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Abstract We prove existence and uniqueness of a solution to the problem of mini-
mizing the logarithmic energy of vector potentials associated to a d-tuple of positive
measures supported on closed subsets of the complex plane. The assumptions we
make on the interaction matrix are weaker than the usual ones, and we also let the
masses of the measures vary in a compact subset of R

d+. The solution is characterized
in terms of variational inequalities. Finally, we review a few examples taken from the
recent literature that are related to our results.
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1 Introduction

Vector equilibrium problems in logarithmic potential theory have been studied for a
few decades and have been shown to be crucial in the investigation of many problems
in approximation theory, like those involving multiple orthogonal polynomials (e.g.,
Hermite-Padé approximants, in particular Angelesco and Nikishin systems). This ap-
proach has been very fruitful in the analysis of numerous questions in numerical and
applied mathematics, e.g., the eigenvalue distribution of Toeplitz matrices, models
in random matrix theory, determinantal processes or nonintersecting random paths.
Vector equilibrium problems were first considered in [14, 15]. The book [20] contains
a nice introduction to the subject. Equilibrium problems on general locally compact
spaces are studied in [21, 28, 29].

We first introduce some notation. Let μ be a (positive) Borel measure with closed
support in C, and set

Uμ(z) :=
∫

log
1

|z − x| dμ(x) (1.1)

for its logarithmic potential. Assume that μ has not too much mass at infinity (in
a sense to be specified later), so that the above integral converges for |z − x| large.
Then, the logarithmic potential is a superharmonic function from C to (−∞,∞], and
the energy of μ is defined as

I (μ) :=
∫∫

log
1

|x − y| dμ(x)dμ(y) =
∫

Uμ(x)dμ(x) > −∞.

For a subset Σ of C, let

M(Σ) := {μ Borel measure, of finite mass, supported in Σ, and I (μ) < ∞},
(1.2)

and

Mt (Σ) := {μ ∈ M(Σ),‖μ‖ = t
}
,

where ‖μ‖ denotes the total mass of the measure μ. For two measures μ,ν ∈ M(Σ),
we define the so-called mutual energy

I (μ, ν) :=
∫∫

log
1

|x − y|dμ(x)dν(y). (1.3)

Again, if μ and ν do not have too much mass at infinity, this integral converges for
|x − y| large, and is well defined in (−∞,+∞].

Throughout, we let

Δ = (Δ1, . . . ,Δd),

d⋃
i=1

Δi � C, (1.4)

be a d-tuple of closed nonpolar sets of C, i.e., of positive logarithmic capacities

cap(Δi) > 0, i = 1, . . . , d,
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and we define the Cartesian products

Md(Δ) := M(Δ1) × · · · × M(Δd), Md
1(Δ) := M1(Δ1) × · · · × M1(Δd).

Assume for the moment that the Δi , i = 1, . . . , d , are compact sets. For two d-tuples
of measures

μ = (μ1, . . . ,μd)t ∈ Md(Δ), ν = (ν1, . . . , νd)t ∈ Md(Δ),

we define the mutual energy of μ and ν as

J (μ, ν) :=
d∑

j=1

I (μj , νj ),

which is finite. Actually, the compactness of the Δi implies that the mutual energy of
two measures of finite energies is also finite.

Let C = (ci,j ) be a real symmetric positive definite matrix of order d such that

∀(i, j), if Δi ∩ Δj �= ∅ then ci,j ≥ 0. (1.5)

The energy of μ with respect to the interaction matrix C is defined as

J (μ) := J (Cμ,μ) =
d∑

i,j=1

ci,j I (μi,μj ).

Note that because of (1.5), J (μ) is always well defined (even if some of the compo-
nents of μ have infinite energies). Now, the extremal problem is the following:

find

J ∗ = inf
{
J (μ), μ ∈ Md

1(Δ)
}
,

and characterize the extremal tuple of measures μ∗ in Md
1(Δ) for which the infi-

mum is attained.

As the sets Δi are assumed to be of positive capacity, a solution μ∗ to this problem,
with J ∗ = J (μ∗) < ∞, exists, and it is unique. The proof of existence is based on
the fact that the mutual energy (1.3) is lower semi-continuous, which implies, to-
gether with (1.5), that μ �→ J (μ) is also lower semi-continuous. Moreover, the map
is strictly convex on the set Md

1(Δ), from which uniqueness follows, see [20, Propo-
sitions 5.4.1 and 5.4.2].

A characterization of the solution can be given via the so-called equilibrium con-
ditions. For that, we introduce the partial potentials

U
μ
i (x) =

d∑
j=1

ci,jU
μj (x), i = 1, . . . , d,
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where the scalar potentials Uμj (x) have been defined in (1.1). Then d-tuple of mea-
sures μ solves the minimization problem if and only if there exist constants wi such
that, for i = 1, . . . , d ,

U
μ
i (x) ≥ wi, quasi-everywhere on Δi, (1.6)

U
μ
i (x) ≤ wi, everywhere on supp(μi), (1.7)

where quasi-everywhere means everywhere up to a set of capacity zero. Proofs of
these results can be found in [20, Chap. 5].

Remark 1.1 For some x ∈ C, it may happen that Uμj (x) = +∞ for several indices j .
However, the partial potential U

μ
i is well defined quasi-everywhere since positive

measures of finite mass and compact support have a finite potential quasi-everywhere,
see [27, Theorem III.16].

Regarding applications, it is also very useful to consider an additional external
field in equilibrium problems. The main reference for the study of equilibrium prob-
lems in the presence of an external field is the book [24].

Let Q = (Qj )j=1,...,d be a vector of lower semi-continuous functions,

Qj : Δj → (−∞,∞], j = 1, . . . , d,

and define the weighted energy of a tuple of measures μ ∈ Md(Δ) in the presence of
the external field Q as

JQ(μ) := J (μ) + 2
d∑

j=1

∫
Qj dμj . (1.8)

For μ ∈ Md(Δ), we have mentioned that J (μ) = J (Cμ,μ) is finite. By lower-
semicontinuity, each Qj is bounded from below on Δj , j = 1, . . . , d . Hence, the
integrals in (1.8) are well defined, and JQ(μ) > −∞. It can also be checked that,
in Md

1(Δ), there exists at least one measure μ with JQ(μ) < ∞, see the proof of
Theorem 1.7(i).

Then, the extremal problem of minimizing the weighted energies

{
JQ(μ), μ ∈ Md

1(Δ)
}
, (1.9)

is solved by a unique d-tuple of measures μ∗ ∈ Md
1(Δ), with JQ(μ∗) < ∞, and it is

characterized by the existence of constants w
Q
i , such that, for i = 1, . . . , d ,

U
μ∗
i (x) + Qi(x) ≥ w

Q
i , quasi-everywhere on Δi, (1.10)

U
μ∗
i (x) + Qi(x) ≤ w

Q
i , everywhere on supp(μi). (1.11)

For a proof in the scalar case d = 1, we refer to [15] and [24, Theorem I.1.3]. The
vector problem with external fields is considered in [15], see also [13].
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In the past few years, generalizations of the above vector equilibrium problems
have appeared repeatedly in the literature. By generalizations, we mean that the as-
sumptions on the interaction matrix or on the masses were relaxed in various ways.
For instance, [3, 4] allow for sets which no longer satisfy the compatibility condition
(1.5), since some Δj are intervals with a common endpoint. In [1–3], interaction ma-
trices are considered which are only positive semidefinite. In these papers, the authors
also minimize J not over the set Md

1(Δ) of tuples of probability measures but over
the set

Md
K(Δ) = {μ = (μ1, . . . ,μd)t ∈ Md(Δ),‖μ‖ = (‖μ1‖, . . . ,‖μd‖)t ∈ K

}
,

where K is a nonempty compact subset of the set R
d+ of d-tuples of nonnegative real

numbers. In addition, in [3, 4, 7, 9, 10, 12, 24, 26] extremal problems with not nec-
essarily compact sets Δj are considered. In the papers [3, 9, 10, 12, 26], a solution
satisfying the extremal properties (1.6)–(1.7) or (1.10)–(1.11) could be exhibited di-
rectly through some algebraic equation, hence settling the problem of existence of a
minimizer.

The goal of this paper is to provide a more systematic approach, by showing ex-
istence, uniqueness, and characterization of the extremal solution for a large class
of generalized equilibrium problems. At this point, the following simple examples
are instructive, since they show that some care has to be taken when weakening the
assumptions of the minimization problem.

Example 1.2 Consider the data

C =
[

1 −1
−1 1

]
, Δ1 = [−1/2,0], Δ2 = [0,1/2],

where C is positive semidefinite, and the problem of finding the minimum J ∗ of the
corresponding energy

J (μ) = I (μ1 − μ2) ≥ 0, μ = (μ1,μ2)
t ∈ M2

1(Δ).

