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Abstract

The aim of this paper is the study of the kernel and acceleration properties of sequence
transformations of the form T, = L(S,/D,)/L(1/D,) , where (S,) is the sequence for
which we want to compute the limit, (D,,) is an error estimate and L is a linear difference
operator. We will obtain those properties for sequence transformations corresponding to
different classes of operators L by using some results of the theory of linear operators. We
will then study the following problem: given a class of sequences with some asymptotic
expansion of the error, how can we construct an operator L for which the corresponding
transformation accelerates the convergence of that class. Some applications are given.
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1 Introduction.

In a recent paper [4], a new derivation of extrapolation methods has been proposed, based on a
formalism first given by [10]. This approach provides a systematic construction of extrapolation
algorithms, leading to a better understanding of the mechanism of extrapolation. We will begin
by recalling that formalism.

Let us introduce some notations:

e S will be the set of all sequences of complex numbers;
e an element s € S will be denoted by s = (s,,) and s,, will be the n-th term of the sequence;

T: . . .
° { S — S is a sequence transformation and we will denote

§ = (sn) +— T(s) = (T(sn))
the n—th term of the transformed sequence T'(s) by T'(s,);



e we will denote by &* the set
S*={(D,)eS: ¥YneN D,#0}.

The condition D, # 0 Vn € N can be replaced by N €¢ N Vn > N D, # 0 without loss
of generality. In this case the transformed sequence will be (7,,,n > N).

Let us consider a sequence (S,,) € S satisfying

Sp — Soo = ayDy VYn €N, (1)

where (a,) is an unknown sequence, (D,,) a known one called remainder (or error) estimate and
Seo an unknown complex number that we want to approach. If (S,) converges to S, then Sy, is
called its limit, if lim,, ,, a, D,, = 00 yet the accelerated series converges, then S, is called its
antilimit. In order to compute or to approach S, we will use an annihilation difference operator.

Definition 1 L is called an annihilation difference operator for a sequence a = (ay,) if:

1. L s a linear mapping of the set of complex sequences S into itself

L :u=(u,) €8+ L(u) = (L(uy)) € S.
2.dNeN Vn>N L(a,)=0.

The most general form is given by

an
L(un) = Z Gz(n)un—f—z n EN?

1=—pn

where p,, and ¢, are nonnegative integers which can eventually depend on n, u; = 0 for + < 0,
and the G;’s are given functions of n which can also depend on auxiliary fixed sequences (if the
auxiliary sequences, on which the GG;’s could depend, also depend on some terms of the sequence
(uy,) itself, then these terms are fized in the G;’s and thus the operator L is still a linear one). To
each linear mapping L from S to S, and each sequence (D)) € §* we can associate the following
sequence transformation:

T: S — S
_ L(Sn/Dn)

S=(5) — T(8)=(I(S) = () Tu="TJ00, neN 2)

If L is an annihilation difference operator for (a,) and (S,) satisfies (1) then 7;, = Sy. Let us
give an example. We consider a sequence (.S,) satisfying

Sn:Soo—l-clxn—i----—l-ckxz



where (z,) is a known sequence. If we set

k—1

Dy, =z, ap=c1+ -+ cx, neN,

then the divided difference operator 6, of order £ at the points x; is an annihilation operator for
the sequence (a,) (we recall that this operator is recursively defined by

S (1) = DEUmt1) = 0 Cn) sy )

Tn+k+1 — Tn

So, if we choose L = dy, the sequence transformation (2) gives
T, =S VneN.

This is the well-known Richardson extrapolation procedure [9)].

In [4], different choices of the linear operator L (independent of (S,), dependent on (S,,) or
linear combination of several operators) and particular choices for the error estimates (D,,) have
been considered. They lead to different well-known transformations and some generalizations.
We remarked that a great majority of the most used extrapolation algorithms could be put into
this framework. Composition of operators leading to iteration of sequence transformations has
also been studied in a systematic way [4, 11]. In this paper, we will continue the work of those
papers by studying the kernel and acceleration properties of sequence transformations of the form
(2), using the properties of the linear difference operators L and of the solutions of the difference
equations L(a,) =0,n € N.

In the general study of acceleration (or, for some authors, extrapolation) methods, we can
proceed in two different ways:

1. Given a sequence transformation 7" (or, in our approach, given a difference operator L and
an error estimate (D,)), determine

(a) its kernel, i.e., the set of sequences for which 7'(S,) = S, ¥n > N. In our approach,
Ker(7T') can be writen as

Ker(T)={(S,): ¥YneN S, —Sx=0a,D,, andIN €N Vn> N L(a,)=0}.

The structure of the kernel follows immediately from the choice of the linear operator
L and it has been obtained in [4] for operators leading to well-known extrapolation
algorithms and in [5] for the composition of operators.

(b) The class of sequences that the transformation T accelerates, that is, the sequences
(Sp) for which limy, o (T(Sn) — Soo)/(Sn — Se) = 0. In our framework, as

Ty —Seo  L((Sn—=S8x)/Dn) 1 L(an)/an
Sp— See L(1/D,) a,D, L(1/D,)D,’

the set of sequences accelerated by T and which we will denote by A(T) is given by

s _  L(a)fa
A(T) = {(Sn) : Sp—Seo=0a,D, ne€N and nlLIgOW = 0}_

We will say that L is an accelerating operator for (S,) € A(T).
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2. Given a class C of sequences (S,) satisfying (1), with (D,) a known sequence and (a,)
satisfying some given properties, construct a sequence transformation of the form (2) (or,
in an equivalent way, find a difference operator L) for which

(a) V(Sn) €C, (S,) € Ker(T);
or, in the case where this is not possible,
(b) V(Sn) €C, (Sn) € A(T).

Given a sequence (S,) satisfying (1), from the properties of the sequence (a,), it is some-
times possible to find an annihilation difference operator for (a,) and so compute the exact
value of S.,. For instance, if we know that (a,) is a polynomial of degree k£ — 1 in n, then
we can choose L = A* (the k-th order forward difference operator); other examples can be
seen in [4].

But these are the simplest cases. The general case consists in supposing that (a,) has an
asymptotic expansion in some comparison scale {g;(n)}.-,, that is,

Vi a, = ;)aigi(n) +o(gr(n)) (n — o),

with {g;(n)};°, a family of sequences satisfying g;11(n) = o(g;(n)) (n — o0) Vi, and «;
unknown constants. It is impossible now to find an annihilation difference operator for (a,,)
and so to find in this way a sequence transformation such that 7'(S,) = S, Vn > N. So in
this case we will be interested in the acceleration properties of the transformation, that is, in
the characterization of the sequences (S,,) for which lim,, ,o.(L(a,)/a,))/(L(1/D,)D,) = 0.

