c)). From [21] we have the following well-known relation for the forward
condition number κ f or (F)(c)

lim supc→c

∥F(c) − F(c)∥

∥c − c∥
= lim supc→c

∥F(c) − F(c)∥/∥F(c)∥

∥c − c∥/∥c∥
=

∥c∥

∥F(c)∥
∥JF (c)∥ = ∥T ĎQ∥,

where we used the facts that ∥c∥ = 1 according to (1.3), ∥F(c)∥ = 1 by definition (1.8) and that
we have the explicit formula of Theorem 1.2(a) for the Jacobian. �

Proof (of Theorem 1.2(d)). From the proof of Theorem 1.2(b) and (3.5) we know that, for y
sufficiently close to y = F(c),

dist(y, F(Rm+n+1)) = ∥y − F(c)∥, (3.7)

withc = G(y/∥y∥). Notice that, by (3.6), there are no other argumentsc ∈ U satisfying (3.7).
Also,c = G(y) by definition of G. Thus inf{∥c − c∥ : F(c) = y/∥y∥} = ∥G(y) − G(y)∥, and

κback(F)(c) = κ f or (G)(F(c)) = ∥JG(F(c))∥ = ∥Q−1T ∥,

where in the last equality we applied (3.4). �

4. Distances between two rational functions and their coefficient vectors

A central question in this paper is how to measure the distance between two rational functions

r = p/q ∈ Rm,n, r = p/q ∈ Rm,n,

with coefficient vectors

x(r) =


vec(p)

vec(q)


, x(r) =


vec(p)

vec(q)


.

A natural metric in the set MK of functions meromorphic in some compact K ⊂ C would be
the uniform chordal metric χK (r,r) introduced in (1.11). This metric is well adapted to study
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uniform convergence questions, since meromorphic functions are continuous on the Riemann
sphere. We will also see that it enables us to study Froissart doublets and small residuals.
However, it is not so clear how to relate such a metric to the coefficient vectors in the basis of
monomials of numerators and denominators of rational functions, which are used to parametrize
rational functions in the Padé map. This is essentially due to the fact that there are several
coefficient vectors x(r) representing the same rational function r : even if we suppose that r
is nondegenerate, we still may multiply x(r) by an arbitrary complex scalar. As before, we will
always suppose that coefficient vectors are of norm 1, but this fixes only the absolute value but not
the phase of the scalar normalization constant. For defining a metric between rational functions
it will therefore be suitable to measure the distance of coefficient vectors with optimal phase

r,r ∈ Rm,n : d(r,r) := min{∥x(r) − ax(r)∥ : a ∈ C, |a| = 1}. (4.1)

The reader easily checks that ∥x(r)− ax(r)∥ does not depend on a if x(r) and x(r) are mutually
orthogonal, and else

arg min{∥x(r) − ax(r)∥ : a ∈ C, |a| = 1} =
x(r)∗x(r)

|x(r)∗x(r)|
. (4.2)

In particular, if both x(r) and x(r) are real then

d(r,r) = min{∥x(r) − x(r)∥, ∥x(r) + x(r)∥},

and more precisely d(r,r) = ∥x(r)−x(r)∥ provided that x(r)∗x(r) ≥ 0 or ∥x(r)−x(r)∥ ≤
√

2,
as it was the case in our study of the continuity and the conditioning of the real Padé map.

Recall from the introduction that we called a rational function r = p/q well-conditioned
if the condition number κ(S) is not too large, κ(S) not depending on the normalization of the
coefficient vector occurring in (1.5). The following result shows that the two distances d(r, ·)
and χD(r, ·) for the closed unit disk D introduced above are of comparable size provided that r
is well-conditioned.