It is known that the same problem on the pair of subsets Δ1,n = [−1/2,−1/n] and
Δ2,n = [1/n,1/2], n ≥ 1, admits the minimal energy J ∗

n with

J ∗
n = 1

cap(Δ1,n,Δ2,n)
= 2πK(2/n)

K ′(2/n)
,

where cap(Δ1,n,Δ2,n) denotes the capacity of the condenser with plates Δ1,n and
Δ2,n. The explicit value given in the second equality, in terms of the complete and
complementary elliptic integrals of the first kind K and K ′, can be found in [19], and
may also be derived from Example II.5.14 in [24, pp. 133–134]. Since

K(k) = π

2
+ O

(
k2), K ′(k) = − logk + O(1), as k → 0,

we obtain, by letting n tend to infinity, that J ∗ = 0. However, this value cannot be
reached by a couple of measures (μ1,μ2) of finite energy since I (μ1 − μ2) = 0
would imply μ1 = μ2, see Lemma 2.1 below.
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More generally, for a rank 1 interaction matrix C = yyt with y ∈ {−1,1}d , our
vector equilibrium problem corresponds to the electrostatics of a condenser with ex-
ternal field, see, e.g., [24, Chap. VIII]. Here one usually assumes disjoint Δj in order
to ensure existence and uniqueness of an extremal tuple of measures, though, as we
will see below, we may somewhat relax this condition.

Next, we present three simple examples where existence of an extremal tuple of
measures holds but not uniqueness.

Example 1.3 Consider the data

C =
[

1 1
1 1

]
, Δ1 = Δ2 = [−1,1],

K = {(x, y) ∈ R
2, x + y = 1, x ≥ 0, y ≥ 0

};
then J (μ1,μ2) = I (μ1 + μ2) is minimal over M2

K(Δ) for any couples (xω[−1,1],
yω[−1,1]), x + y = 1, where ω[−1,1] denotes the equilibrium measure of [−1,1].

Here, one may show that J is convex but not strictly convex over M2
K(Δ). Notice

also that there is even not a unique minimizer over M2
1(Δ).

Example 1.4 Consider the data

C = I2, Δ1 = Δ2 = [−1,1], K = {(x, y) ∈ R
2, x2 +y2 = 1, x ≥ 0, y ≥ 0

}
.

Then,

J (μ1,μ2) = I (μ1) + I (μ2),

which is minimal when both measures μ1 and μ2 are multiples of the equilibrium
measure ω[−1,1] of [−1,1]. Hence, any couple (xω[−1,1], yω[−1,1]) with x2 + y2 = 1
belongs to M2

K(Δ) and gives the minimum value log 2 of the energy J .

For this example, it is not difficult to show that J is strictly convex over M2(Δ),
but the nonuniqueness of the extremal tuple of measures comes from the lack of
convexity of K . The next example shows that even convexity of K does not allow us
to conclude.

Example 1.5 Consider the data

C = I2, Δ1 = Δ2 = [−4,4], K = {(x, y) ∈ R
2, x + y = 1, x ≥ 0, y ≥ 0

};
then J (μ1,μ2) = I (μ1) + I (μ2) is minimal when both measures μ1 and μ2

are multiples of the equilibrium measure ω[−4,4] of [−4,4], and in this case
J (xω[−4,4], yω[−4,4]) = (x2 + y2)I (ω[−4,4]). Since I (ω[−4,4]) = − log(2) < 0, we
get the minimal value − log 2 both for (ω[−4,4],0) and (0,ω[−4,4]) (and J is no longer
convex).
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In this work, we want to extend the aforementioned results about the minimization
of (1.9) to the following situation:

(i) The sets Δi , i = 1, . . . , d , are closed sets of C (instead of compact sets).
(ii) The interaction matrix C ∈ R

d×d , of rank r say, is positive semi-definite (instead
of definite).

(iii) The compatibility condition (1.5) is not necessarily satisfied.
(iv) The minimization of JQ is performed over Md

K(Δ) instead of Md
1(Δ).

To cope with the noncompactness of the sets Δi we need to add to the defining prop-
erties of the set M(Σ), see (1.2), a growth condition at infinity.

Hence, from now on, the set M(Σ) will consist of Borel measures μ of finite
mass, supported on Σ , of finite energy, and such that

∫
log
(
1 + |t |)dμ(t) < ∞. (1.12)

The set of d-tuples of measures Md
K(Δ) is redefined accordingly; i.e., we assume

that condition (1.12) is satisfied componentwise.
For a positive measure μ of finite mass, satisfying (1.12), we have

Uμ(z) ≥ −‖μ‖ log
(
1 + |z|)−

∫
log
(
1 + |t |)dμ(t) > −∞, z ∈ C. (1.13)

The question raised in Remark 1.1 about the well-definedness of partial potentials
can be answered in the same manner since the assertion given there still holds true
for measures in M(Σ), see Lemma 2.3. For two measures μ and ν of finite masses,
satisfying (1.12), we have

I (μ, ν) ≥ −‖μ‖
∫

log
(
1 + |t |)dν(t) − ‖ν‖

∫
log
(
1 + |t |)dμ(t) > −∞,

and in particular I (μ) > −∞. Moreover, denoting by μ̃ the normalized measure
μ/‖μ‖ for a nonzero μ ∈ M(Σ), it is known that the inequality

I (μ̃ − ν̃) ≥ 0, μ, ν ∈ M(Σ),

holds true, see Lemma 2.1. In particular, we have 2I (μ̃, ν̃) ≤ I (μ̃)+ I (̃ν), and since,
by definition of M(Σ), the energies of μ and ν are finite, it then follows that the mu-
tual energy I (μ, ν) is finite as well. As a consequence, for μ ∈ Md

K(Δ), the energy
J (μ) is always well defined in R.

For the external fields, we also need some growth condition at infinity. Through-
out, we assume that Q = (Qj )j is a vector of admissible functions, in the sense1 of
[24, Chap. VIII.1]:

1Compare with the slightly weaker growth condition at infinity given in [24, Definition I.1.1] for scalar
extremal problems.
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Definition 1.6 Let Σ be a closed subset of C of positive capacity. A function
f : Σ → (−∞,∞] is said to be admissible if it satisfies the following three con-
ditions:

(i) f is lower semi-continuous,
(ii) f is finite on a set of positive capacity,

(iii) f (x)/ log |x| → ∞ as |x| → ∞ (in case Σ is unbounded).

In view of the preceding examples, we also have to add assumptions2 linking the
matrix of interaction C to the topology of the sets Δj . For the proof of the existence
of an extremal tuple of measures, we will assume that

∃y ∈ Im(C), ∀(i, j), if dist(Δi,Δj ) = 0, then yiyj > 0, (1.14)

whereas, for uniqueness, we will also impose that, for any subset of indices I ⊂
{1,2, . . . , d}, different from a singleton,

if the columns (Ci)i∈I of C are linearly dependent, then cap

(⋂
i∈I

Δi

)
= 0. (1.15)

Notice that both conditions (1.14) and (1.15) are trivially true for positive definite
interaction matrices C (for condition (1.14), take y = (1, . . . ,1)t ). Such interaction
matrices appear, e.g., when studying the asymptotic behavior of Angelesco or Nik-
ishin systems in approximation theory.

It is instructive to have a closer look at vector equilibrium problems corresponding
to condensers, namely with interaction matrices C = yyt of rank 1, y ∈ {−1,1}d . In
this case, (1.14) is equivalent to (1.5); it tells us that any two plates Δj with charges
of opposite sign have positive distance, and (1.15) requires in addition that any two
plates Δj with charges of the same sign have an intersection of capacity zero. Finally,
notice that condition (1.14) fails to hold for Example 1.2, whereas condition (1.15)
fails to hold for Example 1.3. For the other two examples, conditions (1.14) and (1.15)
hold, indicating that there should be additional restrictions on the set K .

We now state the two main results of our paper. The first result shows, under
assumption (1.14), the existence of a solution to our minimization problem.

Theorem 1.7 Consider some nonempty compact set K ⊂ R
d+, and assume that the

positive semidefinite interaction matrix C satisfies (1.14). Let

J ∗
Q := inf

{
JQ(μ),μ ∈ Md

K(Δ)
}
. (1.16)

Then, the following assertions hold:

(a) J ∗
Q is finite.

(b) There exists a d-tuple of measures μ∗ ∈ Md
K(Δ) such that JQ(μ∗) = J ∗

Q.

2In particular, Example 1.3 tells us that the classical condition (1.5) only ensures strict convexity in case
of invertible interaction matrices.
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Our second result is about uniqueness of a minimizer of the extremal problem
(1.16) and about its characterization by equilibrium conditions, the so-called Euler–
Lagrange inequalities. Here we restrict ourselves to measures μ whose vector of
masses (‖μ1‖, . . . ,‖μd‖) lies in a nonempty compact polyhedron K of R

d+.

Theorem 1.8 Assume that the positive semidefinite interaction matrix C satisfies the
assumptions (1.14) and (1.15), and that the set of masses K consists of a nonempty
compact polyhedron of the form

K = {x ∈ R
d+,Ax = a

}
, (1.17)

with A ∈ R
m×d and a ∈ R

m, where we suppose in addition that

Ker(A) ⊂ Ker(C). (1.18)

Then, the following assertions hold true:

(a) There exists a unique d-tuple of measures μ∗ ∈ Md
K(Δ), of finite energy

JQ(μ∗) < ∞, such that

JQ

(
μ∗)= inf

{
JQ(μ), μ ∈ Md

K(Δ)
}
.

(b) The d-tuple of measures

μ = (μ1, . . . ,μd) ∈ Md
K(Δ)

is the minimizer of JQ over Md
K(Δ) if and only if there exists F ∈ R

m such that, for
i = 1, . . . , d ,

U
μ
i (x) + Qi(x) ≥ (AtF

)
i

quasi-everywhere on Δi, (1.19)

U
μ
i (x) + Qi(x) ≤ (AtF

)
i

μi-almost everywhere on Δi. (1.20)

Remark 1.9 Notice that Theorem 1.8 includes the particular case A = Id of a sin-
gleton K , where we prescribe the mass of all components of our tuple of measures.
Nonsingleton K of the form (1.17) have been considered first in [1–3], where the
authors impose equality in (1.18). From Example 1.5, we learn that in general the
condition (1.18) cannot be dropped for establishing uniqueness.