These two points of view are complementary and will interest us all along the paper. As in
our framework we have interpreted sequence transformations in terms of difference operators, we
will use some properties of these operators to give a contribution to the solution of the previous
problems.

We will be interested in both approaches. In the case of approach 1., we are going to consider
several classes of difference operators L and, from the properties of the solutions of the associated

difference equation L(u,) = 0, we will study, for the corresponding sequence transformation 7T
(defined by (2)):

1. the properties of the kernel, completing the study given in the above mentioned works;

2. the acceleration properties of 7.

This will be the subject of sections 2. and 3.

There are many linear difference equations for which we don’t have a compact form for the
solution but only an asymptotic expansion of it (or its first terms). We will make use of this
information for, using approach 2., constructing an extrapolation method for a given sequence
(Sp) for which we know the first terms of the asymptotic expansion of (a,), and we will obtain
the speed of convergence of the transformed sequence.

Let us begin by considering the sequence transformations associated with a linear difference
operator with constant coefficients.



2 Linear difference operators with constant coefficients.

Let us consider first a difference operator of order £ of the form

k
L (un) = 3 pP s, (3)
=0

where the quantities pgk) are independent of n. If its characteristic polynomial is given by

Py(x) = ;pgk)xi = (&= A)" e (@ = A)™, (4)

then it is well-known (see, for instance, [7]) that a set of k linearly independent solutions of the
associated difference equation L*)(u,) = 0 is given by

Vn eN ug’j)zni)\?, for0<i<s;—1, 1<j<m.
Let (S,) € S satisfying (1) with (D,) € 8* and T™® be the corresponding sequence transfor-
mation as defined in the previous section:
Tk . 8 — S

S=(5,) = T(S) = (TW(S,)) = (T¥) : T = J s,

We will obtain, from the the form of the solutions of the difference equation, the description of
the kernel and the acceleration properties of these transformations.

neN ~ (5)

2.1 Kernel.

We have trivially the following result:

Proposition 1 Let L*) be an operator of the form (8) with characteristic polynomial (4), (D,) €
S* and T™ the corresponding transformation (5). Then

(Sp) € Ker(T(k)) & formeN S, — Sy =a,D, witha, = Z%(n))\? and
i=1

gi(n) € Il,, | (the set of polynomials of degree less or equal s;_1).

Corollary 1 Let us suppose that s; < sy < --- < s, and consider a sequence (S,) satisfying:

1 1 . 1
AT (cgU +P= +---c§?_1—) SR (cg )+---+c§1_)1—)] , (6)
n n n

s1—1 s1—1

Sp = Seo +Tn X

with (rn) a known sequence ((r,,) € 8*) and cgj) unknown constants. Let us choose D, = n~*1Tlr,
forne N. If L¥W(1/D,) # 0 forn € N then, applying to (S,) the transformation T™®) given by
(5), we obtain

T =S, YneN.



Proof: 1t is sufficient to remark that (6) can be writen in the form S, — Sy, = r,n"*'"'a,, , where

(a,) is a linear combination of solutions of L*)(u,) = 0.
A

2.2 Acceleration properties.

The error of the transformed sequences (5), that is, the difference between S, (the value we want
to compute) and its approximation T*) can be writen
L(k)((Sn — S0)/Dhn) L®) (an)

CRr . _
T = 5 L0 (1/D,,) ®(/D,y "N 0

and to get the speed of convergence of this error sequence we have to consider two cases.

2.2.1 |lim, 00 Dy/Dyy1 = 0 and Py(o) #0

In this case we obtain

lim D,L®(1/D,) = Py(o) # 0 (8)
and so 1
; (k) _ - T (k)
A (T = Seo) = By Jimm, Dl (an).

Therefore we will have convergence acceleration if

lim LOa) _ 0. 9)

n—oo an

We obtain the following acceleration result:

Theorem 1 Let (S,,) be a sequence of complex numbers satisfying:

Sy — Seo =Ty X A?gcg”%+---+xggcgm% , (10)
where
o [Ml=Xef="=dn| =1
o lim, ,7,/Tny1 = 0 with Py(o) # 0.

Then, if in (5) the operator L¥) satisfies (3) and (4) with s; < sy < -+ < 8, and we choose
D,, = n=5*1r, we obtain

T = So| = O™ [rl) (0 — 0),



In order to prove this theorem we will need a preliminary lemma

Lemma 1 Let Py(x) be the polynomial defined by (4) and (A,) the sequence defined by

Lo A
An: Z— TZGN, 11
j;p] n+ (1)

with \; such that Py()\;) = 0.
Then the order of convergence of (Ay) is given by

nsl—l—l

A, = C”“)\’ﬁslL (1 +0 (l)) (n — o00) (C* independent of n).
n

Proof of the lemma:
As (n+ )7t = [° e ") dt we can write

k ) ) 00 k ) )
An _ Zp;k)/\n-l—j/ e—t(n—|—j)dt — )\n/ 6—tn Zpg'k)/\]e_t] dt =
=0 0 0 =0
= / e~ Py(Ae)dt.
0
If Py is given by (4) and, for instance, A = A; then

o0
A, = )\?/0 e (et — A)* - (et — A)*dt =
o0
. /0 e (et — 1)%1 -+ (et — A)*mdt.
But we can write \; = pe?% 0<6; <27 j=1,---,m and so
o
A — )\n—l—sl 52+...+5m/ e—tn e—t -1 S1 e—t—|—i91 _ €i02 s2, .. e—t+i91 _ eiam Smdt —
o= gt [ ety R )

00 e .
= C)\’f+51/0 e~ (Z ajﬁ) dt (where C, o are coefficients independent of n).

=0

As [;Pe ™Mttdt = s!/n*T! we finally get

1 1
A, = C*A?“IW (1 +0 (ﬁ)) (n — oc0) (C™ independent of n).
A

Proof of the theorem:
We set

> 1 > 1

(079 :’I’l,sli1 |f\? CEI)—++)\anC,Em)—
i i=0 nt



Then, because the operator annihilates the first s; terms in each summation, we have

k [es)
. 1
D,L®) (a,) = D, 3" p¥ <AW ey DI )
)= DS (0 Sl S

This can also be writen in the following form:

n+j

A
DnL(k)(an) = Dn Zp]k) ( + j + e Cgﬁn)#>

)| (=0 (3)

= D, |c _ (Z (*) Anﬂ) S e (ij’“) nﬂ.) <1+0(%>). (12)

— n+)
In order to obtain the asymptotic behavior of this sequence we use the result of the previous
lemma and we obtain

) )\n+81 XS-I-SQ /\n—i—sm 1
DnL (an) - (Cl s1+1 + 02 n82+1 -+ C ns +1> (1 +0 (ﬁ)) ) (13)
So .
k
D, L®(a,)| = [Dn| =1 o (1+0(ﬁ)).

