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 HOW WELL DOES THE HERMITE-PADÉ APPROXIMATION
 SMOOTH THE GIBBS PHENOMENON?

 BERNHARD BECKERMANN, VALERIY KALYAGIN, ANA C. MATOS,
 AND FRANCK WIELONSKY

 Abstract. In order to reduce the Gibbs phenomenon exhibited by the partial
 Fourier sums of a periodic function /, defined on [- 7t,7t], discontinuous at 0,

 Driscoll and Fornberg considered so-called singular Fourier-Padé approxi-
 mants constructed from the Hermite-Padé approximants of the system of func-
 tions (1,01(2), #2(2)), where g' (z) = log(l - z) and #2(2) is analytic, such that
 R,e(g2(eit)) = f(t). Convincing numerical experiments have been obtained by
 these authors, but no error estimates have been proven so far. In the present
 paper we study the special case of Nikishin systems and their Hermite-Padé
 approximants, both theoretically and numerically. We obtain rates of conver-
 gence by using orthogonality properties of the functions involved along with
 results from logarithmic potential theory. In particular, we address the ques-
 tion of how to choose the degrees of the approximants, by considering diagonal
 and row sequences, as well as linear Hermite-Padé approximants. Our theo-
 retical findings and numerical experiments confirm that these Hermite-Padé
 approximants are more efficient than the more elementary Padé approximants,
 particularly around the discontinuity of the goal function /.

 1. Introduction

 To reduce the Gibbs phenomenon exhibited by the truncated Fourier series of a
 periodic discontinuous function /, many different techniques have been proposed;
 see [16] and the more recent [4, 5] for a review of some of the recent methods, and
 [18] for localizing such discontinuities. For a real function / having a logarithmic
 singularity, the location of which is known, Driscoll and Fornberg [8] suggested the
 construction of a class of approximants which incorporate the knowledge of that
 singularity. More precisely, their approach is the following one: let g<¿ denote the
 series on the unit circle such that

 /(í) = Re(52(e¿t)).

 Then, the goal is to approach g2 on the unit circle (and more precisely its real part).
 It is typical that the singularity of the function /, located at 0, say, corresponds
 to a logarithmic singularity for g2, then located at 1, and that this function g2 is
 analytic in the complex plane, with a branch cut that can be taken as the interval
 [1, 00). Defining gi(z) = log(l - z), we obtain an explicit function with a singularity
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 at 1 of the same type, and we may consider the problem of determining polynomials
 Po,Pi,P2 such that the residual

 Po(z) +Pi(z)gi(z) + p2(z)g2(z)

 has a zero of highest order at the origin, namely no + n' + n2 + 2 where rtj denotes
 the degree of pj, j = 0, 1,2. By assumption, the first coefficients of the Fourier
 expansion of / are known, hence the first coefficients of the Taylor expansion of g2
 at the origin are also known, so that the above problem can be solved.

 Driscoll and Fornberg propose the approximation

 ri d n-(z) - **(*)+ fr (*)gi(*)

 of the function g2. Note that when pi(z) = 0 (or formally n' = - 1) we recover the
 usual Padé approximant of g2 of type (no, n2) and if, moreover, p2 is constant, then
 Ua(z) reduces to the usual Taylor sums. The computation of the Padé approxi-
 mants, by means of the e-algorithm applied to the sequence of partial Taylor sums
 of g2 , was already suggested by Wynn [28] as an interesting way to smooth the
 Gibbs phenomenon for functions with jumps. Brezinski displayed very convincing
 numerical experiments [6], and, subsequently, an analysis of the convergence of the
 Padé approximants along the columns of the Padé table for a function g2 which
 is the sum of some hypergeometric function and a smooth function was performed
 by three of the authors in [3]. It is shown there that the consideration of a de-
 nominator of degree n2 in the approximants improves the rate of convergence by a
 factor Uq2712. Note that if g2 is a Stieltjes function, then the rate of convergence
 is even geometric for ray sequences where no,n2 both go to infinity with no/n2
 tending to some constant. For an application of Padé approximants to filtering in
 the context of nonlinear partial differential equations such as the incompressible
 inviscid Boussinesq convection flow see [7].

 In their paper, Driscoll and Fornberg gave numerical evidence that considering
 an additional function g' as described above allows for still better approximations
 of g2. Indeed, if the jump location is known it makes sense to incorporate this infor-
 mation into the approximant itself. The approach via Hermite-Padé approximants
 is motivated by the fact that, provided p2(0) ^ 0, the error of the approximant
 n^ has the highest order of vanishing at the origin, among all approximants of the
 form (1.1). This property entails, for instance, consistency; namely if g2 is of the
 form as on the right-hand side of (1.1), then Tln(z) = g2(z).

 If both functions g' and g2 are analytic in the unit disk, then one should expect
 that the above approximants give a small error around the origin, and hopefully
 on the unit circle 'z' = 1 (except maybe in a neighborhood of singularity 1), which
 is the set of arguments that we are interested in. Of course, the convergence of
 the approximants 11^ to the goal function g2 essentially depends on the location of
 their poles.

 The aim of this paper is to study the convergence of sequences of Hermite-Padé
 approximants for a class of functions known in approximation theory as Nikishin
 systems. Our analysis is based mainly on orthogonality properties exhibited by
 the polynomials and functions involved, along with results from the logarithmic
 potential theory.

 In Section 2, we define the model problem we are interested in and recall the
 definition of the Hermite-Padé approximants we want to study. In Section 3,
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 we derive the rate of convergence achieved by the Hermite-Padé approximants.
 These estimates include the solution of a vector equilibrium problem with external
 field. In Section 4, we discuss error estimates for some significant particular cases,
 namely diagonal and row sequences of approximants and linear Hermite-Padé ap-
 proximants (approximants without denominator) and compare these estimates with
 those achieved by the simpler Padé approximants. In the last section, we present
 numerical experiments. In particular, we describe a numerical procedure to com-
 pute the solution of the involved vector equilibrium problem. This illustrates our
 theoretic results and allows one to verify the agreement of the estimated rates of
 convergence with the effective errors.

 2. Hermite-Padé approximants

 Throughout, Vn will denote the space of complex polynomials of degree at most
 n. We assume that the function / to be reconstructed has a discontinuity, the
 location of which is known (say, at 0), but not its amplitude. Let / G Cni ([- tt, tt] '
 {0}) be a periodic function with left and right derivatives of order 0, 1, . . . ,ni at
 t - 0. One typical such function is the saw-tooth function

 (2.1) s(t) = 7T + 1 for t G (-7T, 0], s(t) = -7T + 1 for t G (0, 7t],

 with a jump of magnitude 2n at t = 0 in [- ?r, ?r), where we notice that lm(gi(z)) =
 arg(l - z) = s(t)/2 for z = elt. A basic observation in the work of Eckhoff [9, 10, 11]
 was that there exist real numbers d0, . . . , dni such that the function

 <t) := /(Í) - ( f>sin'(i) j s{t) € Cni ([-*,*■])
 is "smooth" and can be well approximated by a Fourier series of order no- In terms
 of z = e2i, by writing

 f(t) = Re(Ä(z)), JTdjsMit) = -2 ImipxC*)),
 3=0

 a reasonable approximation is

 f(t) « Ite(-po(*) -Pi(*)log(l - *))
 with unknown polynomials p0 G Vno, p' G Vniì such that po(z) +pi(z)log(l -
 z) + g2(z) = 0(^0+^+2) as z _^ 0 This is a particular case of the Hermite-Padé
 approximants defined as follows (for more details and properties see, for instance,
 [2, Chapter 8, Section 5]).

 Definition 2.1. Let g'(z), #2(2) be two functions analytic at 0 and define, up to
 a normalization factor, the polynomials pj G Vnj for j = 0, 1, 2 such that

 (2.2) Po(z)+pi(z)9l(z)+p2(z)g2(z)=ö(zn°+n^n>+2) as z -> 0.

 The Hermite-Padé approximant of g2(z) (or in short HP approximant) of order
 n = (no,ni,n2) is defined as

 (2.3) lin(z) = _*>(«) +ftWgi(*).
 P2'z)
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 Choosing gi(z) = log(l - z), the singular Fourier-Padé approximants of f(t) =
 Re(g2(e'lt)) introduced by Driscoll and Fornberg [8] are then given by the real part
 Re (Ufî(e'lt )) , and hence we wish to discuss the error of HP approximants on the unit
 circle. We should notice that (2.3) is an unusual expression for the approximation
 of functions via Hermite-Padé forms defined by (2.2), for more classical approaches
 including integral approximants we refer the reader to [2].