Theorem 4.1. Let r = p/q be nondegenerate, then for allr ∈ Rm,n

(m + n + 1)−3/2
√

2κ(S)
d(r,r) ≤ χD(r,r) ≤


2(m + n + 1) κ(S) d(r,r). (4.3)

Proof. According to (4.1), (4.2), and our convention on the norm we may choose the phase of
x(r) such that

x(r) =


vec(p)

vec(q)


, x(r) =


vec(p)

vec(q)


are of norm 1,

∥x(r) − x(r)∥ = d(r,r)

(4.4)

and hence x(r)∗x(r) ≥ 0. Hence we may repeat the arguments in the proof of (3.3) and get the
inequalities

1/
√

2 ≤ ∥S∥ ≤
√

m + n + 1. (4.5)

In order to establish the right-hand inequality of (4.3), it is sufficient to show the relation

z ∈ D : χ(r(z),r(z)) ≤


2(m + n + 1) κ(S) ∥x(r) − x(r)∥. (4.6)



106 B. Beckermann, A.C. Matos / Journal of Approximation Theory 190 (2015) 91–115

By definition of the chordal metric and the Cauchy–Schwarz inequality,

χ(r(z),r(z)) =
|(p(z) − p(z))q(z) − p(z)(q(z) −q(z))|

|p(z)|2 + |q(z)|2


|p(z)|2 + |q(z)|2
≤

p(z) − p(z)
q(z) −q(z)


|p(z)|2 + |q(z)|2

(4.7)

=

1, z, . . . , zm 0
0 1, z, . . . , zn


(x(r) − x(r))


|p(z)|2 + |q(z)|2

.

Let us study separately the term in the denominator. We remark that

(1, z, . . . , zn+m)S = (−q(z), −zq(z), . . . ,−zmq(z), p(z), . . . , zn p(z)). (4.8)

By Lemma 3.1 we know that the Sylvester-like matrix S has full row rank and hence SSĎ
= I .

Multiplying the above relation on the right by SĎ and taking norms we arrive at

∥(1, z, . . . , zn+m)∥2
≤ ∥SĎ

∥
2
∥(−q(z), −zq(z), . . . ,−zmq(z), p(z), . . . , zn p(z))∥2

≤ ∥SĎ
∥

2
1, z, . . . , zm 0

0 1, z, . . . , zn

2

(|p(z)|2 + |q(z)|2),

which implies that

∀ z ∈ C : 1 ≤ ∥SĎ
∥


|p(z)|2 + |q(z)|2. (4.9)

Inserting (4.9) into (4.7) and using (4.5) and the fact that z ∈ D implies (4.6).
It remains the left-hand inequality of (4.3), for which it is sufficient to show

d(r,r) ≤
√

2 (m + n + 1)3/2 κ(S) χK (r,r), (4.10)

with K the set of (m +n +1)th roots of unity ξ j = e(2iπ j)/(m+n+1), j = 0, . . . , m +n. Denote by
Ω = ( 1

√
m+n+1

ξ k
j ) j,k=0,...,m+n the unitary DFT matrix of order m +n +1. A simple computation

shows that Sx(r) = 0. Since Lemma 3.1 shows that the kernel of S has dimension one and
∥x(r)∥ = 1, we have SĎS = I − x(r)x(r)∗. Since x(r)∗x(r) ≥ 0, we find an angle α ∈ (0, π/2]

such that cos(α) = x(r)∗x(r)/(∥x(r)∥ ∥x(r)∥) = x(r)∗x(r). Thus

d(r,r) = ∥x(r) − x(r)∥ =


2 − 2 cos(α) = 2 sin(α/2),

whereas

∥SĎS(x(r) − x(r))∥ = ∥x(r) − x(r) cos(α)∥ =


1 − cos2(α) = sin(α)

= 2 sin(α/2) cos(α/2).