Finally, as lim, yoo Dy/Dpy1 = limy, o0 7 /Tni1 = 0, (8) is satisfied and from (7) we obtain

n

T®) — Soo| =0 (n_slHrnn_sl_l) = 0(n~*'r,).

2.2.2 |lim, 00 Dy/Dyy1 = 0 and Py(o) =0

This case is less simple to study because now, as lim,_,., D,L*)(1/D,) = 0, (9) is not a sufficient
condition of acceleration. So we have to impose some supplementary conditions on (D,) and on
the characteristic polynomial P; in order to obtain the order of convergence of (D,L*)(1/D,)).

Proposition 2 Let us suppose that the sequence (D,,) satisfies:

Dn,
Dn+1

=0 +0, with Py(o) = pgk)—i-pgk)o—i- —i—p(k)a =0, hm o, = 0.

Moreover we suppose that one of the following conditions is satisfied:
a) lim, o0 0py1/0n =1 and o is a simple root of Py;
or
b) lim;, o 0n+1/0n = O« 7é 1 and Qkfl(a) - O'*Qkfl(o'o'*) 7é 0

8



(where g1 () = pg ) +p(k) + .- +p§ck)xk’1).

Then the difference operator L'®) with characteristic polynomial Py, satisfies

LW(—)~CL (n—o0) (C#0). (14)

Proof: From the conditions on the sequence (D,,) we get

D i—1 ] ) i—1
no_ H(o‘ + Opyj) ~ 0"+ i1 Zam—j
Dn+i 7=0 7=0
Then, for the sequence L*)(1/D,) we have:
1 D D
/D) = — |pk) k) 2y k) e
/D) = g [+
Lo,  ® P
~ o |Po +pi (0 +on) 4+ 4 (0" + 05D o)
n 1=0

As pi(o) = 0 we obtain

k— Ic 1 k-1
Onp o
L(k)(l/Dn) ~ D— [ +p2 ZUH_H ° +p](ck_)]_ ZU,H_Z +pk Zan+z] (15)

n On i=o o 3=0

e If conditions in a) are satisfied then (15) becomes

On On
®)(1/D,) ~ Do [pgk) + 2o+ 4+ (k— l)pék)lak 2+ kp(k) k= 1] = —"P,(0)

n

with P, (o) # 0 and so (14) follows.
e If conditions in b) are satisfied, then from (15) we obtain

L®(1/D,) ~ 0—"[p§’“>+p‘ o1 +02) + "2 Y o + Pt IZ”]:

D" =0
2 k
_ O w170 (0) k1= 0u |
- Dnlp M T 1—0*]
_ G-1(0) — 0uge—1(00%) on
1—o, D,

which gives (14).

From this result we easily obtain:

Theorem 2 Let (S,) be a sequence that can be writen in the form S, — Soo = @Dy, n € N
with



e (D,) satisfying the conditions of the previous proposition;

ATL o m )\n
° an:n51_1< g’iocgl)—l.+---+20§ )—T> forne N ;
i=0 n

nZ
o Ml === Aml.

Then the transformed sequence (TF)) given by (5), where the operator L'®) is given by (3) and

(4), satisfies:
k) — Seo C
Sn — SOO ~ n2810_n (n — OO),

and so
(Sn) € A(T) if and only if Jim n*'o, = oo.

Proof: We have already seen, in (13) that

n+si n+sm 1
L®(a,) = (Cl)‘l— + Cm’\m—> (1 +0 (—)) .

n51+1 nsm—l—l n

So we obtain L®(a,)/a, ~ C*n™?* (n — c0). By the previous proposition we know that
L®)(1/D,)D,, ~ C'c, (n — o0). As the ratio of the error sequences (T¥) — S,.) and (S, — Ss)
is given by (7), the result follows immediately.

A

3 Some classes of general difference operators.

We will now study the structure of the kernel and acceleration properties of extrapolation methods
corresponding to difference operators with coefficients depending on n.

3.1 Linear operator of first order.

Let p(n) and ¢(n) two polynomials of degree  and s respectively. We can write them in the form

{p(n) = allizi(n—aqi), o €eR,
qg(n) = bIlj_,(n—p;), BieR .

We set

= max o B = 11151?;[33-, and N € N such that N — 1 < max(«, §) < N. (16)

Let us consider a linear operator of the form

L(uyp) = tpy1 — @un, for n > N. (17)

q(n)
10



The solution of the difference equation L(u,) = 0,n > N is given by [§]

p = (%)ni_f[lf(n—ai)/nf(n—ﬂj),n >N

=1

and so we immediately obtain the kernel of the corresponding sequence transformation:

Theorem 3 Let (D,) € 8* and let L be a linear operator of the form (17). If T is the corre-
sponding transformation defined by (5) then

Ker (T)={(Sp) €S : Sp— Soo =0anDy,n> N with a, satisfying
a\™ T S
an= (%) T - )/ [I T - 5)
=1 j=1
for some r,s,a,b,c;,3; € R and N defined as in (16)}

As we can write

T, — Seo i L(a,) 1/Dy _ _On q(n)
Sn — Seo B 7 L(l/Dn) a & _ ZM (18)
Dn—l—l q(n

we easily get:

Theorem 4 Let (S,) be a sequence of the form S, — Seo = anDy, n > N, with (D,) € §* and
limy, o0 Gpy1/an =1 # im0 Dy /Dyyi. We consider the sequence transformation

_ L(S4/Dx)

T, = > N, (19)

LA/D,) T
where L has the form (17). Then, if lim,_,o p(n)/q(n) =1 we obtain
lim (7, — Sw)/(Sn — Sxc) = 0,

n—oo

that is, if S 1is finite then (S,) € A(T).