As said before, in case of invertible C, all our (somehow technical) assumptions are
trivially true for any configuration of sets Δj as in (1.4).

Corollary 1.10 In case of a symmetric positive definite interaction matrix C and
a singleton K = {a}, there exists one and only one minimizer of JQ over Md

K(Δ),
which is characterized by the equilibrium conditions (1.19) and (1.20) for A = Id .

Example 1.11 Let

C =
[

2 −1
−1 2

]
, Δ2 ⊂ Δ1 ⊂ C, K = {(a1, a2)

}⊂ R
2+, a2 ≤ 2a1;
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then, according to (1.19) and (1.20), the couple of measures

μ1 =
(

a1 − a2

2

)
ωΔ1 + a2

2
ωΔ2, μ2 = a2ωΔ2,

minimizes J over Md
K(Δ). As in Example 1.2, we can give an electrostatic inter-

pretation in terms of a condenser with two plates Δ1 and Δ2 of opposite charge.
However, here the Nikishin interaction matrix C translates some di-electric medium
where particles of equal charge have stronger interaction than those of opposite sign.
We observe the somehow surprising fact that there exists a unique electrostatic equi-
librium even if the two plates overlap. Notice that Nikishin systems with touching
intervals Δj have been considered before in the literature without addressing this
issue.

The remainder of the paper is organized as follows. In Sect. 2, we gather several
preliminary results that are needed later. In Sect. 3, we give the proof of Theorem 1.7.
We also derive, under an additional condition, that the components of the solution
have compact supports. In Sect. 4, we give the proof of Theorem 1.8. In Sect. 5, we
review a few examples taken from the literature that are related to our results. Some
open questions are discussed in Sect. 6.

2 Preliminary Results

Let us first recall the important fact that the energy of a signed measure of mass 0 is
nonnegative.

Lemma 2.1 Let μ,ν ∈ M(C) with ‖μ‖ = ‖ν‖. Then

I (μ − ν) ≥ 0,

and I (μ − ν) = 0 if and only if μ = ν.

Proof See [24, Lemma I.1.8] for measures μ,ν with compact support and [7, Theo-
rem 2.5] for the unbounded case, see also [25, Theorem 4.1]. �

We proceed with a few results which are well known when the supports of the
measures are compact, but for which we have not always found references in the
noncompact case. We defer the proofs of these results to the Appendix.

Lemma 2.2 Let μ ∈ M(C). Then μ(E) = 0 for every Borel polar set E.

Proof See [24, Remark I.1.7] for supp(μ) compact, and the Appendix for the general
case. �

Lemma 2.3 Let μ be a positive measure of finite mass, satisfying (1.12). Then, the
potential Uμ(z) can be +∞ only on a Borel set of capacity 0.
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Proof It is well known that the assertion holds true for any super-harmonic function
on C, not identically +∞, see [22, Theorem 3.5.1]. In particular, it holds true for the
potential Uμ(z). �

Throughout, we will use weak convergence of Borel measures. Let (μn)n be a
bounded sequence of Borel measures on C,

‖μn‖ ≤ c < ∞, n ∈ N.

We recall that the sequence μn tends weakly to a measure μ, as n → ∞, if

∫
f dμn →

∫
f dμ, (2.1)

for every bounded, continuous, real-valued function f on C. In the literature, the no-
tion of vague convergence is also used, where it is assumed that (2.1) holds true only
for continuous function f on C with compact support. Clearly, vague convergence is
weaker than the weak convergence. For example, the sequence δn of Dirac measures
at x = n converges vaguely to 0, although it does not converge weakly. For some
comments on these two different notions of convergence of measures, one may have
a look at [8, pp. 134–137].

Lemma 2.4 Assume that the bounded sequence μn tends weakly to μ, and let Q be
a lower bounded, lower semi-continuous function on C. Then

∫
Qdμ ≤ lim inf

n→∞

∫
Qdμn.

Proof See [24, Theorem 0.1.4] for μn all supported in a compact set, and the
Appendix for the general case. �

Definition 2.5 A bounded sequence of measures (μn)n≥0 in M(C) is said to be

(i) tight if:

∀ε > 0, ∃ compact set K ⊂ C, ∀n ∈ N,

∫
C\K

dμn(t) ≤ ε,

(ii) log-tight if:

∀ε > 0, ∃ compact set K ⊂ C, ∀n ∈ N,

∫
C\K

log
(
1 + |t |)dμn(t) ≤ ε. (2.2)

The notion of tightness of a bounded set of measures is classical, see, e.g., [5]. The
notion of log-tightness is slightly stronger. Note that, from assumption (1.12), each
individual measure μ ∈ M(C) satisfies inequality (2.2). Here, for log-tightness of a
sequence, we ask this condition to be satisfied uniformly with respect to n.
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Theorem 2.6 (Prohorov) Let (μn)n≥0 be a tight sequence of probability measures
on C. Then there is a subsequence of (μn)n≥0 which is weakly convergent to a prob-
ability measure on C.

Proof See Helly’s selection theorem [24, Theorem 0.1.3] for μn all supported in
some compact set; [5, Theorem 5.1] in a general metric space; and [11, Theorem
9.3.3] for the special case of the euclidean space R

k . �

Remark 2.7 The Prohorov theorem is actually stronger than Theorem 2.6, in that it
also states, in the converse direction, that a weakly convergent sequence of measures
is tight.

Lemma 2.8 Let (μn)n≥0 and (νn)n≥0 be bounded log-tight sequences of measures
in M(C). Assume μ and ν are two Borel measures such that μn → μ and νn → ν in
the weak topology. Then

I (μ, ν) ≤ lim inf
n→∞ I (μn, νn). (2.3)

Proof See [20, Theorem 5.2.1] for all μn, νn supported in some compact set, and the
Appendix for the general case. �

Let us proceed with establishing four propositions, among which we prove the
positiveness of J , the lower semi-continuity of JQ, and an inequality relating the
weighted energy JQ(μ) with the scalar energies of the components of μ.

Throughout, we write the positive semidefinite matrix C of rank r as a full rank
factorization of the form

C = BtB, B matrix of dimensions (r, d), r ≤ d, of rank r. (2.4)

Such a factorization is obtained, e.g., from the Jordan decomposition of C by recall-
ing that there exists an orthonormal basis of eigenvectors of C. First, we generalize
Lemma 2.1 to our vector setting.

Proposition 2.9 Let μ,ν ∈ Md
K(Δ) with tuples of masses verifying B‖μ‖ = B‖ν‖.

Then,

J (μ − ν) ≥ 0. (2.5)

Moreover, if condition (1.15) holds true, then

J (μ − ν) = 0 if and only if μ = ν. (2.6)

Proof Let λ = B(μ − ν). Then, we may write

J (μ − ν) = J (λ,λ) =
r∑

j=1

I (λj ).
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By assumption, each component λj of λ, with Hahn decomposition λj = λj,+ −λj,−,
is a signed measure of mass 0, whose absolute value λj,+ + λj,− is of finite energy.
Hence Lemma 2.1 applies, showing that each I (λj ) is nonnegative, so that (2.5) holds
true.

We also know from Lemma 2.1 that J (μ−ν) > 0 if λj �= 0 for at least one index j .
Hence, to establish (2.6) it only remains to show that μ �= ν implies λ �= 0. This
property is trivial for positive definite C and thus invertible B . In our setting with
semidefinite C, we will need assumption (1.15).

Assuming μ − ν �= 0, we deduce that there exists an index i0 and a Borel set N

such that (μi0 − νi0)(N) �= 0. Now, we consider the partition

⋃
j=1,...,d

Δj =
⋃

I⊂{1,...,d},I �=∅
EI , EI =

(⋂
i∈I

Δi

)
∩
(⋂

i /∈I

Δc
i

)
,

where some of the EI may be empty sets. This induces a partition of N ,

N =
⋃

I⊂{1,...,d},I �=∅
NI , NI = N ∩ EI ,

so that (μi0 − νi0)(N) =∑I (μi0 − νi0)(NI ). Therefore there exists a subset I ⊂
{1, . . . , d} such that (μi0 − νi0)(NI ) �= 0, and

∀i /∈ I, (μi − νi)(NI ) = (μi − νi)(NI \ Δi) = 0, (2.7)

since supp(μi −νi) ⊂ Δi . Note also that either μi0(NI ) or νi0(NI ) is nonzero, so that
NI is of positive capacity by Lemma 2.2. Denote by B̃ and C̃, the submatrix of B

and of C, respectively, obtained from selecting the columns of indices belonging to I .
Since with NI also

⋂
i∈I Δi has positive capacity, we obtain from condition (1.15)

that C̃ and thus B̃ has full column rank. By (2.7), the relation B(μ−ν)(NI ) = λ(NI )

simplifies to B̃(μ − ν)i∈I (NI ) = λ(NI ), which cannot be zero. Thus λ �= 0. �

As in the classical case, the main ingredient in the proof of Theorem 1.7 will be the
lower semi-continuity of the functional JQ. We note that the proof does not use the
compatibility condition (1.5).

Proposition 2.10 Let (μ(n))n≥0 be a sequence of d-tuples of measures in Md
K(Δ)

which is log-tight (in the componentwise sense), and assume that μ(n) tends to a
d-tuple of measures μ ∈ Md

K(Δ), again componentwise, as n → ∞, in the weak
topology. Then

JQ(μ) ≤ lim inf
n→∞ JQ

(
μ(n)

)
.