 For n2 = 0, we recover from (2.3) the approach proposed by Eckhoff, based on
 approximants with built-in singularity; see [9, 10, 11]. If instead pi(z) = 0 (or
 formally n' = -1), then we simply get the Fourier-Padé approximants. A study of
 these last approximants as a tool to reduce the Gibbs phenomenon has been done
 in [3]. In particular, their rates of convergence have been estimated for various
 functions with jumps.

 We will restrict ourselves to the above approximants (2.3) for the class of Markov
 functions

 (2.4) 9X{Z) = log(l -X) = X£TÈL-, 92{z) = z£^§
 with

 (2.5) u{x) = J*^li [c,d]n[O,l] = 0.
 In the special case dr(y) = (-y)ady with a e (-1,0), and (c,d) = (-oo,0), we
 obtain for g<¿ a scalar multiple of the function G(a'°) whose Padé approximants were
 considered in [3].

 The set of Markov functions (l,pi(l/z),^2(l/^)) is an example of a Nikishin
 system. Such systems were originally studied in [20, 21]. It is remarkable that
 the polynomials and residuals involved in their Hermite-Padé approximants satisfy
 orthogonality relations with respect to varying weights. As a consequence, their
 n-th root asymptotics can be given in terms of the solution of a vector equilibrium
 problem in potential theory. This theory is described in [22, Chapter 5].

 3. Potential theory and estimates on the rate of convergence

 In this section, we study the rate of convergence of the Hermite-Padé approxi-
 mants, introduced above, as the total degree n = no + n' + n2 - >• oo. Throughout,
 we assume that n0 > n' > n2 and consider ray sequences no,ni,n2 such that
 /o i' n0 nl n2
 (3.1) /o i'

 nun

 as n tends to infinity. Note that from the assumption no > n' > n2 we get

 Po > Pi > P2-

 The rate of convergence in an n-th root sense can be obtained via a vector equilib-
 rium problem in potential theory with external fields. To state the result, we need
 the notion of a logarithmic potential in the complex plane,

 tp(z)=y" log i^d/iw,
 associated to a probability measure /¿. By probability measure, we mean, as usual,
 a positive measure of mass 1. An example of such a measure is the Dirac measure
 ¿o with a mass 1 at the origin. Note that the potential U** has a physical interpreta-
 tion, namely it corresponds to the electric potential of a positive unit charge whose
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 distribution in the plane is described by the measure /x. The usefulness of logarith-
 mic potentials in approximation theory is easily understood from the elementary
 remark that a polynomial is basically the exponential of a discrete potential, more
 precisely, for a polynomial p of degree n, we have

 ±lQg(l/|p(z)|) = EP»(z),

 where ¡in denotes the discrete measure with masses 1/n at the zeros of p. For
 general facts about logarithmic potential theory, we refer the reader to [19, 23, 24].
 The vector equilibrium problem and its numerical resolution is discussed in more
 detail in Section 5.2.

 We will also restrict ourselves to the case where the measure r in the definition

 (2.5) of u(x) has some kind of regularity. More precisely, we will assume that r is
 regular in the sense of [25] (we will write r G Reg in the sequel), meaning that the
 corresponding orthonormal polynomials have regular n-th root asymptotic behav-
 ior; see [25, Chapter 3] for details. Different criteria for this notion of regularity,
 as well as their sharpness, are discussed in [25, Chapter 4]. For instance, one of
 the simplest criteria is the Erdös-Turan condition, which says that the measure
 r supported on the interval [c, d] is regular if its Radon-Nikodym derivative with
 respect to the Lebesgue measure is positive almost everywhere on this interval.

 Now, the n-th root asymptotic behavior for the error function is described by
 the following theorem.

 Theorem 3.1. Assume that [c, d] is a compact interval and that the measure r e
 Reg. Then, the error function (g2 - n^)(s) satisfies, locally uniformly for s = 1/z,
 *€C'([0,l]U[c,á|),

 (3.2) hm -Iog'(g2-Uñ)(s)' = (Pl+P2)U»(z)+p2Ul'(z)+(p0-p2)Us°(z)-W-wì
 n-too Tl

 In (3.2), the probability measures 'i and v, and the constants W and w, solve a
 specific vector equilibrium problem in potential theory which is precisely stated in
 Lemma 3.5.

 The proof of Theorem 3.1 is based upon orthogonality relations satisfied by
 quantities related to the Hermite-Padé approximants, that we introduce now. We
 set

 An(z) = *nipi(l/z), Bn(z) = zn*p2(l/z), Cn(z) = An(z) + zn*-n >Bn{z)u(z),

 where pi and p2 satisfy (2.2). Hence we have that, as z - >• 00,
 (3.3)

 ¿*n(*):=^°Po(l/*)+^)^^

 with deg^4n < ni, deg£n < n2. In the next lemma, we show that deg£n = n2.
 Hence, we may (and do) assume throughout that the normalization of (3.3) is
 chosen so that Bn is a monic polynomial. Let us also mention that Cn(z) cannot
 have more than n' + n2 + 1 zeros in (0, 1). We let the reader check that this fact
 follows by using an argument similar to the one given in the proof of [22, Theorem
 4.4 p. 141].
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 Lemma 3.2. The expression Cn(z) satisfies the orthogonality relations,

 (3.4) / xn°-niCn{x)xkdx = 0, fc = 0,...,ni+n2,
 Jo

 and it has exactly n' + n2 + 1 simple zeros in (0,1). Let Hn denote the monic
 polynomial of degree n' + n2 + 1 whose roots are these zeros. Then, the relations
 (3.4) may be rewritten as

 (3.5) / xkxn,-n2BJ^)_ )=^ fc = o,l,...,n2-l. Jc Hn(x)

 Hence, Bn is of exact degree 1x2 with all its zeros, which are simple, in (c, d) .
 The ratio Cn/Hn admits the following integral representation in C ' (c, d):

 ttfii { Cn(xl = ^_ fd Bl{t) dr{t) ttfii { ' Hn{x) = Bn(x)Jc x-tHn(ty
 Proof By applying Cauchy's formula in a neighbourhood of infinity, we obtain in
 view of (3.3) that

 / zkRn(z)dz = 0, fc = 0,...,ni+n2,

 where Tp is any circle of radius p large enough. Plugging in the integral represen-
 tations for gì and #2 and using Pubini's formula, we get

 F ( Í Zk (z**"* ^^ + zno-n2<x)BrM) dz) dx = Q>
 Jx=0 'JzeTp ' Z-X Z-Xjj

 which leads to (3.4) by applying Cauchy's formula to the inner integral. These
 relations imply that Cn(z) has at least n' + n2 + 1 simple zeros in (0, 1) and so it
 has exactly n' +n2 + 1 such zeros by the remark before the statement of the lemma.

 Next, Cn(z)/Hn(z) is analytic in C ' (c, d) and is of order z"712"1 at infinity.
 Let F be a contour around (c, d). The Cauchy formula applied in the exterior of F
 shows that

 [zk7rr'dz = 0> * = o,...,n2-i. Jr nn{z)

 If, moreover, F does not enclose (0, 1), which is always possible, we deduce by using
 the expression for Cn that

 f zkzn,-n2BJ^)_ {z)dz = ^ fc = 0,...,n2-l.

 Making use of the integral formula (2.5) for u along with Fubini's formula, we obtain
 (3.5). Finally, to prove (3.6), we make the additional assumption that the above
 contour F does not enclose the given point x in C ' (c,d). By Cauchy's formula
 applied outside of F, we get

 Hn(x) 2inJTHn(0<-x 2iirJr n^> Hn(O Ç - x
 = [dfn1-n2Ml^L = -L_ fdfn,-n,B2n(t)dT(t)
 Jc x-tHn(t) = Bn(x)Jc x-tHn(ty

 where we have used the orthogonality relations (3.5) in the last equality. D
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 In order to establish the rate of convergence of the Hermite-Padé approximants,
 we need additional results. We next give an integral representation of the error
 function Rn(z) defined in (3.3).

 Lemma 3.3. For z, a complex number not in (0, 1), it holds that

 (3.7) Rniz) = -i- ^n{z) [1x^-^Hn(x)^dx. Z - X ^n{z) JO Z - X

 Proof. Prom the definitions of #i, $2, and Rn, the product HnRn may be written
 as

 Hn(z)Rn(z) =Hn(z)zn°Po(l/z)
 i1 dr
 + / {zn°-^An(z)Hn(z)-xn°-^An{x)Hn{x))-^- dr Jo z~x

 + / {zno'^Bn(z)Hn(z)-xnQ-n^Bn(x)Hn(x))-^- z - x Jo z - x

 + ['xn°-niAn(x) + xn°-n*Bn(x)u(x))Hn{x)dX. Jo z~x

 The first three terms in the right-hand side of the previous equation are polynomials,
 the sum of which vanishes because Hn(z)Rn(z) and the last integral behaves like
 O(l/ z) at infinity. Hence Hn(z)Rn(z) equals that last integral which gives (3.7) in
 view of the definition of Cn. D

 We also need the following classical result about orthonormal polynomials with
 respect to varying weights.