From (18) we easily see that we will get good acceleration properties for (7},) if we can obtain
a good approximation of (a,41/a,) by the rational function of n, (p(n)/q(n)). In fact, we obtain:

11



Theorem 5 Let (S,) be a sequence of the form S, — Se = a, Dy, for n > N | where
a) (a,) satisfies:

A1/ ~ Z din™" where d;, i=0,---,2k are known;
i=0
b) (D) satisfies:
Dy/Dypi1~ Y en "t withe;=d;, i=0,---1—1; e#d (I<2k).
i=0
Let [k/k] be the Padé-approzimant [3] of the function f(x) = 32, d;x’ and set
P(z)
Q(z)
We consider the operator L of the form (17) with r = s = k and

p(n) = P(1/n)nt,
an) = Q(L/n)n* (20)

Then the corresponding sequence transformation defined by (19) accelerates the convergence of
(Spn). Moreover the speed of convergence can be measured by
Tn B Soo _
Sn - Soo B

[k/k]s(z) =

On=21) (n — 0).

Proof: By definition of the Padé approximants we know that f(z)—[k/k](z) = O(z**!) (z — 0)

which implies
any1 P(1/n) ( 1 )
— =0 .
an  Q(1/n) ) (2 0)
Defining the polynomials p(n) and ¢(n) of degree k by (20), from condition b) we get

D,  p(n) 1
Dn+1 B m ~ (el B dl)

and replacing in (18) the result follows.

" (n = ),

A
If (D,,/Dy 1) doesn’t have an asymptotic expansion in the powers of (1/n) but satisfies

Dy/Dpy1 =eg + Z:o eigi(n) +o(gi(n)) (gir1(n) = o(gi(n)) (n — o00))

(for instance, if D,, = n*(logn)? , then D, /D1 =1+ c¢1/n+ ca/(nlogn) + o(n='(logn)=") ),
we can still determine the asymptotic behavior of (D,,/D,+1; — p(n)/q(n)) and obtain the
corresponding acceleration results.

12



3.2 Difference operators with polynomial coefficients.

Let us consider now some classes of difference operators of the form

!
L(uy) =Y Xi(n)ugq; , with A;(n) polynomials in n,
i=0
for which we can obtain [ linearly independent solutions for the homogeneous difference equation
L(u,) = 0. We will give, for the corresponding sequence transformations

_ L(5:./Dy)

= Ta/D,) 2

the kernel and acceleration properties. We will see that some of these extrapolation methods are
very well suited for accelerating the convergence of logarithmic sequences (that is, sequences that
satisfy lim, 00 (Sni1 — Se)/(Sn — Seo) = 1 and so converging very slowly) for which we have an

1 o
asymptotic expansion of the error in terms of the sequences - )
n(n+1)"'(n+l) i=0
In order to simplify notations, we introduce the following elementary operators:
E(un) = tns1 , Qun) = nnyr , 7(un) = nAuy,.
The composition of these operators gives

E"(Up) = Unsr , Q(ug) =nn+1)--(n+7—Dtpyr , 7 (u,) =77 Huy)).

First, let us consider the following class of operators L

a) | L(u,) = (' + M Q5+ -+ N_1Q + X)) (un), A’s given constants.

If we compute the roots of the polynomial p;(z) = 2! + A\jz'=t + - -- + \; we can write L as a
composition of simple operators. Let us consider the two following cases:

Li(u,) = (Q—a)(Q— ) (Q— oy)(uy,) with oy # o Vi # j; (22)
Ly(un) = (2= a)(un)- (23)

For the general case L(uy) = (2 — a1)%(Q — a)®2 - -+ (2 — oy)® (uy) the results are trivially
obtained from the ones for these two types of operators.
From the theory of linear difference operators (see for instance [2]) we obtain:

1 !
Li(uy) =0& u, = (=1 ZAia?, A; constants;
S =1

n -1 )
WZAWZ; A; constants.
" i=0

For the corresponding transformations given by (21), the structure of the kernels follows
immediately:

Ly(uy) =0 u, =

13



Theorem 6 Let us consider the sequence transformations

Li(1/Dn) ’
with L;, 1 =1,2 given by (22) and (23). Then

TW = nelN, i=1,2,

D, {
a) (S,) € Ker(TW) & S, — Spo = CE] > Ao} formeN;
Ti=1
D. " -1 )
b) (S,) € Ker(T?) & S, — Sy = ﬁ > Ain' forneN.
T HTi=0

In order to obtain the acceleration properties of these transformations we have to determine
the asymptotic behavior of the sequences (L;(uy,)) i = 1,2 from some properties of the sequence

Lemma 2 Let (u,) be a sequence satisfying

. Unp+1
lim n
n—oo U/n

= 3.

If we choose a; # 3, i =1,---1 then the asymptotic behavior of the sequences (L1(uy)), where

Ly is given by (22) is

Li(up) ~ (B—a1)(B—aa) (B —a)u, (n— 00).

Proof: We will prove this result by induction on [. For [ = 1 we obtain

(Q = ar)un = NUp11 — Uy = Uy <nu2+1 — oq) ~ (B — o) up.
n

Let us suppose it is true up to [ — 1, that is

Q=) (2= a1)u, = lﬁ(ﬂ — ;) un (1 + €,) nh—>120 €, =0

=1

Then _
Q=) (2= 1)(Q— )u, = (2 — ) H1 — ) un(l+€,)) =
1:[1(5 — 0;)un (1 +€,) (n H-(ﬁ( lez;;’;g i Z;l) - oq)
= L) ~ T8 = o) x (9= ) (n— o0),

14



and the result follows.

In the same way, we can easily show:

Lemma 3 Let (u,) be a sequence such that lim,,_,, Yntl _ & # 0. Then, for
U

we obtain
Li(uy) ~ C'n'u, (n — 00).
a1
Lemma 4 If the sequence (uy,) is given by u, = ————— then
(n—1)n
(Q — a)(un) ~ —ai% (n — o0).
Proof: In fact,
an+1 1 an-}—l 1

(2= a)(um) = n n (n+1) (n—1)ln

o™t 1 nt—(n+1) Un,
(n—1!nt (n+1)

Lemma 5 Let (uy) be a sequence of the form

1
(n—1)!

m
Up = YAl with |au| > |as] > - > o]
i=1

Let us consider the operator Li(u,) = (2 —aq) -+ (Q — ay)(uy,) with m > 1. Then the asymptotic
behavior of (L1(uy)) is given by:

Ly (uy) ~ C(n l_+11)' (n — 00).
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Proof: The result follows immediately from the fact that the operators (2 — a;) commute and

(Q—a) = 0 neN and

From these results we can obtain the following acceleration properties:

Theorem 7 Let (S,) be a sequence satisfying

o n
Sn—SoozrnZAiaiz‘ n €N |, with |oq| > |ag| > ---
= (n—1)!