Thus ∥SĎS(x(r) − x(r))∥ = cos(α/2) d(r,r) ≥ d(r,r)/
√

2, implying that

d(r,r)/
√

2 ≤ ∥SĎS(x(r) − x(r))∥ ≤ ∥SĎ
∥ ∥S(x(r) − x(r))∥

= ∥SĎ
∥ ∥Ω S(x(r) − x(r))∥,



B. Beckermann, A.C. Matos / Journal of Approximation Theory 190 (2015) 91–115 107

where the last equality follows from the orthogonality of Ω . The j th entry of Ω S (x(r) − x(r))

equals the j th entry of −Ω S (xr), which in turn is equal to (p(ξ j )q(ξ j ) − p(ξ j )q(ξ j ))/√
m + n + 1, and so

d(r,r)/
√

2 ≤ ∥SĎ
∥ max

z∈K
|p(z)q(z) − q(z)p(z)|. (4.11)

Returning to (4.8), we also find that

∀ |z| ≤ 1 : (m + n + 1)∥S∥
2

≥ ∥(1, z, . . . , zm+n)S∥
2

= |p(z)|2
n

j=0

|z|2 j
+ |q(z)|2

m
j=0

|z|2 j

≥ |p(z)|2 + |q(z)|2. (4.12)

A similar bound is obtained for p(z),q(z), which combined with (4.5) becomes

∀ |z| ≤ 1 : (m + n + 1) ≥


|p(z)|2 + |q(z)|2.

Inserting these two relations into the right-hand side of (4.11) implies (4.10). �

5. Proofs of Theorem 1.3 and of Theorem 1.4

We start by establishing a technical result on the condition number of Sylvester-like matrices
close to S.

Lemma 5.1. Let r = p/q be nondegenerate. If r = p/q ∈ Rm,n satisfies
2(m + n + 1) d(r,r) κ(S) ≤ 1/3, (5.1)

then it is nondegenerate, and κ(S) ≤ 2 κ(S) for the Sylvester-like matrix S = S(−q,p)

constructed as in (1.5).
More generally, if r is degenerate then

√
2(m + n + 1) d(r,r) κ(S) ≥ 1.

Proof. For a proof of the first statement, write E := SĎ(S − S), and denote by x(r), x(r) the
corresponding coefficient vectors with unit norm and particular phase such that ∥x(r)− x(r)∥ =

d(r,r). Then S(I − E) = S − SSĎ(S − S) = S. Using the same arguments as in the proof of
(4.5), we obtain

∥E∥ ≤ ∥SĎ
∥ ∥S −S∥ ≤

√
m + n + 1∥SĎ

∥ ∥x(r) − x(r)∥

≤


2(m + n + 1) κ(S) d(r,r) ≤ 1/3

by assumption (5.1) onr . Hence ∥S∥ ≤ (1 + ∥E∥) ∥S∥ ≤
4
3 ∥S∥. Also, (I − E)−1SĎ is a right

inverse of S, showing that S has full row rank, and that

∥SĎ
∥ = ∥SĎS(I − E)−1SĎ

∥ ≤ ∥(I − E)−1
∥ ∥SĎ

∥ ≤
3
2
∥SĎ

∥,

from which the first assertion follows.
For the second part, we know from Lemma 3.1 that rankS < m + n + 1, and hence for the

smallest singular value of S by the Eckart–Young Theorem

1

∥SĎ∥
= σm+n+1(S) ≤ ∥S −S∥ ≤


2(m + n + 1) ∥S∥ d(r,r),

as claimed above. �
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We are now prepared to proceed with a proof of Theorem 1.3.

Proof (of Theorem 1.3(a)). Let σ, τ ∈ D withr(σ ) = 0,r(τ ) = ∞, then χ(r(τ ), r(σ )) ≥ 1/3
because of

1 = χ(r(τ ),r(σ )) ≤ χ(r(τ ), r(σ )) + χ(r(τ ), r(τ )) + χ(r(σ ),r(σ ))

≤ χ(r(τ ), r(σ )) + 2 χD(r,r) ≤ χ(r(τ ), r(σ )) +
2
3
.