 Lemma 3.4. Let a be a probability measure with support in a given interval [at,ß],
 and let wn, n > 0, be a sequence of continuous positive weights on [ot,ß] such that

 Wn'n(x) tends to w(x) = e~2(^^ uniformly in [a,ß]. Define {pk,n}, k,n > 0, to
 be the sequence of orthonormal polynomials with respect to the varying weights wn,
 satisfying

 I Pjin(x)pk,n(x)wn(x)da(x) = 6jk, n > 0.

 Moreover, assume that the measure a G Reg. Then, as n -> oo, the normalized
 zero counting measure 'n of the polynomial pn,n converges in the weak-star sense
 to the measure crw supported on [a,/?], characterized by the variational equations

 Ua™(x) + Q{x) >W, xe [a,ß],
 Ua™ (re) + Q(x) = W, xe supp(a™),

 where U(Tw (x) denotes the logarithmic potential of the measure aw and W is some
 real constant.

 Proof. This well-known result follows, for instance, from the fact that it holds true
 for any sequence of monic polynomials, asymptotically minimal for the weighted
 sup norm on [a, ß] and the fact that the weighted sup norm and the weighted L2
 norm associated to a regular measure are asymptotically equivalent in the n-th root
 sense; see respectively [24, Theorem 4.2 p. 170] and [25, Theorem 3.2.3 p. 84] for
 details. D
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 In the next lemma, we describe the vector equilibrium problem in potential
 theory with external fields that were mentioned in Theorem 3.1.

 Lemma 3.5. The problem of finding two probability measures ¡i and v, respectively
 supported in [0,1] and [c, d', satisfying the the variational conditions

 (3.8) 2(pi + p2)U»(x) - p2Uv{x) + (po - Pi)USo(x) >W, xe [0, 1],
 (3.9) 2(pi + toWix) - p2Uu{x) + (po - Pi)U6o(x) = W, xe supp(/x)
 and

 (3.10) 2p2U»{x) - (pi + p2)U'i(x) + (Pl - p2)Us°(x) >w, x€ [c,d],
 (3.11) 2p2U"(x)-(p1+p2)Ufi(x) + (p1-p2)USo(x)=w, xGsupp(i/),
 where W and w are some real constants, admits a solution, which is unique.

 Remark 3.6. The proof of Lemma 3.5 follows from classical arguments in potential
 theory. We omit the details, but refer the reader also to the discussion in §5.2. Note
 that the external field given by the potential Us° corresponds to the occurrence of
 the weights xn°~ni and xni~n2 in the orthogonality relations (3.4)-(3.5). Such
 an additional weight also appears e.g. in [12], where generalized Hermite-Padé
 approximants of type II of Nikishin systems are investigated.

 Finally, we can give the proof of Theorem 3.1.

 Proof of Theorem 3.1. Let /xn and vn, respectively, denote the normalized zero
 counting measures of the polynomials Hn and Bn, and let (ji,V) be any limit point
 in the weak topology of the sequence (iin,vn). By (3.5), we know that Bn(x)
 is orthogonal with respect to the varying weight xni~n2 /Hn{x)dr. Since we are
 assuming that dr is regular and since

 lim - log 'xn>-n*/Hn(x)' = -(p! - p2)Us°(x) + (pi + P2W(x),
 n- >oo n

 we deduce from Lemma 3.4 that V and ~ß satisfy (3.10)-(3.11).
 Next, we determine the n-th root asymptotics of the ratio 'Cn{x)/Hn{x)'. For

 that we use the integral representation (3.6). We have

 fd B^dr(tl 1 fd'tr-n,B2{t) ' ' "U drjt) Jcl x-t Hn(t) - mint€M] 'x - t' Jc ' ' "U 'Hn(t)'
 and

 fdfn,-n,Bl(t)dr(t)
 Jc x-tHn(t)

 maxt6M 'x - *p ^ W BnW 'Hn(t)'> ÚlmXt "'
 Consequently, since we assume that the interval (c, d) is compact, the previous
 lower bound does not vanish and the problem of estimating the integral in (3.6) is
 equivalent to that of estimating
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 in the n-th root sense. Applying [25, Theorem 3.2.3], the above weighted L2-norm
 of Bn behaves in the n-th root sense just as its weighted sup norm

 sup |t|»i- i^î.
 In terms of the limit measures ~ß and F, the logarithm of its n-th root tends, as
 n - > oo, to -w where we set

 w = inf (2P2ÎT + (Pl - p2)Us° - (Pl + P2W).
 te(c,d)

 Note that this uses the fact that the polynomials Bn have been normalized to be
 monic. Now, with (3.6), we get

 (3.12) n->oo lim -log %^' Hn(z) = p2U»(z)-w. n->oo n Hn(z)
 Next, the relations (3.4) may be interpreted as the orthogonality of Hn(x) with
 respect to the varying weights xn°~niCn(x)/Hn(x). Lemma 3.4 and (3.12) thus
 show that V and ~ß satisfy (3.8)-(3.9). Therefore, by uniqueness of the solution to
 the problem displayed in Lemma 3.5, we must have V = v and ~ß = //. This also
 shows the weak convergence of the entire sequences of measures

 vn -^ vi Mn ~+ Hi as n - >■ oo.

 Finally, we use the integral representation (3.7) to prove that the function Rn(z),
 defined by (3.3), satisfies

 (3.13) lim - log 'Rn{z)' = (pi + p2)U»(z) -W-w, z 6 C ' [0, 1],
 n- >-oo n

 locally uniformly. By an argument as above, the integral in (3.7) behaves in
 an n-th root sense as the L2-norm of Hn with respect to the varying weights
 xn°~ni Cn(x) I Hn(x) , which itself behaves like its weighted sup norm

 sun sup |Tln°~ni 'x' Cn^ nn'x)' H2(r) sun sup |Tln°~ni 'x' nn'x)'
 xG(0,l) tin{X)

 The logarithm of the n-th root of the above sup tends, as n -> oo, to

 sup (-(p0 - Pl)Uô°(x) + p2U»(x) - 2(pi + p2)U»(x)) -w = -W-wi
 xG(0,l)

 where we have used (3.12), the fact that w = w, and the variational conditions
 (3.8)-(3.9) in the last equality. Along with the fact that /in -> ¡jl as n -> oo, we
 get (3.13). From that, the definition (3.3) of Rn(z), and the fact that vn -^ v as
 n ^ oo, (3.2) follows. D

 4. Comparison of particular sequences of Hermite-Padé
 approximants with fade approximants

 In this section we compare the rate achieved by the Hermite-Padé approximants,
 obtained in Theorem 3.1, with that of the simpler Padé approximants. In partic-
 ular, the latter do not incorporate a singularity corresponding to the one found in
 the goal function g2. We perform this comparison for sequences of approximants
 of some specific degrees (no, ni, n2), as n - » oo, which we think are of some signif-
 icance with respect to numerical experiments. Namely, we will consider the case
 of approximants corresponding to ray sequences with limits po > pi = p2 > 0
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 (which we will call here the diagonal case), the case of linear approximants, that is,
 without denominator (712 = 0), which was studied by Eckhoff, and finally the "row
 case" such that the degree of denominator 77,2 remains constant as n = no + ni + n<i
 goes to infinity. Here the denomination "row case" refers to the usual Padé table
 where Padé approximants with denominators of the same degree are put in rows,
 see [2, Chapter 1]. Of course, in each case, the comparison will be made with Padé
 approximants of a type m = (mo,- l,m,2), mo > rri2, such that the total degree
 m = mo + m2 equals n + 1, so that the calculations of the Hermite-Padé and Padé
 approximants assume the knowledge of the same number of Taylor coefficients of
 the goal function #2- Moreover, since the computations of the Hermite-Padé ap-
 proximants of type (no, ni, n2) and of the Padé approximants of type (ra0, -1, rri2)
 require the resolutions of linear systems of dimensions n' + n2 + 1 and 777,2 respec-
 tively, we shall choose 777,2 = n' + n2 + 1. In this way, the computations of the two
 kinds of approximants will be of the same order of complexity, in the sense that
 they are based on the resolution of linear systems of equal dimensions. Note that
 the previous conditions completely determine the type of the Padé approximant,
 namely it has to be chosen so that

 ^0 = no, 777-2 - nl H" n2 ~f~ 1-

 To perform our comparison, we first recall the rate of approximation ^achieved by
 the Padé approximants. Assume that the rational fraction 6^ = -P0/P2 is the
 (unique) Padé approximant of type (mo, - 1, 777,2), m = mo + m2, of the function g2
 at the origin, that is, the following property holds true,

 P0(z) + P2(z)92(z) = O(zmo+m2+1) as z -> 0,

 or equivalently,

 (4.1) Rm(z) = zm°P0(l/z) + Bm(z)zm°-m*g2(l/z) = O (- ^r) as z -> oo,

 where Bm(z) = zm2P2(l/z). Throughout, the normalization is chosen so that Bm
 is a monic polynomial. As in the proof of Lemma 3.2, by using the Cauchy formula
 and the assumption that mo > m2, we can show the orthogonality relations,

 (4.2) / xrn°-rn2Brn(x)xku(x)dx = 0, k = 0, . . . ,m2 - 1,
 Jo

 from which follows, in particular, that all the zeros of Bm lie in (0, 1) and are simple.