We consider the sequence transformation T given by (24) with L, defined by (22) and D,, =,
forn € N. Then

a7 . . Tn

- n+1
Sn = S0 o . . nry, o
O((n—l)!) if hmn_morﬂ—ﬂ#al i=1,---1.

Proof: If we set a, = Y7°, A;al/(n — 1)! then, from lemma 5, we know that
LW (a,) ~ Cal" /(n —1)! (n — o)

and using lemmas 2 and 3 to estimate the asymptotic behavior of (L™ (1/D,,)) the result follows.
A

Theorem 8 Let us consider a sequence (Sy,) satisfying:

Tpo™

(n-1)! =

Sn — Soo =

e’ 1 "
S A= with lim —" =7 #0
< nt

n—,oo Tn—|—1

and apply to (S,) the sequence transformation T given by (24) where Ly has the form (23)
and (D,,) is chosen by D, = r,/n', n € N . Then (T\?) converges to Sy, faster than (S,) and
moreover the speed of convergence can be measured by:

T — Sy 1
S 5. (n2l+2) (n = 00).

16



Proof: For this choice of (D,), (S, — Sw) can be written in the form

l 0
o ; o™ A;
S, — Soo = a,D, witha,=—-—Y An'+ _
(n—1)! ; (n—1)! i:lz—{—l ni=t
But l
a) Lg(ﬁ > A;in') = 0 because we have a linear combination of the solutions;
=1 =0
o’ XA o™ C
b) Lg(m lzl ni—l) ~ (n — ]_)'ﬁ (TL — OO) by Lemma 5.
e !
o,
Moreover, lim, ;o Dp/Dpy1 = limy, o0 %; =r # 0 and by lemma 4
n+1

l

Lo(1/D,) ~ rlg—n (n — o0).

TéZ)—Soo:O<(a71 T") (n — 00),

n—1)!n2n2

and the result follows.

Let us consider now another class of operators L:

b) L(u,) = (m — aq)(m — ) - - - (7 — ) (up) @ constants

It can be shown that the sequences (u,) for which L(u,) = 0 have the form [8]:

1 l
Uy = ———— S AT(n + ),
R

which gives the following result:

Theorem 9 Let T be the sequence transformation given by (21) corresponding to an operator L
of the form

L(up) = (m —a1)(m — o) -+ - (7 — ay) (uy) , ; constants . (25)

Then the kernel of T is given by

Ker(T) = {(Sn) : Sy — S = %;Aﬂ‘@%—ai)}.

These operators L, also called Euler difference operators, can be writen in the more explicit

form r l r -1
(040 g, L, TOt1-1)

['(n) ['(n)

17
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and the relation between the p;’s and the «;’s is the following: a;, s, - - -, o, are the roots of the
polynomial

p(z)=xz(z—-1)--(z—r+1)+p_gz(z—1)---(z —74+2)+ -+ p1T + po-

Let us now study the asymptotic behaviour of the sequences (L(u,)) with L given by (25)
for sequences (u,) satisfying some conditions.

Lemma 6 Let (u,) be a logarithmic sequence such that

u"+1:1+%+an, Oznrvg (n — o). (26)

Up
If L(uy) = (7 —aq) - -+ (m — ay) (uyn) with o; # C Vi then

L(up) ~ (C —ay) - (C — ap)u, (n — 00).

Proof: We will prove this result by induction on {. For [ = 1 we have

L(Un) = (7T — al)un = nAun — Uy = Uy, [n (un-f-l N 1> B a1:| ’

Unp
K
and as (u,) satisfies (26) we obtain L(uy,) = u,[(C — a1) + 7], 7 ~ =L (n — o0).
n
Let us suppose that:
K
(m—an) - (1 — 1) (un) = up(Ai—1 + %(zl_l))a %(Ll_l) ~ = (n — 00),

with Al*l = (C - al) fe (C - al,l). Then

(= a1) -+ (1 = 1) (7 = ) (un) = (7 — ) [un (A1 + 7)) =

a1 (A +~0-D
= up (A + 95 Y) [n <u 1Ay Yl"_l) ) 1) —a
Un(Al—l + Tn )

C 1 1
= Un(Al,1+’)’7(Ll71)) [TL (1 + ; + O (ﬁ) — 1) — O./l:| = un(Al,l-i-’y,(f*l)) (C — —+ O (ﬁ)) =

K
= un I, (€ = a)(1+910) , 9 ~ =L (0 o).

A

Lemma 7 If (u,) is a sequence satisfying

lim 2+ — p#1, (27)

n—oo un

then
L(up) = (m — o) - (7 — ) (un) ~ (p— 1)'n'u, (n = o0).

18



Proof: Again we proceed by induction on [. If (u,) satisfies (27) then : u,1/u, = p +
B, lim, o B, = 0. For [ =1 we get

(m— aq)uy = up[n(p— 1+ B,) —aq] ~ (p— Dnu, (n — 00).
We suppose that
(=) (7 = ) (un) = (p = 170 e (14+947Y),  lim 400 = 0.

Then
(m—0oq) - (7= 1) (7 — ) = (7 — o) ((p — 1)L, (14 44D) =

1)1 1 (I-1)
= (p— D" luy(1+ 440D |n (n+ 1)1 Unt1 1+ EYn+1 1) -
N U 14yl — 1)

= (p= 1) up(L+40Y) [n(p — 1+ 0(1)) — au]
~ (p—1)ntu,.
A
These lemmas enable us to obtain the following acceleration results:

Theorem 10 Let (S,) be a sequence of the form:

F(TL + 061) F(n + Oér)
=S =D, [A———— A N,
S, S ( 1 (’I’L—l)! + + (n—l)! + n e
where r( )
n—+ o, .
1. n—00 = ;
a) lim,_, T+ o) 0 Vi
D, )
b) (Dy) satisfies: limy, s (— - 1) n#ao i=1-r.
Dn+1

If we apply to (S,) the sequence transformation T™) given by (21) with L) (u,) = (7 —
ap)---(m— o) (uy), we obtain
Tér) - Soo F(TL + ar+1)
Sn - Soo F(TL + 011)

(n — 00).

F F T o .
Proof: We set a,, = Alm +-- --1-ArM +---. By the definition of L(") and theorem
(n—1)! (n—1)!
I i .
9 we obtain L") (%) =0 ¢=0,---,7. Moreover we can easily see that
n—1)!

o (s o Tln oo

(N—l)! (n—l)! (n_>00) for 7 > r.