Proof We first show the asserted inequality for the map μ �→ J (μ). For that, we will
use convolution of scalar finite Borel measures μ and ν, which, for a Borel set B ⊂ C,
is defined as follows:

(μ ∗ ν)(B) :=
∫

ν(B − t) dμ(t) =
∫

μ(B − t) dν(t).
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The convolution μ ∗ ν is a positive measure such that

supp(μ ∗ ν) ⊂ supp(μ) + supp(ν), (μ ∗ ν)(C) = μ(C)ν(C).

From

(μ ∗ ν)(B) = (μ × ν)
{
(x, y), x + y ∈ B

}
,

it is easy to see that convolution is a commutative and associative operation. We will
also use the convolution of a function h with a measure μ,

h ∗ μ(z) =
∫

h(z − t) dμ(t),

so that the potential Uμ coincides with the convolution − log | · | ∗ μ.
Let λN be the equilibrium measure of the circle centered at 0 of radius e−N . Its

potential is easily computed:

UλN (x) = min

(
N, log

1

|x|
)

,

see, e.g., [24, Example 0.5.7]. It is a continuous function tending pointwise to
log(1/|x|), x �= 0, as N tends to ∞. Then, by associativity and commutativity of
the convolution, we get

Uμ∗λN (z) = − log | · |∗(μ∗λN)(z) = (− log | · |∗λN

)∗μ(z) =
∫

UλN (z−x)dμ(x),

and for the mutual energies, we have

I (μ ∗ λN, ν) =
∫

UλN (x − y)dμ(x)dν(y), (2.8)

I (μ ∗ λN, ν ∗ λN) =
∫

UλN (x − y)dμ(x)d(ν ∗ λN)(y)

=
∫ (

UλN ∗ (ν ∗ λN

))
(x) dμ(x)

=
∫

UλN∗λN (x − y)dμ(x)dν(y). (2.9)

From the definition of UλN , it follows that I (μ∗λN, ν ∗λN) ≤ I (μ, ν). In particular,
I (μ ∗ λN) < ∞ if I (μ) < ∞. Moreover,
∫

log
(
1 + |x|)d(μ ∗ λN) =

∫∫
log
(
1 + |x + y|)dμ(x)dλN(y)

≤
∫

log
(
1 + e−N + |x|)dμ(x)

≤ log
(
1 + e−N

)‖μ‖ +
∫

log
(
1 + |x|)dμ(x) < ∞.
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Hence, for any closed subset Σ of C, the measure μ∗λN lies in M(Σ +D(0, e−N))

if μ ∈ M(Σ).
Now, consider a log-tight sequence μ(n) ∈ Md

K(Δ) such that

μ(n) → μ ∈ Md
K(Δ),

in the weak sense. Let N be given. From the above remarks, the d-tuple of mea-
sures μ(n) ∗λN , where the convolution is taken componentwise, belongs to Md

K(Δ+
D(0, e−N)), and the masses of μ(n) and μ(n) ∗λN are the same. Thus, from (2.5), we
get

J
(
μ(n) − μ(n) ∗ λN

)≥ 0,

or equivalently,

J
(
μ(n)

) ≥
d∑

i,j=1

ci,j

(
I
(
μ

(n)
i ,μ

(n)
j ∗ λN

)+ I
(
μ

(n)
i ∗ λN,μ

(n)
j

)

− I
(
μ

(n)
i ∗ λN,μ

(n)
j ∗ λN

))
.

Let us consider the first energy in the right-hand side of the above inequality. Since
μ

(n)
i ∗ λN is a log-tight family which tends weakly to μi ∗ λN , Lemma 2.8 tells us

that

lim inf
n→∞ I

(
μ

(n)
i ,μ

(n)
j ∗ λN

)≥ I (μi,μj ∗ λN). (2.10)

Actually, we have more. Indeed, redoing the proof of Lemma 2.8 with the kernel
UλN (x − y) instead of log(|x − y|−1), we now get an integrand in the first integral
of (A.1) which is bounded and continuous. Hence, (2.10) can be strengthened to

lim
n→∞ I

(
μ

(n)
i ,μ

(n)
j ∗ λN

)= I (μi,μj ∗ λN).

The limits

lim
n→∞ I

(
μ

(n)
i ∗ λN,μ

(n)
j

)= I (μi ∗ λN,μj ),

lim
n→∞ I

(
μ

(n)
i ∗ λN,μ

(n)
j ∗ λN

)= I (μi ∗ λN,μj ∗ λN)

are proven in the same way. Consequently, we obtain that

lim inf
n→∞ J

(
μ(n)

)≥
d∑

i,j=1

ci,j

(
I (μi,μj ∗λN)+ I (μi ∗λN,μj )− I (μi ∗λN,μj ∗λN)

)
,

where the right-hand side is well defined since we assume that the limit measure
μ ∈ Md

K(Δ) (all its components have finite energy). Finally, both potentials UλN

and UλN∗λN tend pointwise to log(1/|x|) for x �= 0, as N → ∞. They are dominated
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by | log(1/|x|)|, and moreover,

∫∫ ∣∣∣∣log
1

|x − y|
∣∣∣∣dμi(x) dμj (y)

≤ I (μi,μj ) + 2‖μj‖
∫

log
(
1 + |x|)dμi(x) + 2‖μi‖

∫
log
(
1 + |x|)dμj (x),

which is finite because I (μi,μj ) is, and we have (1.12). Hence, from the dominated
convergence theorem, we get

lim
N→∞ I (μi,μj ∗ λN) = I (μi,μj ), lim

N→∞ I (μi ∗ λN,μj ∗ λN) = I (μi,μj ),

implying that

lim inf
n→∞ J

(
μ(n)

)≥ J (μ).

Since the external fields Qj are lower semi-continuous and lower bounded, the fact
that

lim inf
n→∞

∫
Qj dμ

(n)
j ≥

∫
Qj dμj , j = 1, . . . , d,

follows from Lemma 2.4. �

The aim of the next proposition is to show an inequality which will be used in the
proof of Proposition 2.12. It asserts that the scalar energy of a linear combination∑

j yjμj of bounded measures μj in M(C), with given coefficients yj , is lower
bounded, independently of the μj , as soon as it is weighted by a multiple γQ of the
external field, with γ an arbitrary small positive number. Such a result is needed only
to cope with unbounded Δj since, for compact Δj , it is not difficult to derive a lower
bound for the energy of a signed measure which does not involve external fields.

Proposition 2.11 Let Q = (Q1, . . . ,Qd)t be an admissible external field, and let
y = (y1, . . . , yd)t be a given vector in R

d . Then,

∀γ > 0, ∃Γ ∈ R, ∀μ ∈ Md
K(Δ), Γ ≤ I

(
ytμ
)+ γ

∫
Qt dμ. (2.11)

Proof Since the union Σ of the sets Δi , i = 1, . . . , d , is different from C, recall (1.4),
there exist some z0 ∈ C and some r < 1, say, such that the disk D(z0,2r) does not
intersect Σ . Let ωD be the equilibrium measure of the disk D = D(z0, r), and let

τ = λ − λ(C)ωD,

where λ denotes the scalar signed measure ytμ. Since I (λ) is finite, I (τ ) is finite as
well, and Lemma 2.1 applies: I (τ ) ≥ 0, or, equivalently,
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I (λ) ≥ 2λ(C)I (λ,ωD) + λ(C)2 log(r)

= 2λ(C)

d∑
j=1

yj I (μj ,ωD) + λ(C)2 log(r). (2.12)

All the mutual energies I (μj ,ωD) can be bounded above:

I (μj ,ωD) =
∫∫

log
1

|z − t | dμj dωD ≤ log

(
1

r

)
‖μj‖ ≤ log

(
1

r

)
Mj(K), (2.13)

with Mj(K) = supμ∈Md
K(Δ) ‖μj‖. Moreover, the I (μj ,ωD) can also be lower

bounded. First, note that, in view of the third condition of admissibility in Defini-
tion 1.6 and the fact that Qj is lower bounded on compact sets, we have

∀γj > 0, ∃Γj ∈ R, ∀z ∈ Δj , log(1 + |z|) ≤ γjQj (z) + Γj .

Then,

−I (μj ,ωD) ≤
∫

log
(
1 + |z|)dμj (z) + ‖μj‖

∫
log
(
1 + |t |)dωD(t)

≤ γj

∫
Qj dμj + Γj‖μj‖ + ‖μj‖ sup

t∈D

(
log
(
1 + |t |))

≤ γj

∫
Qj dμj + Mj(K)

(
Γj + sup

t∈D

(
log
(
1 + |t |))), (2.14)

and the proposition follows from plugging inequalities (2.13) or (2.14) into (2.12),
according to the sign of λ(C)yj , and noting that λ(C) is bounded both above and
below independently of μ. �

Next, we show that the weighted energy of a tuple of measures μ ∈ Md
K(Δ) domi-

nates the energies of its components. This result requires the condition (1.14).

