Claire Chainais-Hillairet

Professeure des universités - Mathématiques
CNU : SECTION 26 - MATHEMATIQUES APPLIQUEES ET APPLICATIONS DES MATHEMATIQUES
claire_chainais-hillairet.JPG

Claire Chainais-Hillairet

Professeure des universités - Mathématiques

Publications

Article dans des revues

  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2021, 41 (1), pp.271-314. ⟨10.1093/imanum/draa002⟩. ⟨hal-02194604v3⟩
  • Claire Chainais-Hillairet, Maxime Herda. Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020, 40 (4), pp.2473-2505. ⟨10.1093/imanum/drz037⟩. ⟨hal-01885015⟩
  • Clément Cancès, Claire Chainais-Hillairet, Maxime Herda, Stella Krell. Large time behavior of nonlinear finite volume schemes for convection-diffusion equations. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020, 58 (5), pp.2544-2571. ⟨10.1137/19M1299311⟩. ⟨hal-02360155v2⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet. Uniform-in-time Bounds for approximate Solutions of the drift-diffusion System. Numerische Mathematik, Springer Verlag, 2019, 141 (4), pp.881-916. ⟨10.1007/s00211-018-01019-1⟩. ⟨hal-01659418v2⟩
  • Clément Cancès, Claire Chainais-Hillairet, Anita Gerstenmayer, Ansgar Jüngel. Convergence of a Finite-Volume Scheme for a Degenerate Cross-Diffusion Model for Ion Transport. Numerical Methods for Partial Differential Equations, Wiley, 2019, 35 (2), pp.545-575. ⟨10.1002/num.22313⟩. ⟨hal-01695129⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet, Philippe Laurençot. Large time behavior of a two phase extension of the porous medium equation. Interfaces and Free Boundaries, European Mathematical Society, 2019, 21, pp.199-229. ⟨10.4171/IFB/421⟩. ⟨hal-01752759⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations. Computational Methods in Applied Mathematics, De Gruyter, 2018, 18 (3), pp.407-432. ⟨10.1515/cmam-2017-0043⟩. ⟨hal-01529143⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet. Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (4), pp.1532-1567. ⟨10.1051/m2an/2017012⟩. ⟨hal-01372954⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet. Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems. Journal of Numerical Mathematics, De Gruyter, 2017, 25 (3), pp.147-168. ⟨10.1515/jnma-2016-0007⟩. ⟨hal-01250709v2⟩
  • Claire Chainais-Hillairet, Ansgar Jüngel, Polina Shpartko. A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numerical Methods for Partial Differential Equations, Wiley, 2016, 32 (3), pp.819-846. ⟨10.1002/num.22030⟩. ⟨hal-01115858v3⟩
  • Claire Chainais-Hillairet, Ansgar Jüngel, Stefan Schuchnigg. Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, 50 (1), pp.135-162. ⟨10.1051/m2an/2015031⟩. ⟨hal-00924282v2⟩
  • Claire Chainais-Hillairet, Thomas Gallouët. Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation. Nonlinear Analysis: Real World Applications, Elsevier, 2016, 31, pp.38-56. ⟨10.1016/j.nonrwa.2016.01.010⟩. ⟨hal-01147621⟩
  • Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modelling. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2015, 20 (1), pp.77-92. ⟨10.3934/dcdsb.2015.20.77⟩. ⟨hal-00764239⟩
  • Claire Chainais-Hillairet, Pierre-Louis Colin, Ingrid Lacroix-Violet. Convergence of a Finite Volume Scheme for a Corrosion Model. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2015, ⟨10.1007/978-3-319-05591-6_54⟩. ⟨hal-01082041v3⟩
  • Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numerical Methods for Partial Differential Equations, Wiley, 2014, pp.38. ⟨10.1002/num.21913⟩. ⟨hal-00929823⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Marie-Hélène Vignal. Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2014, 52 (4), pp.1666-1691. ⟨10.1137/130913432⟩. ⟨hal-00801912v2⟩
  • Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Study of discrete duality finite volume schemes for the Peaceman model. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2013, 35 (6), pp.A2928--A2952. ⟨10.1137/130910555⟩. ⟨hal-00790449⟩
  • Christian Bataillon, François Bouchon, Claire Chainais-Hillairet, Clara Desgranges, Emma Hoarau, et al.. Corrosion modelling of iron based alloy in nuclear waste repository. Electrochimica Acta, Elsevier, 2010, pp.4451--4467. ⟨hal-00556950⟩
  • Claire Chainais-Hillairet, Yue-Jun Peng, Ingrid Violet. Numerical solutions of Euler-Poisson systems for potential flows. Applied Numerical Mathematics, Elsevier, 2009, 59, pp.301-315. ⟨hal-00489214⟩
  • Claire Chainais-Hillairet, Jérôme Droniou. Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2007, 45 (5), pp.2228-2258. ⟨10.1137/060657236⟩. ⟨hal-00022910⟩
  • Claire Chainais-Hillairet, Francis Filbet. Asymptotic behavior of a finite volume scheme for the transient drift-diffusion model. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2007, 27, pp.689-716. ⟨hal-00083466⟩