From the conditions on (D,) and lemma 6 we know that L(")(1/D,) ~ D, (n — c0). So, from
L™ (ay)/an ~ CT(n+ apy1)/T(n+ 1) (n — 00), the result follows.
A
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Theorem 11 Let (S,) be a sequence having the following asymptotic expansion of the error:

C1 Cy Cy
S =214 .. N.
Sn = Seo n+n(n+1)+ +n(n+1)---(n+r—1)+ ne

We consider the sequence transformation T") given by (21) with the choices

a)Dn:n(n—i-l)---(n—i—T—l) forne N ;

b) L (u,) =a(m —1)--- (7 — (r — 1)) (un) (thatis, a; =1i, i =0,---7 —1).
Then the transformed sequence (T") = T(")(S,,)) converges to S faster than (S,). Moreover

we obtain: T _g .
5 5. ~ O (ﬁ) (n — o0).

Proof: From the form of (S,) and the choice of (D,) , (S, — Sw) can be writen as
Sn— S0 =Dy[Cr +Croi(n+r—1)+---+Co(n+2)---(n+7r—1)+

4.

+01(TL+1)---(TL+7‘—1)+C,«+1

n

The first r terms in this sum constitute a polynomial of degree r — 1 in n and so we can write it
in another basis:

. T(n+1)  T(n+2) r Tlntr—1)
_ :D . e e -_—
S = 5o = DalCo+ O 5y o T+ F O )
L(n+r) I'(n+r) _
+C7-—|—1 (n+7‘)' T+2(n+r+1)' ]_
=D,A,.

If L) is chosen like in b), then
’ ,P(n—i-l) ’ F(n—i—T—l)
L i S RIS
(C°+Cl m—1r O T T
the solutions of L™ (u,) = 0.

r
Let us now obtain the asymptotic behavior of (L(’”) (%)) We obtain

) = 0 because it is a linear combination of

B )< L(n+r) )_ Fn+r+1)  T(n+r)  Tn+r) _
T Grrrl) "mrrrit) “trrri Cotrti

n(n+r) h I'(n+r)
e

N ":_<a+i+1_(z+1)(r+z+1)> L(n+r)
n+r+i+1 n+r+1)! (

n+r+i+1 n+r+i)!

(C#0) (n— o).

So if a # —i — 1 then (7 — a) <M> o fn+r)

(n+r+1)! (n+r+1)!
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Therefore, for our choice of L"), we obtain

. L(n+r) L(n+r)
L) <m> NCm(n—)oo), (28)

and so L (a,) ~ K/n (n — 00). As we have the following asymptotic behaviors:

ap ~Cin" =" (n—>0o0), Dpy~n"" (n— o),

“1/0,) = ()

nT'

'

;3) ~ (0= o0) (by (28) with i = —r — 1),
Tn = S _ L(an)/an
Su= 5. DL(1/Dy)

we obtain

=0(n") (n— ).

A
From the two theorems above we see that the extrapolation methods corresponding to the
operators of the form (25) have good acceleration properties when applied to some classes of
logarithmic convergent sequences.

4 Acceleration properties for the transformation (7,,) based
on the asymptotic behavior of solutions of linear differ-
ence equations.

For the two classes of difference operators L considered in the previous section, a basis of solutions
in explicit form for the associated homogeneous linear difference equation L(u,) = 0 was known,
which enabled us to study the acceleration properties of the corresponding extrapolation method
T. But for the general operator L of degree k£ and nonconstant coefficients there is not a general
solution in compact form. For a given operator L not belonging to those classes we may be able to
find an independent set of solutions for L(u,) = 0 using a method of the difference calculus (see,
for instance [1, 7] ): reduction of order, generating functions, etc. And from a basis of solutions
we can proceed in the same way that above to get the kernel and acceleration properties of the
extrapolation method 7.

But, if we can’t find a basis of solutions, we can obtain, using different techniques than above,
the asymptotic behavior of the solution when (n — oo) and, for some classes of operators, also
the asymptotic expansion for a linearly independent set of solutions [2]. From the knowledge of
this asymptotic behavior, we are going to:

a) give the acceleration properties for the sequence transformation 7" corresponding to
a given operator L;

b) propose a method of constructing an operator L and the corresponding sequence
transformation 7" to accelerate a class of sequences (S,,) for which the error sequence (S,, — Swo)
has a given asymptotic expansion.
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From now, we will consider a difference operator L of the form:
L(un) = AFup, + pe_i () A uy + - - - + pr(n) Auy, + po(n)un, (29)

where p;(n), i=0,---,k — 1 satisfy the following condition: the functions f; defined by f;(t) =
pi(1/t)t7%*" | 4 = 0,---,k — 1 are analytic in the neighborhood of 0. So the p;(n)’s have the
following asymptotic expansion

(%)
1 .
pi(n) = — (C’éz)—l—%—i—---) i=0,---,k—1. (30)

Before discussing the asymptotic behavior of the solutions of L(u,) = 0, we will obtain the
asymptotic behavior of (L(u,)) when the sequence (u,) satisfies some conditions.

Proposition 3 Let (u,) be a sequence satisfying limy, o Upi1/un, = A # 1. Then

L(up) ~ (A =1 u, (n — 00).

Proof: As we can write A'u,, = ;ZO(—l)i*j Upj, we obtain limy, o0 Alu, /u, = (A—1)%

o!
(i = J)!
Aslim,, pi(n) = 0, replacing in (29) the result follows.

Proposition 4 Let (u,) satisfy

v 1+;+rn with r, —0(5) (n—o0), A'r, _O(nz’+1> (n—o00). (31)
Then, if L is given by (29) we obtain:
Ay | =)
L(ug) ~ =y (n—o00) with Ay =) oVCp”,
n i=0
where o'® =1, o) = ol —3); cF =1, O given by (30).
Proof: Let us begin by showing by induction that
Aly, @ , 1 - 1
“ :a—.—H”,(f), 7“,(1‘):0(—.), AM‘S?ZO( . > (32)
Up, nt nt ntta

It is trivially true for ¢ = 1 because we have Au,/u, = a/n + r,. Let us suppose that it is true
for 4 and compute Aitlu, /u,.

