Claire Chainais-Hillairet

professeure des universités - Mathématiques
CNU : SECTION 26 - MATHEMATIQUES APPLIQUEES ET APPLICATIONS DES MATHEMATIQUES
claire_chainais-hillairet.JPG

Claire Chainais-Hillairet

professeure des universités - Mathématiques

Publications

Article dans des revues

  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2021, 41 (1), pp.271-314. ⟨10.1093/imanum/draa002⟩. ⟨hal-02194604v3⟩
  • Claire Chainais-Hillairet, Maxime Herda. Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020, 40 (4), pp.2473-2505. ⟨10.1093/imanum/drz037⟩. ⟨hal-01885015⟩
  • Clément Cancès, Claire Chainais-Hillairet, Maxime Herda, Stella Krell. Large time behavior of nonlinear finite volume schemes for convection-diffusion equations. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020, 58 (5), pp.2544-2571. ⟨10.1137/19M1299311⟩. ⟨hal-02360155v2⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet. Uniform-in-time Bounds for approximate Solutions of the drift-diffusion System. Numerische Mathematik, Springer Verlag, 2019, 141 (4), pp.881-916. ⟨10.1007/s00211-018-01019-1⟩. ⟨hal-01659418v2⟩
  • Clément Cancès, Claire Chainais-Hillairet, Anita Gerstenmayer, Ansgar Jüngel. Convergence of a Finite-Volume Scheme for a Degenerate Cross-Diffusion Model for Ion Transport. Numerical Methods for Partial Differential Equations, Wiley, 2019, 35 (2), pp.545-575. ⟨10.1002/num.22313⟩. ⟨hal-01695129⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet, Philippe Laurençot. Large time behavior of a two phase extension of the porous medium equation. Interfaces and Free Boundaries, European Mathematical Society, 2019, 21, pp.199-229. ⟨10.4171/IFB/421⟩. ⟨hal-01752759⟩
  • Claire Chainais-Hillairet, Benoît Merlet, Antoine Zurek. Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (2), pp.457-480. ⟨hal-01477543v2⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations. Computational Methods in Applied Mathematics, De Gruyter, 2018, 18 (3), pp.407-432. ⟨10.1515/cmam-2017-0043⟩. ⟨hal-01529143⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet. Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (4), pp.1532-1567. ⟨10.1051/m2an/2017012⟩. ⟨hal-01372954⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet. Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems. Journal of Numerical Mathematics, De Gruyter, 2017, 25 (3), pp.147-168. ⟨10.1515/jnma-2016-0007⟩. ⟨hal-01250709v2⟩
  • Claire Chainais-Hillairet, Ansgar Jüngel, Polina Shpartko. A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numerical Methods for Partial Differential Equations, Wiley, 2016, 32 (3), pp.819-846. ⟨10.1002/num.22030⟩. ⟨hal-01115858v3⟩
  • Claire Chainais-Hillairet, Ansgar Jüngel, Stefan Schuchnigg. Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, 50 (1), pp.135-162. ⟨10.1051/m2an/2015031⟩. ⟨hal-00924282v2⟩
  • Claire Chainais-Hillairet, Thomas Gallouët. Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation. Nonlinear Analysis: Real World Applications, Elsevier, 2016, 31, pp.38-56. ⟨10.1016/j.nonrwa.2016.01.010⟩. ⟨hal-01147621⟩
  • Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modelling. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2015, 20 (1), pp.77-92. ⟨10.3934/dcdsb.2015.20.77⟩. ⟨hal-00764239⟩
  • Claire Chainais-Hillairet, Pierre-Louis Colin, Ingrid Lacroix-Violet. Convergence of a Finite Volume Scheme for a Corrosion Model. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2015, ⟨10.1007/978-3-319-05591-6_54⟩. ⟨hal-01082041v3⟩
  • Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numerical Methods for Partial Differential Equations, Wiley, 2014, pp.38. ⟨10.1002/num.21913⟩. ⟨hal-00929823⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Marie-Hélène Vignal. Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2014, 52 (4), pp.1666-1691. ⟨10.1137/130913432⟩. ⟨hal-00801912v2⟩
  • Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Study of discrete duality finite volume schemes for the Peaceman model. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2013, 35 (6), pp.A2928--A2952. ⟨10.1137/130910555⟩. ⟨hal-00790449⟩
  • Christian Bataillon, François Bouchon, Claire Chainais-Hillairet, Clara Desgranges, Emma Hoarau, et al.. Corrosion modelling of iron based alloy in nuclear waste repository. Electrochimica Acta, Elsevier, 2010, pp.4451--4467. ⟨hal-00556950⟩
  • Claire Chainais-Hillairet, Yue-Jun Peng, Ingrid Violet. Numerical solutions of Euler-Poisson systems for potential flows. Applied Numerical Mathematics, Elsevier, 2009, 59, pp.301-315. ⟨hal-00489214⟩
  • Claire Chainais-Hillairet, Jérôme Droniou. Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2007, 45 (5), pp.2228-2258. ⟨10.1137/060657236⟩. ⟨hal-00022910⟩
  • Claire Chainais-Hillairet, Francis Filbet. Asymptotic behavior of a finite volume scheme for the transient drift-diffusion model. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2007, 27, pp.689-716. ⟨hal-00083466⟩

Communication dans un congrès

  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. On four numerical schemes for a unipolar degenerate drift-diffusion model. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02461524⟩
  • Claire Chainais-Hillairet, Maxime Herda. $L^\infty$ bounds for numerical solutions of noncoercive convection-diffusion equations. Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples., Jun 2020, Bergen, Norway. ⟨10.1007/978-3-030-43651-3_12⟩. ⟨hal-02404546v2⟩
  • Claire Chainais-Hillairet, Stella Krell. Exponential decay to equilibrium of nonlinear DDFV schemes for convection-diffusion equations. FVCA 2020 - 9th Conference on Finite Volumes for Complex Applications, Jun 2020, Bergen, Norway. ⟨hal-02408212⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis. Numerical schemes for semiconductors energy- transport models. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. pp. 75-90. ⟨hal-02563093⟩
  • Claire Chainais-Hillairet, Benoît Merlet, Alexis Vasseur. Positive Lower Bound for the Numerical Solution of a Convection-Diffusion Equation. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.331-339, ⟨10.1007/978-3-319-57397-7_26⟩. ⟨hal-01596076⟩
  • Claire Chainais-Hillairet, Antoine Zurek, Benoît Merlet. Design and analysis of a finite volume scheme for a concrete carbonation model. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.285-292, ⟨10.1007/978-3-319-57397-7_21⟩. ⟨hal-01645137⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Ansgar Jüngel. Uniform L ∞ estimates for approximate solutions of the bipolar drift-diffusion system. FVCA 8, Jun 2017, Lille, France. ⟨hal-01472643⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. A nonlinear Discrete Duality Finite Volume Scheme for convection-diffusion equations. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. pp.439-447. ⟨hal-01468811⟩

Pré-publication, Document de travail

  • Maxime Breden, Claire Chainais-Hillairet, Antoine Zurek. Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof. 2020. ⟨hal-03082893⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis. ANALYSIS OF NUMERICAL SCHEMES FOR SEMICONDUCTORS ENERGY-TRANSPORT MODELS. 2020. ⟨hal-02940224⟩
  • Christian Batallion, François Bouchon, Claire Chainais-Hillairet, Juergen Fuhrmann, Emma Hoarau, et al.. Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository. 2010. ⟨hal-00545552⟩
  • Claire Chainais-Hillairet, Jerome Droniou. Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. 2008. ⟨hal-00358122⟩