Proposition 2.12 Assume that the d-tuple of closed sets Δ and the interaction matrix
C satisfy (1.14). Then, there exist positive constants a0 and a1 such that

∀μ = (μ1, . . . ,μd)t ∈ Md
K(Δ),

d∑
j=1

I (μj ) ≤ a1JQ(μ) + a0. (2.15)

Proof Consider a vector y in the range of C = BtB that satisfies (1.14), and note
that, since for all indices i, y2

i > 0, the minimum m = min(y2
i ) is positive. Let x be a

nonzero vector in R
r such that y = Btx, and Q be an orthogonal matrix with x/‖x‖

as its first column. Then, the first row of QtB is yt/‖x‖, and

J (μ) = J (Cμ,μ) = J
(
QtBμ,QtBμ

)= 1

‖x‖2
I

(
d∑

j=1

yjμj

)
+

r∑
k=2

I (λk),
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where we have set (λ1, . . . , λr )
t = QtBμ. Next, we have the following lower bounds

for the energies,

I (μj ,μk) ≥ −‖μk‖
∫

log
(
1 + |t |)dμj (t) − ‖μj‖

∫
log
(
1 + |z|)dμk(z)

≥ −γj,k

(∫
Qj dμj +

∫
Qk dμk

)
− Γj,k, (2.16)

where, as in the proof of Proposition 2.11, the positive real number γj,k can be arbi-
trarily small and Γj,k is a sufficiently large number. Hence, from (2.16) applied with
j = k, we deduce

m
∑
j

(
I (μj ) + 2γj,j

∫
Qj dμj + Γj,j

)

≤
∑
j

y2
j

(
I (μj ) + 2γj,j

∫
Qj dμj + Γj,j

)
,

so that

m
∑
j

I (μj ) ≤
∑
j

y2
j I (μj ) +

∑
j

(
y2
j − m

)(
2γj,j

∫
Qj dμj + Γj,j

)

= I

(∑
j

yjμj

)
−
∑
j �=k

yj ykI (μj ,μk)

+
∑
j

(
y2
j − m

)(
2γj,j

∫
Qj dμj + Γj,j

)

= ‖x‖2JQ(μ) − 2‖x‖2
d∑

j=1

∫
Qj dμj − ‖x‖2

r∑
k=2

I (λk)

−
∑
j �=k

yj ykI (μj ,μk)

+
∑
j

(
y2
j − m

)(
2γj,j

∫
Qj dμj + Γj,j

)
. (2.17)

For the signed measures λk , we have lower bounds provided by Proposition 2.11,

I (λk) ≥ −γk

d∑
j=1

∫
Qj dμj + Γk, k = 1, . . . , r. (2.18)
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Finally, for indices j, k such that yjyk < 0, we know from (1.14) that dist(Δj ,Δk)

is positive, so that in this case we also have the upper bound,

I (μj ,μk) ≤ log

(
1

dist(Δj ,Δk)

)
‖μj‖‖μk‖. (2.19)

Making use of (2.16), (2.18), and (2.19) in (2.17) leads to

m

d∑
j=1

I (μj ) ≤ ‖x‖2JQ(μ) − c

d∑
j=1

∫
Qj dμj − Γ,

where c is a positive real number since the constants γk , γj,j , and γj,k are arbitrarily
small. As the external fields Qj are lower bounded, the above inequality implies
(2.15) with two constants a0 and a1 that depend only on the tuple of sets Δ, the
interaction matrix C, and the compact set of masses K . �

3 Existence of a Solution

In this section, we give the proof of Theorem 1.7. We also prove, under an additional
technical assumption, that the components of a solution have compact supports.

Proof of Theorem 1.7 We show that J ∗
Q < +∞ as in [24, Theorem I.1.3(a)]. For

ε > 0, the sets Δj(ε) = {x ∈ Δj : Qj(x) ≤ 1/ε} are closed and thus compact by
assumption on Qj . Since Qj is finite on a set of positive capacity, Δj(ε) is of positive
capacity for sufficiently small ε > 0. Denoting by ωΔj (ε) the equilibrium measure of
such a Δj(ε) of positive capacity, I (ωΔj (ε)) < ∞, we find for the d-tuple of measures
μ ∈ Md

K(Δ) with μj = bjωΔj (ε), j = 1, . . . , d , and b = (bj ) ∈ K , that JQ(μ) < ∞.
Next, we prove that J ∗

Q > −∞. We have

JQ(μ) =
r∑

k=1

I (λk) + 2
d∑

j=1

∫
Qjdμj ,

where (λ1, . . . , λr )
t = Bμ, and the energies I (λk) satisfy inequalities of the type

(2.11) with arbitrarily small positive constants γk , the sum of which can be made less
than 1. Hence, there exists a constant Γ such that

∀μ ∈ Md
K(Δ), JQ(μ) ≥

d∑
j=1

∫
Qj dμj − Γ ≥ −

d∑
j=1

|qj |Mj(K) − Γ, (3.1)

with

qj = inf
z∈C

Qj(z) > −∞, Mj (K) = sup
μ∈Md

K(Δ)

‖μj‖ < ∞, j = 1, . . . , d.

This finishes the proof of assertion (a).
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The proof of assertion (b) follows usual lines, see, e.g., [20, Chap. 5], by con-
structing μ∗ as a weak limit of a minimizing sequence of JQ. We first note, in view
of (3.1), that for minimizing the energy JQ, it is sufficient to consider the subset T
of Md

K(Δ) consisting of d-tuples of measures μ such that

d∑
j=1

∫
Qj dμj ≤ J ∗

Q + Γ + 1. (3.2)

Let us show that T is a log-tight family. For μ ∈ T , we have

d∑
j=1

∫
(Qj − qj ) dμj ≤ J ∗

Q + Γ + 1 +
d∑

j=1

|qj |Mj(K).

We simply denote by α the right-hand side of the above inequality. Let ε > 0 be
given. Since the Qj are admissible, there exists a compact set K ⊂ C such that

∑
j

(
Qj(x) − qj

)≥ α

ε
log
(
1 + |x|), x ∈ C \ K.

Consequently, for any d-tuple of measures μ in T ,

∑
j

∫
C\K

log
(
1 + |x|)dμj ≤ ε

α

∑
j

∫
C\K

(
Qj(x) − qj

)
dμj

≤ ε

α

∑
j

∫
C

(
Qj(x) − qj

)
dμj ≤ ε,

which shows that the set T is indeed log-tight. Now, consider a minimizing sequence
of d-tuples of measures μ(n) ∈ T , namely

lim
n→∞JQ

(
μ(n)

)= J ∗
Q.

The family T being log-tight, it is a fortiori tight, so that by Theorem 2.6, there exists
a subsequence, that we still denote by μ(n), having a weak limit μ∗. Its components
μ∗

j are supported on Δj , and its d-tuple of masses belongs to K . Since log(1 + |x|)
is a continuous and lower bounded function, we get from Lemma 2.4 that

∫
log
(
1 + |x|)dμ∗

j ≤ lim inf
n→∞

∫
log
(
1 + |x|)dμ

(n)
j , j = 1, . . . , d.

Moreover, up to an additive constant, log(1 + |x|) is upper bounded by Qj(x), in-

equality (3.2) holds true for the sequence μ
(n)
j , and

−|qj |Mj(K) ≤ qj

∥∥μ(n)
j

∥∥≤
∫

Qj dμ
(n)
j , j = 1, . . . , d.
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Therefore, we may deduce that

∫
log
(
1 + |x|)dμ∗

j (x) < ∞, j = 1, . . . , d.

Next, we show that each component μ∗
j is of finite energy. From Lemma 2.8, it fol-

lows that

I
(
μ∗

k

)≤ lim inf
n→∞ I

(
μ

(n)
k

)
, k = 1, . . . , d.

Adding these inequalities over k, and noting that, in view of Proposition 2.12, the
sum obtained on the right-hand side is finite, we get

I
(
μ∗

j

)≤ lim inf
n→∞

d∑
k=1

I
(
μ

(n)
k

)−∑
k �=j

I
(
μ∗

k

)≤ a1 lim inf
n→∞ JQ

(
μ(n)

)+ a0 −
∑
k �=j

I
(
μ∗

k

)

= a1J
∗
Q + a0 −

∑
k �=j

I
(
μ∗

k

)
< ∞, (3.3)

where the last inequality comes from

I
(
μ∗

k

)≥ −2
∥∥μ∗

k

∥∥
∫

log
(
1 + |x|)dμ∗

k(x) > −∞, k = 1, . . . , d.

Consequently, μ∗ ∈ Md
K(Δ). From the lower semi-continuity of JQ established

in Proposition 2.10, we conclude that J ∗
Q ≥ JQ(μ∗), and thus J ∗

Q = JQ(μ∗), showing
that μ∗ is a minimizer of the extremal problem (1.16). �

We now turn to the question of whether the supports of the components of an
extremal tuple of measures as in Theorem 1.7 are compact sets. This property was
shown to hold true under more restrictive conditions on the matrix C and the tuple of
sets Δ in [4, 24]. In our generalized setting, we have the following result.

Theorem 3.1 Let μ ∈ Md
K(Δ) be a solution to the minimization problem (1.16).

Then, the components μi , i = 1, . . . , d , of μ, have compact supports if and only if the
following assertion holds true:

there exists a real α and a number M > 0 such that, for all pair (i, j) with Δi and
Δj unbounded and ci,j < 0, there holds

ci,jU
μj (z) + 1

d
Qi(z) ≥ α, μi-almost everywhere on Δi \ DM, (3.4)

where DM denotes the closed disk of radius M centered at zero.

Remark 3.2 The assumption (3.4) bears some similarity to assumption [A3] in [4,
Definition 2.1], where it is assumed that the functions
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ci,j log
1

|z − t | + Qi(z) + Qj(t)

d
, i, j = 1, . . . , d,

are uniformly lower bounded on Δi × Δj .