AT, Aug gty Aluyg, a® (i) 1 a® -
= — = - X ]_ — — — — (Z) =
Up Upp1 Uy Up (n+1) t Tt ( + 1o} + Tn) nim
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. 1 1 . (@) 1
ol — — )+ Ar® 4 S e, Tn =0 .
(n+1)F nt (n+1)in

So

it+1 YO
Ay, oD (a 7’)_+_T7(1i+1), T(z’+1):0( 1 )’ Ajr(i—kl)zo( 1 )

Up nitl n nitl
Replacing (32) in the operator L and, as the p;(n) satisfy (30), we obtain

L(uy) Ak, AT Au,

= + pr—1(n) + -+ pi(n) + po(n)
un n n n
B ok k=1 C’,Eo_)l o) C§O) C’éo) 1Y A 1
B n’“+n’“—1 n Tt nnk—1+nk o _W_FO nk
and the result follows.
U o«
Remark: if 1 =1+ — + —; + -+ (n — o0) the condition of the previous proposition is
U, n o n

satisfied.

Let us suppose that (u,) is a solution of L(u,) = 0 for which we know the first terms of its
asymptotic expansion

U = c191(n) + c292(n) + 1, n EN, ga(n) = 0(g1(n)), s = 0(g2(n)) (n — o0), (33)

with (g;(n)), i = 1,2, (r,) satisfying (31) and ¢; # 0. Then, as L(u,) = 0 we get

Llua) = 04 L{gi () = ~ 2 L(ga(0)) ~ - Lira).
and so
L(gi(n)) ~ Cn*ga(n) (n — o0), (34)

which gives the following acceleration result:

Theorem 12 Let (S,,) be a sequence satisfying S, — Seo = @y Dy, with

tp, = b1g1(1) + p, pn = 0(g1(n)) (n = 00), (91(n)), (pn) satisfying (31) .

Let L be an operator of the form (29) for which we know an asymptotic expansion of a solution
(tn)n of L(uy,) =0,

Un ~ > a;gi(n), with (gi(n)) i=1,--- satisfying (51).
i=0

We suppose that p, ~ Kgs(n) (n — oo0) and we consider the sequence transformation corre-
sponding to this operator,
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a) If lim, oo Dy /Dpi1 = X # 1 then

Tn - Soo _kQZ(n)
Sn - Soo Cn gl(n

b) If lim,, oo D,/ D1 = 1 and if (1/D,,) satisfies (31) with A # 0 then

Tn - Soo ~ 092(77')
Sn - Soo g1 (’I’L)

(n — o0) (C is a constant ),

~—

(n = o0) (C is a constant ).

Proof: From Proposition 4, the condition on (p,) and (34) we obtain
L(an) = biL(g1(n)) + L(rn) ~ biCn~* gy (n) + C'n*ry ~ C*n " ga(n) (n — o0).
So, as L(ay,)/a, ~ Cn*gs(n)/g1(n) (n — oo) and
T, - S« L(a,) 1/D,
Sn_Soo N an L(l/Dn),
- if a) is satisfied, from Proposition 3 we get lim,, o, D,L(1/D,) # 0 and the result follows.
- if b) is satisfied, then lim,,_,o, D,L(1/D,)n* # 0 which replaced in (36) gives the result.

A

This result can be generalized to the case when we know k linearly independent solutions of
the difference equation L(u,) = 0.

(36)

Theorem 13 Let (S,) be a sequence such that

Sn - Soo = Dn (algg)(n) + a29§2) (TL) +-o-t a'kggk) (TL) + pn) 5

with gtV (n) = o(g” (n)), pa = o(gi" (n)) (n — o0).

Let us consider an operator L of the form (29) for which we know a basis of solutions (u®)) i =
1,---k, and each one can be writen

u) ~ 3o (n), gfhi(n) = o(g)(n) (n > 00) VjEN j=1,k
7j=1

%), i=1,-k—1

)i pn ~ Kgi)(n) (n— o0)
-k, §=1,2,--- satisfy (31).

Then

1. If (D,) satisfies limy,_yoo D;,/Dypy1 = X # 1, the sequence transformation (35) accelerates
the convergence of (Sy). Moreover the acceleration can be measured by:

Tn - Soo ~ Cn_k gél) (TL)
Sn = Soo " (n)

(n — 00).
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2. If (1/D,,) satisfies (31), then the speed of convergence of (T,,) can be measured by

Tn - Soo ~ Cgél)(n)
Sn=8x  g{"(n)

(n — 00).

Proof: We set a,, = algg) (n) + -- -akgyc) (n) + py- Then
L(an) = aiL(gi" (n)) + - - arL(g" (n)) + L(rz)

From (34) and condition ¢) we obtain L(gy) (n)) ~ Cink gl (n) (n—>o0) i=1,---,k and
from properties a) and b) we obtain L(a,) ~ nkgl) (n) (n — o00). The result follows as in the
previous theorem.
A

In order to be able to give the form of the sequences (S,) which can be accelerated by the
extrapolation method (35) corresponding to a given difference operator L of the form (29) or
to construct the operator L for which (7},) accelerates a given class of sequences (S,,), we must
obtain the asymptotic behavior of the solutions of L(u,) = 0. We will follow the ideas given in
[2].

To the difference equation

AFuy + pyoy (M)A, 4 -+« 4 py () Aty + po(n)un = O, (37)
. ~ d'y . . .
we can associate, by the correspondence A'u, +— e the differential equation
x'L
dky dlcfly dy
dok +pk—1($)m +oet pl(ﬂf)@ + po(w)y(z) = 0. (38)

Let us make the substitution = 1/¢. The derivatives with respect to z can be expressed in
terms of d¥/dt* in the following way:

- = (—1 Zt z—. d'itz+‘7—.. 39
g = U G 2t (39)

j=1
Replacing in the previous equation we obtain

k
LY () +po(L/t)y(t) = 0
i=1
with [;(t) = "7 EEdip; (10 i=1-k, pe(1/t) = 1; dy = (—1)%
Dividing by l(t) = (—=1)¥#? the equation can be writen
dy g )y g dF Y go(t)

— + +ot
dtk t dtk1 2 dtk=2 tk

y(H) =0 (40)
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with

qZ(t) — tkfili(t) — (_1)kidpj(1/t) i=1 ---’k_ 1

lk(t) = %] tk—j )
w(t) = (=1)*po(1/t)/t*

and so ¢;(t) , i = 0,---k — 1 are analytic functions in the neighborhood of 0. The theory of
linear differential equations enables us to predict the local behavior of the solutions near a point
to without knowing how to solve the equation. In the present case, and as ¢;(t) are analytic at
0, the point ¢y = 0 ( or, equivalently, x = o0) is an ordinary or regular singular point for the
differential equation (40) (or (38)) [2]. In order to obtain the local behavior of the solutions we
construct the indicial polynomial P(a):