Consider the spherical derivative

r#(z) :=
|r ′(z)|

1 + |r(z)|2
. (5.2)

We claim that

χ(r(τ ), r(σ ))

|τ − σ |
≤ max

z∈D
r#(z) ≤

√
2(m + n + 1)3/2 κ(S) (5.3)

which implies that |τ − σ | ≥ 1/(3
√

2(m + n + 1)3/2 κ(S)), as claimed in Theorem 1.3.
In order to show the left-hand inequality of (5.3), recall from [16] that the chordal metric is

dominated by

∀ w1, w2 ∈ C : χ(w1, w2) ≤


γ

|dw|

1 + |w|2
,

where γ is any differentiable curve in the extended complex plane joining w1 with w2. Taking
γ : D ⊃ [σ, τ ] ∋ z → r(z) ∈ C, we conclude that

χ(r(σ ), r(τ )) ≤


γ

|dw|

1 + |w|2
=


z∈[σ,τ ]

r#(z) |dz| ≤ |σ − τ | max
z∈D

r#(z) ,

as claimed above. It remains to give an upper bound for r#(z) for z ∈ D; here we closely follow
arguments of the proof of Theorem 4.1. We have

r#(z) =
∥p′(z)q(z) − q ′(z)p(z)∥

|p(z)|2 + |q(z)|2
≤

p′(z)
q ′(z)


|p(z)|2 + |q(z)|2

≤ ∥SĎ
∥

p′(z)
q ′(z)

 ,

where in the last step we have applied (4.9). Sincep′(z)
q ′(z)

 =

0, 1, 2z, . . . , mzm−1 0
0 0, 1, 2z, . . . , nzn−1


x(r)

 ≤ (m + n + 1)3/2

and 1 ≤
√

2 ∥S∥ by (4.5), we obtain the second inequality claimed in (5.3), and hence the part
of Theorem 1.3 on Froissart doublets is shown. �

Proof (of Theorem 1.3(b)). We start by observing that for the residual α0 of a simple pole z0 ∈ D
of r = p/q ∈ Rm,n there holds

1
|α0|

=
|q ′(z0)|

|p(z0)|
= r#(z0) ≤

√
2(m + n + 1)3/2 κ(S),

where for the last inequality we have applied (5.3). The assumption 2(m+n+1)2κ(S)χD(r,r) ≤

1/3 together with Theorem 4.1 tells us that (5.1) holds, and thus also r is nondegenerate. By
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applying the same reasoning as for r , we obtain for the residual α0 of a simple polez0 ∈ D ofr = p/q ∈ Rm,n the claimed inequality

1
|α0|

≤
√

2(m + n + 1)3/2 κ(S) ≤ 2
√

2 (m + n + 1)3/2 κ(S),

where for the last inequality we have applied the first part of Lemma 5.1. �

Remark 5.2. Recall from the above proof of Theorem 1.3(b) that we have shown the lower
bound 1/((2(m + n + 1))3/2κ(S)) for the modulus of any residual of a simple pole in the unit
disk of any r ∈ Rm,n solely under the hypothesis

√
2(m + n + 1) d(r,r) κ(S) ≤ 1/3, which

according to Theorem 4.1 is weaker than the hypothesis 2 (m + n + 1)2κ(S)2χD(r,r) ≤ 1/3
stated in Theorem 1.3(b), and stronger than the hypothesis χD(r,r) ≤ 1/3 of Theorem 1.3(a).

In the numerical procedure described in [14], the authors do not necessarily return the [m|n]

Padé approximant r = p/q but r = p/q obtained by replacing the ℓ leading coefficients
of p (or of q , but not of both since otherwise κ(S) would be large) of modulus ≤ ϵ by
0. Thus d(r,r) ≤ ∥x(r) − x(r)∥ ≤

√
ℓϵ, and Theorem 1.3(a), (b) do apply provided that

√
2ℓ(m + n + 1) ϵκ(S) ≤ 1/3.

Remark 5.3. By examining the above proofs and using elementary techniques of complex anal-
ysis we see that it is possible to generalize Theorem 1.3 to the case r,r ∈ M(D) of general mero-
morphic functions (at least if r has no zeros/poles on the unit circle), but the price to pay is that the
constants become less explicit, in particular there is no longer the condition number of a matrix.