Remark 3.3 Assumption (3.4) is trivially satisfied if

∀i, j, if Δi and Δj are unbounded then ci,j ≥ 0.

This condition can be seen as an analog of (1.5), where we only consider the point
at infinity in the intersection of Δi and Δj (in the Riemann sphere). Of course, it
is more restrictive than the condition (3.4) but it has the advantage that, for a given
extremal problem, whether it holds true or not can be checked at once from the data.

Remark 3.4 Condition (3.4) follows from (1.14) in the case of a matrix C of rank 1,
for instance when considering a condenser as in [24, Chap. VIII]. Indeed, here nec-
essarily C is a positive multiple of yyt with the vector y as in (1.14). Thus ci,j < 0
implies that yiyj < 0, and hence for all z ∈ Δi ,

Uμj (z) ≤ ‖μj‖ log

(
1

dist(Δi,Δj )

)
.

Consequently, (3.4) follows by recalling that Qi is lower bounded. Hence, as in [24,
Theorem VIII.1.4], we may conclude that the components of an extremal tuple of
measures in (1.16) in the case rank(C) = 1 have compact support.

Proof Suppose first that the support of the measures μi are compact. Then, for M

sufficiently large, the sets supp(μi) \ DM are empty sets so that (3.4) is trivially true.
Conversely, let us show that μi has a compact support if (3.4) holds. We first

establish a property of μi similar to [20, Lemma 5.4.1], namely,

∀νi ∈ M‖μi‖(Δi) :
∫ (

U
μ
i + Qi

)
d(νi − μi) ≥ 0. (3.5)

For a proof of (3.5), we define ν ∈ Md
K(Δ) by νj = μj for j �= i. Notice that μ +

t (ν − μ) ∈ Md
K(Δ) for any 0 < t < 1, and hence by the definition of μ,

0 ≤ JQ

(
μ + t (ν − μ)

)− JQ(μ)

= 2t

∫ (
U

μ
i + Qi

)
d(νi − μi) + t2J (ν − μ).

Dividing by t and letting t → 0 gives the desired inequality (3.5).
For our proof of compactness of supp(μi), we may suppose without loss of gen-

erality that Δi is unbounded, ‖μi‖ > 0, and that μi(DM) > 0, where for the last
property we possibly choose a larger M . We consider

νi := ‖μi‖
μi(DM)

μi

∣∣∣∣
DM
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being clearly an element of M‖μi‖(Δi). Then we may rewrite condition (3.5) as

( ‖μi‖
μi(DM)

− 1

)∫
|z|≤M

(
U

μ
i + Qi

)
dμi −

∫
|z|>M

(
U

μ
i + Qi

)
dμi ≥ 0,

or
(‖μi‖ − μi(DM)

)
α0 ≥ ‖μi‖

∫
|z|>M

(
U

μ
i (z) + Qi(z)

)
dμi(z), (3.6)

with the finite constant

α0 :=
∫ (

U
μ
i (z) + Qi(z)

)
dμi(z).

It remains to show that U
μ
i (z) + Qi(z) is sufficiently large μi -almost everywhere on

Δi \ DM .
For this, notice first that, by possibly making α smaller and M larger, (3.4) also

holds for all indices j with ci,j < 0 and compact Δj since then supp(μj ) is compact.
In case ci,j ≥ 0, we use (1.13) to conclude that, for μi -almost all z ∈ Δi \ DM ,

U
μ
i (z) + Qi(z) ≥

∑
j,ci,j ≥0

ci,jU
μj (z) +

∑
j,ci,j <0

(
α − 1

d
Qi(z)

)
+ Qi(z)

≥ −
∑

j,ci,j ≥0

ci,j‖μj‖ log
(
1 + |z|)+ 1

d
Qi(z) + α1

for some constant α1. Here we have used the fact that ci,i ≥ 0. According to the third
condition of admissibility in Definition 1.6, i.e., the behavior of Qi at infinity, we
may now possibly choose a larger M such that U

μ
i (z) + Qi(z) ≥ (α0 + 1)/‖μi‖ for

μi -almost all z ∈ Δi \ DM . Hence inequality (3.6) becomes

(‖μi‖ − μi(DM)
)
α0 ≥ (‖μi‖ − μi(DM)

)
(α0 + 1),

implying that ‖μi‖ = μi(DM), and the fact that μi has compact support. �

4 Uniqueness and Equilibrium Conditions

Proof of Theorem 1.8(a) Our proof relies on Proposition 2.9, but otherwise the argu-
ments of [20] or [2, Proof of Theorem 1.1] carry over to our more general setting.

It is sufficient to show that the application μ �→ JQ(μ) is strictly convex3 in the
convex subset of Md

K(Δ) consisting of d-tuples of measures μ with finite JQ-energy.

3More precisely, we only show strict midpoint convexity, which is sufficient for our purposes. However,
together with the lower semi-continuity established in Proposition 2.10, one may deduce strict convexity.
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By finiteness of the J -energy on Md
K(Δ), that simply boils down to

∫
Qjdμj < ∞, j = 1, . . . , d.

For two distinct d-tuples of measures μ and ν of finite JQ-energies, we have

1

2

(
JQ(μ) + JQ(ν)

)− JQ

(
μ + ν

2

)

= 1

2

(
J (μ) + J (ν)

)− J

(
μ + ν

2

)

=
d∑

i,j=1

ci,j

(
1

2

(
I (μi,μj ) + I (νi, νj )

)− I

(
μi + νi

2
,
μj + νj

2

))
= J

(
μ − ν

2

)
,

and it only remains to show that the last term is positive. By the definition (1.17) of
K , the vector of masses ‖μ‖−‖ν‖ is an element of the kernel of the matrix A, which
by (2.4) and (1.18) is a subset of the kernel of C and thus of B . Hence the strict
convexity follows from Proposition 2.9. �

Remark 4.1 There are other sufficient conditions to ensure strict convexity of the map
μ �→ JQ(μ) on d-tuples of measures of Md

K(Δ) of finite JQ-energy, for instance we
may replace (1.18) by the requirement that the union of the Δj is compact, with
capacity less than 1. Another sufficient condition for strict convexity, namely

∀i �= j, if Δi ∩ Δj �= ∅ then cij = 0, (4.1)

has been considered in [2, 16]. Notice that (4.1) is stronger than (1.5), and that (1.5)
alone does not imply strict convexity, see Example 1.3.

Remark 4.2 We claim that if there is equality in assumption (1.18), then (1.14) holds.
To see this, notice that from the full rank decomposition C = BtB and from the
assumption Im(C) = Im(At ), we conclude that there exists a matrix E such that
A = EB , implying that we may rewrite the nonempty compact K as K = {x ∈ R

d+,

Bx = b} for a suitable vector b ∈ R
r . Writing e = (1, . . . ,1)t ∈ R

d , we conclude that
the linear optimization problem max{etx,Bx = b, x ≥ 0} has an optimal solution. In
particular [6, Theorem 19.12], there is a Lagrange multiplier λ ∈ R

r with Btλ ≥ e.
Hence y := Btλ is an element of Im(C) = Im(Bt ) with strictly positive components,
implying (1.14).

Before entering the details of the proof of assertion (b) of Theorem 1.8, we
shortly comment on the equilibrium conditions (1.19) and (1.20). First recall from
Lemma 2.3 that the potentials Uμj for j = 1, . . . , d are finite and hence U

μ
i + Qi is

well defined in Δi \ Δi,∞ with Δi,∞ ⊂ Δi some polar Borel set. Also, U
μ
i + Qi as a

sum of measurable functions is measurable, and hence both sets
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Δi,+ = {z ∈ Δi \ Δi,∞,U
μ
i (z) + Qi(z) >

(
AtF

)
i

}
,

Δi,− = {z ∈ Δi \ Δi,∞,U
μ
i (z) + Qi(z) <

(
AtF

)
i

}
,

are Borel sets. Hence (1.19) means that Δi,∞ ∪ Δi,− is polar, whereas (1.20) can be
equivalently rewritten as μi(Δi,∞ ∪ Δi,+) = 0.

As in [20, Lemma 5.4.2], we have to establish a different characterization of an
extremal tuple of measures which generalizes (3.5).

Lemma 4.3 The d-tuple of measures μ = (μ1, . . . ,μd) ∈ Md
K(Δ) with JQ(μ) < ∞

is extremal for (1.16) if and only if for any d-tuple of measures ν = (ν1, . . . , νd) ∈
Md

K(Δ) with JQ(ν) < ∞, we have

d∑
i=1

∫ (
U

μ
i + Qi

)
dνi ≥

d∑
i=1

∫ (
U

μ
i + Qi

)
dμi. (4.2)

Proof In order to see that (4.2) is necessary for optimality, notice that, for all 0 <

t ≤ 1, we have μ + t (ν − μ) ∈ Md
K(Δ), with

JQ

(
μ + t (ν − μ)

)− JQ(μ) = 2t

d∑
i=1

∫ (
U

μ
i + Qi

)
d(νi − μi) + t2J (ν − μ) (4.3)

being nonnegative. Dividing by t and letting t → 0 gives (4.2). Conversely, we re-
call from Proposition 2.9 that J (ν − μ) ≥ 0. Inserting (4.2) into (4.3) for t = 1, we
conclude as required that μ is extremal. �

Proof of Theorem 1.8(b) Suppose first that μ ∈ Md
K(Δ) satisfies (1.19) and (1.20).