Pla)=ala—1)---(a—k+1)+g_1(0)a(a—1)---(a—k+2)+ -+ q(0)a+ q(0) (41)

and we compute its &k roots oy, - - - ag. The asymptotic expansion of the solutions of (40) is given
by:

a) If (o — o) is not an integer for all i # j, then we obtain k linearly independent solutions
of (40) which satisfy:

yi(t) = t* A;(t), with A;(t) analyticat 0, ¢ =1,--- k.

b) b.1. If o; = 41 = - -- = a44; then we obtain a general solution of the form:
j—1

y(t) =% (log(t))*Ak(t), with Ag(t) analyticin0 k=0,---,j — 1.
k=0

b.2. f oy — @y 1 =n; € Z,1=1,---,4, then we obtain j + 1 linearly independent
solutions of the form.

yz(t) = taiAi(t)
yirr(t) = wi(t)log(t) + 1%+ iy (2)

Yirj(t) = Yirj-1(t)log(t) + %+ Az (t)

where Ag(t) are analytic at 0.

We return now to the difference equation (37). The techniques of local asymptotic analysis are
similar to those used above with differential equations. The point n = oo can be classified as an
ordinary or regular singular point if the point x = oo in the corresponding differential equation is
so classified. The procedure for constructing the Taylor, Frobenius or asymptotic series valid near
the point n = oo is in close analogy with the corresponding procedure for differential equations
[2]. We obtain:

a) If (o; — «j) are not integers for all 7 # j, we will have k linearly independent solutions that
have an asymptotic expansion in a Frobenius series:

N ['(n)
(i) ~, § 40 )
Un kgo FT(n+k— ) (n = o0)
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r .
As % ~n** (n— o0) we get u) ~ Cin®% (n —o00) i=1,---,k.
b) We will have to replace the logarithm by its discrete analogue: the Digamma function
U(n) =TI"(n)/T'(n) (which admits the asymptotic expansion ¥(n) ~ log(n)+c+>2, bin~™ (n —
o0) ). We will get the following generalizations of the Frobenius series.

b.1. If ; = 41 = - - - = a4 then equation (37) will have j+1 linearly independent solutions
that possess the following asymptotic expansions:

: I'(n)
(2) ~ - N7 —

tn Z (n +k— o) (n = 0)

i) o0 TS g,y T

Un Ig) T+ k— ) Z k F(n—l—k—ai)

L o0 ['(n) X , ['(n)

(i+7) A(Zﬂ) . (é-7) j

¢ A ok a] > B Y kS a

b.2. Finally, if oy — o = ny integer, | = 4,---, i+ j, equation (37) will have the following
j + 1 linearly independent solutions:

'(n)

(B~ 7 .
Un Z (n +k—a;)
I'(n) o~ i I'(n)
(1) + B(Z’l)\l’ .
" Z (n+k — @it1) kZ:% k (n)F(n—i-k— a;)’
» o T'(n) > I'(n)
(+3) Altd) (4,1) .
ult +3 B u(n 4ot
Icz::() T+ k- i) z_: e )F(n +k— i)
N ()
B (W (n))! .

In the two last cases we obtain the following asymptotic behavior

quH) ~ Hl(log(n))ln‘“ (n—o00) [=0,---,]

Applications:

Let us now give some examples of how to construct a sequence transformation based on the
techniques explained above and suitable for accelerating the convergence of a given family of
sequences.

a) Let us consider a family of sequences of the form

nal na2 nak

by b b
Sn—Soo:Dn< S BT -I-—k-i-pn) neN,
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with .
D<o <ag <---ap, oap—a; <l, pn=0(7k>(n—>oo).
n

We can easily construct an operator L of the form (29) that has k linearly independent solutions
satisfying
= 4@ I(n)

u® ~ 3" A

— Y (nosoo), i=1,--, k.
= F Dn+k+ o) (n = o0),

In fact, let us consider the polynomial
Pla)=(a+ar) - (a+a) =ala—1)---(a—k+1)+ar1a---(a—k+2)+---a1a+ ap.

We construct recursively the set of functions analytic in 0

k
pi(t) = (=Dfq(t) + (-1)* > dy(=1)pj(t), i=k—1,---,0
j=i+1

with i
pi(t) = (=1)%
¢;(t) are arbitrary analytic functions in 0 satisfying ¢;(0) = a;;
d;; are the quantities defined by (39) .

Now we set

i 1
pi®) = ()t (5), i=0e ik,

t

and consider the corresponding operator L given by (29). Iflim,_,o D, /Dy 11 # 1 then conditions
of Theorem 13 are satisfied and we can conclude that the sequence transformation (7;,) given
there accelerates the convergence of (.S,); moreover

Tn — Sx k-1

—F—~Cn~ (n — 00) where C is a constant .
Sn - Soo

b) We consider now the family of sequences of the form

1 l 1 -1 1
S”_SOO:Dn<b1(O§an) +b2(0gn72) ++bl+lﬁ+pn> neN,

1
where p, = 0 (ﬁ) (n = 00).

We consider the polynomial P(«) of degree | whose roots are a,a+1,---,a+1— 1 and construct
the operator L as in the previous example. In this case, a basis of solutions of L(u,) = 0 is given
by b.2. and applying again Theorem 13 we obtain

Tn_Soo

7% COnF Tt (n — oo) where C is a constant .
Sn — Soo

28



5 Conclusions

As shown in [4], [5], [6] and [10], this new approach to sequence transformations provides a
formalism where we can include a great variety of very well-known acceleration methods and
give a better understanding of extrapolation methods.

In this paper we continued to explore this formalism and we gave, for a large class of difference
operators L, the structure of the kernel and the acceleration properties of the corresponding
sequence transformation (2). This study was based on the properties of the solution of linear
difference equations L(a,) = 0 for operators L for which

e we know a basis of solutions in explicit form

or
e we can obtain the asymptotic behavior of the solutions.

We also proposed a method for, given a sequence (S,,) for which we know an asymptotic expansion
of the error, constructing a linear difference operator L such that the corresponding sequence
transformation (2) accelerates the convergence of (S,,)

In conclusion, this formalism seems to be very interesting for obtaining general theoretical
acceleration results and for the construction of an extrapolation method suitable for a given class
of sequences.

The acceleration properties of the iteration of the procedure

T: S — S
_L(Sn/Dn)

S=(S,) — TS)=T(Sn))=Tn): T,= L(/D,) neN

are under study and will be the subject of a forthcoming paper. Numerical comparisons of the
new methods proposed here and their stability properties are also being studied.
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