 Moreover, the function Rm(z) has the following integral representation:

 (4.3) Rm(z) = g^-r ['™°-™>Bl(x)^-dx. Z~X Bm(z) JO Z~X

 Next, consider a ray sequence mo, rri2 - >• 00 such that

 777,0 m,2

 m m

 as m = m0 + m2 tends to infinity. Note that the assumption mo > m2 implies that
 &o > 0"2- Then, as in the previous section, the rate of convergence in an m-th root
 sense of the corresponding Padé approximants can be given in terms of an extremal
 probability measure j5, supported on [0, 1], as a solution of an equilibrium problem
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 in potential theory. Here, the measure is characterized by the following variât ional
 conditions:

 (4.4) 2a2UJ1(x) + (<T0 - (t2)Us°{x) >W, xe [0, 1],
 (4.5) 2a2U^(x) + ((j0 - a2)Us°(x) = W, xE supplì).
 Then, it can be proved, in the same way as in the previous section, that

 (4.6) lim -'og'Rm(z)'=a2U^(z)-Wì zGC'[0,1],
 m- »oo 777,

 and that the error function (g2 - 6^) (s), s = 1/z, satisfies for z G C ' [0, 1],

 (4.7) lim - log '{g2 - ern)(s)' = 2a2U*(z) + (<t0 - ct2)USq(z) - W.
 m-too Til

 4.1. Diagonal Hermite- Padé approximants. Here, as explained at the begin-
 ning of the section, we study a sequence of approximants of type n = (no,ni,ri2)
 such that the ratios in (3.1) satisfy po > 2p' = 2p2 > 0. We compare these approx-
 imants to Padé approximants of type m = (no, -1, ni + n2 + 1) and show that the
 two kinds of approximants behave differently near the point 1, which is the point of
 special interest regarding the Gibbs phenomenon. For our conclusion to hold, the
 type of the Padé approximants is not important, and we could have chosen different
 types, as long as the limits ero > cr2 remain positive. Note that, with our choice of
 degrees, we have a0 = p0 > 0 and a2 = p' + p2 = 2pi > 0.

 Proposition 4.1. Assume that the hypotheses of Theorem 3.1 are satisfied and that
 the degrees of the Hermite-Padé and Padé approximants Ufi and &rn are chosen as
 above. Then,

 (4.8) lim lim '(g2 - Uñ)(z)'^n < 1, lim lim '(g2 - Qrn)(z)'^m = 1.
 z- >1 n-^00 z-ïl m- >oo

 1*1 = 1,2/1 |*| = W1

 Consequently, there exists a neighborhood of 1 in C' (0, 1) in which the Hermite-
 Padé approximants achieve a rate of convergence which is better than the rate of
 the Padé approximants.

 Proof. According to Theorem 3.1, the rate of convergence of the Hermite-Padé
 approximants is given by (3.2) where the right-hand side can be decomposed as

 (4.9) (2PlU"(x) - 2PlU»(x) -w)-(W- 4PlU»(x) + PlU»{x) - (p0 - Pi)Uô° (x)).

 The variational conditions on [c, d] imply that the measure v is the balayage of ¡i
 on [c, d] , and also that

 w = 2p1 J #cXM](C °°W(O
 and

 (4.10) 2PlU"(z) - 2PlU»(z) -w = -2PlJg^lCtdi(Ç,z)dv(Q, zeC' [c,d],

 where #c'[c,d] (C> x) denotes the Green function of the unbounded domain C ' [c, d';
 see [24, Chapter II, Sections 4 and 5] for details. Since the Green function is positive
 in the complement of [c,d', we deduce from (4.10) that the first term in (4.9) is
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 negative outside [c, d], and, in particular, in a neighborhood of 1. Next, the measure
 [x must also satisfy variational conditions on [0, 1], namely

 (4.11) 4pi^(x) - PlU"{x) + (p0 - Pi)U*°(x) >W, z G [0, 1],
 (4.12) 4/>! [/"(*) - PlU"{x) + (p0 - Pi)USo(x) = W, xe supp(/i).

 Let us prove that the point 1 belongs to supp(/x). Assume this is not the case
 and that a = max(supp(/x)) < 1. Then, denoting by F(x) the expression in the
 left-hand sides of (4.11)-(4.12), we get, for x G (a, 1],

 _„ , A f1 dfi{t) fddv(t) , ,1

 If [c,d] lies on the right of [0, 1], then all terms are negative, while, if [c,d] lies on
 the left of [0, 1], then the second term becomes positive but the sum of the first two
 terms remains negative. In both cases, we conclude that the derivative is negative
 on (a, 1], which contradicts the facts that F (a) = W and F(l) > W. Hence,
 1 G supp(/x) and F(l) = W which implies that the second term in (4.9) vanishes
 at 1. Consequently, we obtain that the rate of convergence of the Hermite-Padé
 approximants remains geometric in a neighborhood of 1.

 For the Padé approximants, according to (4.4)-(4.5), the rate of convergence
 depends on the measure jS satisfying the variational conditions

 (4.13) 4PlUt(x) + (Po-2Pl)U6°(x)>W, *G[0,l],
 (4.14) 4piE/*(x) + (po - 2Pi)Uô°(x) = W, xe supp(£),

 where W is some real constant. This extremal problem also appears in the study
 of the incomplete polynomials of Lorentz; see [24, Chapter IV, Example 1.16] for
 details. In particular, it is known that

 supp£=[02,l] withff=^|^. + 2pi Po + 2pi

 Then, according to (4.7), the rate of convergence is given by

 (4.15) lim - log | (sa - ©m)(s)| - 4p!^(z) + (p0 - 2Pl)Us°(z) - W.
 m- »-OO Til

 From (4.14) evaluated at x = 1 and from the continuity principle for potentials, we
 obtain in (4.15) a rate which tends to zero as z tends to 1. This finishes the proof
 of the proposition. D

 4.2. Linear Hermite-Padé approximants (n2 = 0). Let us now consider linear
 Hermite-Padé approximants, that is without denominators, of type ñ - (no,ni,O),
 with po > pi > 0, corresponding to the approximants studied by Eckhoff; see
 [9, 10, 11]. We compare these approximants with Padé approximants of type m =
 (no,-l,ni -hi).