For instance, by examining the proof of Theorem 1.3(a) we see that we can give a lower bound
for the Euclidean distance between a pole and a zero ofr in terms of the reciprocal of the max-
imum spherical derivative of r on the unit disk D provided that χD(r,r) ≤ 1/3. Moreover, from
the Rouché Theorem we see that for any sufficiently small ϵ > 0 there exists a (computable)
δ > 0 depending on r and ϵ such that, for anyr ∈ M(D) with χD(r,r) ≤ δ we have that the
ϵ-neighborhood of any pole or zero of r contains the same number of poles or zeros ofr count-
ing multiplicities as r , andr has no other poles and zeros in D. This constitutes an alternative
approach to control Froissart doublets ofr .

In addition, by possibly choosing a smaller δ > 0 we may ensure that, for a simple pole of
r , the residual of the corresponding simple pole ofr differs from that of r at most by ϵ, giving
a possibility to exclude small residuals forr . Thus we may roughly summarize by saying that if
χD(r,r) is sufficiently small then r has a spurious pole if and only ifr has.

Proof (of Theorem 1.4). By assumption and the second part of Lemma 5.1
2(m + n + 1) d(r,r) κ(S) ≥ 1,

and a combination with Theorem 4.1 implies that 2 (m + n + 1)2 χD(r,r) κ(S)2
≥ 1, as claimed

in Theorem 1.4. �

6. Numerical GCD and other related results

6.1. Froissart doublet and numerical GCD

One could wonder whether the existence of Froissart doublets of a rational function r =

p/q ∈ Rm,n , namely the existence of a zero σ and a pole τ of r with small Euclidean distance
|σ − τ |, is related to the fact that the pair (p, q) is close to a similar pair (p,q) with non-trivial
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greatest common divisor (GCD), or more generally being degenerate, that is, the quantity

ϵ(p, q) := min
x(r) −


vec(p)

vec(q)

 : p/q ∈ Rm,n is degenerate


is small. This quantity has been discussed in [4]. According to [4, Theorem 4.1 and Remark 4.3]
we have

ϵ(p, q) = inf
z∈C


|p(z)|2

1 + |z|2 + · · · + |z|2m
+

|q(z)|2

1 + |z|2 + · · · + |z|2n
, (6.1)

the argument z∗ where the infimum is attained being called the closest common root (which is
indeed a common root of the closest degenerate pair). The following link between numerical
GCD and Froissart doublets has been claimed without proof in [4, Section 4]. For the sake of
completeness we give here a proof.

Lemma 6.1. Let τ, σ ∈ D satisfy p(σ ) = 0 and q(τ ) = 0. Then

ϵ(p, q) ≤ min {m, n} |σ − τ | . (6.2)

Proof. Since |σ | ≤ 1, |τ | ≤ 1, ∥vec(p)∥ ≤ 1, using twice the Cauchy–Schwarz inequality we
obtain

|p(τ )| = |p(τ ) − p(σ )| =

 m
k=1

pk(τ
k
− σ k)

 ≤

m
k=1

|pk |

τ k
− σ k


= |τ − σ |

m
k=1

|pk |

k−1
i=0

τ iσ k−i−1

 ≤ |τ − σ |

m
k=1

|pk |


k−1
i=0

|τ |
i



≤ |τ − σ | m

 2m
i=0

|τ |
i .

Using a similar argument for q(σ ) and replacing in (6.1), the claimed inequality (6.2)
follows. �

6.2. Numerical GCD and structured smallest singular values

Recall from Lemma 3.1 thatr = p/q is degenerate if and only if the corresponding Sylvester-
like matrix S is not of full rank. According to the arguments in the proof of, e.g., (4.5) or
Lemma 5.1, the expression ∥x(r) − x(r)∥ in the definition of ϵ(p, q) can be replaced, up to
some modest power of (m + n + 1), by ∥S −S∥ or by ∥S −S∥/∥S∥. In other words, ϵ(p, q) is
essentially the absolute or relative distance of S to the set of not full rank Sylvester-like matrices,
a kind of smallest structured singular value of S, or reciprocal structured condition number. Since
the distance to the set of all not full rank matrices is smaller, we get from the Eckart–Young
Theorem that 1

κ(S)
. ϵ(p, q), which is essentially the finding of the second part of Lemma 5.1.