Then μi(Δi,∞ ∪ Δi,+) = 0, and integrating (1.20) with respect to μi shows that
JQ(μ) < ∞. Now let ν ∈ Md

K(Δ) with JQ(ν) < ∞. Then νi(Δi,∞ ∪ Δi,−) = 0
by Lemma 2.2. Hence integrating (1.19) with respect to νi and (1.20) with respect to
μi gives

d∑
i=1

∫ (
U

μ
i + Qi

)
dνi −

d∑
i=1

∫ (
U

μ
i + Qi

)
dμi ≥

d∑
i=1

(‖νi‖ − ‖μi‖
)(

AtF
)
i
= 0,

the last equality following from the definition of the polyhedron of masses K . Hence
μ is extremal according to Lemma 4.3.

Suppose now that μ ∈ Md
K(Δ) is extremal. Consider the set of indices I =

{i ∈ {1, . . . , d} : ‖μi‖ > 0}; set for i ∈ I ,

wi := 1

‖μi‖
∫ (

U
μ
i + Qi

)
dμi;

and consider as before the Borel sets Δi,+ = {z ∈ Δi \ Δi,∞ : Uμ
i (z) + Qi(z) > wi}

and Δi,− = {z ∈ Δi \Δi,∞ : Uμ
i (z)+Qi(z) < wi}. Following [20, Proposition 5.4.4],

we claim that, for i ∈ I ,

U
μ
i (x) + Qi(x) ≥ wi, quasi-everywhere on Δi. (4.4)
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Suppose the contrary for some i ∈ I . Since Δi,∞ is polar, we conclude that Δi,− is
of positive capacity. Thus there exists a compact set E ⊂ Δi with U

μ
i well defined

and finite on E, cap(E) > 0, and U
μ
i (x) + Qi(x) < wi for all x ∈ E. Taking any

νi ∈ M‖μi‖(E), then with νj = μj for j �= i, we get ν ∈ Md
K(Δ) and, by Lemma 4.3,

0 ≤
d∑

�=1

∫ (
U

μ
� + Q�

)
d(ν� − μ�) =

∫ (
U

μ
i + Qi

)
dνi − ‖νi‖wi,

but the term on the right is negative by construction of E and νi , a contradiction. Thus
(4.4) holds.

Following [20, Proposition 5.4.5], we now claim that, for i ∈ I ,

U
μ
i (x) + Qi(x) ≤ wi, μi-almost everywhere. (4.5)

Suppose the contrary for some i ∈ I . Since μi(Δi,∞) = 0 by Lemma 2.2, we get
μi(Δi,+) > 0. Applying, e.g., [23, Theorem 2.18], we conclude that there exists a
compact set E ⊂ Δi with U

μ
i well defined and finite on E, μi(E) > 0, and U

μ
i (x) +

Qi(x) > wi for all x ∈ E. A combination of Lemma 2.2 with (4.4) tells us that

∫
Δi\E

(
U

μ
i + Qi

)
dμi ≥ wiμi(Δi \ E),

and thus

‖μi‖wi ≥
∫

E

(
U

μ
i + Qi

)
dμi + wiμi(Δi \ E) > wiμi(E) + wiμi(Δi \ E),

a contradiction. Hence (4.5) is also true. Thus we have shown so far that, for indices i

with ‖μi‖ > 0, (1.19) and (1.20) hold true if we replace (AtF )i by a suitable constant
wi ∈ R. It remains to relate these constants wi with A and also to discuss the partial
potentials U

μ
i for indices i such that ‖μi‖ = 0. For this purpose, similar to [2, Part 3

of proof of Theorem 1.2], we consider the quadratic optimization problem in R
d ,

min
{
xtHx + 2htx, x ∈ K

}
,

where H ∈ R
d×d and h ∈ R

d , with

Hi,j = ci,j I (νi, νj ), hi =
∫

Qi dνi, i, j = 1, . . . , d,

and the probability measures νi ∈ M1(Δi) are defined by νi = μi/‖μi‖ if ‖μi‖ �= 0,
and else arbitrary but fixed. Then, by Theorem 1.8(a), ‖μ‖ ∈ K is the unique solution
of the above quadratic problem. From [6, Theorem 19.12], we know that there exist
Lagrange multipliers F ∈ R

m and G ∈ R
d such that

H‖μ‖ + h = AtF + G, ∀i, Gi ≥ 0, ‖μi‖Gi = 0. (4.6)
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In case ‖μi‖ �= 0, we find from (4.4) and (4.5) that

(
H‖μ‖ + h

)
i
=

d∑
j=1

ci,j I

(
μi

‖μi‖ ,μj

)
+
∫

Qi

dμi

‖μi‖ =
∫ (

U
μ
i + Qi

) dμi

‖μi‖ = wi.

Also, Gi = 0, and hence (H‖μ‖ + h)i = wi = (AtF )i . In particular, relations (4.4)
and (4.5) imply the desired relations (1.19) and (1.20). In case ‖μi‖ = 0, we learn
from (4.6) that

∀νi ∈ M1(Δi),

∫ (
U

μ
i + Qi

)
dνi ≥ (AtF

)
i
,

implying (1.19), and assertion (1.20) is trivially true. �

5 A Review of Some Examples

Many recently studied problems, such as, e.g., the behavior of Hermite-Padé approx-
imants, the limit eigenvalue distribution of banded Toeplitz matrices, or the limit dis-
tribution of nonintersecting Brownian paths, translate into vector equilibrium prob-
lems with external fields. Existence and uniqueness of the solution were shown under
conditions that are actually covered by the results of the previous sections. The above-
mentioned equilibrium problems can be stated in terms of graphs. We recall that for
a graph G = (V , E ), the set of edges E is a subset of the Cartesian product V × V ,
where V denotes the set of vertices. For multigraphs, we allow for repeated edges
between two given vertices. We also remind the reader that the incidence matrix A is
labeled in rows by vertices and in columns by edges, with a column corresponding to
an edge from the vertex u to the vertex v having entry −1 at row u, 1 at row v and 0
elsewhere.

In what follows, we always suppose that a graph or a multigraph G = (V , E ) is
given. We denote its incidence matrix by A, and we consider as interaction matrix
the matrix C = AtA, together with the polyhedron of masses K = {x ∈ R

d+,Ax = a}.
In what follows, K is supposed to contain at least one element with strictly positive
components. For instance, for the graph of Fig. 1, we have

A =
⎛
⎝−1 −1 0

0 1 1
1 0 −1

⎞
⎠ , C =

⎛
⎝ 2 1 −1

1 2 1
−1 1 2

⎞
⎠ . (5.1)

As a consequence, the interaction matrix C is indexed in rows and columns by
the edges, and it can be checked that its entries are −2,−1,0,1,2 with the following

Fig. 1 A graph with undirected
cycle but no directed cycle
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interpretation:

By construction, the matrix C is always positive semi-definite. With each edge i, we
associate a closed set Δi and a measure μi supported on Δi .

We can interpret the different assumptions we made in the previous sections about
the matrix C and the supports Δi in terms of graph theory.

Proposition 5.1 The following assertions hold true:

(a) The following three statements are equivalent: (i) matrix C is invertible; (ii) G

has no undirected cycle; (iii) the polyhedron of masses K = {x ∈ R
d+;Ax = a} is

a singleton.
(b) The polyhedron of masses K is compact if and only if G has no directed cycle.
(c) Condition (1.5), is equivalent to the fact that any two edges which follow each

other correspond to nonintersecting sets Δi and Δj .
(d) Condition (4.1) is equivalent to the fact that any two distinct edges corresponding

to intersecting sets Δi do not have any vertex in common.
(e) Condition (1.15) is equivalent to:

∀ set I of edges of E forming an undirected cycle in G, cap

(⋂
α∈I

Δα

)
= 0.

(f) Let G∗ be the undirected intersection graph of the sets {Δi}di=1; that is, the ver-
tices of G∗ are the edges of G and there is an edge in G∗ between i and j if the
corresponding sets Δi and Δj are intersecting. Condition (1.14) is equivalent to:

each connected component of G∗ corresponds to a subgraph in G that does
not contain a directed cycle.

We do not present here complete proofs for these assertions, which follow from
graph theory. Notice however that (a) is based on the classical fact that the rank of an
incidence matrix is given by the number of its columns if and only if the underlying
graph has no undirected cycle. Assertions (c) and (d) immediately follow from the
above graph interpretation of the entries of C.

Condition (4.1) is obviously stronger than (1.5). From the graph theory interpreta-
tion given in assertions (d) and (e), we see that (4.1) implies (1.15). From assertions
(b) and (f), we see that the compactness of the polyhedron K implies (1.14), as no-
ticed already in Remark 4.2.

The first vector equilibrium problems using the terminology of graphs were
studied in [16], where systems of Markov functions generated by a rooted tree
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Fig. 2 Tree graphs

Fig. 3 Rooted multigraph with
undirected cycle

G = (V , E ), the so-called generalized Nikishin systems, were considered. Recall that
a tree is a connected graph without undirected cycles. In particular, by properties (a),
(e), and (f) of Proposition 5.1, C is invertible and conditions (1.14) and (1.15) are
satisfied. So the result [16, Theorem 1] also follows from our work, and we may drop
in [16, Theorem 1] any further requirements on the sets Δj like (4.1) or (1.5). The
authors associate to each vertex in V a Markov function, and to each edge α in E a
measure with support in an interval Δα . This class includes the well-known Nikishin
systems, see Fig. 2(a), and the Angelesco systems, see Fig. 2(b), with interaction
matrices C respectively given by

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠ ,

⎛
⎝2 1 1

1 2 1
1 1 2

⎞
⎠ .