 Proposition 4.2. Assume that the hypotheses of Theorem 3.1 are satisfied and
 that the degrees of the linear Hermite-Padé approximants lift and of the Padé ap-
 proximants Qrh are chosen as above. Then, the same conclusions as in Proposition
 4.1, in particular (4.8), hold true.
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 Proof. By adapting the proofs of Lemmas 3.2, 3.3 and Theorem 3.1, one may check
 that, in the present case, there is only one measure [i that governs the convergence
 of the Hermite-Padé approximants, which must satisfy the variational conditions

 (4.16) 2p1U»(x) + (po-pi)U6°(x)>Wì a: e [0,1],
 (4.17) 2PlU»(x) + (po - Pi)UÔ0(x) = W, xe supp(/x),
 for some real constant W. This extremal problem is of the same type as the one in
 (4.13)-(4.14). Here, we have

 (4.18) supp/x = [<92, 1] with 6 = Po ~ Pl .
 Po + Pi

 Then, Theorem 3.1 tells us that the rate of convergence of the Hermite-Padé ap-
 proximants is given by

 lim - log |(02 -II*) (a) I
 n-*oo fi

 = p1Ull(z) + poUSo(z)-W-w
 = (2PlU»(z) + (po - Pi)Us°(z) -W)- pi(U»{z) - Us°(z) + w),

 where n = no + ni, s = 1/z and

 (4.19) w= inf (-UIA(x)-'-USo(x)).
 xe[c,d]

 In view of (4.17) and (4.18), to derive the inequality in (4.8), it is sufficient to show
 that

 (4.20) U^(l)-Uoo(l) + w>0.
 From the value of the constant w in (4.19), we rewrite inequality (4.20) as

 inf (-U»(x) + Us°(x)) > -[/"(I) + USo(l).
 xe[c4]

 The function -UtÀ(z)-'-UÔ0(z) is superharmonic in C'supp/¿ (note that it vanishes
 at infinity). Hence by the minimum principle for superharmonic functions, we get

 inf (-U^(x) + Uôo(x)) > inf (-17» (x) + U6°{x)).
 xe[c,d] xGsupp/x

 On supp(/x), we have by (4.17) that

 2pi 2pi

 so that the minimum of -U^(x) + Us°(x) on supp/x = [02,1] is attained at 1,
 whence

 inf {-U^ix) + U6o(x)) > -U»(l) + £/*°(l),
 xG[c,d]

 which proves our contention.
 Next, observe that the convergence of the Padé approximants is governed by the

 same extremal problem as (4.16)-(4.17). Indeed, if we set a0 = po and (72 = p' in
 (4.4)-(4.5), we get the variational conditions (4.16)-(4.17). Hence the measure 'x
 also appears in the rate of convergence of the Padé approximants which, according
 to (4.7), is given by

 (4.21) Jim^ 1 log | (ft, - eA)(s)' = 2PlU»(z) + (p0 - Pi)Us°{z) - W.
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 Then, the equality in (4.8) follows from (4.17) and the fact that 1 G supp(¿¿); see
 (4.18) (note that (4.17) implies that the potential U^ is continuous when restricted
 to its support so that, by the principle of continuity for potentials, it is also con-
 tinuous there and considered as a function on C). D

 4.3. Hermite-Padé approximants with fixed denominator degree. We now
 consider sequences of approximants 11^ of type n = (no, ni, n') such that the degree
 no tends to infinity while u' remains constant. Hence, here we have po = 1,
 p1 = p2 = 0. We estimate the error function corresponding to 11^ and compare these
 Hermite-Padé approximants with Padé approximants of type m = (n0, - 1, 2ni + 1)
 in the vicinity of 1.

 In the sequel we shall use the following notations. We denote by Pn (x), n >
 0, the orthonormal polynomial of degree n on [0,1], satisfying the orthogonality
 relations

 F pW(x)pW(x)xPdx = 6ntm,
 Jo

 with respect to the Jacobi type weight x&. We also set o4 > 0 for its leading coef-
 ficient, 7n for its smallest zero, and pii (x) = Pn , (x)/ai for the corresponding
 monic polynomial.

 Then, the following proposition holds true.

 Proposition 4.3. Assume that the degrees of the Hermite-Padé and Padé approx-
 imants are chosen as above, that the measure dr(y) in the definition (2.5) of the
 function u(x) is regular and that its support lies on the negative real axis, that is,
 [c,d] C (-oo,0). Let s = '/z on the unit circle, with 'z - 1| < 1/2. Then, for n0
 sufficiently large so that

 (4.22) C < (n0 - 2ni - 2)(1 - Re(^)),
 we have

 (4-23) Kite - Uñ)(s)' < C|2~1|2ni 2,
 ^m + l 'z)

 and

 where C, C and C are some constants that depend only on n' .

 Remark. It can be checked that P^+T1'^^1) = '/n0 + 2nx + 2. Hence, for z
 fixed near 1, the upper bound in (4.23) is of order O{tïq1) as n0 tends to infin-
 ity. Inequality (4.24) shows that, for z sufficiently close to 1, the Hermite-Padé
 approximants do somewhat better than the Padé ones.

 For the proof, we need two lemmas. The first one is a classical result from
 Markov; see [27, Theorem 6.12.2 p. 116].

 Lemma 4.4. Denote by Xk and Xk the zeros in increasing order of the orthogonal
 polynomials of degree n with respect to the measures d/i and w{x)d¡i where w(x) is
 a positive continuous weight, increasing on the support of d'i. Then,

 xk<xk, fe = l,...,n.
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 The second lemma gives a lower bound for the smallest zero of the Jacobi type

 polynomial Pn (x).

 Lemma 4.5. There exists a constant Cn depending only on n such that for any ß
 larger than 1, say, it holds that

 (4.25) 7^>1-^.
 Proof. For the smallest zero *jn of the usual Jacobi polynomial Pn (x) on
 [-1,1], it is known that

 lim/?(l-7ÍOl/3)) = 2£n,
 ß- >OO

 where £n denotes the largest zero of the Laguerre polynomial Ln(x); see [27,
 Formula 6.71.11 p. 144]. Hence, (4.25) follows from the fact that ß(l - ^nß)) is
 a positive continuous function of ß on [l,oo) and the fact that 7n = (7n +
 l)/2. D

 We are now in a position to prove Proposition 4.3.

 Proof of Proposition 4.3. First we establish a lower bound for the difference be-
 tween the function g2 and its Padé approximants 6^. From (4.1)-(4.3), we know
 that, for s = 1/z,

 (92-Qrn)(s) =

 where the monic polynomial Bm of degree 2ni + 1 is orthogonal with respect to
 the weight xn°~2ni~1u(x) on [0,1]. By assumption, 'z - 1| < 1/2 implies that
 maxt6[0)i] 'z - 1' = 1, and thus,

 (4.26) '(g2 - &^(s)' > -^íL /' x^-2^-1B2rn(x)u(x)dx.

 Next, it is easily checked from Lemma 4.5, that if no satisfies (4.22) with C =

 C2711+I5 then all zeros of P^n^711 {x) are larger than Re(¿). In the sequel, we
 assume that no is chosen so that the previous inequality is satisfied. On the other
 hand, in view of the definition (2.5), the function u(x) (resp. xu(x)) is decreasing
 (resp. increasing) on [0, 1], hence we know from Lemma 4.4 that the zeros of Bm(x)

 lie to the right of those of P2(^+ini"2)(a?) and to the left of those of P2(£+?ni~1)(a;).
 Consequently,

 (4-27) 'Bm(z)' < lifcf1-1^)!.
 Since Bm(x) is of degree 2n' + 1, orthogonal with respect to xn°~2"1~1w(a;), the
 integral in (4.26) can be written as

 (4.28) min / xn°-2ni-xp2{x)u{x)dx
 p(x)=x2"i+1+- Jo

 >«(1) min / xn°-2ni-ïp2(x)dx

 (4.29) =«(i)/(«&ri"i))2-
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 Hence, together with (4.26) and (4.27), we get

 (4.30) |(,2-eA)(s)|>- ÜEfhííl) .
 n(nO- 2ni - 1) / '
 ^m+i 'z)'

 Let us now turn to an upper bound for the difference (g2 - Uft)(s). From (3.3) and
 (3.7), we have

 (4.31) (92 - n.)(.) - „.w|¿(,WiW jf «--«.w^*.
 whence

 |(g2-nfi)(S)|< 'im(z)Bn(z)Hn(z)' ^ Jo fxn°-^Hl{x) ^ Hn(x) dx. 'im(z)Bn(z)Hn(z)' Jo Hn(x)

 Since Hn(x) is a monic orthogonal polynomial of degree 2ni + 1 with respect to the
 weight xn°-ni'Cn(x)/Hn(x)', we get by an argument similar to (4.28)-(4.29) that

 r1 c (x) maxxe[o,ii xUl+1irû
 K (4.32) J Jo / r1 x^-^Hlix) iPr' c (x) dx< - (4.32) K J Jo Hn(x) -

 Furthermore, in view of (3.6), we have, for x e [0, 1],

 (A { ™ } „n1+l^M = J^_ i" Bl{t) Xdrjt) (A { ™ } Hn(x) = Bn(x)Jc 'Hn(t)' x-f
 Since Bn(x) is a polynomial of degree n' with all its zeros in (c,d), the ratio
 xni/Bn(x) is positive increasing, and the same holds true for the integral as a
 function of x. Hence, the above expression is increasing on [0, 1], from which we
 deduce together with (4.31) and (4.32) that

 (AM (4-34) U ii92 - Uñ){s)i TTVÌK

 (AM (4-34) U ii92 - TTVÌK Uñ){s)i -

 In the last inequality, we have also used Lemma 4.4 to ensure that |i/n(z)| >

 Ip^"2/11"1^)!. Indeed, since (4.33) is increasing on [0,1], the zeros of Hn{z) lie
 to the right of the zeros of p^i+i™1 (2)- Moreover, by the assumption (4.22) on
 no, we know that Ke(z) is less than all of these zeros.