In particular, the inequality ϵ(p, q) . |σ − τ | of Lemma 6.1 implies 1 . κ(S) |σ − τ |, a result
which is established rigorously in Theorem 1.3(a).

We should mention the relation with [4,7] who both do not argue in terms of our matrix S
defined in (1.5) but in terms of the classical square Sylvester matrix S of order m + n obtained
from S by dropping the last column in each column block and the last row. However, we believe
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that this difference is not essential. In [7] one looks at a gap in the singular values of S in order
to find the degree of a numerical GCD, in particular, (normalized) pairs (p, q) of polynomials
with sufficiently “large” σm+n(S) ∼ 1/κ(S) should be considered as numerically coprime. This
has to be compared with our notion of well-conditioned rational functions where κ(S) is modest.
While working with different vector norms, the authors in [4] introduce the estimator

κBL := max(∥S−1e1∥, ∥S−1em+n∥),

e j denoting the j th canonical vector, and show that 1/κBL . ϵ(p, q), and


κ(S) . κBL ≤ κ(S).
Extending the arguments of [4], we get the following sharper complement of Theorem 1.4.

Lemma 6.2. For the nondegenerate [m|n] Padé approximant r = p/q and the (possibly
degenerate) [m − 1|n − 1] Padé approximantr = u/v we have that for all |z| ≤ 1

κ χ(r(z),r(z)) ≥ |z|m+n−1, κ := min{2(m + n + 1)3/2 κ(S), (m + n + 1)2 κBL}.

Proof. Notice that S−1en+m is a not normalized coefficient vector of the rational function
u/v ∈ Rm−1,n−1 satisfying q(z)u(z) − p(z)v(z) = zm+n−1 and hence

q(z)( f (z)v(z) − u(z)) = v(z)( f (z)q(z) − p(z)) + O(zm+n−1)z→0 = O(zm+n−1)z→0.

Then the relation q(0) ≠ 0 implies thatr = u/v is the [m − 1|n − 1] Padé approximant of f .
Writing in this proof S ∈ C(m+n−1)×(m+n) for the Sylvester-like matrix of (u, v), we

find as in the proof of (3.3) that ∥S∥ ≤
√

m + n + 1 ∥S−1en+m∥ ≤
√

m + n + 1 κBL ≤
√

m + n + 1 ∥S−1
∥. We also have that ∥S∥ ≤ ∥S∥ ≤ min{

√
m + n + 1, 2∥S∥} since one is a

submatrix of the other. It follows that κ ≥ (m + n + 1)∥S∥ ∥S∥. Consequently, for all |z| ≤ 1,

κ χ(r(z),r(z)) ≥ (m + n + 1)∥S∥ ∥S∥ χ(r(z),r(z))

≥ |z|m+n−1

√
m + n + 1 ∥S∥

|p(z)|2 + |q(z)|2

√
m + n + 1 ∥S∥

|u(z)|2 + |v(z)|2
≥ |z|m+n−1,

where in the last inequality we have applied twice (4.12). �

Taking the maximum for z ∈ D, we arrive at the following result, which we expect to be
sharper than Theorem 1.4 since in the latter the factor κ(S)2 did occur.

Corollary 6.3. For the nondegenerate [m|n] Padé approximant r = p/q and the (possibly de-
generate) [m−1|n−1] Padé approximantr = u/v we have that 2(m+n+1)3/2κ(S)χD(r,r) ≥ 1.

6.3. The work of Cabay and Meleshko

In order to jump over “numerical blocks” in the Padé table by some look-ahead procedure,
Cabay and Meleshko [6] (see also [2, Section 3.6]) needed to decide whether the [m|n] Padé
approximant r = p/q of f is significantly different from the [m − 1|n − 1] Padé approximantr = p/q . Denoting by c the first column of the rectangular matrix C introduced in (1.2), and by
C the square Toeplitz matrix of order n formed by the other columns, we know from (1.2) that,
with a suitable scalare,

vec(q) = q(0)


1

−C−1c


, C vec(q) =


0e


, and thus vec(q) =eC−1en,
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where q(z) f (z) − p(z) = ezm+n−1
+ O(zm+n)z→0. The authors in [6] suggested to use the

normalization ∥vec(q)∥ = ∥vec(q)∥ = 1 and used the indicator

κC M =
1

|q(0)e|
as an estimator for ∥C−1

∥, motivated by parts (i),(ii) of the following statement.