Communication dans un congrès

  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. On four numerical schemes for a unipolar degenerate drift-diffusion model. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02461524⟩
  • Claire Chainais-Hillairet, Maxime Herda. $L^\infty$ bounds for numerical solutions of noncoercive convection-diffusion equations. Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples., Jun 2020, Bergen, Norway. ⟨10.1007/978-3-030-43651-3_12⟩. ⟨hal-02404546v2⟩
  • Claire Chainais-Hillairet, Stella Krell. Exponential decay to equilibrium of nonlinear DDFV schemes for convection-diffusion equations. FVCA 2020 - 9th Conference on Finite Volumes for Complex Applications, Jun 2020, Bergen, Norway. ⟨hal-02408212⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis. Numerical schemes for semiconductors energy- transport models. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. pp. 75-90. ⟨hal-02563093⟩
  • Claire Chainais-Hillairet, Benoît Merlet, Alexis Vasseur. Positive Lower Bound for the Numerical Solution of a Convection-Diffusion Equation. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.331-339, ⟨10.1007/978-3-319-57397-7_26⟩. ⟨hal-01596076⟩
  • Claire Chainais-Hillairet, Antoine Zurek, Benoît Merlet. Design and analysis of a finite volume scheme for a concrete carbonation model. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.285-292, ⟨10.1007/978-3-319-57397-7_21⟩. ⟨hal-01645137⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Ansgar Jüngel. Uniform L ∞ estimates for approximate solutions of the bipolar drift-diffusion system. FVCA 8, Jun 2017, Lille, France. ⟨hal-01472643⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. A nonlinear Discrete Duality Finite Volume Scheme for convection-diffusion equations. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. pp.439-447. ⟨hal-01468811⟩

Pré-publication, Document de travail

  • Maxime Breden, Claire Chainais-Hillairet, Antoine Zurek. Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof. 2020. ⟨hal-03082893⟩
  • Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis. Analysis of numerical schemes for semiconductors energy-transport models. 2020. ⟨hal-02940224⟩
  • Christian Batallion, François Bouchon, Claire Chainais-Hillairet, Juergen Fuhrmann, Emma Hoarau, et al.. Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository. 2010. ⟨hal-00545552⟩
  • Claire Chainais-Hillairet, Jerome Droniou. Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. 2008. ⟨hal-00358122⟩

Rapport

  • Etienne Ahusborde, Brahim Amaziane, Attila Baksay, G. Bator, D. Becker, et al.. State Of the Art Report in the fields of numerical analysis and scientific computing. Final version as of 16/02/2020 deliverable D4.1 of the HORIZON 2020 project EURAD.: European Joint Programme on Radioactive Waste Management. [Technical Report] EC Grant agreement no: 847593. 2020. ⟨hal-03165686⟩