 For the numerator in (4.34), we know from (3.6) that

 Let us consider the following measure on [c, d] ,

 dr(t) 'Hn(t)' dr(t)
 (_t)2n1 + l (_t)2n1 + l 1^(^)1'

 and denote by Q^1+1'x) (resp. qn?1+1'x)) the associated orthonormal (resp.
 monic orthogonal) polynomial of degree n'. Since the monic polynomial Bn{x) is
 orthogonal with respect to dr(t)/'Hn(t)' and the ratio |i/n(¿)|/(-¿)2ni+1 is increas-
 ing on [c, d], it follows that the zeros of qn™1 (x) lie to the right of the zeros of
 Bn(x), and consequently,

 |g(2n1 + l)(2)| < iBn{z)l |g(2»1 + l)(1)| < |ßn(l)|.
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 Therefore, from (4.34) and (4.35), we derive that

 1(52-^)^)1

 < ((l-^a^^-^IIm^Q^+^^Q^^Cl)^;,2"1-1)^)!)"1
 (_i)2n1+l

 x max -^ - . ., .
 t€[c,d) 'Hn(t)' . .,

 We know that the above maximum is attained at t = c and that |ifn(c)| >
 |P2n°i+ini (c)l- Moreover, since the zeros of Qruni+ (x) lie in [c, d', we have

 iQi2r+1)wQi2r+1)(i)i > (Qi2r+1)(o))2,
 so that, finally, we obtain the upper bound

 |c|2m + l IPo710"!711"1^)!

 1(92 " n*)(í)l S (I - 4IIM (OS"'«»»))2 'PtJ""M' IÄ;r-"(c)l
 U _ 1 |2ni+l

 (4.36) <

 (1 - d)'Imz' (<?£ni+1)(0)) 2 Ip^0;2"1-^ (z)

 where, in the last inequality, we have used the facts that Ici2711"1"1 < |P2n°+ini~ (c)l

 and that ¡P^+T1^ (z)' < 'z - l|2ni+1 since all zeros of P^+T'^ix) are larger
 than Re(z). Then, (4.23) follows from (4.36) and the fact that

 (4.37) 'z-l' < v^|ImÄ|.
 Combining (4.30) together with (4.36), and using again (4.37), we get (4.24). D

 5. Numerical experiments

 In this section we first compare, in §5.1, the error curves for various Hermite-
 Padé approximants. Subsequently, in §5.2 we describe the numerical procedure to
 solve the extremal problem in logarithmic potential theory displayed in Lemma 3.5.
 Finally, in §5.3 we compare the computed rate of convergence with the n-th root
 behavior predicted by Theorem 3.1.

 5.1. Some examples. We start with practical issues for computing our nonlin-
 ear Hermite-Padé approximant (called singular Fourier-Padé approximant in [8]).
 Given that the first coefficients of a real Fourier series

 oo oo

 fit) = J2 a3 cos0'0 + Y. bi sin(^)

 are supposed to be 27r-periodic, and continuous in (0, 2tt) except for a jump at
 t = 0, we first construct the associated function

 oo

 92 (z) = ^2 g2JZ° ' 92,j = CLj - ibj , fco = 0,
 3=0

 such that f(t) = Re(p2(e¿í)). The function g1(z) = ¿log(l - z) is such that
 Re(#i(e¿í)) has a singularity at t = 0 as f(t). Then f(t) = Re(g2(eit)) is ap-
 proached by Re(n^(eii)) of order n = (no,ni,n2) defined in (2.3). Equating co-
 efficients in (2.2) it only remains to find polynomials p' and p2 with degpj < n3-
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 Figure 1 . Error of different approximants for the Lebesgue mea-
 sure dr(y) = dy on [c, d] = [-2, -.3] using 16 Fourier coefficients.
 One has around the singularity t = 0, from top to bottom, the par-
 tial sum of order 15, the Cesaro and de la Vallée-Poussin means,
 and two nonlinear approximants obtained from Padé approxima-
 tion of type m = (11, -1, 4) and m = (7, -1, 8).

 such that the expansion of pigi + P2#2 at z = 0 does not contain the terms z^ for
 j = no + 1, ...,no + ni + ri2 + 1. This leads to a homogeneous linear system of
 equations with a matrix of the form (Ti, T2), where Tj is a Toeplitz matrix of size
 (ni + ri2 + 1) x (rij + 1), whose elements are the coefficients of gj.

 Though these HP approximants are extremely simple to construct, it is a well-
 known fact that the underlying matrix of coefficients is quite often very ill condi-
 tioned, even for small values of n. Therefore it is necessary to have accurate data,
 and to perform the computation of HP approximants in high precision arithmetic;
 see for instance the discussion in [8, Section 8]. In our case, all Taylor coefficients
 as well as the HP approximants have been computed with the variable precision
 arithmetic package vpa of Mat lab, handling a precision of 100 digits. However, due
 to an underlying approximation of the integrals by numerical quadrature, we were
 only able to evaluate the function / in the interval [0, 2tt] with double precision.
 This explains why the error curves below are effected by finite precision arithmetic
 around the value 10~16.

 We now report on our numerical experiments. The error curves 'f(t) -
 Re(n^(ezt))| drawn in Figure 1 correspond to the theoretical findings and numeri-
 cal experiments of [3], namely we observe that the partial sum of order 15 has an
 error of size > 10~2 (a classical phenomenon for partial Fourier sums of functions
 with jumps), though there is some phase effect which makes the curve oscillating.
 The corresponding Cesaro and de la Vallée Poussin means (i.e., linear acceleration
 schemes) smooth the error curves, but do not lead to an important gain, especially
 around the singularity. In contrast, the errors given by the Padé approximants
 (m = (11,-1,4) and m = (7,-1,8)), which are nonlinear, are much smaller far
 from the singularity t = 0, but still large close to t = 0.
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 Figure 2. Error of different approximants for the Lebesgue mea-
 sure dr(y) = dy on [c, d] = [-2, -.3] using 16 Fourier coefficients.
 In the left-hand plot, one has (beside the same partial sum) four n-
 HP approximants obtained by solving homogeneous systems with
 ni + n2 + 2 = 6 unknowns, namely (around t = 0 from top to
 bottom): the Padé approximant ñ = (10, -1, 5), the linear HP ap-
 proximant ñ = (10,4,0), n = (10,3, 1), and finally the "diagonal"
 approximant ñ = (10,2,2). On the right, we obtain (beside the
 partial sum) homogeneous systems with n' + n2 + 2 = 9 unknowns,
 namely (around t = 0 from top to bottom) ñ = (7,-1,8) (Padé),
 n = (7, 7, 0) (linear HP), n = (7, 5, 2), and n = (7, 4, 3).

 In Figure 2 we have drawn the corresponding errors for those Hermite-Padé
 approximants using the same number of Fourier coefficients as in Figure 1. One
 observes that, for fixed no+ni +n2 + 2 (the number of required Fourier coefficients),
 it is interesting to choose n' + n2 + 2 as large as possible (the size of the underlying
 system) since, while stepping from the left-hand to the right-hand plot of Figure 2,
 one gains each time one or two digits. For approximants in the same plot (where
 each time we solve systems of equal size), one obtains more or less the same precision
 far from the singularity. More precisely, the linear HP approximants (n2 = 0) are
 about as good as the Padé approximants {n' = -1), but the error is the smallest
 in the diagonal case n' « n2. Note that the error for n = (7,4,3) is affected by
 finite precision arithmetic.

 However, close to the singularity, the picture is totally different from Figure 1. By
 stepping from Padé to linear HP approximants, which are adapted to the singularity,
 we gain about four digits, in accordance with Proposition 4.2. By going to nearly
 diagonal approximants we gain another 3 or 4 digits, as predicted by Proposition 4.1.
 Now, the error is quite small on the whole interval. The numerical results presented
 in Figure 2 are in accordance with those in [8, Figure 8.1 and Figure 8.3], though,
 there, the question of how to choose the degrees was not addressed.