Lemma 6.4. We have that (i) κC M ≥ ∥C−1
∥/n, (ii) κC M ≤

√
n ∥C−1

∥
2, (iii) σn(C) ≥

1/(nκC M ), and (iv) κC M ∼ ∥S−1em+n∥ ≤ κBL .

Proof. The Gohberg–Semencul formula [2, Theorem 3.6.2] tells us that q(0)eC−1
= A1 A2 −

A3 A4, with the four matrices A1, A2, A3, A4 given by the triangular Toeplitz matrices
q0 0 · · · 0

q1 q0
...

...
. . . 0

qn−1 · · · · · · q0

 ,


qn−1 · · · q1 q0

0 qn−1 q1
...

. . .
...

0 · · · 0 qn−1

 ,


0 0 · · · 0q0 0 · · · 0
...

. . . 0qn−2 · · · q0 0

 ,


qn · · · q2 q1
0 qn q2
...

. . .
...

0 · · · 0 qn

 .

Hence

1
κC M

∥C−1
∥ ≤ ∥A1∥F∥A2∥F + ∥A4∥F∥A3∥F

≤


∥A1∥

2
F + ∥A4∥

2
F


∥A1∥

2
F + ∥A4∥

2
F = n,

as claimed in part (i). By the normalization of the denominators we also find that

κC M =
1

|q(0)e| = ∥C−1en∥


1 + ∥C−1c∥2 ≤ ∥C−1

∥


∥C−1C∥

2
F + ∥C−1c∥2

≤ ∥C−1
∥

2
∥C∥F ,

where ∥C∥F ≤
√

n by (1.3), implying (ii). In view of (i), for establishing (iii) it is sufficient to
notice that

σn(C) = min
x≠0

∥x∗C∥

∥x∥
≤ min

x≠0

∥x∗C∥

∥x∥
≤ σn(C).

A proof of part (iv) is slightly more involved. Notice first that the normalization ∥vec(q)∥ = 1
of [6] does not lead to coefficient vectors x(r) of norm 1, but ∥vec(q)∥ ≤ ∥x(r)∥ ≤ (1 +

∥T ∥)∥ vec(q)∥ ≤ (1 +
√

m + n + 2) ∥vec(q)∥ by Lemma 3.2, and thus ∥x(r)∥ ∼ 1. We have

p(z)q(z) − p(z)q(z) = q(z)(q(z) f (z) − p(z)) −q(z)(q(z) f (z) − p(z))

= q(0)ezm+n−1
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since it is a polynomial of degree at most m +n −1, and the powers z j vanish for j < m +n −1.
This latter identity can be rewritten as Sx(r) = −q(0)e em+n , and thus

κC M =
∥S−1em+n∥

∥x(r)∥
∼ ∥S−1em+n∥ ≤ κBL

the last inequality following directly from the definition of κBL . This shows part (iv). �

The algorithm presented in [6] tries out all Padé approximants of type [m − j |n − j] for inte-
ger j (i.e., on the same diagonal) and accepts to compute the [m|n] Padé approximant if κC M is
sufficiently small. By Lemma 6.4(iii), this means that in the Cabay–Meleshko algorithm we only
compute robust Padé approximants in the sense of (P2), that is, in the sense of Gonnet, Güttel
and Trefethen [14].

Finally, as in the proof of Lemma 6.2 we get from Lemma 6.4(iv) that |z|m+n−1 . κC M
χ(r(z),r(z)) for all |z| ≤ 1. In particular, a sufficiently small κC M implies that r and r are
indeed significantly different.