The solution of their extremal problem is related to the limit distributions of the zeros
of the polynomial denominators of the Hermite-Padé approximants to the generalized
Nikishin systems.

In [2], the results of [16] were generalized to rooted multigraphs G = (V , E , O)

with a root O, that is, multigraphs which have no directed cycles but do have directed
paths from O to any other vertex. An example of such a graph with undirected cycles
is shown in Fig. 3. By generalizing the ideas of [16], the graph is associated to a
system of Markov functions with intersecting supports. According to assertion (f)
of Proposition 5.1, condition (1.14) holds since there are no directed cycles. Also,
as said before, the condition (4.1) imposed in [2] implies (1.15). Thus [2, Theorem
1.1] dealing with K as in (1.17) is covered by our work as well. The Hermite-Padé
approximants to specific systems of Markov functions related to graphs with cycles
were also investigated in [26] in connection with applications to number theory.

Another vector equilibrium problem appears in [1] and [3] in the study of the
asymptotics of diagonal simultaneous Hermite-Padé approximants to two analytic
functions with separated pairs of branch points. The authors define the class H(C\Γ )

of holomorphic functions in C \ Γ , where Γ is a piecewise analytic arc joining two
points a and b in C. A typical example of such a function is

f (z) = log

(
z − a

z − b

)
.
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Fig. 4 bipartite directed graph

For f1 ∈ H(C \ Γ1), f2 ∈ H(C \ Γ2), with

Δ1 = Γ1, Δ2 = Clos(Γ2\Γ1),

and Δ3 a piecewise analytic arc containing the intersection Δ1 ∩ Δ2, they show the
existence and uniqueness of a triple of measures

μ = (μ1,μ2,μ3) with supp(μi) ⊂ Δi, i = 1,2,3,

minimizing the energy J (μ), where the interaction matrix C is given in (5.1), corre-
sponding to the graph in Fig. 1, and the set of masses is given by

K =
⎧⎨
⎩x ∈ R

3+,

(
1 1 0
1 0 −1

)⎛
⎝x1

x2
x3

⎞
⎠=

(
2
1

)⎫⎬
⎭=

⎧⎨
⎩x ∈ R

3+,Ax =
⎛
⎝−2

1
1

⎞
⎠
⎫⎬
⎭ .

Notice that this graph contains an undirected cycle but, since cap(Δ1 ∩ Δ2) = 0, we
are again in the settings of our theorems. The measure μ1 +μ2 is the limit distribution
of the poles of the diagonal simultaneous Hermite-Padé approximants of the functions
(f1, f2), and the measure μ3 describes the limit distribution of the extra interpolation
points to f1.

In [10], the limit distribution of nonintersecting one-dimensional Brownian paths
with prescribed starting and ending points is also characterized by a vector equi-
librium problem. As explained in [10], there is an underlying undirected graph Gu

whose edges connect vertices in the set of starting points with vertices in the set of
ending points, that is, a bipartite graph. The authors show, in addition, that their graph
is a tree, see [10, Proposition 2.1]. In [10, Corollary 2.9.], they establish existence and
uniqueness of a solution to an extremal vector equilibrium problem with interaction
matrix C = (BtB)/2, B being the incidence matrix of Gu, with quadratic external
fields, fixed masses, and sets Δj = R. The supports of the extremal measures are
compact and describe the limiting behavior of such nonintersecting one-dimensional
Brownian paths. In order to relate [10, Corollary 2.9.] to our findings, notice that,
by considering the natural orientation of edges from starting points to ending points,
we get a directed graph G which is both a tree and a bipartite graph, see the example
in Fig. 4. Using this last property, it is not difficult to see that BtB = AtA with A the
incidence matrix of G. Thus, we learn from assertion (a) of Proposition 5.1 that C is
invertible, see also [2, Proposition 2.8], and that K is a singleton. In particular, both
conditions (1.14) and (1.15) are true and even the condition (1.5) holds. Nevertheless,
[10, Corollary 2.9] is not a consequence of [20, Chap. 5] since the sets Δj are not
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compact. However, the quadratic external fields of [10] are admissible in the sense
of our Definition 1.6, and thus existence, uniqueness, and equilibrium conditions for
an extremal tuple of measures also follow from our general findings. Note also that
the compactness of the supports of these extremal measures follows from Remark 3.3
since all entries of C are nonnegative.

6 Conclusion

In this paper, we have shown existence and uniqueness of an extremal tuple of mea-
sures for a vector generalization of a weighted energy problem in logarithmic po-
tential theory with a polyhedron of masses, substantially weakening the assumptions
typically assumed in other papers on this subject. We have also derived a character-
ization of such an extremal tuple of measure in terms of equilibrium conditions for
the vector potentials.

We have not been able to prove in our general setting that the supports of the
components of the extremal tuple of measure are always compact. We conjecture
that, because of the growth of the external field at infinity and condition (1.14), it
should be true. In any case, we note that the variational inequality (1.20) implies that
the potentials Uμj such that ci,j < 0 satisfy Uμj (z)/ log |z| → ∞ as z ∈ Δi tends
to infinity (up to a set of μi -measure zero). Hence, in view of assertion (ii) of [18,
Theorem 5.7.15], we may at least conclude that the support of μi is the union of a set
of μi -measure zero and a set thin at infinity.

There are also examples of vector-valued extremal problems in logarithmic po-
tential theory where the external fields have a slow increase near ∞, or are even not
present. For instance, in [12], the authors describe the limiting eigenvalue distribution
of banded Toeplitz matrices. It is obtained as a component of the solution of a vector
equilibrium problem with a positive definite interaction matrix C (namely the one of
a Nikishin system), without any external field at all. Also, in [9], these results have
been extended to Toeplitz matrices with rational symbol, and in this case the vector
equilibrium problem includes external fields of the form Q(z) = C log(|z|). In these
examples, it may happen that the extremal measures do not have a bounded support.
For a general analysis of such examples, one should work on the Riemann sphere
instead of the complex plane, see the recent contribution [17] in case of positive def-
inite C.
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Appendix

Proof of Lemma 2.2 Assume E is a Borel set such that μ(E) > 0. By regularity of μ,
there exists a compact subset K of E with μ(K) > 0. Set μ̃ = μ|K . Then,
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I (μ̃) = I (μ) +
∫

C\K

∫
C

log
(|z − t |)dμ(z) dμ(t)

+
∫

K

∫
C\K

log
(|z − t |)dμ(z) dμ(t)

≤ I (μ) + 4
∫

C

∫
C

log
(
1 + |t |)dμ(t) dμ(z),

which shows that I (μ̃) < ∞ and thus cap(E) > 0. �

Proof of Lemma 2.4 By [22, Theorem 2.1.3], there exists an increasing sequence
of continuous functions hm which converges pointwise to Q. Assume Q is lower
bounded by c ∈ R. Set

h̃m = min
(
c + m,max(c,hm)

)
.

Then, (̃hm)m is an increasing sequence of continuous bounded functions that still
tends pointwise to Q, and we have

lim inf
n→∞

∫
Qdμn ≥ lim

m→∞ lim inf
n→∞

∫
h̃m dμn = lim

m→∞

∫
h̃m dμ =

∫
Qdμ,

where in the last equality we use the monotone convergence theorem. �

Proof of Lemma 2.8 Let ε > 0 be given, and let M > 1 be such that

∀n ≥ 0,

∫∫
|x−y|≥M

log
(|x − y|)dμn(x) dνn(y) ≤ ε.

Note that the existence of M follows from the simple inequalities

0 ≤ log
(|x − y|)≤ log

(
1 + |x|)+ log

(
1 + |y|),

satisfied for |x − y| ≥ 1, the fact that the masses of the measures are uniformly
bounded, and the log-tightness of the sequences. We also set h(t) for a continuous
function on R+ such that

0 ≤ h(t) ≤ 1, ∀t ∈ R+, h(t) = 1 for t ≤ M, h(t) = 0 for t ≥ M + 1.

Then, we have

I (μn, νn) =
∫∫

log
(|x − y|−1)h(|x − y|)dμn(x) dνn(y)

+
∫∫

log
(|x − y|−1)(1 − h

(|x − y|))dμn(x) dνn(y). (A.1)

On one hand, the Cartesian product measure μn × νn tends weakly to μ × ν, see
[5, Theorem 2.8] or [11, Theorem 9.5.9], and the integrand in the first integral is
lower semi-continuous and lower bounded on C. Hence, Lemma 2.4 applies (more
precisely, a version of it on C

2 which holds true as well). On the other hand, the
second integral has a modulus less than ε uniformly in n. Consequently,
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lim inf
n→∞ I (μn, νn) ≥

∫∫
log
(|x − y|−1)h(|x − y|)dμ(x)dν(y) − ε

= I (μ, ν) −
∫∫

log
(|x − y|)(1 − h

(|x − y|))dμ(x)dν(y) − ε.

The integrand in the last integral is continuous and lower bounded on C. Hence, again
by Lemma 2.4, this integral is less than

lim inf
n→∞

∫∫
log
(|x − y|)(1 − h

(|x − y|))dμn(x) dνn(y) ≤ ε,

which implies

lim inf
n→∞ I (μn, νn) ≥ I (μ, ν) − 2ε.

Since ε > 0 is arbitrary, (2.3) follows. �
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