 In [3], approximants in a row of the Padé table, n' = -1 and n2 fixed, n0 - )• oo,
 were discussed. Rates of convergence of magnitude 0(n¿~2n2) as no -^ oo were
 established for some particular model problems, and it was shown that the rate
 does not change if one modifies / by adding a sufficiently differentiate function, a
 fact which was shown to be wrong for diagonal Padé approximants. In relation with
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 Figure 3. Error of different approximants for the Lebesgue mea-
 sure dr(y) = dy on [c, d] = [-2, -.3] using 14 Fourier coefficients
 on the left (no = 6), and 22 on the right (no = 14). Around the
 singularity t = 0, from top to bottom, one has the partial sum of
 order no + 7, the Padé approximants n = (n0, -1,7), the linear HP
 approximants n = (no, 6,0) and the diagonal HP approximants
 n = (no,3,3).

 Proposition 4.3, we check the decay of the error for increasing no and fixed ni, n<i.
 As seen in Figure 3, we gain about two digits for each of the three HP approximants
 by stepping from no = 6 to no = 14 for constant ni,n2, requiring 8 more Fourier
 coefficients. This confirms that an increase in no leads to a modest, probably not
 geometric, improvement, as claimed in Proposition 4.3. However, it is remarkable
 (and can be read from the proof of Proposition 4.3) that the rate of convergence
 is strongly influenced by the (not specified) constants occurring in Proposition 4.3.
 The corresponding constant for diagonal HP approximants is much smaller.

 Finally, we show in Figure 4 that the rate of convergence for our model problem
 strongly depends on the choice of the interval [c,d'. The error curves drawn in
 Figure 4 have to be compared with those on the right-hand plot of Figure 3 for
 [c, d] = [-2, -0.3] with the same degrees. As can be seen in Figure 4, for two
 intervals close to each other and t far from the singularity, the Padé approximants
 outperform the other two approximants, but only these latter have an acceptable
 behavior around the singularity.

 5.2. Numerical solution of a vector equilibrium problem in logarithmic
 potential theory. In this section, we discuss in more detail general vector equilib-
 rium problems, of which the problem appearing in Lemma 3.5 is a particular case.
 We also explain how we solve it numerically.

 To get a feeling of the vector equilibrium problem, we will try in the sequel to
 display an electrostatic interpretation of the associated variational conditions, such
 as (3.8)-(3.11) and (4.4)-(4.5) that correspond respectively to the Hermite-Padé
 and Padé approximants.

 Let M(T) be the set of probability measures with support in a given compact set
 E. Let Ei, ..., EN c R be disjoint compact sets (in our case they are real intervals),
 then we write simply M for the set of vector measures ß = (/¿i, ..., /j,n) with jj,j G
 MÇEj). Let 7i,...,7iv > 0, and let A = (cij^) G RNxN be a given symmetric
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 Figure 4. Error of different approximants for the Lebesgue mea-
 sure dr(y) = dy on [c,d] = [-10,0.05] (left), and [c, d] =
 [1.05, 10.05] (right) using 22 Fourier coefficients. Around the sin-
 gularity t = 0, from top to bottom, one has the partial sum of
 order 21, the Padé approximants n = (13,-1,7), the linear HP
 approximants n = (14,6,0) and the diagonal HP approximants
 n = (14,3,3).

 positive semidefinite matrix, the so-called matrix of interactions. Furthermore, let
 Q = (Qii'-iQn) be the vector of external fields, where the Qj are continuous
 functions on £¿. The mutual energy is defined as

 I(lij^k) := / log ,_ . d/jLj(x)d^k(y)i

 and the total energy of the vector measure fi is

 n N r

 (5.1) IQ{p) = ^2 aj,kljlkI(v<j,V<k) + 2 ^7¿ J / r Qj dfJLj. j,k=l j=l J

 In the special case N - 1, A = 1, this corresponds to the physical energy of the
 positive charge 71/ii on £1 in the external field Qi. In our case, the external field
 Qi corresponds to the potential Us° supported at the origin. For N = 2, the special
 cases

 describe a condenser (£i,£2), with £1 a plate carrying a positive charge, and £2
 a plate carrying either a positive or negative charge. The minimum of Iq(P) for
 fi e M corresponds to the steady state of the condenser formed by the different
 plates £j in the external fields Qj. In other words, we are left with a problem of
 electrostatics, and consequently, one can gain a feeling of the solution by remem-
 bering that charges of the same sign are repelling, while charges of different signs
 are attracting. However, in the case of a Nikishin system of two functions, the
 interaction matrix is
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 which has a more complicated physical meaning since, here, the interaction between
 charges on the same plate is twice the interaction between charges on different
 plates.

 Prom a more mathematical point of view, the extremal problem of minimizing
 the total energy Iq(P) over the set of measures M was first investigated in [13, 14]
 for matrices A of a special form and without an external field; for the general case
 see also [12, 15, 22] or the historical remarks in [24, Chapter VIII. 8]. It is shown,
 e.g., in [12, Theorem 4 (1)] that the extremal measure exists and is unique. Note
 that the components fij of this minimizer may not fill the whole plate £¿, i.e.
 supp(/ij) C Ej. For instance, this may happen if the charges are pushed away by a
 strong external field. Furthermore, as shown in [12, Theorem 4 (2)], the minimizer is
 uniquely characterized by the variational conditions, or Euler-Lagrange equations,

 (5.3) uM^^JTa^u^ + Q^i ;$ ^-pp^).
 for j = 1,2, ...,7V, and for suitable real constants Wi,...,Wjv. Physically, this
 means that the electric potential Uj (ß) is constant on the support of the charge
 7j/Xj, and larger than this constant elsewhere (otherwise we could decay the energy
 by distributing differently the charge ßj).

 We now come to the numerical resolution of the vector equilibrium problem. In
 order to compute our extremal measure, we have to discretize our set M of measures
 according to a finite number of free variables. A natural idea would be to restrict
 ourselves to vectors of discrete measures ß. However, in this case, the exponential
 of the vector potential Uj (ß) boils down to a ratio of polynomials taken at some
 power, and the related max-min problem of [22, Chapter 5.4, Problem C] becomes
 a coupled extremal problem for polynomials, similar to the one corresponding to
 Nikishin systems. Hence, this approach would bring us back to the original problem.
 Thus, here, we have instead considered the subset Mo of vector measures with
 piece wise linear weights: we first choose a discretization

 and ask ¡ij to be a linear function on each subinterval [£j,fc,fy,fc+i]- This gives us
 N(K + 1) parameters Xjik > 0 in the £?-spline representation

 K ( ^7J7 if fc < ^ and x G [tjik, tj,k+1],
 -g-(x) = Yixj,kBj,k(x), Bjtk(x) = l ¿-^-^ iik>O^ndxe[tj,k-1,tj,k],

 •?=0 ^ 0 otherwise,
 with total mass

 (5.4) J ¡dN = 1 = X)(^ + gM+i)ti>fc+12"ti>fc- J k=o

 The set of tj^ with Xj¿ > 0 for j = 0, 1, ...,if , could then be considered as the
 discrete support of ¡ij, though tj¿ G supp(/Xj) if Xj^-i + Xj^ + xj,k+i > 0.
 A collocation approach, as used for instance in [17], consists of imposing the

 equilibrium conditions only pointwise for all tj^ G £¿, and solving the coupled
 system of the N linear equations (5.4) together with the equations

 (5.5) xjjk[Uj(ß){tjik) - Wj) = 0, xjik > 0, Uj(ß)(tjik) - Wj > 0,
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 for the unknowns Wj and x^k where j = 1, ..., N and k = 0, 1, ..., K. Note that the
 first equations in (5.5) are quadratic in the variables Xjik. It is not clear a priori
 that this system has a simple solution.
 In the present paper we prefer to minimize directly the total energy Iq(P) over

 Mo , the set of vector measures with piecewise linear densities. It is not difficult to
 check1 that Iq is strictly convex over Mo- Writing the set of x^k as a (suitably
 arranged) vector x e RN(K+lS> and the N equality constraints of (5.4) as Bx = 6,
 we are left with the strictly convex quadratic minimization problem with linear
 constraints