7. Conclusions

In this paper we have presented several results on the sensitivity of [m|n] Padé approximants,
as well as on the occurrence of spurious poles. Our findings are expressed in terms of four
matrices, namely a rectangular Toeplitz matrix C as in [14], a rectangular striped Toeplitz matrix
T , a square triangular Toeplitz matrix Q, and a rectangular Sylvester-like matrix S = QT ; see
(1.2), (1.4), (1.5). These four matrices satisfy

∥C∥ . 1, ∥T ∥ ∼ 1, ∥S∥ ∼ 1, ∥Q∥ . 1 due to scaling, see (1.3) and Lemma 3.2,

∥CĎ
∥ ∼ ∥T Ď

∥ ∼ κ(T ) and ∥T Ď
∥ . ∥SĎ

∥ ∼ κ(S), and ∥Q−1
∥ . ∥SĎ

∥, see Lemma 3.2.

We introduced a kind of hierarchical classification of [m|n] Padé approximants: there are first
the so-called nondegenerate Padé approximants r = p/q considered before in [22] which can
characterize equivalently by one of the following properties:

• the polynomials p and q are co-prime, and that the defect min{m − deg p, n − deg q} is equal
to zero (see (P1)), in other words, they correspond to entries located on the left or upper border
of a block in the Padé table in exact arithmetic;

• the Padé map is continuous; see [22] and Theorem 1.1;
• matrix S and hence T and C have full row rank; see Lemma 3.1.

Second there is the subclass of so-called robust Padé approximants in the sense of [14] charac-
terized by a sufficiently large σn(C), or, equivalently, a modest κ(T ). We show that here

• the real Padé map is forward well-conditioned, but not necessarily backward; see Theo-
rem 1.2(c), (d) and Example 2.3;

• the Cabay–Meleshko algorithm [6] of Section 6.3 computes also robust Padé approximants
along a diagonal; it is most of the times cheaper than the approach of [14] since it is recursive,
but it might miss some robust approximants since the estimator κC M might be larger than
κ(T );

Finally we have introduced in this paper the class of so-called well-conditioned Padé approxi-
mants characterized by a modest κ(S), which is hence a subclass of that of robust approximants.
For these approximants we have established the following properties:

• we can control both Froissart doublets, namely the Euclidean distance between poles and
zeros of r in the unit disk, as well as small residuals in the disk; see Theorem 1.3;
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• the real Padé map is backward well-conditioned since ∥Q−1T ∥ . κ(S); see Theorem 1.2(d);
• it is equivalent to measure the distance tor ∈ Rm,n through the uniform chordal metric in the

unit disk or through the difference of normalized coefficient vectors; see Theorem 4.1;
• its numerator and denominator are numerically coprime in the sense of [4,7]; see Section 6.2.

In the introduction we mentioned the question from [14] whether robust approximants do not
have Froissart doublets nor small residuals. Our Example 2.3 shows that such a statement is
wrong in general, but we were able to give a positive answer at least for well-conditioned Padé
approximants.

We can also draw from Theorems 1.3, 1.4 and Remark 5.3 the conclusion that it is impossible
to find well-conditioned Padé approximants close to f in D with small error for functions f hav-
ing themselves small residuals or Froissart doublets in the disk. However, the scaling assumption
(1.3) at least asymptotically scales the complex plane in a way that f will have no singularities
in the (open) disk.

More important, Theorem 1.4 and even more Corollary 6.3 seem to indicate that there are
only finitely many well-conditioned Padé approximants along a fixed diagonal which are close
to f in the whole unit disk.

For future work, it seems for us desirable to get a deeper understanding of the link between
κ(S) and κ(T ) (beyond the relation κ(T ) . κ(S)), that is, the link between Padé approximants
which are robust and those which are well-conditioned.

Also, it would be nice to know whether the lower bounds of, e.g., Theorem 1.3 are sharp. We
feel that the lower bounds should not involve unstructured condition numbers but so-called struc-
tured condition numbers, the latter taking into account the particular structure of our matrix S, in
the spirit of the discussions in Sections 6.1 and 6.2. This will be further analyzed in a future work.
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[5] D. Bessis, Padé approximations in noise filtering, J. Comput. Appl. Math. 66 (1996) 85–88.
[6] S. Cabay, R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices,
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