 (5.6) min{xTHx + hTx :x>0,Bx = b}
 having a unique minimizer. The matrix üf , and the vector ft, respectively, contain
 the entries

 a3,j'1jlj' J 'og1--Bjìk{x)Bj>ìkf{y)dxdy and 2^j I Qj(x)Bjik(x)dx,

 respectively, for which explicit formulas are available, which have been implemented
 in our code. Notice that, with the size of each subinterval tending to zero, the sets
 of piecewise linear densities become dense in the set of all probability measures.
 Hence, with a sufficiently large K, the minimum of our discrete problem should
 approach that of our continuous problem. Writing down the Karush-Kuhn- Tucker
 characterization of our discrete problem, a short calculation shows that there exists
 constants Wi, ..., Wn such that, for all j, &,

 xjìkXjìk = 0, xjìk > 0, Xjtk > 0, Xjik = f[Uaiß){x) - Wj]Bjìk(x)dx.
 Since

 j[Uj{ß){x) - Wj]Bjtk(x)dx = [Uj(mi,k) - Wj} J Bjtk(x)dx,
 for some £jik G [tj^-i^tj^+i], we may therefore conclude that the equilibrium
 conditions (5.3) are true in "local means", and pointwise at certain £jik, as for the
 collocation methods. However, this does not exclude that the computed vector
 potential Uj(ß) does oscillate, which typically happens at the endpoints of the
 supports. There are different methods to overcome such oscillations: first, one
 could consider a grid refinement at the endpoints of the sets £¿ since it is known in
 the continuous case that at an endpoint a of Ej belonging to supp(/x¿), the weight
 typically behaves like 'x - a'~1/2. Second, it could be interesting to implement
 an adaptative grid refinement around an endpoint a of supp(/Xj) different from an
 endpoint of Ej, so as to match, as well as possible, a with one of the t^k. Since,
 here, the weight typically behaves like 'x - a|1//2, we did not implement so far such
 an adaptative grid refinement. Actually, it is not clear how to measure the deviation
 of the optimal piecewise linear measure from the optimal one in A4, and we will
 not make any further theoretical analysis in this respect.

 1We first notice that all measures in Alo have finite energy, which allows us to extend the
 definition of Iq by linearity to the difference of measures from .Mo- By convexity of Alo, we
 obtain for distinct ßi,p2 G Mo and t € (0,1) that tIQ (/¿i) + (l -t)IQ(p2) -IqWi + (1 -t)p2) =
 t(l - t)Io(pi - p2)- The strict positivity of the last term follows by considering the Cholesky
 decomposition CTC = diagli, ...,7jv)^4 diagli, ...,7jv) and V = C(pi - P2) = (^1, •••, ^jv), since
 then Io(p'-p2) = ^Zj l{vj,Vj), where at least one term in the sum is positive by [24, Lemma 1.1.8].
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 Figure 5. Extremal measure and vector potential for N = 1,
 Ei = [0,1], and A = 1: 71 = 2n2 = 14, no external field (left),
 7l = 2n2 = 10, and the external field Qx = (no-n2 + l)Uô° = 6UÔ°
 pushes the extremal measure to the right of the interval (right).

 Let us now present several numerical experiments, where we draw the weight of
 the discrete extremal measure jjfij (top) and the corresponding vector potential
 Uj(fi) (bottom). In each case, one observes, as required by (5.3), that the potential
 is approximately constant on supp(/Xj) and larger than this constant elsewhere in
 Ej (beside some minor oscillations at the endpoints). In our experiments we have
 chosen K = 120, with a grid refinement at the endpoints, obtained by shifting
 Chebyshev points (see the small vertical ticks in the bottom plot), but with no
 further adaptative grid refinement. The discrete convex quadratic program (5.6)
 was solved using the level set algorithm quadprog of Matlab with no particular
 choice of a first iterate, requiring in general no more than a hundred iterations.

 Example 5.1. In our first set of experiments, we have chosen N = 1 with the
 interaction matrix A - 1 and E = [0,1], together with the mass 71 = 2n2 and
 the external field Q' = (n0 - n2 + 1)U6° corresponding (up to normalization with
 n = n0 + m + n2) to the case ñ = (n0, - 1, n2) of (n0, n2) Padé approximants for
 Markov functions with support in [0,1], compare with (4.4)-(4.5). On the left of
 Figure 5, the external field Qi = 0 allows us to recover numerically the equilibrium
 measure on [0, 1] with weight 7i/(tt^x(1 - x)). The external field in the right-hand
 plot of Figure 5 represents a positive charge of mass 6 at the origin, which pushes
 the free positive charge of mass 10 to the right. As mentioned before, notice the
 small oscillation of the vector potential around the left endpoint of supp(/ii), as
 well as the behavior of the weight around the endpoint.

 Example 5.2. We now look at a vector equilibrium problem with N = 2 and
 the Nikishin interaction matrix (5.2), together with Ei = [0, 1], 71 = n' + n2 + 1,
 Qi = (no-ni + l)^o,andE2 = [c,d] on the left of E 1, 72 = n2, Q2 = (n1-n2)Us°
 as required (up to normalization with n = no + n' + n2) for the Hermite-Padé
 approximants of a Nikishin system; compare with (3.8)-(3.11).

 In Figure 6, for n = (10, 5, 5), we observe that the positive charge 11/ii on [0, 1]
 is pushed to the right by the external field Q' given by a positive point charge of
 mass 6 at the origin though it is also attracted weakly by the negative charge 5/x2
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 Figure 6. Extremal measure and vector potential for N = 2 and
 the data of Example 5.2, [c, d] = [-2, -0.3] and n = (10, 5, 5), with
 a trivial external field Q2 = 0.

 on the left. In contrast, the negative charge 5//2 lives on the whole interval T,2
 since, here, there is no external field, though it is weakly attracted by the positive
 mass 11/xi.

 In Figure 7, we display a more difficult problem with two plates Si = [0, 1] and
 £2 = [-2,-0.05] closer to each other, and n = (15,9,2), that is, there is also a
 nontrivial external field Q2 = 7US° corresponding to a negative charge at the origin.
 Hence 2'x2 is pushed by Q2 and attracted weakly by 12/xi. Finally, we find that
 supp(//2) Ç £2- Notice that the vector potential is essentially constant on both
 supports as required, except for some oscillation at the endpoints.

 5.3. Theoretical versus computed rate of convergence. In this last section,
 we compare the computed error curves

 (5.7) |/(i) - Replie«))! = | Re((<,2 - nñ)(e¿t))|,
 with the theoretical rates obtained in Theorem 3.1. Several remarks are in order.

 First, the actual error curve is oscillating. This is due to the power of z which
 factors the error g2 - Un- Now, Theorem 3.1 describes the absolute value of (g2 -
 n^)(e2t), where this factor does not play a role. Hence, it is an upper smooth
 envelope of our actual error curve which should be compared with the rate predicted
 by logarithmic potential theory.
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 Figure 7. Extremal measure and vector potential for N = 2 and
 the data of Example 5.2, [c,d] = [-2,-0.05], n = (15,9,2), non-
 trivial external fields Q' and Q2.

 Second, it turns out that, at least for sufficiently smooth measures r on [c, d], the
 computed and predicted errors not only agree in the weak n-th root sense where
 77, = no + ni + 77,2, but also in the strong sense, meaning that both terms in (3.2)
 agree even after a multiplication by the total degree n. Hence, we actually depict
 in the next figure the quantity

 exp(((m + n2 + 1)EP + n2Uv + (n0 - n2 + l)USo)(eu) - w - w}.

 The argument of the previous exponential corresponds to the quantity U'(p) +
 U2(P) - W' - W2 of subsection 5.2 where we set, as in Example 5.2,

 Ei = [0, 1], 7i = m + n2 + 1, Q1 = (n0 - m + l)Us°,
 £2 = M, 72 = n2, Q2 = (ni - n2)C/áo.

 We present a series of numerical experiments in Figure 8. For other data, the
 findings are similar, as long as the error (5.7) does not suffer from finite preci-
 sion arithmetic. We can observe from the curves in Figure 8 that the theoretical
 convergence rates are very close to the computed errors. The fact that the the-
 oretical asymptotic estimate describes accurately the actual rate, even for small
 degrees, is less surprising for the Padé approximant of type n = (10, -1, 5) because
 g2 is a Markov function associated to a smooth density. In this respect, we may
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 Figure 8. Error of different approximants for the Lebesgue mea-
 sure dr(y) - dy on [c,d' = [-2, -.3] using 16 Fourier coeffi-
 cients. In the left-hand plot, one has beside the partial sum,
 four HP approximants, namely, from top to bottom: the Padé
 approximant ñ = (10,-1,5), the linear HP approximant n =
 (10,4,0), ñ = (10,3,1), and finally the "diagonal" approximant
 n = (10,2,2). On the right, the corresponding theoretical rate
 exp(J7i(/I)(e¿í) + U2(p){eit) -Wi~ W2), predicted by logarithmic
 potential theory, is drawn.

 refer, for instance, to the findings on strong asymptotics with varying weights ob-
 tained in [26]. To our knowledge, there is no similar theory for strong asymptotics
 of (off-diagonal) Hermit e-Padé approximants, for the corresponding second type
 approximants, though [1] gives results in that direction.
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